
cs3723 1

Continuation and
Exceptions

Control Flow In Sequential Languages

cs3723 2

Imperative Programming
Control Flow of Programs
 Structured control flow

 Sequence of statements
 { a:= b; b := c; }

 Conditional
 if (a < b) then c else d;
 switch(a){…}

 Loops
 for (…) {…};
 while (…) {…};

 Jumping out of a block
 break, continue, return,…

 Non-structured control flow
 Goto, conditional jump
 Used to implement structured control flow in assembly

cs3723 3

Controlling Jumps
 Structured jumps

if … then … else … end
while … do … end
for … { … }
case …

 Group code in logical blocks
 Avoid uncontrolled jumps, e.g., into the middle of a block

 Focus of this chapter: quickly jumping into and out of a
program in an organized fashion
 Jumping right into the mid of a block ---- continuation passing

 The scenario: my task was interrupted, now I want to resume from
where I stopped

 Jumping out from the mid of a block? ---- exception handling
 The scenario: something unexpected happened; need to jump out

until some caller knows what to do with the errors.

cs3723 4

Continuations
 Capture the continuation at some point to be used later

 A function (closure) that takes a single parameter, the
result of the past evaluation, and returns the result of
the entire program.

 Save the entire runtime environment as a closure
 Code pointer: where to start evaluating the instructions
 Environment pointer: the entire relevant memory stores

 To jump into the mid of a program, make a function call to the
continuation

 Useful in
 Implementing functional programming languages
 Operating system scheduling, Web site design

 The scenario: my task was interrupted, now I want to resume from
where I stopped

cs3723 5

Continuation of Expressions
 Continuation: impose sequential ordering in sub-expressions

 The continuation of an expression is “the remaining work to be done
after evaluating the expression”

 Continuation of e is a function applied to the result of e

 Enforce evaluation order in functional languages
 Evaluate current expression
 Save the result into a variable
 Evaluate the rest of the computation

2*x + 3*y + 1/x + 2/y
let val r2x = 2 * x in
 let val r3y = 3 * y in
 let val sum1=r2x + r3y in
 let val r1x = 1 / x in
 let val sum2 = sum1 + r1x in
 let val r2y = 2 / y in
 sum2 + r2y
 end
…….end

let r2x = 2*x in … end
is equivalent to
(fn r2x=> …) (2 * x)

Continuation of 2*x

cs3723 6

Continuation and Tail Calls
 A function call from g to f is a tail call

 if g returns the result of calling f with no further
computation

 Example (red: tail call; blue: non-tail call)
fun f(x) = if x > 0 then x else f(x+1)*2

 fun f(x,y) = if x>y then x else f(2*x,y);
 Tail calls do not need to return to caller

 Can we convert all functions to tail recursion?
 If a program needs to be re-enterable, function calls

shouldn’t return to caller
 Solution: continuation passing

 Pass continuation as parameter to callee
 Callee does not need to return to caller

cs3723 7

Continuation Passing
 Standard function

fun fact(n) = if n=0 then 1 else
n*fact(n-1)

 Continuation form
fun fact(n, K) =
 if n=0 then K(1)
 else fact(n-1,fn x=>K(n*x));

fact(n, fn x=>x) computes n!

 Example computation
fact(3,fn x=>x)=

fact(2,fn y=>((fn x=>x)(3*y))) =

fact(1, fn x=>((fn y=>3*y)(2*x)))
= fn x=>((fn y=>3*y)(2*x)) 1
= 6

 For each function definition F
 Extend the definition with a

continuation parameter K
 At each function call inside F

 Convert the rest of
computation into a new
continuation function

 Convert f into a tail call,
which takes the new
continuation function as
an extra argument.

 At each normal return
 Return the result of

invoking continuation K
with the original
returned value

cs3723 8

General uses of continuations
 Explicit control

 Normal termination -- call continuation
 Abnormal termination -- do something else

 Compilation techniques
 Call to continuation is functional form of “go to”

 Jump to the middle of a block by saving the environment in the function
closure and restore the environment before jump

 Web applications, Web Services, MOM and SOA services
 Handle long running workflows

 Workflow may take 1 year to complete
 Progress of subtasks is asynchronous

 Sequential programming is simpler than asynchronous

 Continuations provide
 An easy way to suspend workflow execution at a wait state
 Thread of control can be resumed when the next message/event

occurs, maybe some long time ahead

cs3723 9

Exception: Structured Exit
 When something unusual happens, we want a program to

 Jump out of one or many levels of nested blocks
 Until reaching some program point to continue
 Pass information to the continuation point
 May need to free heap space, other resources

 An exception is a dynamic jump
 Don’t know where to resume execution until runtime

 Jump out of current block
 Look for a matching exception handler in most recently entered

blocks

 General dynamic scoping rule
 Multiple functions could handle the same exception
 Jump to most recently established handler on run-time stack
 Callers know how to handler error, defining block doesn’t

cs3723 10

Dynamic Scoping of Handler
exception X of int;
let fun f(y) = (raise X(y); 1);
 fun g() = f(1)
 handle X(y) => y+1
in g() handle X(y) => y
end;

handler X
access link

formal y 1
access link

g()

f(1)

fun f
access link

 fun g

Dynamic scoping:
find first X handler
by going up the
dynamic call chain

handler X
fn X(y)=>y

fn X(y)=>y+1

cs3723 11

When Should We Use Exceptions?
 Separation of concern: handle unusual situations

 Examples: division by zero, null pointers, unexpected
inputs

 When exceptions are handled, error recovery
 Otherwise, evaluation aborts on error conditions

 Flexible control flow
 Return immediately to where the error can be handled
 Jump out multiple blocks at a time

 What languages have exception support?
 C++, Java, ML, Ada, …

cs3723 12

Defining Exceptions
 Exception declaration

 Type of data that can be passed in exception
 ML: exception <name> of <type>
 C++/Java: any data type

 Raising an exception
 Abort the rest of current block and jump out

 ML: raise <name> <arguments>;
 C++: throw <value>;

 Handling an exception
 Continue normal execution after exception

 ML: <exp1> handle <pattern>=><exp2>; ...
 C++: try { …} catch (<type> var) {…} …

cs3723 13

Exceptions vs. Type System
 Are exceptions part of the type system?

 Raising expressions: not part of the type system
 Expression e has type t if normal termination of e

produces value of type t

 Raising exception is not normal termination
 Example: 1 + raise X is not valid

 Handling exceptions (=> 〈value〉)
 Converts exception to normal termination
 Need type agreement

 1 + ((raise X) handle X => e) Type of e must be int
 1 + (e1 handle X => e2) Type of e1, e2 must be int

cs3723 14

How Are Exceptions Handled?
 ML

exception X of int;
let fun f(y) = (raise X(y); 1); fun g() = f(1) handle X(y) => y+1
in g() handle X(y) => y
end;

 What are the events that have occurred?
 Enter the let expression
 Make function call g()
 Make function call f(1)
 Function call f(1) raises exception X(1)
 Exception X(1) is handled in function call g()
 Function call g() returns with value 2
 The let expression exits

cs3723 15

Exception vs. Continuation
 Continuation

 Explicitly represent the rest of computation
 Do not need to return to the caller

 Can use exception to avoid returning to the caller

 Raising exception
 Jumping out of multiple blocks at a time
 Different continuation for normal and exceptional

situations
 Continuation of exception

 rest of computation after exception is handled

 Raising exceptions may have complications
 Resource management: opened files, garbage collection
 Use continuation passing to implement exception

 Pass multiple continuations: one to handle normal
condition, the others to handle exceptions

