Machine Independent Code Optimizations

Useless Code and Redundant Expression Elimination

Code Optimization

- The goal of code optimization is to
- Discover program run-time behavior at compile time
- Use the information to improve generated code
- Speed up runtime execution of compiled code
- Reduce the size of compiled code
- Correctness (safety)
- Optimizations must preserve the meaning of the input code
- Profitability
- Optimizations must improve code quality

Applying Optimizations

- Most optimizations are separated into two phases
- Program analysis: discover opportunity and prove safety
- Program transformation: rewrite code to improve quality
- The input code may benefit from many optimizations
- Every optimization acts as a filtering pass that translate one IR into another IR for further optimization
- Compilers
- Select a set of optimizations to implement
- Decide orders of applying implemented optimizations
- The safety of optimizations depends on results of program analysis
- Optimizations often interact with each other and need to be combined in specific ways
- Some optimizations may need to applied multiple times
- E.g., dead code elimination, redundancy elimination, copy folding
- Implement predetermined passes of optimizations

Scalar Compiler Optimizations

- Machine independent optimizations
- Enable other transformations
\square Procedure inlining, cloning, loop unrolling
- Eliminate redundancy
\square Redundant expression elimination
- Eliminate useless and unreachable code
- Dead code elimination
- Specialization and strength reduction
- Constant propagation, peephole optimization
- Move operations to less-frequently executed places
- Loop invariant code motion
- Machine dependent (scheduling) transformations
- Take advantage of special hardware features
\square Instruction selection, prefetching
- Manage or hide latency, introduce parallelism
- Instruction scheduling, prefetching
- Manage bounded machine resources
- Register allocation

Scope Of Optimization

- Local methods
- Applicable only to basic blocks
- Superlocal methods
- Operate on extended basic blocks (EBB)
$B 1, B 2, B 3, \ldots, B m$, where $B i$ is the single predecessor of $B(i+1)$
- Regional methods
- Operate beyond EBBs, e.g. loops, conditionals
- Global (intraprocedural) methods
- Operate on entire procedure (subroutine)

- Whole-program (interprocedural) methods
- Operate on entire program

Loop Unrolling

- An enabling transformation to expose opportunities for other optimizations
- Reduce the number of branches by a factor 4
- Provide a bigger basic block (loop body) for local optimization
\square Better instruction scheduling and register allocation

$$
\begin{aligned}
& \text { do } \mathrm{i}=1 \text { to } \mathrm{n} \text { by } 1 \\
& \mathrm{a}(\mathrm{i})=\mathrm{a}(\mathrm{i})+\mathrm{b}(\mathrm{i}) \\
& \text { end }
\end{aligned}
$$

Original loop

$$
\begin{aligned}
& \text { do } \mathrm{i}=1 \text { to } 100 \text { by } 4 \\
& \begin{array}{l}
a(i)=a(i)+b(i) \\
a(i+1)=a(i+1)+b(i+1) \\
a(i+2)=a(i+2)+b(i+2) \\
a(i+3)=a(i+3)+b(i+3)
\end{array} \\
& \text { end }
\end{aligned}
$$

Unrolled by 4, $\mathrm{n}=100$

Loop Unrolling --- arbitrary n

```
do \(\mathrm{i}=1\) to \(\mathrm{n}-3\) by 4
    \(a(i)=a(i)+b(i)\)
    \(a(i+1)=a(i+1)+b(i+1)\)
    \(a(i+2)=a(i+2)+b(i+2)\)
    \(a(i+3)=a(i+3)+b(i+3)\)
End
do while ( \(\mathrm{i}<=\mathrm{n}\) )
    \(a(i)=a(i)+b(i)\)
    \(i=i+1\)
end
```

Unrolled by 4, arbitrary n

$$
\begin{aligned}
& i=1 \\
& \text { if }(\bmod (n, 2)>0) \text { then } \\
& a(i)=a(i)+b(i) \\
& j=j+1 \\
& \text { if }(\bmod (n, 4)>1) \text { then } \\
& a(i)=a(i)+b(i) \\
& a(i+1)=a(i+1)+b(i+1) \\
& i=i+2 \\
& d o i=i \text { to } n \text { by } 4 \\
& a(i)=a(i)+b(i) \\
& a(i+1)=a(i+1)+b(i+1) \\
& a(i+2)=a(i+2)+b(i+2) \\
& a(i+3)=a(i+3)+b(i+3) \\
& \text { end } \\
& \text { Unrolled by } 4, \text { arbitrary } n
\end{aligned}
$$

Eliminating Redundant Expressions

Original code

$$
\begin{aligned}
& \mathrm{m}:=2 * \mathrm{y}^{*} \mathrm{z} \\
& \mathrm{n}:=3 * y * z \\
& \mathrm{o}:=2 * y-z
\end{aligned}
$$

Rewritten code

$$
\begin{aligned}
& \mathrm{t} 0:=2 * \mathrm{y} \\
& \mathrm{~m}:=\mathrm{t0} * \mathrm{z} \\
& \mathrm{n}:=3 * \mathrm{y}^{*} \mathrm{z} \\
& \mathrm{o}:=\mathrm{t} 0-\mathrm{z}
\end{aligned}
$$

- The second $2^{*} y$ computation is redundant
- What about $y^{*} z$?
- $2 * y * z \rightarrow(2 * y) * z$ not $2 *(y * z)$
- $3 * y * z \rightarrow(3 * y) * z$ not $3 *(y * z)$
- Change associativity may change evaluation result
- For integer operations, optimization is sensitive to ordering of operands
- Typically applied only to integer expressions due to precision concerns

The Role Of Naming

$$
\begin{align*}
& \mathrm{a}:=x+y \\
& \mathrm{~b}:=\mathrm{x}+\mathrm{y} \\
& \mathrm{a}:=17 \\
& \mathrm{c}:=\mathrm{x}+\mathrm{y} \tag{1}
\end{align*}
$$

$$
\begin{aligned}
& \mathrm{m}:=2^{*} \mathrm{y}^{*} \mathrm{z} \\
& \mathrm{y}:=3^{*} \mathrm{y}^{*} \mathrm{z} \\
& \mathrm{o}:=2 * \mathrm{y}-\mathrm{z}
\end{aligned}
$$

(2)

$$
\begin{aligned}
& \mathrm{m}:=2 * y^{*} \mathrm{z} \\
& * \mathrm{p}:=3 * \mathrm{y}^{*} \mathrm{z} \\
& \mathrm{o}:=2 * \mathrm{y}^{*}-\mathrm{z}
\end{aligned}
$$

(3)
(1) The expression ' $x+y$ ' is redundant, but no longer available in ' a ' when being assigned to ' c '

- Keep track of available variables for each value number
- Create new temporary variables for value numbers if necessary
(2) The expression $2 * y$ is not redundant
- the two $2^{*} y$ evaluation have different values
(3) Pointer Variables could point to anywhere
- If p points to y, then $2 * y$ is no longer redundant
- All variables (memory locations) may be modified from modifying *p
- Pointer analysis ---reduce the set of variables associated with p

Eliminate Redundancy In Basic Blocks Value numbering (1)

- Simulate the runtime evaluation of expressions
- For every distinct runtime value, create a unique integer number as compile-time handle
- Use a hash table to map every expression e to a integer value number VN(e)
- Represent the runtime value of expression
$\mathrm{VN}(\mathrm{e} 1 \mathrm{op} \mathrm{e2})=$ unique_map(op,VN(e1),VN(e2))
- If an expression has a alreadydefined value number
- It is redundantly evaluated and can be removed

Eliminate Redundancy In Basic Blocks Value numbering (2)

for each expression e of the form result := opd1 op opd2

1. Find value numbers for opd1 and opd2
if VN (opd1) or $\mathrm{VN}(\mathrm{opd} 2)$ is a constant or has a replacement variable replace opd1/opd2 with the value
2. Construct a hash key for expression e from op, VN(opd1) and VN(opd2)
3. if the hash key is already defined in hash table with a value number
if (result is a temporary) then remove e
else replace e with a copy
record the value number for result
else
insert e into hash table with new value number record value number for result (set replacement variable of value number

Extensions:

When valuating a hash key k for expression e
if operation can be simplified, simplify the expression
if op is commutative, sort operands by their value numbers

Example: Value Numbering

```
ADDR_LOADI @c > r9
INT_LOADA @i }->\mathrm{ r10
INT_LOADI 4 }->\mathrm{ r11
INT_MULT r10 r11 }->\mathrm{ r12
INT_PLUS r9 r12 }->\mathrm{ r13
FLOAT_LOADI 0.0 }->\mathrm{ r14
FLOAT_STORE r14 }->\mathrm{ r13
```

```
ADDR_LOADI c }->\mathrm{ r9
INT_LOADA i }->\mathrm{ r10
INT_MULTI r10 4 }\boldsymbol{->
INT_PLUS r9 r12 }->\mathrm{ r13
FLOAT_STOREI 0.0 }\boldsymbol{->}\mathrm{ r13
```

OP	opd1	opd2	Value-number
	$@ c$		v1
ALOADI	@c		v2
	r9		v2
	$@ i$		v3
ILOADA	@i		v4
	r10		v4
	r11		INT_4
$\ldots . .$.			

Value-number	variable
v1	
v2	r9
v3	
v4	r10
v5	r12
v6	r13

Implementing Value Numbering

- Implementing value numbers
- Two types of value numbers
\square Compile-time integer constants
- Integers representing unknown runtime values
- Use a tag (bit) to tell which type of value number
- Implementing hash table
- Must uniquely map each expression to a value number
\square variable name \rightarrow value number
\square (op, VN1, VN2) \rightarrow value number
- Evaluating hash key
- int hash(const char* name);
- int hash(int op, int vn1, int vn2);
- Need to resolve hash conflicts if necessary
- Keeping track of variables for value numbers
- Every runtime value number resides in one or more variables
- Replace redundant evaluations with saved variables

Superlocal Value Numbering

- Finding EBBs in control-flow graph
- AB, ACD, ACE, F, G
- Expressions can be in multiple EBBs
- Need to restore state of hash table at each block boundary
- Record and restore
- Use scoped value table
- Weakness: does not catch redundancy at node F
- Algorithm

ValueNumberEBB(b,tbl,VN)
PushBlock(tbl, VN)
ValueNumbering(b,tbl,VN)
for each child bi of b
if b is the only parent of bi ValueNumberEBB(bi,tbl,VN)
PopBlock(tbl,VN)

Dominator-Based Value Numbering

- The execution of C always precedes F
- Can we use value table of C for F?
- Problem: variables in C may be redefined in D or E
- Solution: rename variables so that each variable is defined once
- SSA: static single assignment
- Similarly, can use table of A for optimizing G

Exercise: Value Numbering

```
int A[100];
void fee(int x, int y)
{
int I = 0, j = i;
int z = x + y,h=0;
while (l < 100) {
    I = I + 1;
    if (y<x)j=z + y;
    h = x + y;
    A[I] = x + y;
}
return;
}
```


Global Redundancy Elimination

- Value numbering cannot handle cycles in CFG
- Makes a single pass over all basic blocks in predetermined order
\square Global redundancy elimination
- Intra-procedural methods
- Handles arbitrarily shaped CFG
- Based on expression syntax, not value
\square The first and second $y^{*} z$ considered identical expression despite different values
- Different from value number approach

Global redundancy elimination

(1) Collect all expressions in the code, each expression given a unique temporary name

- Expressions in M:
$y^{*} z, y-z$
(2) At each CFG point p, determine the set of available expressions
- An expression e is available at p if every CFG path leading to p contains a definition of e, and no operand of e is modified after the definition
(3)At each CFG point, replace redundant evaluation of available expressions with a copy of the temporary variables

Computing Available Expressions

- For each basic block n, let
- DEExpr(n)=expressions evaluated by n and available at exit of n
- ExprKill(n)=expressions whose operands are modified by n (killed by n)

Goal: evaluate expressions available on entry to n

- Avail(n) $=\cap(\operatorname{DEExpr}(m) \cup(\operatorname{Avail}(m)-\operatorname{ExprKill}(m))$ $\mathrm{m} \in \mathrm{pred}(\mathrm{n})$

```
for each basic block bi
    compute DEExpr(bi) and ExprKill(bi)
    if (bi is entry) Avail(bi)=\varnothing else Avail(bi)=domain;
for (changed := true; changed; )
    changed = false
    for each basic block bi
        oldAvail = Avail(bi)
        Avail(bi)=\cap (DEExpr(m) U (Avail(m) - ExprKill(m))
    m\inpred(bi)
        if (Avail(bi) != oldAvail) changed := true
```


Exercise: Global Redundancy Elimination

```
int A[100];
void fee(int x, int y)
{
int l = 0, j = i;
int z = x + y, h=0;
while (I < 100) {
    I = I + 1;
    if (y<x)j=z + y;
    h = x + y;
    A[I] = x + y;
}
return;
}
```


Useless/Dead Code Elimination

- Eliminate instructions whose results are never used
(1) mark all critical
instructions as useful
\square Instructions that return values, perform input/output, or modify externally visible storage
(2) Mark all instructions that affect alreadymarked instruction i
\square Instructions that define operands of i or control the execution of i

```
void foo(int b, int c) \{
    int a, d, e, f;
    \(\mathrm{a}:=\mathrm{b}+\mathrm{c}\);
    \(\mathrm{d}:=\mathrm{b}-\mathrm{c} ;\)
    \(\mathrm{e}:=\mathrm{b} * \mathrm{c}\);
    f:=b/c;
    return e;
\}
```

Useless code:
$\mathrm{a}:=\mathrm{b}+\mathrm{c}$;
$\mathrm{d}:=\mathrm{b}-\mathrm{c}$;
f:= b / c;

Useless/Dead Code Elimination Algorithm

Main:
MarkPass()
SweepPass()

SweepPass() for each operation i
if i is unmarked then
if i is a branch then rewrite i with a jump to i's nearest marked postdominator
if i is not a jump then delete i

Compute def(var): data-flow analysis or SSA.
Compute control(i): reverse dominance frontier analysis

MarkPass()
WorkList := \varnothing
for each operation i
if i is critical then
mark i; WorkList $U=\{i\}$
while WorkList $\neq \varnothing$
remove i from WorkList
let i be $x:=y$ op z
if $\operatorname{def}(y)$ is not marked then
mark def(y); WorkList $\cup=\{\operatorname{def}(y)\}$
if $\operatorname{def}(z)$ is not marked then
mark def(z); WorkList $\cup=\{\operatorname{def}(z)\}$
for each branch j that
controls execution of i
if j is not marked then mark j; WorkList $\cup=\{j\}$

Useless Code Elimination Example

Eliminating useless control flow

- Optimizations may introduction superfluous control flow
- Eg., SSA conversion that breaks CFG edges

(1) Folding redundant branch

(3) Combining blocks

(2) Removing an empty block

(4) Hoisting a branch

Exercise: Useless Code Elimination

```
int A[100];
void fee(int x, int y)
{
int l = 0, j = i;
int z = x + y, h=0;
while (l < 100) {
    I = I + 1;
    if (y<x)j=z + y;
    h = x + y;
    A[I] = x + y;
}
return;
}
```


Lazy code motion

- Move partially redundant code to less-frequently executed regions
- Eg., move loop invariant code outside of loops

Lazy code motion --- algorithm

- Compute available expressions at the entry and exit of each basic block n
- Expressions that can be safely moved forward along edges to n
- Forward data flow analysis
- Compute anticipatable expressions at the entry and exit of each basic block
- Expressions that can be safely moved backward along CFG edges to n
- Backward dataflow analysis
- Compute the placement of expressions
- Each CFG edge is annotated as the earliest location for placing a set of expressions (to be inserted into the edge)
- Some expressions may be moved to later nodes (to be removed)
- Compute insertion and deletion sets
- Insert expressions to CFG edges and remove expressions from CFG nodes

Availability and anticipatability analysis

Availability analysis: for each basic block n, let

- DEExpr(n)=expressions evaluated by n and available at exit of n
- ExprKill(n)=expressions whose operands are modified by n expressions available on entry to n and on exit from n
- AvailIn(n)= \cap AvailOut(m)

> mepreds(n)

AvailOut $(m)=\operatorname{DEExpr}(m) \cup(\operatorname{AvailIn}(m)-\operatorname{ExprKill}(m))$

Anticipatability analysis: for each basic block n, let

- UEExpr(n)=expressions used in n without redefinition to operands
- ExprKill(n)=expressions whose operands are modified by n expressions available on entry to n and on exit from n
- AntOut(n) $=\cap$ AntIn(m) mesucc(n)
$\operatorname{AntIn}(m)=\operatorname{UEExpr}(\mathrm{m}) \cup(\operatorname{AntOut}(\mathrm{m})-\operatorname{ExprKill}(m))$

Placement of expressions

Earliest placement

- For an edge <bi,bj> in the CFG, an expression e \in Earliest(bi,bj) iff the computation can legally move to <bi, bj> and cannot move to any earlier edge Earliest(bi,bj)=AntIn(bj)-AvailOut(bi)- (AntOut(bi) ExprKill(bi))
later placement
- Can the earliest placement of an expression be moved forward in CFG without changing expression result?
LaterIn(bj)= \cap Later(bi,bj) bi $\in \operatorname{pred}(\mathrm{bj})$
Later(bi,bj) = Earliest(bi,bj) $\cup($ LaterIn(bi) - UEExpr(bi))

Rewrite the code

Compute insert set

- At each edge (bi,bj), the set of expressions to insert evaluation
Insert(bi,bj) = Later(bi,bj) - LaterIn(bj)
- If bi has a single successor, insert at the end of bi
- If bj has a single predecessor, insert at the entry of bj
- Otherse, split (bi,bj) and insert a new block

Compute delete set
\square At each basic block bi, the set of expressions to delete from bi
Delete(bi) $=$ UEExpr(bi) - LaterIn(bi)

- If $e \in$ Delete(bi), then the upward-exposed evaluation of e is redundant in bi after all the insertions have been made. Remove all such evaluations with a reference to results of earlier evaluation

Example for lazy code motion

```
B1: loadI \(1 \quad=>r 1\)
    i2i r1 \(=>\) r2
    loadAI r0,@m => r3
    i2i r3 \(=>r 4\)
    cmp_LT r2,r4 => r5
    cbr r5 \(=>\) B2,B3
B2: mult r17,r18 => r20
    add r19, r20 => r21
    i2i r21 \(=>\) r8
    addI r2, \(1=>\) r6
    i2i r6 \(\quad=>\) r2
    cmp_GT r2, r4 => r7
    cbr r7 => B3,B2
B3:
```


Summary

Machine independent optimizations

- Eliminate redundancy
- redundant expression elimination
- Specialize computation
- Constant propagation, peephole optimization
- Eliminate useless and unreachable code
\square Dead code elimination
■ Move operations to less-frequently executed places
- Loop invariant code motion

■ Enable other transformations
\square Inlining, cloning, loop unrolling

Appendix: Available Expression Analysis: Compute local sets

for each basic block n:S1;S2;S3;..;Sk


```
VarKill := \varnothing
DEExpr(n):= \varnothing
for i = k to 1
    suppose Si is "x := y op z"
    if y }\not\in\mathrm{ VarKill and z }\not\in\mathrm{ VarKill
    DEExpr(n) = DEExpr(n) U {y op z}
    VarKill = VarKill U {x}
ExprKill(n):= \varnothing
for each expression e in the procedure
    for each variable v }\in
            if v \in VarKill then
                                    ExprKill(n) := ExprKill(n)\cup{e}
```


Appendix: Example: applying GRE

