The ML Language

Typed Functional Programming
with Assignments

333333

O

O

O

Modify variables through statements
Block of statements separated by “;”
Begin ... End (Algol, Pascal), { ... } inC

Conditionals and loops

Rich and structured type system
Basic types: int, char, string, complex, ...

Compound types: record, struct,
union/variant, range, array, pointer,...

Example languages: Algol, Pascal, C

ML: typed functional programming
Developed by Robin Milner et al.

Meta-language for Logic for
Computable Functions. Compiled and
then interpreted

Every expression has a single type;
expression types checked at compile time

Algol 60

Lisp

y

Algol 68

v

Pascal

/ \

ML

Modula

'

2

MIL: Typed Functional
Programming Language

o Combination of Lisp and Algol-like features
Expression-oriented

Higher-order functions

Garbage collection

Abstract data types

Module system

Exceptions

O Sound and expressive type system

= If a function f has type A->B, then for every x in A,
If f(x) terminates without raising exceptions, then it has type B.

= Allows parametric types for functions and compound data
structures

= Support union of different types

= Compiler automatically infers variable types
Type system does not allow casts or other loopholes

cs3723

ML Atomic Values(Basic Types)

O Basic types

() : unit

true/false : bool

3:int

“ab” : string

3.0 : real

o Special operations (infix notation)
= For bool: andalso orelse not
= Forint: + - * div
= For string: © (concatenation)
m Forreal: + - */

o Explicit type conversion
= real(3) = 3.0 : real

cs3723

ML Compound Types

o Type parameters: ‘a, ‘b, ‘X, 'Y, «eeus
o List: 'tl list, where 'tl is a type
= Values: nil : ‘a list, [] : 'a list, ["a”, "b"] : string list, [7] :
int list
m Operators: null (null?), hd (car), tl (cdr), :: (cons)
o Tuple: ‘t1*'t2*... , where 'tl,'t2,... are type parameters
= (3,4, "abc”) : int * int * string
m Operators: #2(3, 4, "abc”) ==> 4 : int
o Record: {ID1:'t1,ID2:'t2,...}, where ID1,ID2,... are
names
= {First = 3, Second = "my”} : {First:int, Second: string}
m Operators: #First{First = 3, Second = "my”} ==> 3 : int
o Reference cell (assignable variable): ‘t1 ref
= ref 3 : int ref; Operators: I(ref 3) ==> 3 : int
o Function abstraction: ‘t1 -> 't2
m fnx=>x+5:int2>int; fun add5(x) => x + 5 : int=>int

cs3723

ML Union of Different Types

o The datatype declaration (equivalent to union in C)
datatype <name> = <clause> | ... | <clause>
= Each <clause> is either ID or ID of <type_expression>

= Can be accessed via pattern matching

o Examples
= datatype color = Red | Blue | Green
Elements are Red, Blue and Green
= datatype tree = LEAF of int | NODE of tree*tree
Values are LEAF(5), Node(Node(LEAF(2),LEAF(3)),LEAF(5))
= datatype atom = atm of string | nmbr of int
Values are atm(“A”), atm('B”), ..., nmbr(0), nmbr(1), ...
= datatype list = nil | cons of atom*list

Values are nil, cons(atm(“A"”), nil), cons(nmbr(2),
cons(atm(Mugh”), nil)), ...

cs3723

ML Patterns

<pattern> ::= <value>
| <var>
| <var> as <pattern>
| (<pattern>,...,<pattern>)
| <pattern>::<pattern>
| {<name>=<pattern>,...,<name>=<pattern>}
| <name>(<pattern>,...,<pattern>)
o Examples of patterns
= nil, x, (x1,x2,x3), x1::x2,
m {fieldl1=x1,field2=x2}
= LEAF(X)
o Used to check structure of compound values

= Variables are assigned with proper values if matching is
successful

= No variable can occur twice in any pattern

cs3723

ML Functional Programming Via
Patterns

0 The Case expression
case <exp> of
<patternl> => <expl>
| <pattern2> => <exp2>

| <patternn> => <expn>
= Compare to the cond operator in Scheme
0 Variable declaration: val <pattern> = <exp>;

o Function Declarations
fun <name> <patternl> = <exp>
| <name> <pattern> = <expn>;

cs3723

Example --- Appending A List

o In Scheme
(define Append (lambda (xs ys)
(cond ((null? xs) ys)
((cons? Xs) (cons (car xs) (Append (cdr xs) ys))))))
o In ML
fun Append(xs,ys) =
case (xs) of nil=>ys
| Xx1::x2 => x1::Append(x2,ys);
or fun Append(xs,ys) =
if null(xs) then ys else hd(xs)::Append(tl(xs),ys);
Or fun Append(nil, ys) = ys
| Append(x1::x2, ys) = x1 :: Append(x2, ys);
o NOTE: all elements in the ML list must have the same type

cs3723 9

Example---Tree Search

(define Find (lambda (x y)
(if (cons? vy)
(or (Find x (car y)) (Find x (cdr y)))
(eg? xy))))

o What types are expected for each variable?
= X: an atomic type (number, symbol, boolean)
= y: an atomic type or a possibly nested list of atomic values

O Programming in ML
= Need to define the types for x and y explicitly

cs3723 10

‘Solution---
Translating Scheme To ML

o Define datatype of expressions
datatype ‘label tree =
Empty | Atom of ‘label
| Node of ‘label tree * ‘label tree;

o Pattern-based evaluation
fun Find (x, Empty) = false
| Find (X, Atom(y)) = x =Yy
| Find (X, Node(y1,y2)) =
Find(x, y1) orelse Find(Xx, y2);

cs3723

11

Example---Higher Order Functions

(define maplist (f x)
(cond ((null? x) nil)
(else (cons (f (car x))
(maplist f (cdr x))))))

o What types are expected for each
variable?

= f: a function mapping atomic values
= X: a possibly nested list of atomic values

cs3723 12

‘Solution---
Translating Scheme To ML

0 Define datatype of expressions

datatype 'a tree = Empty | Node of 'a tree * 'a
tree

0 Pattern-based evaluation
fun maplist (f, Empty) = Empty
| maplist(f, Node(x1,x2)) =
Node(maplist(f, x1), maplist(f, x2));

cs3723 13

ML Nested Blocks

O Syntax: let <varDecls> in <exp> end

o Examples
let val x = 3; valy =4 in X + y end;
let fun foo(x) = x + 1 in foo(4) end;
let val x = 3; valy = 4
in let fun foo(x) = x + 1 in foo(x + y) end
end;

O Each let ... in ...end introduces a number of local
variables (or functions)

= These variables can be used only within the local
expression

= NOTE: function definitions are not evaluated until they
are called (invoked) with arguments

cs3723 14

ML Assignments and Side-effects

o Creating a reference cell: ref <value>
= Each reference cell is the address to a box (memory storage)
= Only reference cells can be modified in ML
o Assignment: <ref cell> := <exp>
= Assignment has unit type (equivalent to the void type in C)
0 Dereference: !'<ref cell>
= Return the value contained in the reference cell
o Examples
val x = ref 0; = val x = ref O : int ref
X:=3*(Ix)+5; =2valit=() : unit
Ix; =» val it = 5: int
val y = ref “apple”; = val y = ref “"apple” : string ref
y := “Green tomatoes”; = val it = () : unit
ly; =» val it = “"Green tomatoes” : string

cs3723 15

O Syntax:
<loop> ::= while <exp> do <exp>;
Loops do not return values (has unit type)

0 Loops must operate through assignments

Within each function definition, first use nested
blocks to create local reference cells

Repetitively modify the cells to accumulate
results

Return the accumulated results after the loop
terminates

cs3723 16

Example: Recursion vs. Loops

o Append lists
fun append(nil, ys) = ys
| append(x::xs, ys) = X :: append(xs, ys);

o Using loop and modification
fun append(xs,ys) =
let val rxs = ref (reverse(xs)); val res = ref ys;
in while not (null(!'rxs)) do
(res := hd(!rxs)::(lres); rxs := ti('rxs));
lres
end;

cs3723 17

