
cs5363 1

CS5363 Final Review

cs5363 2

Programming language implementation
 Programming languages

 Tools for describing data and algorithms
 Instructing machines what to do
 Communicate between computers and programmers

 Different programming languages
 FORTRAN, Pascal, C, C++, Java, Lisp, Scheme, ML, …

 Compilers/translators
 Translate programming languages to machine languages
 Translate one programming language to another

 Interpreters
 Interpret the meaning of programs and perform the

operations accordingly

cs5363 3

Objectives of compilers
 Fundamental principles

 Compilers shall preserve the meaning of the input
program --- it must be correct

 Translation should not alter the original meaning
 Compilers shall do something of value

 Optimize the performance of the input application

Front end Back endoptimizer
(Mid end)

Source
program

IR IR Target
program

compiler

cs5363 4

Front end
 Source program
 for (w = 1; w < 100; w = w * 2);
 Input: a stream of characters

 ‘f’ ‘o’ ‘r’ ‘(’ `w’ ‘=’ ‘1’ ‘;’ ‘w’ ‘<’ ‘1’ ‘0’ ‘0’ ‘;’ ‘w’…
 Scanning--- convert input to a stream of words (tokens)

 “for” “(“ “w” “=“ “1” “;” “w” “<“ “100” “;” “w”…
 Parsing---discover the syntax/structure of sentences

forStmt: “for” “(” expr1 “;” expr2 “;” expr3 “)” stmt
expr1 : localVar(w) “=” integer(1)
expr2 : localVar(w) “<” integer(100)
expr3: localVar(w) “=” expr4
expr4: localVar(w) “*” integer(2)
stmt: “;”

cs5363 5

Lexical analysis/Scanning
 Called by the parser each time a new token is needed

 Each token has a “type” and an optional “value”
 Regular expression: compact description of composition of

tokens
 Alphabet ∑: the set of characters that make up tokens
A regular expression over ∑ could be

 the empty string, a symbol s ∈ ∑, or
 (α), αß, α | ß, or α*, where α and ß are regular expressions.
 Finite automata

 Include an alphabet ∑, a set of states S (including a start state
s0 and a set of final states F), and a transition function δ

 DFA δ: S * ∑  S; NFA δ: S * ∑  power(S)
 Regular expressions and finite automata

 Describing and recognizing an input language
 From R.E to NFA to DFA
 Examples: comments, identifiers, integers, floating point

numbers, ……

cs5363 6

Context-free grammar
 Describe how to recursively compose programs/sentences from

tokens
 Loops, statements, expressions, declarations, …….

 A context-free grammar includes (T,NT,S,P)
 BNF: each production has format A ::= B (or AB) where a is a single

non-terminal; B is a sequence of terminals and non-terminals
 Using CFG to describe regular expressions

 n ::= dn | d
 d ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

 Given a CFG G=(T,NT,P,S), a sentence s belongs to L(G) if there
is a derivation from S to s

 Derivation: top-down replacement of non-terminals
 Each replacement follows a production rule
 Left-most vs. right-most derivations
 Example: derivations for 5 + 15 * 20
e=>e*e=>e+e*e=>5+e*e=>5+15*e=>5+15*20
e=>e+e=>5+e=>5+e*e=>5+15*e=>5+15*20

 Writing grammars for languages
 E.g., the set of balanced parentheses

cs5363 7

Parse trees and abstract syntax trees
 Parse tree: graphical representation of derivations

 Parent: left-hand of production; children: right-hand of
production

 A grammar is syntactically ambiguous if
 some program has multiple parse trees
 Rewrite an ambiguous grammar: identify source of ambiguity,

restrict the applicability of some productions
 Standard rewrite for defining associativity and precedence of

operators
 Abstract syntax tree: condensed form of parse tree

 Operators and keywords do not appear as leaves
 Chains of single productions may be collapsed

Parse tree:
e

e

e

e

5
*

+

15
20

e
+

20

5

15

*

Abstract syntax tree:

cs5363 8

Top-down and bottom-up parsing
 Top-down parsing: start from the starting non-terminal, try

to find a left-most derivation
 Recursive descent parsing and LL(k) predictive parsers
 Transformation to grammars: eliminate left-recursion and Left-

factoring
 Build LL(1) parsers: compute First for each production and

Follow for each non-terminal
 Bottom-up parsing: start from the input string, try to

reduce the input string to the starting non-terminal
 Equivalent to the reverse of a right-most derivation
 Right-sentential forms and their handles
 Shift-reduce parsing and LR(k) parsers

 The meaning of LR(1) items; building DFA for handle pruning;
canonical LR(1) collection

 How to build LR(1) parse table and how to interpret LR(1) table

 Top-down vs. bottom-up parsers: which is better?

cs5363 9

Intermediate representation
 Source program
 for (w = 1; w < 100; w = w * 2);
 Parsing --- convert input tokens to IR

 Abstract syntax tree --- structure of program

 Context sensitive analysis --- the surrounding environment
 Symbol table: information about symbols

 V: local variable, has type “int”, allocated to register
 At least one symbol table for each scope

forStmt

assign less assign emptyStmt

Lv(w) int(1)
Lv(w) int(100)

Lv(w)

Lv(w)

mult

int(2)

cs5363 10

Context-sensitive analysis
 Attribute grammar (syntax-directed definition)

 Associate a collection of attributes with each grammar symbol
 Define actions to evaluate attribute values during parsing

 Synthesized and inherited attribute
 Dependences in attribute evaluation
 Annotated parse tree and attribute dependence graph
 Bottom-up parsing and L-attribute evaluation
 Translation scheme: define attribute evaluation within the

parsing of grammar symbols
 Type checking

 Basic types and compound types
 Types of variables and expressions

 Type environment (symbol table)
 Type system, type checking and type conversion

 Compile-time vs. runtime type checking
 Type checking and type inference

cs5363 11

Variation of IR
 IR: intermediate language between source and

target
 Source-level IR vs. machine-level IR
 Graphical IR vs. linear IR
 Mapping names/storages to variables

 Translating from source language to IR ---
syntax-directed translation

 IR for the purpose of program analysis
 Control-flow graph
 Dependence graph
 Static single assignment (SSA)

cs5363 12

Execution model of programs
 Procedural abstraction: scope and storage management

 Nested blocks and namespaces
 Scoping rules

 static/lexical vs. dynamic scoping
 Local vs. global variables

 Parameter passing: pass-by-value vs pass-by-reference
 Activation record for blocks and functions: what are the

necessary fields?
 The simplified memory model

 Runtime stack, heap and code space
 program pointer and activation record pointer

 Allocating activation records on stack
 how to set up the activation record?

 Allocating variables in memory
 base address and offset; local vs. static/global variables
 Coordinates of variables: nesting level of variable scope

 Access link and global display

cs5363 13

Mid end --- improving the code

int j = 0, k;
while (j < 500) {
 j = j + 1;
 k = j * 8;
 a[k] = 0;
 }

int k = 0;
while (k < 4000) {
 k = k + 8;
 a[k] = 0;
}

Original code Improved code

 Program analysis --- recognize optimization opportunities
 Data flow analysis: where data are defined and used
 Dependence analysis: when operations can be reordered

 Transformations --- improve target program speed or space
 Redundancy elimination
 Improve data movement and instruction parallelization

cs5363 14

Data-flow analysis
 Program analysis: statically examines input computation to

ensure safety and profitability of optimizations
 Data-flow analysis: reason about flow of values on control-

flow graph
 Forward vs. backward flow problem

 Define domain of analysis; build the control-flow graph
 Define a set of data-flow equations at each basic block
 Evaluate local data-flow sets at each basic block
 Iteratively modify result at each basic block until reaching a fixed

point
 Traversal order of basic blocks: (reverse) postorder
 Example: available expression analysis, live variable analysis,

reaching definition analysis, dominator analysis
 SSA (static single assignment)

 Two rules that must be satisfied
 Insertion of ∅ functions; rewrite from SSA to normal code
 Computing dominance relations and dominance frontiers

cs5363 15

Scope of optimization
 Local methods

 Applicable only to basic blocks
 Superlocal methods

 Operate on extended basic blocks
(EBB)

 B1,B2,B3,…,Bm, where Bi is the
single predecessor of B(i+1)

 Regional methods
 Operate beyond EBBs, e.g. loops,

conditionals
 Global (intraprocedural) methods

 Operate on entire procedure
(subroutine)

 Whole-program (interprocedural)
methods
 Operate on entire program

S0: if i< 50 goto s1

goto s2
s1: t1 := b * 2
 a := a + t1
 goto s0

S2: ……

i :=0

EBB

cs5363 16

Program optimizations
 Redundant expression elimination

 Value numbering
 Simulate runtime evaluation of instruction sequence
 Use an integer number to unique identify each runtime

value
 Map each expression to a value number
 Scope of optimization: local, EBB, dominator based

 Global redundancy elimination
 Find available expressions at the entry of each basic block
 Remove expressions that are redundant

 Naming of variables change availability of expressions
 Dead code elimination

 Mark instructions that are necessary to evaluation of
program; remove expressions with never-used results

 Computing control dependence among basic blocks

cs5363 17

Back end --- code generation
 Memory management

 Every variable must be allocated with a memory location
 Address stored in symbol tables during translation

 Instruction selection
 Assembly language of the target machine
 Abstract assembly (three/two address code)

 Register allocation
 Most instructions must operate on registers
 Values in registers are faster to access

 Instruction scheduling
 Reorder instructions to enhance parallelism/pipelining in

processors

cs5363 18

Example of code generation

loadAI rarp, @w  rw // load ‘w’
loadI 2  r2 // constant 2 into r2
loadAI rarp, @x  rx // load ‘x’
loadAI rarp, @y  ry // load ‘y’
loadAI rarp, @z  rz // load ‘z’
mult rw, r2  rw // rw  w * 2
Mult rw, rx  rw // rw  w*2*x
Mult rw, ry  rw // rw  w * 2 * x * y
Mult rw, rz  rw // rw  w * 2 * x * y * z
storeAI rw  rarp, @w // write rw back to ‘w’

Code for w  w * 2 * x * y * z in ILOC

ILOC: Imtermediate language for an optimizing compiler
 similar to the assembly language for a simple RISC machine

cs5363 19

Machine code generation
 Assigning storage: register or memory

 Every expression e must have
 A type that determines the size/meaning of its value
 A location to store its value (e.place)

 A variable may require a permanent storage
 Non-local variables or variables that might be aliased

 Translating to three-address code
 Different code shapes may have different efficiency
 Translating expressions

 Mixed type expressions --- implicit type conversion
 Arithmetic vs. boolean expressions; short-circuit translation

 Translating variable access, arrays, and function calls
 Translating control-flow statements

cs5363 20

Register allocation and assignment
 Values in registers are easier and faster to access than

memory
 Reserve a few registers for memory access
 Efficiently utilize the rest of general-purpose registers

 Register allocation: at each program point, select a set of
values to reside in registers

 Register assignment: pick a specific register for each value,
subject to hardware constraints

 Register-to-register vs. memory model
 Local register allocation: top-down vs. bottom-up
 Graph-coloring based register allocation

 Construct global live ranges
 Build interference graph
 Coalesce live ranges to eliminate register copying
 Rank all live ranges based on spilling cost
 Color the interference graph

cs5363 21

Instruction selection
 Table-based instruction selector

 Create a description of target machine, use back-end
generator to produce a pattern-matching table

 AST tiling: pattern-based instruction selection
through tree-grammar
 Bottom-up walk of the AST, for each node n, find all

applicable tree patterns and select the one with lowest
cost

 Peephole optimization
 Use a simple scheme to translate IR to machine code
 Discover local improvements by examining short

sequences of adjacent operations: expand  simplify 
match

cs5363 22

Instruction scheduling
 Dependence/precedence graph G = (N,E)

 Each node n ∈ N is a single operation
 type(n) and delay(n)

 Edge (n1,n2) ∈ N indicates n2 uses result of n1 as operand
 What about anti-dependences?

 G is acyclic within each basic block
 Given a dependence graph D = (N,E), a schedule S maps

each node n ∈ N to the cycle number that n is issued.
 Each schedule S must be well-formed, correct, and feasible.
 Critical path: the longest path in the dependence graph

 List scheduling: greedy heuristic to scheduling operations in
a single basic block
 Build a dependence graph (rename to avoid anti-dependences)
 Assign priorities to each operation n (the length of longest

latency path from n to end)
 Iteratively select an operation and schedule it

