Code Shape

More on Three-address Code
Generation

555555

Machine Code Translation

o A single language construct can have many
implementations

= many-to-many mappings from high-level source
language to low-level target machine language
= Different implementations have different efficiency
Speed, memory space, register, power consumption

Source code Low-level three-address code
X+y+z ri:=rx+ry rl:=rx+rz rl:=ry +rz
r2:=rl+rz r2:=rl+ry r2:=r1+rx
+ +

AR S S A
Xy Z jl_& Z J & J &
Xy

cs5363 XZ y Z

Generating Three-Address Code

o No more support for structured control-flow
= Function calls=>explicit memory management and goto jumps

o Every three-address instr=>several machine instructions
= The original evaluation order is maintained

O Memory management
= Every variable must have a location to store its value
Register, stack, heap, static storage
= Memory allocation convention
Scalar/atomic values and addresses => registers, runtime stack
Arrays => heap
Global/static variables => static storage

void fee() {
int a, *b, c;
a=0; b==&a; *b=1;
cC =a+ *b;

b

cs5363

o For every non-terminal expression E
E.place: temporary variable used to store result

0o Synthesized attributes for E
Bottom up traversal ensures E.place assigned before used
Symbol table has value types and storage for variables

o What about the value types of expressions?

id *="E1 { E.place=E1.place; gen_var_store(id.entry, El.place); }

El1'+"E2 {E.place=new_tmp();
gen_code(ADD,E1l.place,E2.place,E.place); }

(E1) { E.place = El.place; }

id { E.place=gen_varLoad(id.entry); }

num { E.place=new_tmp(); gen_code(LOADI, num.val, O, E.place; }

mm

mrm m
I |

Example input: a = b*c+b+2
Should we reuse register for variable b?

cs5363

Storing And Accessing Arrays

0 Single-dimensional array
= Accessing ith element: base + (i-low) * w
Low: lower bound of dimension; w : element size

o Multi-dimensional arrays
= need to locate base addr of each dimension
Row-major, column-major, Indirection vector

o Extend translation scheme to support array access

Row-major

Column-major

(1,1)

(1,2)

(1,3)

(2,1)

(2, 2)

(2, 3)

A(i,j)=value

at (A+(i-low1)*len2*w+ (j-low2)*w)

(1,1)

(2,1)

(1,2)

(2, 2)

(1,3)

(2, 3)

A(i,j)=value at (A+(j-low2)*len1*w+ (i-low1)*w)

—» 1|23

Indirection vector |1|2| —>1|2|3

[
A(i,j)= value at (A+(i-lowl)*wp+(j-low2)*w)

cs5363 5

0 Languages provide different support for strings
C/C++/Java: through library routines
PLI/Lisp/ML/Perl/python: through language implementation

Important string operations
Assignment, concatenation

O Representing strings
Null-terminated vs. explicit length field

O Treat strings as arrays of bytes
More complex if hardware does not support operating on bytes

Translate collective string operations to array operations before three-
address translation

als|tirjijn|g|\O 7lals|t|rli |n|g
Null-termination Explicit length field

_ _ loadl @b => r1
String assignment | cloadAl r1,2=>r2

all] = b[2] loadl @a => r3
cstoreAl r2 =>1r3, 1

cs5363

Translating Procedural calls

Procedure p

prologue
l Procedure g
cf<>\\ prologue
precall
&
Postreturn <.
2
\ 4
l epilogue
epilogue

O

O

cs5363

Function/procedural calls need to
be translated into calling
sequences

Side-effect of procedural calls
= Determined by linkage convention

= If function call has side effects,
Orig. evaluation order need be
preserved
Saving and restoring registers
= Expensive for large register sets

= Use special routines or operations
to speed it up

= Combine responsibility of caller
and callee

Optimizing small procedures that
don’t call others
= Reduce precall and prologue

= Reduce number of registers need
to be saved

o Arrays are pointers to data areas
Mostly treated as addresses (pointers)
Must know dimension & size to support element access
Must have type info when passed as parameters
Handled either by compilers or programmers
o Compiler support for dynamic arrays

Arrays passed as parameters or dynamically allocated
Must save type information at runtime to be type safe

o Dope vector: runtime descriptor of arrays

Saves starting address, number of dimensions,
lower/upper bound and size of each dimension

Build a dope vector for each array

Can support runtime checking of each element access
Before accessing the element, is it a valid access?

cs5363

Translating Boolean Expressions

o Two approaches

= Same as translating regular expressions: true=>»1/non-zero;

false 2 0

m Translate into control-flow branches

For every boolean expression E

E.true/E.false: the labels to goto if E is true/false

Numerical translation:

c:=(a<b) i> Cmp_LTra, rb => rc

Position-based translation:

_ if a < b goto Et
c:=a<b i> else goto Ef

Et: c := true

goto next
Ef: c := false
next:

cs5363

=)

cmp ra, rb => ccl
cbr LT ccl =>L1, L2

L1: loadl true => rc
jumpl => L3

L2: loadlI false=> rc

L3:

Short-Circuit Evaluation

o Evaluate only expressions required to determine the final result
= E:a<b&&c<d

if a >= b, there is no need to evaluate whether c < d

o For every boolean expression E
= E.true/E.false: the labels to goto if E is true/false

E:a<b&&c<d

5

if a < b goto L1

else goto E.false
L1: if c < d goto E.true

else goto E.false

=

cs5363

cmp ra, rb => ccl
cbr LT ccl => L1,Ef
L1: cmp rc, rd => cc2
cbr LT cc2 => Et,Ef
Et: ...
jumpl next
Ef: ...
Next:

10

Translating control-flow

E.code
S::= if ETHEN S1 ‘ E.true:| o1 code
E.false:| ...
E.code
S::=if ETHEN S1 else S2 ‘ ELrUeY 51 code
E fal |goto S.next
TS 55 code
S.begin: E code
S::= While E DO S1 ‘ ELrUeY 51 code
goto S.begin
E.false:—

cs5363

11

Example

Translating control-flow statemer

is

if (@a<b&&c<d)

X = a;
else
X =d;

=

void fee(int x, int y) {
int] =0;
int z = Xx;
while (I < 100) {
| =1+ 1;
if(y<x)z=y;
Alll =1;
}
}

cs5363

cmp ra, rb => ccl
cbr LT ccl => L1,Ef
L1: cmp rc, rd => cc2
cbr LT cc2 => Et,Ef
Et: move ra => rx
jumpl next
Ef: move rx => rd
Next:

=

12

More On Control-flow Translation

o If-then-else conditional
= Use predicated execution vs. conditional branches

o Different forms of loops
= While, for, until, etc.
= Optimizations on loop body, branch prediction

0 Case statement
= Evaluate controlling expression

= Branch to the selected case
Linear search : a sequence of if-then-else

Binary search or direct jump table
= Build an ordered table that maps case values to branch labels

» Execute code of branched case
» Break to the end of switch statement

cs5363 13

Appendix

Translating control-flow statements

o For every statement S, add two additional attributes
= S.begin: the label of S
= S.next: the label of statement following S

S ::= {if (S.begin = 0) gen_label(S.begin); } E';’
{S.next=merge(E.true, E.false); }
S ::= WHILE { if (S.begin==0) S.begin=new_label();
gen_label(S.begin); }
‘C E ') {Sl.begin=E.true; } S1
{ S.next=E.false; merge_label(S1.next,S.begin);
gen_code(jumplI,0,0,S.begin); }
S ::= LBRACE {stmts.begin = S.begin; } stmts RBRACE
{ S.next=stmts.next; }
stmts ::= {S.begin=stmts.begin;} S { stmts.next = S.next; }
stmts ::= {S.begin=stmts.begin; } S
{stmtsl.begin = S.next; } stmtsl
{stmts.next = stmtsl.next; }

cs5363

14

Appendix: Translating
Boolean Expressions

O Every boolean expression E has two attributes
= E.true/false: the label to goto if E is true/false
o Evaluate E.true and E.false as synthesized attribute
= Create a new label for every unknown jump destination
= Set destination of created jump labels later
o Usually evaluated by traversing the AST instead of during parsing
= Issue: creation/merging/insertion of instruction labels
E::= true { E.true = new_label(); E.false=0;
gen_code(jumplI,0,0,E.true); }
E::= false { E.false = new_label(); E.true=0;
gen_code(jumpl,0,0,E.false); }
E::= E1 relop E2 {E.true= new_label(); E.false=new_label();

r=new_tmp(); gen_code(cmp,El.place,E2.place,r);
gen_code(relop.cbr, r, E.true, E.false); }

cs5363 15

Appendix: Hardware Support For
Relational Operations

o Straight conditional code

= Special condition-code
registers interpreted only
by conditional branches

o Conditional move

= Add a special conditional
move instruction

o Boolean valued
comparisons

m Store boolean values
directly in registers

0 Predicated evaluation

= Conditionally executing
instructions

Translating a

Comp rx, ry => ccl
Cbr LT ccl1 -> L1, L2
L1: loadl true => ra

L2: loadl false => ra

= X<y

Comp rx, ry => ccl
i2i_LT ccl,true,false
=>ra

Straight conditional code

Conditional move

cmp_LT rx, ry => ra
Cbrra-> L1, L2

L1: ..

L2: ...

Cmp_LTrx, ry =>rl
Not rl1 =>r2
(r1)? ...

(r2)? ...

Bool valued comparison

cs5363

Predicated eval.

16

