
CS 3721: Programming Languages Lab
Lab #10: Tail Recursion and Loops

Suppose we have the following function definition length in ML.

fun length(nil, result) = result
| length(x::y, result) = length(y, result+1);

You can test the above function with the following invocation

- length ([2,3,4,5,7],0);
val it = 5 : int

The above length can be translated to the following loop implementation.

fun length(y) = let val result=ref 0; val p_y=ref y in
while not (!p_y = []) do

(result := !result + 1; p_y := tl(!p_y));
!result

end;

Translate the following tail-recursive ML functions to loop implementations. Test your code
by invoking both the original recursive implementation and your new implementation with
a test input, and make sure they return the same result.

1. fun Append(nil, ys) = ys
| Append(x::xs, ys) = Append(xs, x::ys);

2. fun Product([], res) = res
| Product(x::y, res) = Product(y, x * res);

3. fun gcd(x,y) = if x = y then x
else if (x > y) then gcd(y, x-y) else gcd(x, y-x);

1

