
cs3723 1

Scope, Functions, and
Storage Management

 Implementing Functions and
Blocks

cs3723 2

Simplified Machine Model
(Compare To List Abstract Machine)
Registers

Environment Pointer
(current scope)

Program Counter
(current instruction)

DataCode

Heap----
dynamically
allocated
data

Stack----
map
variables
to their
values

cs3723 3

Data Storage Management
 Runtime stack: mapping variables to their values

 When introducing new variables: push new stores to stack
 When variables are out of scope: pop outdated storages

 Environment pointer: current stack position
 Used to keep track of storages of all active variables

 Heap: dynamically allocated data of varying lifetime
 Variables that last throughout the program
 Data pointed to by variables on the runtime stack
 Target of garbage collection

 The code space: the whole program to evaluate
 Program counter: current/next instruction to evaluate

 keep track of instructions being evaluated
 Registers: temporary storages for variables

cs3723 4

Blocks in C/C++

 Blocks: regions of code that introduces new variables
 Enter block: allocate space for variables
 Exits block: some or all space may be deallocated

 Blocks are nested but not partially overlapped
 Jumping out of a block

Make sure variables are freed before exiting
 What about jumping into the middle of a block?

Variables in the block have not yet been allocated

inner
block

outer
block

{
 int x = 2;
 {
 int y = 3;
 x = y+2;
 }
}

cs3723 5

Blocks in Functional languages
 ML:

let fun g(y) = y + 3
in
 let
 fun h(z) = g(g(z))
 in h(3)
 end
end;

 Lisp:
 ((lambda (g)
 ((lambda (h) (h 3)) (lambda (z) (g (g z))))
 (lambda (y) (+ y 3)))

cs3723 6

Summary of Blocks
 Blocks in common languages

 C { … }
 Algol begin … end
 ML let … in … end

 Two forms of blocks
 In-line blocks
 Blocks associated with functions or procedures

 Topic: block-based memory management

cs3723 7

Managing Data Storage In a Block
 Local variables

 Declared inside the current block
 Enter block: allocate space
 Exit block: de-allocate space

 Global variables
 Declared in a previously entered block

 Already allocated before entering current Block
 Remain allocated after exiting current block

 Function parameters
 Input parameters

 Allocated and initialized before entering function body
 De-allocated after exiting function body

 Return values
 Address remembered before entering function body
 Value set after exiting function body

 Scoping rules: where to find memory allocated for variables?
 Need to find the block that introduced the variable

cs3723 8

Parameter passing
 Each function have a number of formal parameters

 At invocation, they are matched against actual parameters

 Pass-by name
 Rename each occurrence of formal parameter with its actual parameter

--- delay of evaluation
 Used in Lambda calculus and side-effect free languages

 Pass-by-value
 Replace formal parameter with value of its actual parameter
 Callee cannot change values of actual parameters

 Pass-by-reference
 Replace formal parameter with address of its actual parameter
 Callee can change values of actual parameters
 Different formal parameters may have the same location

cs3723 9

Example: What is the final result?

int f (int x)
 {
 x := x+1; return x;
 };
main() {
 int y = 0;
 print f(y)+y;
}

fun f (x : int ref) =
 (x := !x+1; !x);
val y = ref 0 : int ref;
f(y) + !y;

fun f (z : int) =
 let val x = ref z in
 x := !x+1; !x
 end;
val y = ref 0 : int ref;
f(!y) + !y;

pseudo-code Standard ML

pas
s-b
y-re
f

pass-by-value

cs3723 10

Scoping rules
Finding non-local (global) variables

 Global and local variables

 Static scope
 Find global declarations in the closest enclosing blocks in

program text
 Dynamic scope

 Find global variables in the most recent activation record

{ int x=0;

 fun g(z) = x+z;

 fun h(z) = let x = 1 in

 g(z) end;

 h(3)

};

x 0

x 1
z 3

z 3

outer block

h(3)

g(12)

Which x?

cs3723 11

Managing Blocks
 Activation record: memory storage for each block

 Contains values for local variables in the block

 Managing Activation Records
 Allocated on a runtime stack: First-In-Last-Out
 Before evaluating each block, push its activation record

onto runtime stack; after exit the block, pop its
activation record off stack

 Compilers generate instructions for pushing & popping
of activation records (pre-compute their sizes)

 Finding locations of local variables
 Compiler calculate the offset of each variable
 Dynamically find activation record of introducing block
 Location = activation record pointer + offset

cs3723 12

Activation Record For Inline Blocks
 Control link

 Point to activation record of
previous (calling) block

 Depend on runtime behavior
 Support push/pop of ARs

 Access link
 Point to activation record of

immediate enclosing block
 Depend on static form of program

 Push record on stack
 Set new control link to env ptr
 Set env ptr to new record

 Pop record off stack
 Follow current control link to reset

environment pointer

Control link

Environment Pointer

Local variables

……

Access link

cs3723 13

Activation Records For Functions

Return address
 Where to continue execution

after return
 Pointer to the next instruction

following the function call

Return-result address
 Where to put return result
 Pointer to caller’s activation

record

Parameters
 Values for formal parameters
 Initialized with the actual

parameters

Control link

Parameters

Local variables

Environment Pointer

Return-result addr

Access link

Return address

cs3723 14

?

Function Abstraction As Values
let val x=1;
 fun g(z) = x+z;
 fun h(z) =
 let x = 2 in
 g(z) end
in h(3)
end;

 What are values for g,h?
 How to determine their

access links?
 Inlined blocks
 Access link = control link
 Function blocks
 Enclosing block of the

function definition

x 1

x 2
z 3

z 3

g
h

access link
control link

return address
return result adr

access link
control link

return address
return result adr

Code
for g

Code
for h

access link
control link

tmp ?

tmp

Outer

h(3)

g(z)

1
2
3
4
5
6
7

 line6

 line5

cs3723 15

Closures
 A function value is a closure: (env, code)

 code: a pointer to the function body
 env: activation record of the enclosing block

 Use closure to maintain a pointer to the static
environment of a function body
 When called, set access link from closure

 When a function is called,
 Retrieve the closure of the function
 Push a new activation record onto runtime stack
 Set return address, return value addr, parameters and local

variables
 Set access link to equal to the env pointer in closure
 Start the next instruction from code pointer in closure

cs3723 16

Control link

Return-result addr
3

fact(3)

Example: Function Calls

fact(2)

fact(n) = if n<= 1 then 1
 else n * fact(n-1)

Control link

fact(n-1)
n

Return-result addr
k

fact(k)

Environment pointer

fact(1)

Access link
Return address

Access link
Return addr

n
Fact(n-1)

Control link

Return-result addr
2

Access link
Return addr

n
Fact(n-1)

Control link

Return-result addr
1

Access link
Return addr

n
Fact(n-1)

cs3723 17

Return Function as Result
 Language feature: functions that return new functions

 E.g. fun compose(f,g) = (fn x => g(f x));
 Each function value is a closure = (env, code), where code

may contain references to variables in env
 Code is not “created” dynamically (static compilation)

 Use a closure to save the runtime environment of function
 Environment: pointer to enclosing activation records
 But the enclosing activation record may have been popped off

the runtime stack
 Returning functions as results is not allowed in C

 Just like returning pointers to local variables

 Need to extend the standard “stack” implementation
 Put activation records on heap
 Invoke garbage collector as needed
 Not as crazy as is sounds

cs3723 18

Tail Call And Tail Recursion
 A function call from g to f is a tail call

 if g returns the result of calling f with no further
computation

 Example
 fun g(x) = if x>0 then f(x) else f(x)*2

 Optimization
 Can pop activation record on a tail call
 Especially useful for a tail recursive call (f to f)

 Callee’s activation record has exactly same form
 Callee can reuse activation record of the caller
 A sequence of tail recursive calls can be translated into a

loop

tail call not a tail call

cs3723 19

Example: what is the result?

fun f(x,y) = if x>y
 then x
 else f(2*x, y);
f(1,3) + 7;

control
return val
x 1
y 3

control
return val
x 1
y 3

control
return val
x 2
y 3

control
return val
x 4
y 3

f(1,3)

fun f(x,y) =
let val z = ref x in
while not (!z >y) do
 z := 2 * !z;
!z
end;

f(1,3) + 7;

Expressed in loop:

cs3723 20

Tail recursion elimination

fun f(x,y) = if x>y
 then x
 else f(2*x, y);
f(1,3);

control
return val
x 1
y 3

f(4,3)

Optimization: pop followed by push
=> reuse activation record in place

Conclusion: tail recursive function
calls are equivalent to iterative loops

control
return val
x 2
y 3

f(1,3)

control
return val
x 4
y 3

f(2,3)

cs3723 21

Tail recursion and iteration
 Tail recursive function

fun last(x::nil) = x
 | last(x::y) = last(y);

 Iteration
fun last(input) =
 let val y= ref input
 in while not(tl(!y)=nil)
 do
 y := tl(!y)
 end;
 hd(!y)
 end

 Step1: what parameters change
when making recursive calls?
 create a reference for each

changed parameter.
 NOTE: no need to create

reference for the return result
 Tail recursion only returns

at the base case
 Step2: what is the base case of

recursion?
 This is the stop condition for the

while loop.
 Step3: what to do before

making tail call?
 loop body: prepare for the next

tail call
 Step4: return base case value.

cs3723 22

Summary
Block-structured languages use runtime stack to
maintain activation records of blocks

 Activation records contain parameters, local variables, …
 Also pointers to enclosing scope

Several different parameter passing mechanisms
Tail calls may be optimized
Function parameters/results require closures

 Env pointer of closure used when function is called
 Runtime stack management may fail if functions are

returned as result
 Closures is not needed if functions are not in nested blocks

 Example: C

