
cs4713 1

Code Generation

Machine code generation

cs4713 2

Machine code generation
Intermediate
Code generator

 machine
Code generator

Code optimizer

 Input: intermediate code + symbol tables
 In our case, three-address code
 All variables have values that machines can directly manipulate
 Assume program is free of errors

 Type checking has taken place, type conversion done

 Output:
 Absolute/relocatable machine code or assembly code
 In our case, use assembly
 Architecture variations: RISC, CISC, stack-based

 Issues:
 Memory management, instruction selection and scheduling,

register allocation and assignment

cs4713 3

Retargetable Back End

 Build retargetable compilers
 Isolate machine dependent info
 Compilers on different machines share a common IR

 Can have common front and mid ends
 Table-based back ends share common algorithms

 Table-based instruction selector
 Create a description of target machine, use back-end generator

Machine
description

Back end
generator

 Tables

Pattern-
Matching
engine

Instruction
selector

cs4713 4

The Example Target Machine
 N general-purpose registers r0,r2,……rN-1
 Three address instructions: op source => destiniation

 op: LD, ST, ADD, SUB, MUL, BR, BLTZ, HALT, …
 source and destination: constant, register, or memory
 Use bit patterns to distinguish different address modes
 All computation operators require both operands to be either

constants or in registers

ST r0 => M Store content of register r0 into memory M
LD *a(r0) => r1 Load content of memory a+content(r0) to r1

ST r1 => *4(r0) Store content of r1 to memory indirectly
addressed by 4+content(r0)

ST *r0 => M Store content indirectly addressed by
content(r0) to M

LD 1 => r0 Load constant integer 1 into register r0

cs4713 5

Simplified Machine Model
Registers

Environment Pointer

Program
Counter

DataCode

Heap

Stack

cs4713 6

Translating from three-address code

 No more support for structured control-flow
 Function calls => explicit memory management and

goto jumps

 Every three-address instruction is translated into
one or more target machine instructions
 The original evaluation order is maintained

 Memory management
 Every variable must have a location to store its value

 Register, stack, heap, static storage
 Memory allocation convention

 Scalar/atomic values and addresses => registers, stacks
 Arrays => heap
 Global variables => static storage

cs4713 7

Assigning storage locations
 Compilers must choose storage locations for all values

 Procedure-local storage
 Local variables not preserved across procedural calls

 Procedure-static storage
 Local variables preserved across procedural calls

 Global storage --- global variables
 Run-time heap --- dynamically allocated storage

 Registers---temporary storage for applying operations to
values
 Unambiguous values can be assigned to registers with no

backup storage

void fee() {
 int a, *b, c;
 a = 0; b = &a; *b = 1;
 c = a + *b;
}

cs4713 8

Function call and return
 At each function call

 Allocate an new AR on stack
 Save return address in new AR
 Set parameter values and

return results
 Go to callee’s code

 Save SP and other regs; set
AL if necessary

 At each function return
 Restore SP and regs
 Go to return address in

callee’s AR
 Pop callee’s AR off stack

 Different langauges may
implement this differently
 Conversion necessary when

linking code in different lang.

Return address
parameters

p1

Control link
Return result

Access link

Local variables
 Register save area

Return address
parameters

p1

Control link
Return result

Access link

Local variables
Register save area

sp

cs4713 9

Translating function calls
 Use a register SP to store addr of activation record on top of stack

 SP,AL and other registers saved/restored by callee
 Use C(Rs) address mode to access parameters and local variables

/* code for s */
Action1
Param 5
Call q, 1
Action2
Halt
……
/* code for q */
Action3
return

LD stackStart =>SP /* initialize stack*/
……
108: ACTION1
128: Add SP,ssize=>SP /*now call sequence*/
136: ST 160 =>*SP /*push return addr*/
144: ST 5 => 2(SP) /* push param1*/
152: BR 300 /* call q */
160: SUB SP, ssize =>SP /*restore SP*/
168: ACTION2
190: HALT
 …… /* code for q*/
300: save SP,AL and other regs
 ACTION3
 restore SP,AL and other regs
400: BR *0(SP) /* return to caller*/

cs4713 10

Translating variable assignment
 Keep track of locations for variables in symbol table

 The current value of a variable may reside in a register, a stack
memory location, a static memory location, or a set of these

 Use symbol table to store locations of variables
 Allocation of variables to registers

 Assume infinite number of pseudo registers
 Relocate pseudo registers afterwards

u in r0
b in r1
c in r2

r0 contains u
r1 contains b
r2 contains c

LD c => r2
ADD r0,r2=>r0

u := t + c

t in r0
b in r1

r0 contains t
r1 contains b

LD a => r0
LD b => r1
SUB r0,r1=>r0

t := a - b

Address descriptorRegister descriptorGenerated codestatements

x:=y op z
LD y’ =>r1
LD z’ => r2
OP r1 r2 =>r3
ST r3 => x’

where x’,y’,z’ are locations of x,y.z

cs4713 11

Translating arrays

LD i(SP) => ri
Mult ri,elsize=>r1
ST rb => a(r1)

LD Mi => ri
Mult Ri,elsize=>r1
ST rb => a(r1)

Mult ri, elsize=>r1
ST rb => a(r1)

a[i] := b

LD i(SP) => ri
Mult ri,elsize=>r1
LD b(r1) =>ra

LD Mi => ri
Mult Ri,elsize=>r1
LD b(r1) =>ra

Mult ri, elsize=>r1
LD b(r1)=>ra

a := b[i]

i in stacki in memory Mii in register riStatement

Translating Array assignments (arrays are allocated in heap)

cs4713 12

Translating conditional statements

If x < y goto z SUB rx, ry =>rt
BLTZ z

X := y + z
if (x < 0) goto L

ADD ry, rz => rx
BLTZ L

Condition determined after ADD or SUB

cs4713 13

Example
foo(int a,int b) {
 int i = 0;
 if (a>-100 && a<100){
 i = 0;
 while (i < 50) {
 a = a + b *2;
 }
 foo(a,b)
 }
}

foo:
if a>-100 goto L1
goto done

L1: if a<100 goto L2
 goto done
L2: i := 0
s0: if i < 50 goto s1

goto s2
s1: t1 := b * 2
 a := a + t1
 goto s0
s2: param a
 param b
 call foo, 2
done: return

Foo:save SP and regs
 LD a(SP)=>ra
 Sub ra, -100=>ra
 BGTZ L1
 BR done
L1: LD a(SP)=>ra
 Sub ra, 100=>ra
 BLTZ L2
 BR done
L2: LD 0 => ri
 ST ri=>i(SP)
S0: LD i(SP)=>ri
 Sub ri, 50=>ri
 BLTZ S1
 BR S2
S1: LD b(SP)=>rb
 Mul rb, 2 => r1
 LD a(SP)=>ra
 Add ra,r1=> ra
 ST ra=>a(SP)
 BR S0
S2: Add SP, Foosz=>SP
 LD done=>*SP
 ST ra=>4(SP)
 ST rb=>6(SP)
 BR Foo
done: Sub SP,Foosz=>SP
 restore SP and regs
 BR *0(SP)

Assumptions:
 size of address: 4 bypes
 size of int: 2 bytes

cs4713 14

Instruction Selection
*

ID(“a”,SP,4) ID(“b”,SP,8)

*

ID(“a”,SP,4) NUM(2)

loadI 4 => r5
loadA0 r5,SP => r6
LoadI 8 => r7
loadA0 r7,SP => r8
Mult r6, r8 => r9

loadI 4 => r5
loadA0 r5,SP, => r6
loadI 2 => r7
Mult r6, r7 => r8

LoadAI SP, 4 => r5
loadAI SP,8 => r6
Mult r5, r6=>r7

LoadAI SP,4 => r5
MultI r5, 2 => r6

Generated code

Desired code

Generated code

Desired code

Based on locations of operands, different instructions may be selected.

cs4713 15

Tree-pattern matching
 Define a collection of operation patterns

 Define a code generation template for each pattern
 Match each AST subtree with an operation pattern

 Select instructions accordingly

*

num2reg1

reg2
<-(reg2, *(reg1, num2))

MultI reg1, num2 => reg2

Operation tree: Prefix notation of operation tree:

Code template:

Example: low-level AST for w  x – 2 * y

cs4713 16

Rewrite rules through tree grammar
 Use attributed grammar to define code generation rules

 Summarize structures of AST through context-free grammar
 Each production defines a tree pattern in prefix-notation
 Each production is associated with a cost
 Each grammar symbol (terminal or non-terminal) has an attribute

(location of value)

07: Reg := val1

loadI n1 => rnew18: Reg := Num1

loadI I1 => rnew16: Reg := lab1

storeAI r3 => r2, n115: Assign := <- (+ (num1, Reg2), Reg3)

storeAI r3 => r1, n214: Assign := <- (+ (Reg1, num2), Reg3)

storeA0 r3 => r1, r213: Assign := <- (+ (Reg1, Reg2), Reg3)

move r2 => r112: Assign := <- (Reg1, Reg2)

01: Goal := Assign

Code templatecostproduction

cs4713 17

Example: applying rewrite rules

addI r2, n1 => rnew119: Reg := + (Num1, Reg2)

addI r1, n2 => rnew118: Reg := + (Reg1, Num2)

add r1, r2=> rnew117: Reg := +(Reg1, Reg2)

subI r1, n2 => rnew116: Reg := - (Reg1, Num2)

addI r1, l2 => rnew120: Reg := + (Reg1, Lab2)

Sub r1 r2 => rnew115: Reg := - (Reg1,Reg2)

addI r2, l1 => rnew121: Reg := + (Lab1, Reg2)

loadAI r2, l1 => rnew114: Reg := M(+ (Lab1,Reg2))

loadAI r1, l2 => rnew113: Reg := M(+ (Reg1, Lab2))

loadAI r2, n1 => rnew112: Reg := M(+ (Num1,Reg2))

loadAI r1, n2 => rnew111: Reg := M(+ (Reg1,Num2))

loadA0 r1, r2 => rnew110: Reg := M(+ (Reg1,Reg2))

Load r1 => rnew19: Reg := M(Reg1)

Code templatecostproduction

cs4713 18

Tiling the AST
 Given an AST and a collection of operation trees, tiling the

AST maps each AST subtree to an operation tree
 A tiling is a collection of <ASTnode, op-tree> pairs, each

specifying the implementation for a AST node
 Storage for result of each AST operation must be consistent

across different operation trees

+

Lab(@G) Num(12)

Reg:=Lab1

Reg:=+(Reg1,Num2)

cs4713 19

Find a tiling

Tile(n)
 Label(n) := ∅
 if n is a binary node then
 Tile(left(n))
 Tile(right(n))
 for each rule r that matches n’s operation
 if left(r) ∈ Label(left(n)) and right(r) ∈ Lable(right(n))
 then Add r to Label(n)
 else if n is a unary node then
 Tile(left(n))
 for each rule r that matches n’s operation
 if (left(r) ∈ Label(left(n))
 then Add r to Label(n)
 else /* n is a AST leaf */
 Label(n) := {all rules that match the operation in n}

 Bottom-up walk of the AST, for each node n
 Label(n) contains the set of all applicable tree patterns

cs4713 20

Find the low-cost matches
 Tiling can find all the matches in the pattern set

 Multiple matches exist because grammar is ambiguous
 To find the one with lowest cost, must keep track of the cost in

each matched translation

Example: low-level AST for w  x – 2 + y

<-
+

SP 4

+

- M

+

SP 12

M

+
SP 8

2(7,0)

(18,1)
(17,2)

(8,1) (9,2)
(11,1) (8,1)

(15,3)
(16,2)

(9,2)
(11,1)

(17,4)

(7,0) (8,1)

(18,1)
(17,2)

(7,0) (8,1)

(18,1)
(17,2)

(4,5) (2,6) loadAI SP,8=>r1
subI r1, 2=> r2
loadAI SP,12=>r3
Add r2, r3 => r4
storeAI r4=>SP, 4

cs4713 21

Summary of tree matching approach
 Need to select lowest-cost instructions in bottom-up

traversal of AST
 Need to determine lowest-cost match for each storage class

 Automatic tools
 Hand-coding of tree matching
 Encode the tree-matching problem as a finite automata
 Use parsing techniques

 Need to be extended to handle ambiguity

 Use string-matching techniques
 Linearize the tree into a prefix string
 Apply string pattern matching algorithms

cs4713 22

Peephole optimization
 Use a simple scheme to match IR to machine code

 efficiently discover local improvements by examining short
sequences of adjacent operations

StoreAI r1 => SP, 8
loadAI SP,8 => r15

storeAI r1 => SP, 8
r2r r1 => r15

addI r2, 0 => r7
Mult r4, r7 => r10 Mult r4, r2 => r10

 jumpI -> L10
L10: jumpI -> L11

 jumpI -> L11
L10: jumpI -> L11

cs4713 23

Systematic peephole optimization

 Expander
 Rewrites each assembly instruction to a sequence of low-level

IRs that represent all the direct effects of operation
 Simplifier

 Examine and improve LLIR operations in a small sliding
window

 Forward substitution, algebraic simplification, constant evaluation,
eliminating useless effects

 Matcher
 Match simplified LLIR against pattern library for ASM

instructions that best captures the LLIR effects

Expander
ASM->LLIR

Simplifier
LLIR->LLIR

Matcher
LLIR->ASM

IR LLIR LLIR ASM

cs4713 24

Peephole optimization example
mult 2 y => t1
sub x t1 => w

r10 := 2
r11 := @G
r12 := 12
r13 := r11 + r12
r14 := M(r13)
r15 :=r10 * r14
r16 := -16
r17 := SP + r16
r18 := M(r17)
r19 := M(r18)
r20 := r19 – r15
r21 := 4
r22 := SP + r21
M(r22) := r20

expand

r10 := 2
r11 := @G
r14 := M(r11+12)
r15 := r10 * r14
r18 := M(SP + -16)
r19 := M(r18)
r20 := r19 – r15
M(SP+4) := r20

loadI 2 => r10
loadI @G => r11
loadAI r11 12=>r14
Mult r10 r14 => r15
loadAI SP -16=>r18
Load r18 => r19
Sub r19 r15 => r20
storeAI r20 => SP 4

simplify match

r1 := n1
r2 := r3 + r1

r2:=r3+n1

r1:=r2+n1
r3 :=M(r1)

r3:=M(r2+n1)

r1:=r2+n1
M(r1):=r3

M(r2+n1):=r3

Optimizations:

cs4713 25

Efficiency of peephole optimization
 Design issues

 Dead values
 May intervene with valid simplification
 Need to be recognized expansion process

 Control flow operations
 Complicates simplifier

 Clear window vs. special-case handling

 Physical vs. logical windows
 Adjacent operations may be irrelevant
 Sliding window includes ops that define or use common values

 RISC vs. CISC architectures
 RISC architectures makes instruction selection easier

 Additional issues
 Automatic tools to generate large pattern libraries for different

architectures
 Front ends that generate LLIR make compilers more portable

cs4713 26

Register allocation and assignment
 Values in registers are easier and faster to access than memory

 Reserve a few registers for stack pointers, base registers etc
 Efficiently utilize the rest of general-purpose registers

 Register allocation
 At each program point, select a set of values to reside in registers

 Register assignment
 Pick a specific register for each value, subject to hardware constraints
 Register classes: not all registers are equal

 Optimal register allocation/assignment in general are NP-complete
 Register assignment in many cases can be solved in polynomial time

……
 i := 0
s0: if i < 50 goto s1

goto s2
s1: t1 := b * 2
 a := a + t1
 goto s0
S2: …

• Variables that can stay in registers
 i, a, b, t1
• Need to know how variables will be
used after each statement.
• Problem: given a statement I, what
statements may follow I in the future?

cs4713 27

The register allocation problem

 At each point of execution, a program may have arbitrary number
of live variables
 Only a subset may be kept in registers
 If a value cannot be kept in register, it must be stored in memory and

loaded again when next needed  spilling of value to register
 Goal: make effective use of registers

 Minimize the number of loads and stores for spilling
 Register-to-register model

 Early translation tries to store all values in registers; select values to
spill to memory

 Memory-to-memory model
 Early translation allocates memory for all user variables; promote

values to register
 Must decide which values do not require memory storage

Register
allocator

Input program Output program

Assumes infinite #
of registers

Uses registers on
machine

cs4713 28

Control-flow graph
 Graph representation of program

 Nodes of graph: basic blocks (straight-line computations)
 Edges of graph: flows of control

 Useful for collecting information about computation
 Detect loops, remove redundant computations, …
 Find live range of each variable v

 All statements where v might be used in the future
 Candidate for register allocation

……
 i := 0
s0: if i < 50 goto s1

goto s2
s1: t1 := b * 2
 a := a + t1
 goto s0
S2: …

S0: if I < 50 goto s1

goto s2
s1: t1 := b * 2
 a := a + t1
 goto s0

S2: ……

i :=0

cs4713 29

Identifying basic blocks
 Input: a sequence of three-address statements
 Output: a list of basic blocks
 Method:

 Determine each statement that starts a new basic block, including
 The first statement of the input sequence
 Any statement that is the target of a goto statement
 Any statement that immediately follows a goto statement

 Each basic block consists of
 A starting statement S0
 All statements following S0 up to but not including the next starting

statement (or the end of input)

……
 i := 0
s0: if i < 50 goto s1
 goto s2
s1: t1 := b * 2
 a := a + t1
 goto s0
S2: …

Starting statements:
 i := 0
 S0,
 goto S2
 S1,
 S2

cs4713 30

Building control-flow graphs
 Identify all the basic blocks

 Create a flow graph node for each basic block
 For each basic block B1

 If B1 ends with a jump to a statement that starts basic block B2,
create an edge from B1 to B2

 If B1 does not end with an unconditional jump, create an edge from
B1 to the basic block that immediately follows B1 in the original
evaluation order

……
 i := 0
s0: if i < 50 goto s1
 goto s2
s1: t1 := b * 2
 a := a + t1
 goto s0
S2: …

S0: if i < 50 goto s1

goto s2
s1: t1 := b * 2
 a := a + t1
 goto s0

S2: ……

i :=0

cs4713 31

Register allocation on flow graphs
 Local (single basic block) register allocation

 At start of basic block
 Assume every value resides in memory
 Load values from memory to registers if necessary

 At end of basic block
 Store all modified values in registers back to memory

 Within each basic block,
 Find live ranges of variables (statements where variables are further used in

basic block)
 Allocate variable live ranges to registers based on use counts

 Global (single procedural) register allocation
 Allocate registers across basic block boundaries
 Compute the live range of each variable

 The duration of code (the collection of basic blocks) that variables are alive
(may be used in the future)

 Use data-flow analysis on control-flow graphs (not covered)
 Allocate registers to live ranges of variables

cs4713 32

Local register allocation
 Allocation model

 Assumes register-to-register memory model
 Input program assumes infinite # of registers

 Assume all registers on target machine are equivalent
 Approaches

 Top-down: count the number of references to each value
 the most heavily used values should reside in registers
 Weakness: dedicate a register to value for entire block

 Bottom-up: spill the value that is needed the latest
 For each variable use, compute the distance of its next use
 process each instruction in evaluation order; when running out of

registers, spill the value whose next use is farthest in the future
 Produces excellent result in many cases
 Not optimal: not all spilling takes the same number of cycles

 Clean vs. dirty spill: has the variable been modified?

 Graph Coloring based allocation

cs4713 33

Computing local live variables
 At each program point, a variable is alive if it may be used in the future

 Only values of live variables need to be kept in registers
 Local live variable analysis (within a basic block)

 A variable is alive if its value is used within the basic block

Algorithm at each basic block:

 Set every variable in symbol table ``not alive”
 Scan statements in reverse order, at every i: x := y op z

 Alive(i) = live variables in symbol table
 Set x to “not alive” in symbol table
 Set y and z to “alive” in symbol table

 a, b
(1) t1 := a * a t1, a, b
(2) t2 := a * b t1, b, t2
(3) t3 := 2 * t2 t1, t3, b
(4) t4 := t1 + t3 t4, b
(5) t5 := b * b t4, t5
(6) t6 := t4 + t5 none

Local live variables

cs4713 34

Live ranges and interference graph

variable live range # of uses
 a (1)-(2) 3
 b (1)-(5) 3
 t1 (2)-(4) 2
 t2 (3) 1
 t3 (4) 1
 t4 (5)-(6) 1
 t5 (6) 1
 t6 none 0

 a, b
(1) t1 := a * a t1, a, b
(2) t2 := a * b t1, b, t2
(3) t3 := 2 * t2 t1, t3, b
(4) t4 := t1 + t3 t4, b
(5) t5 := b * b t4, t5
(6) t6 := t4 + t5 none

Live variables

a

bt1

t2 t3
t4

t5 t6

Interference graph:
• Nodes: live ranges of variables
• Put an edge between (n1,n2) if
 they are overlapping live ranges
 (values are alive simultaneously)

cs4713 35

Interference graph and register
allocation
 Interference graph

 Nodes: live ranges of variables
 An edge between (n1,n2) if they are overlapping live ranges

 Register allocation
 Allocating registers to nodes of interference graph
 If there is an edge between (n1,n2)

 Must allocate n1 and n2 to different registers
 If there is no edge between (n1,n2), they can share a register

 The graph coloring problem
 Assign colors to nodes of a graph, neighboring nodes must have

different colors

a

bt1

t2 t3
t4

t5

t6

a, b, t1 must reside in different registers
b, t1, t3 must reside in different registers
b, t1, t2 must reside in different registers
t2,t3,t4,t5,t6 can share a single register

Need 4 registers to hold all values

cs4713 36

Estimating register spilling cost

 When not sufficient registers are available, compilers must
choose registers to spill into memory
 Choose the variables with the lowest spilling cost

 Address calculation --- where to spill
 Compilers can choose where to spill values

 E.g. Register-save area of local activation record
 Memory load/store

 Negative spill costs
 live ranges that contain a single load /store and no other uses

 Infinite spill costs
 live ranges short enough that spilling never helps
 E.g., a use immediately following a definition

 Global allocation ==> frequency of basic block execution
 Compilers annotate each block with an execution count
 E.g., assume each loop executes 10 times, and each

unpredictable branch is evaluated 50% of times

Cost = (address calculation + memory load/store)*frequency

cs4713 37

Graph-coloring based allocation
 Rank all live ranges

 Live ranges with high spilling costs are ranked higher
 Color constrained live ranges first

 Live ranges with more than k interfering neighbors
 Unconstrained live ranges can always be colored

 At each step, try to color the current live range Ri with top priority
 if neighbors of Ri have not taken all the colors

 assign an available color (register) to Ri
else /*no color is available for Ri*/
 invoke spilling or splitting mechanisms

Assume 5 physical registers: P1-P5
Unconstrained nodes:
 R0,R7,R8,R20
Ordering of nodes for coloring
 R5  P1; R2  P2 ; R4  P3;
 R17 P4; R18  P5 ; R19spill
 R0  P1; R7  P1; R8  P1;
 R20 P1;

R0

R2

R4

R7

R8

R17

R18

R19
R20

R5

cs4713 38

The register allocation problem
 Local register allocation

 Allocate registers with a single basic block
 Load all registers from memory at block entry; store all registers to

memory at block exit
 Global register allocation

 Allocating registers across basic block boundaries
 Apply data-flow analysis on control-flow graph to determine live

ranges of variables
 Build global interference graph and apply graph coloring algorithm

 Register allocation is hard
 Optimal graph coloring is NP complete
 Building global interference graph and applying graph coloring

algorithms are expensive
 Not suitable for just-in-time compilers

 When not enough registers, need to spill values to memory
 Heuristics for register allocation

 Allocate registers to values that are used more times
 Avoid register spilling in loops
 Just in time compilation

 Aggressively allocate registers in a linear scan of program

