Continuation and
Exceptions

Control Flow In Sequential Languages

Imperative Programming
Control Flow ot Programs

o Structured control flow
= Sequence of statements
{a:=b;b:=c; }
= Conditional
if (@ < b) then c else d;
switch(a){...}
= Loops
for (...) {...};
while (...) {...};
= Jumping out of a block
break, continue, return,...
o Non-structured control flow
= Goto, conditional jump
= Used to implement structured control flow in assembly

cs3723

Controlling Jumps

o Structured jumps
if ... then ... else ... end
while ... do ... end

for.. { ..}
case ...
= Group code in logical blocks
= Avoid uncontrolled jumps, e.qg., into the middle of a block
o Focus of this chapter: quickly jumping into and out of a
program in an organized fashion

= Jumping right into the mid of a block ---- continuation passing

The scenario: my task was interrupted, now I want to resume from
where I stopped

= Jumping out from the mid of a block? ---- exception handling

The scenario: something unexpected happened; need to jump out
until some caller knows what to do with the errors.

cs3723 3

Continuations

o Capture the continuation at some point to be used later

= A function (closure) that takes a single parameter, the
result of the past evaluation, and returns the result of
the entire program.

= Save the entire runtime environment as a closure
Code pointer: where to start evaluating the instructions
Environment pointer: the entire relevant memory stores

= To jump into the mid of a program, make a function call to the
continuation

o Useful in

= Implementing functional programming languages

= Operating system scheduling, Web site design

The scenario: my task was interrupted, now I want to resume from
where I stopped

cs3723 4

Continuation ot Expressions

o Continuation: impose sequential ordering in sub-expressions

= The continuation of an expression is “the remaining work to be done
after evaluating the expression”

= Continuation of e is a function applied to the result of e
o Enforce evaluation order in functional languages

= Evaluate current expression

= Save the result into a variable

= Evaluate the rest of the computation

2*x + 3*y + 1/x + 2/y

let val r2x = 2 * X in

let valr3y = 3 *yin

let val sum1l=r2x + r3y in
letvalrix =1/ xin
let val sum2 = sum1l + ri1x in

let val r2y = 2 / yin

sum2 + r2y

end

cs3723

let r2x = 2*x in ... end
is equivalent to
(fn r2x=> ...) (2 * x)

T

Continuation of 2*x

Continuation and Tail Calls

o A function call from g to fis a tail call

= Iif g returns the result of calling f with no further
computation

= Example (red: tail call; blue: non-tail call)
fun f(x) = if x > 0 then x else f(x+1)*2
fun f(x,y) = if x>y then x else f(2*x,y);

o Tail calls do not need to return to caller

m Can we convert all functions to tail recursion?

If a program needs to be re-enterable, function calls
shouldn’t return to caller

= Solution: continuation passing
Pass continuation as parameter to callee
Callee does not need to return to caller

cs3723

o Standard function O For each function definition F

fun fact(n) = if n=0 then 1 else Extend the definition with a
n*fact(n-1) continuation parameter K
o Continuation form At each function call inside F
fun fact(n, K) = Convert the rest of

computation into a new
continuation function

Convert f into a tail call,

if n=0 then K(1)
else fact(n-1,fn x=>K(n*x));

fact(n, fn x=>x) computes n! which takes the new
_ continuation function as
0 Example computation an extra argument.
fact(3,fn x=>x)= At each normal return
fact(2,fn y=>((fn x=>x)(3*y))) = Retulz'n the r?cSUlt ?_f <
~ B invoking continuation
fact(1, fn x=>((fn y=>3*y)(2*x))) with the original
= fn x=>((fn y=>3*y)(2*x)) 1 returned value
=6

cs3723 7

(General uses of continuations

o Explicit control
= Normal termination -- call continuation
= Abnormal termination -- do something else

o Compilation techniques

= Call to continuation is functional form of “go to”
Jump to the middle of a block by saving the environment in the function
closure and restore the environment before jump
o Web applications, Web Services, MOM and SOA services
= Handle long running workflows
Workflow may take 1 year to complete
= Progress of subtasks is asynchronous
Sequential programming is simpler than asynchronous
o Continuations provide
= An easy way to suspend workflow execution at a wait state

= Thread of control can be resumed when the next message/event
occurs, maybe some long time ahead

cs3723

o When something unusual happens, we want a program to
Jump out of one or many levels of nested blocks
Until reaching some program point to continue
Pass information to the continuation point
May need to free heap space, other resources
0 An exception is a dynamic jump

Don’t know where to resume execution until runtime
Jump out of current block

Look for a matching exception handler in most recently entered
blocks

General dynamic scoping rule
Multiple functions could handle the same exception

Jump to most recently established handler on run-time stack
Callers know how to handler error, defining block doesn't

cs3723

Dynamic Scoping of Handler

exception X of int;
let fun f(y) = (raise X(y); 1);
fun g() = f(1)
handle X(y) => y+1
in g() handle X(y) =>vy
end;

Dynamic scoping: 90

find first X handler
by going up the
dynamic call chain f(1)

cs3723 10

o Separation of concern: handle unusual situations

Examples: division by zero, null pointers, unexpected
inputs

When exceptions are handled, error recovery
Otherwise, evaluation aborts on error conditions

o Flexible control flow
Return immediately to where the error can be handled
Jump out multiple blocks at a time

o What languages have exception support?
C++, Java, ML, Ada, ...

cs3723

11

Detining Exceptions

0 Exception declaration

= Type of data that can be passed in exception
ML: exception <name> of <type>
C++/Java: any data type
O Raising an exception

= Abort the rest of current block and jump out
ML: raise <name> <arguments>;
C++: throw <value>;

o Handling an exception

= Continue normal execution after exception
ML: <expl> handle <pattern>=><exp2>; ...
C++: try { ...} catch (<type> var) {...} ...

cs3723

12

Exceptions vs. Type System

o Are exceptions part of the type system?

0 Raising expressions: not part of the type system
= Expression e has type t if normal termination of e
produces value of type t
= Raising exception is not normal termination
Example: 1 + raise X is not valid
o Handling exceptions (=> (value))

= Converts exception to normal termination

= Need type agreement
1 + ((raise X) handle X => e) Type of e must be int
1 + (e; handle X => e,) Type of e; e, must be int

cs3723 13

How Are Exceptions Handled?

o ML
exception X of int;
let fun f(y) = (raise X(y); 1); fun g() = f(1) handle X(y) => y+1
in g() handle X(y) =>vy
end;
o What are the events that have occurred?
Enter the let expression
Make function call g()
Make function call f(1)
Function call f(1) raises exception X(1)
Exception X(1) is handled in function call g()
Function call g() returns with value 2
The let expression exits

cs3723

14

o Continuation
Explicitly represent the rest of computation
Do not need to return to the caller
Can use exception to avoid returning to the caller
O Raising exception
Jumping out of multiple blocks at a time

Different continuation for normal and exceptional
situations

Continuation of exception
= rest of computation after exception is handled

0 Raising exceptions may have complications
Resource management: opened files, garbage collection

Use continuation passing to implement exception

Pass multiple continuations: one to handle normal
condition, the others to handle exceptions

cs3723 15

