EVOLUTION OF AN INTRODUCTORY COMPUTER SCIENCE

COURSE: THE LONG HAUL’

A.T. Chamillard and Laurence D. Merkle
Department of Computer Science
U.S Air Force Academy
USAFA, CO 80840
achamillard@hq.dcma.mil
Larry.Merkle@usafa.af.mil

ABSTRACT

Univergty requirements for the materia covered in introductory computer science
courses have evolved over the years, and those courses must therefore evolve as
well. In this paper, we discussthe 7-year evolutionof suchacourse a the U.S. Air
Force Academy. In 1995, the man thrust of the course was to develop students
programming skills to support later programming activities, even for those students
not mgoring in computer science. Although some genera survey topics were
covered, programming skill development wastheman goal of the course. Sincethat
time, the course has evolved Sgnificantly into a course that covers general computer
science and Information Technology (IT) topicsingreater depth and breadth, with
a continuing but greetly reduced programming component. During that 7-year
period, we changed programminglanguagesfor the course, Sgnificantly changed the
way in which we evauated programming ability, incorporated graphics into the
course, conducted an extensive rework of the course content, and made numerous
smdler changesaswall. In this paper, we discuss the technica and politica issues
associated with the evolution of the course. Although thiswork is presented in the
context of our course, such evolution is clearly applicable to other introductory
courses aswell.

1. INTRODUCTION

All students at the U.S. Air Force Academy take an introductory course in computer
scienceineither their freshmanor sophomore year. The course covers both programming topics

" This paper is authored by an employee(s) of the United States Government and is in the public
domain.

144

CCSC: Rocky Mountain Conference

and non-programming topics, such as computer hardware organization, operating systems,
networking, databases, the World Wide Web, and so on.

Because the field of computer science evolves, and because University requirementsfor
thiskind of course aso change over time, such coursesmust evolve aswdl. Topicsneed to be
regularly updated to remain current and relevant, various aspects of the presentation sequence
and content need to be modified repeatedly, and, on occasion, the entire course may need to
be redesigned to more effectively cover the changing learning objectives of the course.

The following section discusses our language change from Pascal to Ada. Section 3
presents the ways inwhichwe have evolved our evauationof student programming ability, and
Section4 describes our incorporation of graphicsinthe course. Our recent ground-up redesign
of the courseis addressed in Section 5; the final section presents our conclusions.

2. PROGRAMMING LANGUAGE CHANGE

One of the chalenges regularly faced by curriculum devel opers for introductory courses
is the trangtion from one programming language to another. The factors driving suchtranstions
include adesireonthe part of the computer sciencefaculty to usea " current” language; changes
required to support later classes in the computer science curriculum; requests from other
departments to use a different language to support their courses; and politica pressures from
other departmentsand adminigtratorsto usethe "latest” language, both to demonstrate currency
and to support recruitment and retention.

Many departmentsare currently decidingwhether or not to move fromC++ to Java, from
Javato C#, or even from Pascal to C++ or Java[5]. Even TCL/TK has been proposed as a
suitable language for the first computer science course [7]! In 1996, the Air Force Academy
decided to trangtionthe language used inthe introductory computer sciencecoursefrom Pascal
to Ada [2]. This trandtion was motivated in large part by the fact that Air Force Academy
graduates are much more likely to encounter Ada systems rather than Pascd sysemsin ther
careers, though we aso point out that other departments (most notably, the Department of
Adtronautics) decided to use Adain ther courses as well. Because there was evidence in the
literature that Adawas not difficult to learn for those mgoring in computer science [6], we

believed that we could effectively integrate Adainto our introductory course.

There are numerous issues to be considered when trangtioning to a new programming
language. Sdlecting the new language is, of course, a maor decision point. Choosing an
gopropriate development environment is another critical decison, especidly given the
programming inexperience of many of the studentsin the course. Other issues include ensuring
facultymembersare prepared to teach the new language, scoping thelanguage featurescovered
to be of reasonable difficulty for the students, and sdecting the appropriate programming
standards to be used in faculty and student programs.

A primary concern that educators face when changing languagesis how the change will
affect sudent learning and performance in the course. To examine these effectsfromour 1996
trangtion to Ada, we analyzed sudent performance on the programming assgnments, large

145

JCSC 18, 1 (October 2002)

programming exercise (called a PEX; discussed in the following section), and find examination
in the Spring 1996 (using Pascal) and Spring 1997 (usng Ada) semesters. We chose these
assessments as those that were most directly related to evauation of student programming
ability. We note that the find exams contained different problems and had a different format
(closed versus open book), but seemed to be of comparable difficulty, at least from the
perspective of the ingtructors for the course. The mean percentages of the assessment scores
for these semesters are provided in Table 1.

Spring 1996 (Pascal)

Spring 1977 (Ada)

Programming Assignments 82.3% 90.3%
PEX 81.9% 89.3%
Final Exam 77.9% 80.4 %

Table 1. Comparison of Student Performance on Pasca and Ada Final Exams.

Informdly, the results in Table 1 indicate that the students performed better on the
programming assessments when we used Ada in the course. More formaly, we can use a
standard t-test to compare the means of the ditributions for each assessment from the Spring
1996 and Spring 1997 semesters. The t-test usesthe means and standard deviationsfor thetwo
digributionsto try to rgject anull hypothesis that the two distributions could have been drawn
from populations with equa means. For dl three of the assessments under consideration, the
t-test yidded results indicating that the means were in fact higher, with atistical sgnificance,
for the semegter in which Ada was used as the programming language.

Based on these results and other anecdotal observations, we view our trangtion from
Pascal to Adain this course as a success. The trangition from Pasca to Ada was botheasy to
make and highly beneficid to the students. Faculty members who were familiar with other
imperative languages easly mastered the subset of Ada necessary for an introductory course;
we expect the same would betruefor atrangtionfrom one object-oriented language to another.
Fndly, and mostimportantly, studentsperformed better onthe programming portion of the find
examination when Adawas used in the course rather than Pascdl.

In response to some of the factors enumerated above, we are now congdering another
language change. We are evauatinganumber of different possible languages, induding C, C++,
C#, and Java, though we have not yet findized plans for such atrangtion.

3. EVALUATING PROGRAMMING ABILITY

Another mgor evolutionary change we made involved the evaduation of student
programming &bility in the course. All 7 years of the course have included assessment of this
programming ability through the use of programming assgnments (with varying leves of
collaboration alowed), test questions, and find examination questions. Prior to the 1997
Academic Y ear, the course concluded withalarge Programming Exercise (PEX) that students

146

CCSC: Rocky Mountain Conference

were required to complete without collaborating with their felow students. Our intent with this
"individud effort” programming assgnment was to evaduate each Sudent's individud
programming ability.

Anexample of the atement of requirementsfor a PEX is providedinFigure 1. The PEX
consisted of 3 or 4 turn-insdesignedto hdp the students devel op their solutionsiiteratively. Each
turn-in was comprised of the student's design (inthe formof adetailed agorithm) and code for
apre-determined portion of the assgnment requirements. Students generdly worked on the
PEX for the last month or so of the course; because this assgnment was worth 15% of the
course grade, it was a source of great stress for the students and faculty.

Statement of Reguirements for an Assignment Tracking System

You've been tasked to develop a system for tracking information on up to 100 class assignments.
Specifically, your system shall dlow the following 5 information elements to be retrieved, displayed, or
stored for each assignment:

Class Name -- a 15 character string (i.e., “Comp Sci 110 ")
Assignment Name -- a 10 character string

Point VVaue -- an integer

Class Day -- acharacter, only M or T

Lesson Due -- an integer between 1 and 42

Your system shall start by displaying a short overall description of its purpose followed by a menu of
choices for the user that includes the following:

(R)ead afile asinput to initialize the database with assignment information
(W)rite afile as output to store the current assignment information
(D)isplay al assgnment information in the database on the screen

(A)dd anew assignment to the tracking system database

(F)ind assignments in the database and display them, given the class name
(Q)uit the program

The system shdl then prompt the user for a one-character choice. Once the user has entered his or her
choice, the program shal accomplish the desired action and then reprompt the user for another choice.
If the user enters an invalid choice, the system shadl display an error message and reprompt the user for
a valid choice until one is entered. The system shall accept both lowercase and uppercase inputs, i.e,
either ‘A’ or ‘a’ to add anew assignment to the tracking system database.

Figure 1. Excerpt from Programming Exercise

The PEX was dressful for the faculty because, dthough students were prohibited from
working withtheir fellow students on this assgnment, they were encouraged to work withther
professor or other professorsinthe department whenthey encountered problems. The students
embraced this approachwholeheartedly, and professors were known to provide 6 or 7 hours
of help to dudentsin asingle day, especidly as the turn-in due dates approached. It seemed

147

JCSC 18, 1 (October 2002)

clear, at least anecdotaly, that we were not evauating each student's individua programming
ability given thisleve of professor participation in the PEX.

Infact, we also had Satistical support for the daim that the PEX was not effective for this
purpose. In the Spring 1996 semester, the average student percentage on the collaborative
programming assignments was 82.3% and the average student percentage on the
individud-effort PEX was 81.9%; for the Spring 1997 semester, these percentages were
90.3% and 89.3%. Application of a standard t-test indicated that these percentages were not
different with gatistica sgnificance, indicating thet we were essentialy "measuring the same
thing," which in turn indicated to us that the PEX was not assessing individual student
programming ability. Given both the anecdotal and Statistical evidence, we decided to pursue
an dterndive to the PEX

In the 1997 Academic Year (and in the following years), the PEX was replaced by a
combination of a group case study and lab practica [3]. For the case study, we divide the
students into teams (of 2 to 4 students) and have them program a portion of alarge program.
Historically, this program has been a game of some sort; in the recent past, students have
implemented a portionof Connect-4, Battleship, Othello, and billiards games. On the last day
of the class, we play the udent programs againg each other inatournament, and alocate extra
credit points based on group placings in the tournament. Whileit is not clear that the students
gain additiond programming skill while completing the case study, it does serve as a very
motivationd experience for the students.

Students complete two lab practica over the course of the semester. A lab practicum is
an in-classlab that the students are required to complete within a set period of time. Students
must develop and test a complete program solving a problem that they are presented with at
the beginning of the time period. They are alowed to use a handout containing syntax for dl the
programming constructs covered inthe course; asheet lisingcommonprogramming errors (and
ther solutions); and the course web site, which contains a program template builder, sample
cdls to numerous graphics procedures, and example code from the Ada textbook. They are
not allowed to use any other materids, and the ingtructors will only answer questions about the
problem (rather than heping students correct syntax errors, for example). In essence, these
practica serve as progranming exams that test the sudents individud programming ill, an
assessment we did not feel we were accomplishing with the PEX.

The problem statement from one version of the second practicum is provided in Figure
2. Sinceit is sometimes difficult to precisely describe required graphica output for a program,
the practicum handout aso contains an example of the required output.

Because the prime motivationfor our evolutionto this new approachwasto provide more
effective assessment of individua programming capabilities, we compared the average student
percentages on the in-class practica with the average student percentages onthe collaborative
programming assgnments. Recdl that the PEX did not give us a different mean from the
programming assgnments, we view a saigicaly sgnificant difference between the practica
percentage and the programming assignment percentage as aprerequisitefor daiming that the

148

CCSC: Rocky Mountain Conference

practicagive us a more effective method for assessment. A comparison of these percentages
for the Spring 1998, Spring 1999, and Spring 2000 semestersis provided in Table 2.

Develop an Ada program that will do the following:

1 Display ashort introductory message in the text window (do not require the user to pressreturn!).
2. Open agraphics window that is 500 pixels wide and 300 pixels high.
3. Get ten left mouse button clicks from the user. After each mouse click your program should:
a Write in the text window the number of mouse clicks that have been recorded so far.
b. Store the x and y coordinates from each mouse click inan X array and a Y array.
C. After the first mouse click, draw aline (any color) from the previous mouse click to the current mouse click.
4. Find the maximum valuein the X array.
5. Find the maximum valueinthe Y array.
6. Create afile called “ A:\Practicum_2adat” and write the information described in the format shown below. Note: do NOT writ
the string “Max X" in thefile; write the value that isthe maximum X vaue.
7. Wait 5.0 seconds and close the graphics window.

Figure 2. Problem Statement from Practicum 2

Spring 1998 Spring 1999 Spring 2000
Programming Assignments 96.5 % 92.7% 93.8%
Lab Practica 78.1% 74.8% 77.6%

Table 2. Comparison of Student Performance on Collaborative Assgnments and Lab
Practica
Not surprisngly, applicationof astandard t-test indicatesthat these percentagesareinfact
different with atisticd dgnificance. We therefore believe that we have identified a more
effective means for assessing individud student programming &bility than the PEX, and we
continued to use the practica for this assessment until the coursere-work discussed in Section
5.

4. USING GRAPHICS

Prior to the Fall 1999 semester, al the eva uation techniques except the case study were
text-oriented. For the case study, we provided dl the graphicsrequired; students Smply wrote
input, processing, and output subprograms without being concerned with how the graphics
worked. Starting in the Fdl 1999 semester, we incorporated graphics into dl our student
programming assignments and other assessment techniques[4].

One of the primary reasons for doing this was to provide mativetion for the students as
they tried to learn new, sometimes difficult, concepts. The students enjoyed the graphical
capabilities of the case study code we provided to them, so it seemed reasonable to let them
try some of the graphicsinput and output ontheir own. Others have a so recognized the benefits
of usng graphicsin early computer science courses. Roberts pointsout that students are much

149

JCSC 18, 1 (October 2002)

more enthusiastic about writing programs containing graphic functions [8], and graphics have
beenincorporated in genera educationcomputer science courses|9] aswdl asmoretraditiond
CS1 courses[1].

Weincorporated graphicsindl 6 of the programming assgnmentsinthe course, inthe lab
practica, and in the case sudy. Although we believe that we incorporated graphicsinto these
assessments in a logica manner, there are clearly some risks associated with incorporating
graphics into this course. For example, the students could become so engrossed with the
graphicsthat they overlook important programming concepts. Smilarly, students could become
entangled inthe syntax required to use graphics routinesto the detriment of more general topics.

One way to determine whether or not the risks mentioned above are having an effect on
sudent performanceisto examine student gradesonthe programmingassgnmentsto determine
whether the students do better on text-oriented or graphics-oriented assignments covering
smilar key topics. Because the order of topic presentation changed significantly in the course
concurrently with our inclusion of graphics, we only compared student grades on Assgnment
1 from the Fall 1999 and Fall 1998 semesters. In both of these semesters, the key topics for
this assgnment were variable declarations and use and data input and output. The only
sgnificant difference between the Fall 1998 and Fall 1999 Assignment 1 is the addition of
graphics to the Fall 1999 lab; acomparison between the two is therefore both reasonable and
enlightening.

Wefirg examined the means for this assgnment. The mean score on Assgnment 1 in the
Fal 1998 semester was 75.7% with a standard deviation of 23.2%, while the meaninthe Fall
1999 semester was 87.8 % witha standard deviationof 19.7%. While these means areclearly
different, we would have liked to run an independent samplest-test to quantify the sgnificance
of the difference. However, Kolmogorov-Smirnov tests and graphs of the grade distributions
indicate that the distributions are not normal; therefore, a t-test would not be an appropriate
comparison statitic for the means. Informally, however, it is clear that the sudents performed
much better on the graphics-oriented lab (Fall 99) than on the text-oriented lab (Fall 98).

While the grade comparison presented above shows that incorporating graphics has
improved student performance on this assgnment, we would aso like to quantify the
motivationd benefits we are regping by including grephics. To do this, we suggest that, if
graphics-oriented labs are more motivationa than text-oriented labs, fewer studentswill "give
up" asthey try to complete the assgnment.

We therefore counted the number of students who received a grade of less than 33.3%
in each semester. We recognize that this may aso capture students who did not give up and
were smply unable to master the materid, but we suspect thiswas asmall percentage of the
studentswho received suchlow grades ontheassgnment. Inthe Fall 1998 semester, 39 of 528
students (7.39%) scored lower than a 33.3% on the assignment. In contrast, in the Fall 1999
semester, only 14 of 467 students (3.00 %) scored lower than 33.3%. While we recognize that
this metric is at best an indirect measure of motivation, we do believe that the difference
between the text-oriented and graphics-oriented semesters provides further support for our
conclusion that incorporating graphics is beneficid.

150

CCSC: Rocky Mountain Conference

5. RECENT REWORK

In the Fal 2001 semester, we implemented a ground-up redesign of the course. The
primary purpose of the redesign was to make the course more rdevant to studentswho do not
declare computing-rlated mgors. In previous years, the course focused heavily on
programming topics and addressed other topics only at the knowledge and comprehension
leaning levels. This was appropriate for students who would eventually choose a
computing-related major, but not for the vast mgority of students enrolled in the course. After
lengthy discussion, we decided to increase the emphasis on a number of non-programming
topics, induding adgorithms, hardware, operating systems, networking, World Wide Web,
security, multimedia, databases, modding, and smulaion. We devel oped application-level
learning objectives for each of these topics.

At the same time, weincorporated anumber of other changesto improve the effectiveness
of the course for dl students.

* We organized the course into "blocks’ of lessons. We had previoudy only used this
sructure for programming topics.

« Weadded web-based pre-assessment quizzes covering the reading for eachblock at the
knowledge and comprehension learning levels.

* Inthe process of redeveloping the lesson plans, we replaced lectures with active and
collaboretive teaching techniques wherever we could. This was particularly effectivein
combination with the pre-assessment quizzes.

» Each incoming dass buys standard computers (the configuration is selected and
standardized by the Air Force Academy each year); the Class of 2005 wasthe fird class
to receive notebook computers. We required students to bring their computersto class,
and we incorporated their use in amgority of the lesson plans.

* WeuseAdaasthe high-leve programming language for the course becauseitisvery easy
tolearn. Nonethdess, it hasafew syntactic structuresthat are unnecessarily complicated
for anintroductory course (e.g. declarationof anarray varidble requires atype definition).
We developed a"CS110" package that smplifies the syntax (e.g. by providing sandard
array types) to let usfocus on the principles behind the programming constructs.

« Thereis great variety in the backgrounds of incoming sudents. Because of this, a few
students in each section were not chalenged by the course in the past. We therefore
indituted an Honors version to chdlenge these more advanced students. The Honors
verson covers the same topics asthe regular versoningreater depth, aswell as covering
additiona programming topics.

These changes produced outstanding results. Most importantly, ingtructors fet thet their
students learned more than in previous semesters. Objectively, the students scored better on
exams, supporting this belief.

The pre-assessment quizzeshad theintended effect: the studentswere better prepared for

class, so we could use class time to focus on the more difficult gpplication-leve learning
objectives. Thedrawback wasthat our first implementation of the quizzeswas based on afree

151

JCSC 18, 1 (October 2002)

plug-in for Microsoft FrontPage™ , whichturned out to be somewhat inflexible and unrdigble.
We have since developed our own implementation that seems to be more effective for us.

Fndly, despite the course's bad reputation, it received outstanding student critiques.
Spedificdly, students gave it one of the lowest ratings at the Air Force Academy for the
statement "Prior to taking this class, | wasinterested inthe content of this course," but at the end
of the semedter, they rated it the highest out of the 11 core courses in the Basic Sciences
Divison and the Engineering Divison in 9 of 36 categories:

« Intdlectud chdlenge and encouragement of independent thought

« EBvduative and grading techniques (tests, papers, projects, €tc.)

« Thecourseasawhole

« Amount | learned in the course

» This course improved my ability to deal with problems that don't have an approved
solution

« My moativation to learn has increased because of taking this course

e Thereare anumber of thingsin this subject 1'd like to learn more about

» My indructor designed activities that made me think

« | bdievedl theinformation contained in this critique is anonymous

6. CONCLUSION

Inorder to reasonably reflect the moderncapabilitiesof computingtechnology and itsuses
in society, the content of introductory courses in computer science must continually evolve.
Occasondly, the dhift in content is suffident to demand corresponding changes in course
organization and student activities.

In the mid 1990's, the Air Force Academy's introductory course was focused on
programming. Several changeswere put inplace to help students learn essentid programming
concepts, and to assessthat learning. One change amed directly a improving learning wasthe
introduction of anew programming language. Other changes that indirectly improved learning
by increasing student mativation included the incorporation of graphics and the addition of a
group project involving a game. Changes aimed a improving assessment of student learning
included the elimination of individud effort find projects and the addition of programming
practica

Morerecently, the course has been redesigned from the ground up, primarily to improve
its relevance to studentswho do not choose majors related to computing. These students are
much less likdly to need programming skills, but dill need to be able to effectively leverage
computing technologies. The redesigned course spends less time on programming, but
addresses non-programming topics in non-trivid depth. Those topics include agorithms,
hardware, operating systems, networking, World Wide Web, security, multimedia, databases,
modding, and Smulation.

152

CCSC: Rocky Mountain Conference

7. REFERENCES

[1]

[2]

[3]

[4]

[3]

[6]

[7]

[8]

[9]

Adrachan, O., and Roger, SH. Animdion, Visudization, and Interaction in CS 1
Assgnments, InProceedings of the Twenty-Ninth SIGCSE Technical Symposiumon
Computer Science Education, Atlanta, Georgia, March 1998, pp. 317-321.

Chamillard, A.T. and Hobart, WilliamC. Trandtioningto Adain an Introductory Course
for Non-Mgors. InProceedings of TRI-Ada '97, St Louis, Missouri, November 1997,
pp. 37-40.

Chamillard, A.T. and Joiner, Jay K. Usng Lab Practicato Evauate Programming Ability.
In Proceedings of the Thirty-Second SGCSE Technical Symposium on Computer
Science Education, Charlotte, North Carolina, February 2001, pp. 159-163.

Chamillard, A.T., Moore, Jason A., and Gibson, David S. Using Graphics in an
Introductory Computer Science Course. JCSE Online, February 2002.

Dingle, Adair and Zander, Carol. Assessing the Ripple Effect of CS1 Language Choice,
The Journal of Computing in Small Colleges, Val. 16, No. 2, pp. 85-93, 2001.

Feddman, Michad B. Ada Experience in the Undergraduate Curriculum,
Communications of the ACM, Vol. 35, No. 11, pp. 53-67, 1992.

Isaacson, Peter C. An Introduction to TCL/TK: The Best Language for Introduction to
Computer Science Courses, The Journal of Computing in Small Colleges, Val. 16,
No. 2, pp. 115-117, 2001.

Roberts, E.S. A C-based graphics library for CS1, The Papers of the Twenty-Sixth
S GCSE Technical Symposium on Computer Science Education, Nashville,
Tennessee, 1995.

Stegink, G., Pater, J., and Vroon, D. Computer Science and Generd Educetion: Java,
Graphics, and the Web, In Proceedings of the Thirtieth SIGCSE Technical
Symposiumon Computer Science Education, New Orleans, Louisana, March 1999,
pp. 146-149.

153

