CS5363 Final Review

555555

o Programming languages

Tools for describing data and algorithms
Instructing machines what to do
Communicate between computers and programmers

Different programming languages
FORTRAN, Pascal, C, C++, Java, Lisp, Scheme, ML, ...

o Compilers/translators
Translate programming languages to machine languages
Translate one programming language to another

O Interpreters

Interpret the meaning of programs and perform the
operations accordingly

cs5363 2

Objectives ot compilers

o Fundamental principles
= Compilers shall preserve the meaning of the input

program --- it must be correct
Translation should not alter the original meaning

= Compilers shall do something of value

Optimize the performance of the input application

Source

program

A 4

Front end

IR

optimizer
(Mid end)

IR

>

Back end

Target

compiler

cs5363

|
program

O Source program
for(w=1;, w<100; w =w * 2);
o Input: a stream of characters
ot (T w = W N0 0 Y tw L
O Scanning--- convert input to a stream of words (tokens)
for” (T tw” =T LT T Rw T <Y 11007 Y, tw L,

o Parsing---discover the syntax/structure of sentences
forStmt: “for” (" exprl ;" expr2 ;" expr3 “)” stmt
exprl : localVar(w) “=" integer(1)
expr2 : localVar(w) “<” integer(100)
expr3: localvar(w) “=" expr4d
expr4: localvVar(w) “*” integer(2)
stmt: “;”

cs5363

Called by the parser each time a new token is needed
Each token has a “type” and an optional “value”

Regular expression: compact description of composition of
tokens

Alphabet >: the set of characters that make up tokens
A regular expression over > could be
the empty string, a symbol s € 2, or
(a), aBB, o | B, or a*, where a and B are regular expressions.
Finite automata

Include an alphabet 2, a set of states S (including a start state
sO and a set of final states F), and a transition function §

DFAS: S * > >S; NFAS: S * 3 > power(S)

Regular expressions and finite automata
Describing and recognizing an input language
From R.E to NFA to DFA

Examples: comments, identifiers, integers, floating point

numbers,
cs5363 5

Describe how to recursively compose programs/sentences from
tokens

Loops, statements, expressions, declarations, :

A context-free grammar includes (T,NT,S,P)

BNF: each production has format A ::= B (or A>B) where a is a single
non-terminal; B is a sequence of terminals and non-terminals

Using CFG to describe regular expressions
n::=dn|d
d::=0]1]2|3|4|5]|6]718]|9
Given a CFG G=(T,NT,P,S), a sentence s belongs to L(G) if there
is a derivation from Sto s
Derivation: top-down replacement of non-terminals
Each replacement follows a production rule
Left-most vs. right-most derivations
Example: derivations for 5 + 15 * 20
e=>e*e=>e+e*e=>5+e*¥e=>5+15%¥e=>5+15%20
e=>e+e=>5+e=>5+e¥*e=>5+15*%e=>5+15*%20
Writing grammars for languages

E.g., the set of balanced parentheses
cs5363

o Parse tree: graphical representation of derivations

Parent: left-hand of production; children: right-hand of
production

o A grammar is syntactically ambiguous if
some program has multiple parse trees

Rewrite an ambiguous grammar: identify source of ambiguity,
restrict the applicability of some productions

Standard rewrite for defining associativity and precedence of
operators

0 Abstract syntax tree: condensed form of parse tree
Operators and keywords do not appear as leaves
Chains of single productions may be collapsed

Abstract syntax tree:
Parse tree: / l\ e
IR /e
Y /

1 5 cs5363

Ul

o Top-down parsing: start from the starting non-terminal, try
to find a left-most derivation
Recursive descent parsing and LL(k) predictive parsers

Transformation to grammars: eliminate left-recursion and Left-
factoring

Build LL(1) parsers: compute First for each production and
Follow for each non-terminal
o Bottom-up parsing: start from the input string, try to
reduce the input string to the starting non-terminal
Equivalent to the reverse of a right-most derivation
Right-sentential forms and their handles
Shift-reduce parsing and LR(k) parsers

The meaning of LR(1) items; building DFA for handle pruning;
canonical LR(1) collection

How to build LR(1) parse table and how to interpret LR(1) table

o Top-down vs. bottom-up parsers: which is better?
cs5363 8

Intermediate representation

O Source program
for(w=1;, w<100; w =w * 2);
o Parsing --- convert input tokens to IR
= Abstract syntax tree --- structure of program

A}rsxtmt \A\’

assign less assign
2 g /g\ emptyStmt
Lv(w) int(1) Lv(w) mult

Lv(w) int(100)
Lv(w) int(2)

o Context sensitive analysis --- the surrounding environment

= Symbol table: information about symbols
V: local variable, has type “int”, allocated to register
= At least one symbol table for each scope

cs5363

o Attribute grammar (syntax-directed definition)
Associate a collection of attributes with each grammar symbol
Define actions to evaluate attribute values during parsing

0 Synthesized and inherited attribute
Dependences in attribute evaluation
Annotated parse tree and attribute dependence graph
Bottom-up parsing and L-attribute evaluation

Translation scheme: define attribute evaluation within the
parsing of grammar symbols

o Type checking

Basic types and compound types

Types of variables and expressions
Type environment (symbol table)

Type system, type checking and type conversion
Compile-time vs. runtime type checking
Type checking and type inference

cs5363

10

o IR: intermediate language between source and
target
Source-level IR vs. machine-level IR
Graphical IR vs. linear IR
Mapping names/storages to variables

o Translating from source language to IR ---
syntax-directed translation

o IR for the purpose of program analysis
Control-flow graph
Dependence graph
Static single assignment (SSA)

cs5363

11

0 Procedural abstraction: scope and storage management
Nested blocks and namespaces
Scoping rules
static/lexical vs. dynamic scoping
Local vs. global variables
Parameter passing: pass-by-value vs pass-by-reference
Activation record for blocks and functions: what are the
necessary fields?
o The simplified memory model
Runtime stack, heap and code space
program pointer and activation record pointer
Allocating activation records on stack
how to set up the activation record?

Allocating variables in memory
base address and offset; local vs. static/global variables
Coordinates of variables: nesting level of variable scope

Access link and global display

cs5363

12

Mid end --- improving the code

Original code Improved code
intj =0, k; int k = 0;
while (j < 500) { while (k < 4000) {
j=j+1; k =k + 8;
k=7j*8; a[k] = 0;
alk] = 0; by
by

o Program analysis --- recognize optimization opportunities
= Data flow analysis: where data are defined and used
= Dependence analysis: when operations can be reordered
o Transformations --- improve target program speed or space
= Redundancy elimination
= Improve data movement and instruction parallelization

cs5363 13

o0 Program analysis: statically examines input computation to
ensure safety and profitability of optimizations
o Data-flow analysis: reason about flow of values on control-
flow graph
Forward vs. backward flow problem
Define domain of analysis; build the control-flow graph
Define a set of data-flow equations at each basic block

Evaluate local data-flow sets at each basic block
Ite_rattively modify result at each basic block until reaching a fixed
poin
Traversal order of basic blocks: (reverse) postorder
Example: available expression analysis, live variable analysis,
reaching definition analysis, dominator analysis
O SSA (static single assignment)
Two rules that must be satisfied
Insertion of & functions; rewrite from SSA to normal code
Computing dominance relations and dominance frontiers

cs5363 14

Scope of optimization J—

0 Local methods
= Applicable only to basic blocks
O Superlocal methods

= Operate on extended basic blocks
(EBB) :

B1,B2,B3,..,Bm, where Bi is the

single predecessor of B(i+1)

0 Regional methods

= Operate beyond EBBs, e.qg. Ioops,"‘.\
conditionals \

o Global (intraprocedural) methods

= Operate on entire procedure
(subroutine)

o Whole-program (interprocedural)
methods

= Operate on entire program

-
-

cs5363 15

0o Redundant expression elimination
Value numbering

Simulate runtime evaluation of instruction sequence

Usle an integer number to unique identify each runtime
value

Map each expression to a value number

Scope of optimization: local, EBB, dominator based
Global redundancy elimination

Find available expressions at the entry of each basic block

Remove expressions that are redundant

Naming of variables change availability of expressions

O Dead code elimination

Mark instructions that are necessary to evaluation of
program; remove expressions with never-used results

Computing control dependence among basic blocks

cs5363 16

O Memory management
Every variable must be allocated with a memory location
Address stored in symbol tables during translation

o Instruction selection
Assembly language of the target machine
Abstract assembly (three/two address code)

0 Register allocation
Most instructions must operate on registers
Values in registers are faster to access

o Instruction scheduling

Reorder instructions to enhance parallelism/pipelining in
processors

cs5363 17

Code forw &« w*2*x*y*z inILOC

loadAl rarp, @w = rw // load ‘W’
loadl 2 = r2 // constant 2 into r2
loadAl rarp, @x = rx //load X’
loadAl rarp, @y =>ry //load'y’
loadAl rarp, @z = rz // load 'z’

mult rw, r2 = rw [/ W& w * 2

Mult rw, rx = rw /] W €& wX2*x

Mult rw, ry = rw [/ TW & w* 2k x*y
Mult rw, rz = rw [/ TW & w X2k x*y*z
storeAl rw = rarp, @w // write rw back to ‘w’

ILOC: Imtermediate language for an optimizing compiler
similar to the assembly language for a simple RISC machine

cs5363

18

0 Assigning storage: register or memory

Every expression e must have
A type that determines the size/meaning of its value
A location to store its value (e.place)

A variable may require a permanent storage
Non-local variables or variables that might be aliased

o Translating to three-address code
Different code shapes may have different efficiency

Translating expressions
Mixed type expressions --- implicit type conversion
Arithmetic vs. boolean expressions; short-circuit translation

Translating variable access, arrays, and function calls
Translating control-flow statements

cs5363 19

Values in registers are easier and faster to access than
memory

Reserve a few registers for memory access
Efficiently utilize the rest of general-purpose registers

Register allocation: at each program point, select a set of
values to reside in registers

Register assignment: pick a specific register for each value,
subject to hardware constraints

Register-to-register vs. memory model
Local register allocation: top-down vs. bottom-up
Graph-coloring based register allocation
Construct global live ranges
Build interference graph
Coalesce live ranges to eliminate register copying
Rank all live ranges based on spilling cost
Color the interference graph

cs5363 20

0 Table-based instruction selector
Create a description of target machine, use back-end
generator to produce a pattern-matching table
o AST tiling: pattern-based instruction selection
through tree-grammar

Bottom-up walk of the AST, for each node n, find all
applicable tree patterns and select the one with lowest
cost

0 Peephole optimization
Use a simple scheme to translate IR to machine code

Discover local improvements by examining short
sequences of adjacent operations: expand 2> simplify >
match

cs5363 21

Dependence/precedence graph G = (N,E)
Each node n € N is a single operation
type(n) and delay(n)
Edge (n1,n2) € N indicates n2 uses result of n1 as operand
What about anti-dependences?
G is acyclic within each basic block
Given a dependence graph D = (N,E), a schedule S maps
each node n € N to the cycle number that n is issued.
Each schedule S must be well-formed, correct, and feasible.
Critical path: the longest path in the dependence graph
List scheduling: greedy heuristic to scheduling operations in
a single basic block
Build a dependence graph (rename to avoid anti-dependences)

Assign priorities to each operation n (the length of longest
latency path from n to end)

Iteratively select an operation and schedule it

cs5363 22

