
cs3723 1

The ML Language
Typed Functional Programming

with Assignments

cs3723 2

The Algol Family---
Imperative Programming

 Modify variables through statements
 Block of statements separated by “;”
 Begin … End (Algol, Pascal), { … } in C
 Conditionals and loops

 Rich and structured type system
 Basic types: int, char, string, complex, …
 Compound types: record, struct,

union/variant, range, array, pointer,…
 Example languages: Algol, Pascal, C
 ML: typed functional programming

 Developed by Robin Milner et al.
 Meta-language for Logic for

Computable Functions. Compiled and
then interpreted

 Every expression has a single type;
expression types checked at compile time

Algol 60

Algol 68

Pascal

ML Modula

Lisp

cs3723 3

ML: Typed Functional
Programming Language
 Combination of Lisp and Algol-like features

 Expression-oriented
 Higher-order functions
 Garbage collection
 Abstract data types
 Module system
 Exceptions

 Sound and expressive type system
 If a function f has type AB, then for every x in A,

 If f(x) terminates without raising exceptions, then it has type B.
 Allows parametric types for functions and compound data

structures
 Support union of different types
 Compiler automatically infers variable types

 Type system does not allow casts or other loopholes

cs3723 4

ML Atomic Values(Basic Types)
 Basic types

 () : unit
 true/false : bool
 3: int
 “ab” : string
 3.0 : real

 Special operations (infix notation)
 For bool: andalso orelse not
 For int: + - * div
 For string: ^ (concatenation)
 For real: + - * /

 Explicit type conversion
 real(3) 3.0 : real

cs3723 5

ML Compound Types
 Type parameters: ‘a, ‘b, ‘x, ‘y, ……
 List: ‘t1 list, where ‘t1 is a type

 Values: nil : ‘a list, [] : ‘a list, [“a”, “b”] : string list, [7] :
int list

 Operators: null (null?), hd (car), tl (cdr), :: (cons)
 Tuple: ‘t1*‘t2*… , where ‘t1,‘t2,… are type parameters

 (3, 4, “abc”) : int * int * string
 Operators: #2(3, 4, “abc”) ==> 4 : int

 Record: {ID1:‘t1,ID2:‘t2,…}, where ID1,ID2,… are
names
 {First = 3, Second = “my”} : {First:int, Second: string}
 Operators: #First{First = 3, Second = “my”} ==> 3 : int

 Reference cell (assignable variable): ‘t1 ref
 ref 3 : int ref; Operators: !(ref 3) ==> 3 : int

 Function abstraction: ‘t1 -> ‘t2
 fn x => x + 5 : intint; fun add5(x) => x + 5 : intint

cs3723 6

ML Union of Different Types
 The datatype declaration (equivalent to union in C)

 datatype <name> = <clause> | … | <clause>
 Each <clause> is either ID or ID of <type_expression>

 Can be accessed via pattern matching
 Examples

 datatype color = Red | Blue | Green
 Elements are Red, Blue and Green

 datatype tree = LEAF of int | NODE of tree*tree
 Values are LEAF(5), Node(Node(LEAF(2),LEAF(3)),LEAF(5))

 datatype atom = atm of string | nmbr of int
 Values are atm(“A”), atm(“B”), …, nmbr(0), nmbr(1), ...

 datatype list = nil | cons of atom*list
 Values are nil, cons(atm(“A”), nil), cons(nmbr(2),

cons(atm(“ugh”), nil)), ...

cs3723 7

ML Patterns
 <pattern> ::= <value>

 | <var>
 | <var> as <pattern>
 | (<pattern>,…,<pattern>)
 | <pattern>::<pattern>
 | {<name>=<pattern>,…,<name>=<pattern>}
 | <name>(<pattern>,…,<pattern>)

 Examples of patterns
 nil, x, (x1,x2,x3), x1::x2,
 {field1=x1,field2=x2}
 LEAF(x)

 Used to check structure of compound values
 Variables are assigned with proper values if matching is

successful
 No variable can occur twice in any pattern

cs3723 8

ML Functional Programming Via
Patterns
 The Case expression
 case <exp> of
 <pattern1> => <exp1>
 | <pattern2> => <exp2>
 ……
 | <patternn> => <expn>

 Compare to the cond operator in Scheme
 Variable declaration: val <pattern> = <exp>;
 Function Declarations

 fun <name> <pattern1> = <exp> ……
 | <name> <pattern> = <expn>;

cs3723 9

Example --- Appending A List
 In Scheme

(define Append (lambda (xs ys)
 (cond ((null? xs) ys)
 ((cons? Xs) (cons (car xs) (Append (cdr xs) ys))))))

 In ML
fun Append(xs,ys) =
 case (xs) of nil=>ys
 | x1::x2 => x1::Append(x2,ys);

or fun Append(xs,ys) =
 if null(xs) then ys else hd(xs)::Append(tl(xs),ys);

Or fun Append(nil, ys) = ys
| Append(x1::x2, ys) = x1 :: Append(x2, ys);

 NOTE: all elements in the ML list must have the same type

cs3723 10

Example---Tree Search
(define Find (lambda (x y)
 (if (cons? y)
 (or (Find x (car y)) (Find x (cdr y)))
 (eq? x y))))

 What types are expected for each variable?
 x: an atomic type (number, symbol, boolean)
 y: an atomic type or a possibly nested list of atomic values

 Programming in ML
 Need to define the types for x and y explicitly

cs3723 11

Solution---
Translating Scheme To ML
 Define datatype of expressions
 datatype ‘label tree =
 Empty | Atom of ‘label
 | Node of ‘label tree * ‘label tree;

 Pattern-based evaluation
fun Find (x, Empty) = false
 | Find (x, Atom(y)) = x = y
 | Find (x, Node(y1,y2)) =
 Find(x, y1) orelse Find(x, y2);

cs3723 12

Example---Higher Order Functions
(define maplist (f x)
 (cond ((null? x) nil)
 (else (cons (f (car x))
 (maplist f (cdr x))))))

 What types are expected for each
variable?
 f: a function mapping atomic values
 x: a possibly nested list of atomic values

cs3723 13

Solution---
Translating Scheme To ML
 Define datatype of expressions

datatype 'a tree = Empty | Node of 'a tree * 'a
tree

 Pattern-based evaluation
fun maplist (f, Empty) = Empty
 | maplist(f, Node(x1,x2)) =
 Node(maplist(f, x1), maplist(f, x2));

cs3723 14

ML Nested Blocks
 Syntax: let <varDecls> in <exp> end
 Examples

 let val x = 3; val y = 4 in x + y end;
 let fun foo(x) = x + 1 in foo(4) end;
 let val x = 3; val y = 4
 in let fun foo(x) = x + 1 in foo(x + y) end
 end;

 Each let … in …end introduces a number of local
variables (or functions)
 These variables can be used only within the local

expression
 NOTE: function definitions are not evaluated until they

are called (invoked) with arguments

cs3723 15

ML Assignments and Side-effects
 Creating a reference cell: ref <value>

 Each reference cell is the address to a box (memory storage)
 Only reference cells can be modified in ML

 Assignment: <ref cell> := <exp>
 Assignment has unit type (equivalent to the void type in C)

 Dereference: !<ref cell>
 Return the value contained in the reference cell

 Examples
 val x = ref 0; val x = ref 0 : int ref
 x := 3 * (!x) + 5; val it = () : unit
 !x; val it = 5: int
 val y = ref “apple”; val y = ref “apple” : string ref
 y := “Green tomatoes”; val it = () : unit
 !y; val it = “Green tomatoes” : string

cs3723 16

ML loops
 Syntax:
 <loop> ::= while <exp> do <exp>;

 Loops do not return values (has unit type)

 Loops must operate through assignments
 Within each function definition, first use nested

blocks to create local reference cells
 Repetitively modify the cells to accumulate

results
 Return the accumulated results after the loop

terminates

cs3723 17

Example: Recursion vs. Loops
 Append lists

fun append(nil, ys) = ys
| append(x::xs, ys) = x :: append(xs, ys);

 Using loop and modification
fun append(xs,ys) =
 let val rxs = ref (reverse(xs)); val res = ref ys;
 in while not (null(!rxs)) do
 (res := hd(!rxs)::(!res); rxs := tl(!rxs));
 !res
 end;

