Scope, Functions, and
Storage Management

Implementing Functions and
Blocks

cs3723

Simplified Machine Model
(Compare To List Abstract Machine)

Registers Code Data

Stack----
map
>variables
to their
values

Program Counter
(current instrugtion)

Environment Pointer
L — (current scope)

Heap----
—dynamically
allocated
data

cs3723 2

Runtime stack: mapping variables to their values
When introducing new variables: push new stores to stack
When variables are out of scope: pop outdated storages

Environment pointer: current stack position
Used to keep track of storages of all active variables

Heap: dynamically allocated data of varying lifetime
Variables that last throughout the program
Data pointed to by variables on the runtime stack
Target of garbage collection

The code space: the whole program to evaluate

Program counter: current/next instruction to evaluate
keep track of instructions being evaluated

Registers: temporary storages for variables

cs3723

Blocks in C/CH++

{
outer int x = 2,
block o
inty =3, | inner
X=Y+2; | plock
¥)
¥

\

o Blocks: regions of code that introduces new variables
= Enter block: allocate space for variables
= Exits block: some or all space may be deallocated

o Blocks are nested but not partially overlapped

= Jumping out of a block
Make sure variables are freed before exiting

= What about jumping into the middle of a block?
Variables in the block have not yet been allocated

cs3723

Blocks in Functional languages

o ML:
let fun g(y) =y + 3
in
let
fun h(z) = g(9(2))
in h(3)
end
end;
O Lisp:
(|((lambda (g)

((lambda (h) (h 3)) (lambda (z) (g (g 2))))
(lambda (y) (+ vy 3)))

cs3723

Summary of Blocks

o Blocks in common languages

= C { ..}
= Algol begin ... end
= ML let ... in ... end

o Two forms of blocks
= In-line blocks
= Blocks associated with functions or procedures

o Topic: block-based memory management

cs3723

O Local variables

Declared inside the current block
Enter block: allocate space
Exit block: de-allocate space

o Global variables
Declared in a previously entered block
Already allocated before entering current Block
Remain allocated after exiting current block
o Function parameters

Input parameters
Allocated and initialized before entering function body
De-allocated after exiting function body

Return values
Address remembered before entering function body
Value set after exiting function body
o Scoping rules: where to find memory allocated for variables?
Need to find the block that introduced the variable

cs3723 7

Parameter passing

o Each function have a number of formal parameters
= At invocation, they are matched against actual parameters
o Pass-by name

= Rename each occurrence of formal parameter with its actual parameter
--- delay of evaluation

= Used in Lambda calculus and side-effect free languages
o Pass-by-value
= Replace formal parameter with value of its actual parameter
= Callee cannot change values of actual parameters
o Pass-by-reference
= Replace formal parameter with address of its actual parameter
= Callee can change values of actual parameters
= Different formal parameters may have the same location

cs3723 8

Example: What 1s the final result?

pseudo-code

int f (int x)

{

X := X+1; return Xx;

b

main() {

¥

inty = 0;
print f(y)+y;

DQN
Tl Yalye

cs3723

Standard ML

fun f (x : int ref) =

(X :=1Ix+1; Ix);
valy = ref O : int ref;
fly) +ly;

fun f (z : int) =
let val X = ref z in
X = Ix+1; Ix
end;

valy = ref O : int ref;
f(ly) +ly;

Scoping rules
Finding non-local (global) variables

o Global and local variables Which x?

ouer ook [IOn | <™

fun g(z) = x+z;

oo ENEE | "

o Static scope s

= Find global declarations in the closest enclosing blocks in
program text

O Dynamic scope
= Find global variables in the most recent activation record

fun h(z) =letx =1 in
g(z) end;

cs3723 10

o Activation record: memory storage for each block
Contains values for local variables in the block

0 Managing Activation Records
Allocated on a runtime stack: First-In-Last-Out

Before evaluating each block, push its activation record
onto runtime stack; after exit the block, pop its
activation record off stack

Compilers generate instructions for pushing & popping
of activation records (pre-compute their sizes)

o Finding locations of local variables
Compiler calculate the offset of each variable
Dynamically find activation record of introducing block
Location = activation record pointer + offset

cs3723 11

> Control link

A

Access link

- >

0 Control link

Point to activation record of
previous (calling) block

| Depend on runtime behavior

Local variables

Environment Pointer

Support push/pop of ARs
o Access link

Point to activation record of
immediate enclosing block

Depend on static form of program
o Push record on stack
Set new control link to env ptr
Set env ptr to new record
o Pop record off stack

Follow current control link to reset
environment pointer

cs3723 12

Activation Records For Functions

. OReturn address

» Where to continue execution
after return

= Pointer to the next instruction
following the function call
oReturn-result address
= Where to put return result
= Pointer to caller’s activation
record
oParameters
Environment Pointer = Values for formal parameters

_— » Initialized with the actual

parameters

cs3723 13

Outerp»__control link
1 | letval x=1; access link
2 fun g(z) = x+z; X 1
<
3 fun h(z) = d —
4 let x = 2 in h
5 g(z) end tmp ?
6 | inh(3) h(3)>1___control link
7 | end; access link
o What are values for g,h? | [return addlress
o How to determine their line6 | (return resu t3ad-1=
access links? Z
Inlined blocks X 2
Access: link = control link tmp 2 4 Code
Function blocks _
Enclosing block of the a(z) control link for h
function definition access link
_ - return address
line5* " |return result ads

cs3723 Z 3 14

o A function value is a closure: (env, code)
code: a pointer to the function body
env: activation record of the enclosing block

0 Use closure to maintain a pointer to the static
environment of a function body
When called, set access link from closure

0o When a function is called,
Retrieve the closure of the function
Push a new activation record onto runtime stack

Set return address, return value addr, parameters and local
variables
Set access link to equal to the env pointer in closure

Start the next instruction from code pointer in closure

cs3723 15

Example: Function Calls

fact(k)

Environment pointer

fact(n) = if n<=1 then 1
else n * fact(n-1)

fact(3)

fact(2)

fact(1)

cs3723

16

o Language feature: functions that return new functions
E.g. fun compose(f,g) = (fn x => g(f x));

Each function value is a closure = (env, code), where code
may contain references to variables in env

Code is not “created” dynamically (static compilation)
0 Use a closure to save the runtime environment of function
Environment: pointer to enclosing activation records

But the enclosing activation record may have been popped off
the runtime stack

Returning functions as results is not allowed in C
Just like returning pointers to local variables
0 Need to extend the standard “stack” implementation
Put activation records on heap
Invoke garbage collector as needed
Not as crazy as is sounds

cs3723 17

Tail Call And Tail Recursion

o A function call from g to fis a tail call
= Iif g returns the result of calling f with no further

computationi,—
P tail call

o Example

N

not a tail call

= fun g(x) = if x>0 then f(x) else f(x)*2

o Optimization

= Can pop activation record on a tail call
= Especially useful for a tail recursive call (f to f)
Callee’s activation record has exactly same form
Callee can reuse activation record of the caller
A sequence of tail recursive calls can be translated into a

loop

cs3723

18

Example: what 1s the result?
f(1,3)

Expressed in loop:

fun f(x,y) =

let val z = ref X in

while not (!z >y) do
z =2 *1z;

A Iz
end;
fun f(x,y) = if x>y
then X f(1,3) + 7,

else f(2*x, y);
f(1,3) + 7;

cs3723 19

Tail recursion elimination

f(1,3) f(2,3) f(4,3)

Optimization: pop followed by push
=> reuse activation record in place

Conclusion: tail recursive function
calls are equivalent to iterative loops

fun f(x,y) = if x>y
then x
else f(2*x, y);
f(1,3);

cs3723 20

Tail recursion and iteration

o Tail recursive function
fun last(x::nil) = x
| last(x::y) = last(y);

O Iteration
fun last(input) =
let val y= ref input
in while not(tl(!'y)=nil)
do
y = ti(ly)
end;
hd(!y)
end

Cs

O

Stepl: what parameters change
when making recursive calls?

m create a reference for each
changed parameter.

» NOTE: no need to create
reference for the return result

Tail recursion only returns
at the base case

Step2: what is the base case of
recursion?

= This is the stop condition for the
while loop.

Step3: what to do before
making tail call?

= loop body: prepare for the next
tail call

Step4: return base case value.

723

21

oBlock-structured languages use runtime stack to
maintain activation records of blocks
Activation records contain parameters, local variables, ...
Also pointers to enclosing scope

oSeveral different parameter passing mechanisms
oTail calls may be optimized

oFunction parameters/results require closures
Env pointer of closure used when function is called

Runtime stack management may fail if functions are
returned as result

Closures is not needed if functions are not in nested blocks
Example: C

cs3723 22

