
cs5363 1

Machine Independent
Code Optimizations

Useless Code and Redundant
Expression Elimination

cs5363 2

Code Optimization

 The goal of code optimization is to
 Discover program run-time behavior at compile time
 Use the information to improve generated code

 Speed up runtime execution of compiled code
 Reduce the size of compiled code

 Correctness (safety)
 Optimizations must preserve the meaning of the input code

 Profitability
 Optimizations must improve code quality

Front end Back endoptimizer
(Mid end)

Source
program

IR IR Target
program

compiler

cs5363 3

Applying Optimizations
 Most optimizations are separated into two phases

 Program analysis: discover opportunity and prove safety
 Program transformation: rewrite code to improve quality

 The input code may benefit from many optimizations
 Every optimization acts as a filtering pass that translate one IR

into another IR for further optimization
 Compilers

 Select a set of optimizations to implement
 Decide orders of applying implemented optimizations

 The safety of optimizations depends on results of program analysis
 Optimizations often interact with each other and need to be

combined in specific ways
 Some optimizations may need to applied multiple times

 E.g., dead code elimination, redundancy elimination, copy folding

 Implement predetermined passes of optimizations

cs5363 4

Scalar Compiler Optimizations
 Machine independent optimizations

 Enable other transformations
 Procedure inlining, cloning, loop unrolling

 Eliminate redundancy
 Redundant expression elimination

 Eliminate useless and unreachable code
 Dead code elimination

 Specialization and strength reduction
 Constant propagation, peephole optimization

 Move operations to less-frequently executed places
 Loop invariant code motion

 Machine dependent (scheduling) transformations
 Take advantage of special hardware features

 Instruction selection, prefetching
 Manage or hide latency, introduce parallelism

 Instruction scheduling, prefetching
 Manage bounded machine resources

 Register allocation

cs5363 5

Scope Of Optimization
 Local methods

 Applicable only to basic blocks
 Superlocal methods

 Operate on extended basic blocks
(EBB)

 B1,B2,B3,…,Bm, where Bi is the
single predecessor of B(i+1)

 Regional methods
 Operate beyond EBBs, e.g. loops,

conditionals
 Global (intraprocedural) methods

 Operate on entire procedure
(subroutine)

 Whole-program (interprocedural)
methods
 Operate on entire program

S0: if i< 50 goto s1

goto s2
s1: t1 := b * 2
 a := a + t1
 goto s0

S2: ……

i :=0

EBB

cs5363 6

Loop Unrolling
 An enabling transformation to expose opportunities for

other optimizations
 Reduce the number of branches by a factor 4
 Provide a bigger basic block (loop body) for local optimization

 Better instruction scheduling and register allocation

do i = 1 to n by 1
 a(i) = a(i) + b(i)
end

do i = 1 to 100 by 4
 a(i) = a(i) + b(i)
 a(i+1) = a(i+1) + b(i+1)
 a(i+2) = a(i+2) + b(i+2)
 a(i+3) = a(i+3) + b(i+3)
end

Original loop Unrolled by 4, n = 100

cs5363 7

Loop Unrolling --- arbitrary n

do i = 1 to n-3 by 4
 a(i) = a(i) + b(i)
 a(i+1) = a(i+1) + b(i+1)
 a(i+2) = a(i+2) + b(i+2)
 a(i+3) = a(i+3) + b(i+3)
End
do while (i <= n)
 a(i) = a(i) + b(i)
 i=i+1
end

Unrolled by 4, arbitrary n

i = 1
if (mod(n,2) > 0) then
 a(i) = a(i) + b(i)
 j=j+1
if (mod(n,4) > 1) then
 a(i) = a(i)+b(i)
 a(i+1)=a(i+1)+b(i+1)
 i=i+2
do i = i to n by 4
 a(i) = a(i) + b(i)
 a(i+1) = a(i+1) + b(i+1)
 a(i+2) = a(i+2) + b(i+2)
 a(i+3) = a(i+3) + b(i+3)
end

Unrolled by 4, arbitrary n

cs5363 8

Eliminating Redundant Expressions

m := 2 * y * z
n := 3 * y * z
o := 2 * y - z

t0:=2 * y
m := t0 * z
n := 3 * y * z
o := t0 - z

 The second 2*y computation is redundant
 What about y*z?

 2*y*z (2*y) * z not 2*(y*z)
 3*y*z (3*y) * z not 3*(y*z)
 Change associativity may change evaluation result

 For integer operations, optimization is sensitive to ordering of
operands

 Typically applied only to integer expressions due to precision
concerns

Original code Rewritten code

cs5363 9

The Role Of Naming

(1) The expression `x+y’ is redundant, but no longer available in ‘a’
when being assigned to `c’
 Keep track of available variables for each value number
 Create new temporary variables for value numbers if necessary

(2) The expression 2*y is not redundant
 the two 2*y evaluation have different values

(3) Pointer Variables could point to anywhere
 If p points to y, then 2*y is no longer redundant
 All variables (memory locations) may be modified from modifying *p
 Pointer analysis ---reduce the set of variables associated with p

a := x + y
b := x + y
a := 17
c := x + y

m := 2 * y * z
y := 3 * y * z
o := 2 * y - z

(1) (2)

m := 2 * y * z
*p := 3 * y * z
o := 2 * y - z

(3)

cs5363 10

Eliminate Redundancy In Basic Blocks
Value numbering (1)
 Simulate the runtime

evaluation of expressions
 For every distinct runtime value,

create a unique integer number
as compile-time handle

 Use a hash table to map every
expression e to a integer value
number VN(e)
 Represent the runtime value of

expression
VN (e1 op e2) =
 unique_map(op,VN(e1),VN(e2))

 If an expression has a already-
defined value number
 It is redundantly evaluated and

can be removed

a<3> := b<1> + c<2>;
b<5> := a<3> – d<4>;
c<6> := b<5> + c<2>;
d<5> := a<3> – d<4>;

a := b + c;
b := a – d ;
c := b + c ;
d := b;

cs5363 11

Eliminate Redundancy In Basic Blocks
Value numbering (2)

1. Find value numbers for opd1 and opd2
 if VN(opd1) or VN(opd2) is a constant or has a replacement variable
 replace opd1/opd2 with the value
2. Construct a hash key for expression e from op, VN(opd1) and VN(opd2)
3. if the hash key is already defined in hash table with a value number
 if (result is a temporary) then remove e
 else replace e with a copy
 record the value number for result
 else
 insert e into hash table with new value number
 record value number for result (set replacement variable of value number

When valuating a hash key k for expression e
 if operation can be simplified, simplify the expression
 if op is commutative, sort operands by their value numbers

for each expression e of the form result := opd1 op opd2

Extensions:

cs5363 12

Example: Value Numbering

INT_4r11

v4r10

v2r9

v4@iILOADA

......

v3@i

v2@cALOADI

v1@c

Value-numberopd2opd1OP

ADDR_LOADI @c r9
INT_LOADA @i r10
INT_LOADI 4 r11
INT_MULT r10 r11 r12
INT_PLUS r9 r12 r13
FLOAT_LOADI 0.0 r14
FLOAT_STORE r14 r13

ADDR_LOADI c r9
INT_LOADA i r10
INT_MULTI r10 4 r12
INT_PLUS r9 r12 r13
FLOAT_STOREI 0.0 r13

r10v4

r12v5

r13v6

v3

r9v2

v1

variableValue-number

cs5363 13

Implementing Value Numbering
 Implementing value numbers

 Two types of value numbers
 Compile-time integer constants
 Integers representing unknown runtime values

 Use a tag (bit) to tell which type of value number
 Implementing hash table

 Must uniquely map each expression to a value number
 variable name value number
 (op, VN1, VN2) value number

 Evaluating hash key
 int hash(const char* name);
 int hash(int op, int vn1, int vn2);

 Need to resolve hash conflicts if necessary
 Keeping track of variables for value numbers

 Every runtime value number resides in one or more variables
 Replace redundant evaluations with saved variables

cs5363 14

Superlocal Value Numbering
m:=a+b
n:=a+b

p:=c+d
r:=c+d

q:=a+b
r:=c+d

e:=b+18
s:=a+b
u:=e+f

e:=a+17
t:=c+d
u:=e+f

v:=a+b
w:=c+d
x:=e+f

y:=a+b
z:=c+d

A

B

C

D E

F

G

 Finding EBBs in control-flow
graph
 AB, ACD, ACE, F, G
 Expressions can be in

multiple EBBs
 Need to restore state of

hash table at each block
boundary
 Record and restore
 Use scoped value table

 Weakness: does not catch
redundancy at node F

 Algorithm
 ValueNumberEBB(b,tbl,VN)
 PushBlock(tbl, VN)
 ValueNumbering(b,tbl,VN)
 for each child bi of b
 if b is the only parent of bi

 ValueNumberEBB(bi,tbl,VN)
PopBlock(tbl,VN)

cs5363 15

Dominator-Based Value Numbering
 The execution of C

always precedes F
 Can we use value

table of C for F?
 Problem: variables in C

may be redefined in D
or E

 Solution: rename
variables so that each
variable is defined once
 SSA: static single

assignment
 Similarly, can use table

of A for optimizing G

m0:=a0+b0
n0:=a0+b0

p0:=c0+d0
r0:=c0+d0

q0:=a0+b0
r1:=c0+d0

e0:=b0+18
s0:=a0+b0
u0:=e0+f0

e1:=a0+17
t0:=c0+d0
u1:=e1+f0

e2:=∅(e0,e1)
u2:=∅(u0,u1)
v0:=a0+b0
w0:=c0+d0
x0:=e2+f0

r2:=∅(r0,r1)
y0:=a0+b0
z0:=c0+d0

A

B

C

D
E

F

G

cs5363 16

Exercise:
Value Numbering

int A[100];
void fee(int x, int y)
{
int I = 0, j = i;
int z = x + y, h =0;
while (I < 100) {
 I = I + 1;
 if (y < x) j = z + y;
 h = x + y;
 A[I] = x + y;
}
return;
}

cs5363 17

Global Redundancy Elimination
 Value numbering cannot

handle cycles in CFG
 Makes a single pass over all basic

blocks in predetermined order

 Global redundancy elimination
 Intra-procedural methods

 Handles arbitrarily shaped CFG
 Based on expression syntax, not

value
 The first and second y*z

considered identical expression
despite different values

 Different from value number
approach

m := y * z
y := y -z
o := y * z

cs5363 18

Global redundancy elimination
(1) Collect all expressions in the code,

each expression given a unique
temporary name
 Expressions in M:
 y*z, y – z

(2) At each CFG point p, determine the
set of available expressions
 An expression e is available at p if

every CFG path leading to p contains a
definition of e, and no operand of e is
modified after the definition

(3)At each CFG point, replace redundant
evaluation of available expressions
with a copy of the temporary
variables

m := y * z
y := y -z
o := y * z

M

cs5363 19

Computing Available Expressions
 For each basic block n, let

 DEExpr(n)=expressions evaluated by n and available at exit of n
 ExprKill(n)=expressions whose operands are modified by n (killed by n)

 Goal: evaluate expressions available on entry to n
 Avail(n)= ∩ (DEExpr(m) ∪ (Avail(m) - ExprKill(m))

m∈pred(n)

for each basic block bi
 compute DEExpr(bi) and ExprKill(bi)
 if (bi is entry) Avail(bi)=∅ else Avail(bi)=domain;
for (changed := true; changed;)
 changed = false
 for each basic block bi
 oldAvail = Avail(bi)

 Avail(bi)= ∩ (DEExpr(m) ∪ (Avail(m) - ExprKill(m))

 if (Avail(bi) != oldAvail) changed := true
m∈pred(bi)

cs5363 20

Exercise:
Global Redundancy Elimination

int A[100];
void fee(int x, int y)
{
int I = 0, j = i;
int z = x + y, h =0;
while (I < 100) {
 I = I + 1;
 if (y < x) j = z + y;
 h = x + y;
 A[I] = x + y;
}
return;
}

cs5363 21

Useless/Dead Code Elimination
 Eliminate instructions

whose results are
never used
(1) mark all critical

instructions as useful
 Instructions that

return values,
perform input/output,
or modify externally
visible storage

(2) Mark all instructions
that affect already-
marked instruction i

 Instructions that
define operands of i
or control the
execution of i

void foo(int b, int c) {
 int a, d, e, f;
 a := b + c;
 d := b – c;
 e := b * c;
 f := b / c;
 return e;
}

Useless code:
 a := b + c;
 d := b – c;
 f := b / c;

cs5363 22

Useless/Dead Code Elimination
Algorithm

 MarkPass()
 SweepPass()

Main:

SweepPass()
 for each operation i
 if i is unmarked then
 if i is a branch then
 rewrite i with a jump
 to i’s nearest marked
 postdominator
 if i is not a jump then
 delete i

MarkPass()
 WorkList := ∅
 for each operation i
 if i is critical then
 mark i; WorkList ∪ = {i}
 while WorkList ≠ ∅
 remove i from WorkList
 let i be x := y op z
 if def(y) is not marked then
 mark def(y); WorkList∪={def(y)}
 if def(z) is not marked then
 mark def(z); WorkList∪={def(z)}
 for each branch j that
 controls execution of i
 if j is not marked then
 mark j; WorkList ∪= {j}

Compute def(var): data-flow
analysis or SSA.
Compute control(i): reverse
dominance frontier analysis

cs5363 23

Useless Code Elimination
Example

a = 5;
n:=a+b
if (n < 10) goto 1

p:=c+d
r:=c+d

1: q:=a+b
 r:=c+d
 if (q<r) goto 2

2:e:=b+18
 s:=a+b
 u:=e+f

e:=a+17
u:=e+f
goto 3

3:x:=e+f
 Print x;
 if (x<1) goto 1

5: y:=a+b
 z:=r+d
 return z

A

C

D

F

G

B

a = 5;
n:=a+b
if (n < 10) goto 1

p:=c+d
r:=c+d

1: q:=a+b
 r:=c+d
 if (q<r) goto 2

2:e:=b+18
 s:=a+b
 u:=e+f

e:=a+17
u:=e+f
goto 3

3: x:=e+f
 Print x;
 if (x<1) goto 1

5: y:=a+b
 z:=r+d
 return z

A

C

D

F

G

B

E E

cs5363 24

Eliminating useless control flow
 Optimizations may introduction superfluous control flow

 Eg., SSA conversion that breaks CFG edges

Bi

Bj

Bi

Bj

(1) Folding redundant branch

Bi

Bj Bj

(2) Removing an empty block

Bi

Bj

Bi
Bj

(3) Combining blocks

Bi

Bj

Bi

Bj

(4) Hoisting a branch

cs5363 25

Exercise:
Useless Code Elimination

int A[100];
void fee(int x, int y)
{
int I = 0, j = i;
int z = x + y, h =0;
while (I < 100) {
 I = I + 1;
 if (y < x) j = z + y;
 h = x + y;
 A[I] = x + y;
}
return;
}

cs5363 26

Lazy code motion
 Move partially redundant code to less-frequently

executed regions
 Eg., move loop invariant code outside of loops

b:=b+1 a:=b*c

a:=b*c
Partially redundant

b:=b+1
a:=b*c a:=b*c

a:=b*c
Redundant

b:=b+1

a:=b*c

Partially redundant

b:=b+1
a:=b*c

a:=b*c

Redundant

cs5363 27

Lazy code motion --- algorithm
 Compute available expressions at the entry and exit of each

basic block n
 Expressions that can be safely moved forward along edges to n
 Forward data flow analysis

 Compute anticipatable expressions at the entry and exit of
each basic block
 Expressions that can be safely moved backward along CFG

edges to n
 Backward dataflow analysis

 Compute the placement of expressions
 Each CFG edge is annotated as the earliest location for placing a

set of expressions (to be inserted into the edge)
 Some expressions may be moved to later nodes (to be removed)

 Compute insertion and deletion sets
 Insert expressions to CFG edges and remove expressions from

CFG nodes

cs5363 28

Availability and anticipatability
analysis
Availability analysis: for each basic block n, let
 DEExpr(n)=expressions evaluated by n and available at exit of n
 ExprKill(n)=expressions whose operands are modified by n
expressions available on entry to n and on exit from n
 AvailIn(n)= ∩ AvailOut(m)

 m∈preds(n)
 AvailOut(m)= DEExpr(m) ∪ (AvailIn(m) - ExprKill(m))

Anticipatability analysis: for each basic block n, let
 UEExpr(n)=expressions used in n without redefinition to operands
 ExprKill(n)=expressions whose operands are modified by n
expressions available on entry to n and on exit from n
 AntOut(n)= ∩ AntIn(m)

 m∈succ(n)

 AntIn(m)= UEExpr(m) ∪ (AntOut(m) - ExprKill(m))

cs5363 29

Placement of expressions
Earliest placement
 For an edge <bi,bj> in the CFG, an expression e ∈

Earliest(bi,bj) iff the computation can legally move to
<bi,bj> and cannot move to any earlier edge

 Earliest(bi,bj)=AntIn(bj)-AvailOut(bi)- (AntOut(bi) -
ExprKill(bi))

later placement
 Can the earliest placement of an expression be moved

forward in CFG without changing expression result?

 LaterIn(bj)= ∩ Later(bi,bj)
 bi∈pred(bj)
 Later(bi,bj) = Earliest(bi,bj) ∪ (LaterIn(bi) – UEExpr(bi))

cs5363 30

Rewrite the code
Compute insert set
 At each edge (bi,bj), the set of expressions to

insert evaluation
Insert(bi,bj) = Later(bi,bj) – LaterIn(bj)
 If bi has a single successor, insert at the end of bi
 If bj has a single predecessor, insert at the entry of bj
 Otherse, split (bi,bj) and insert a new block

Compute delete set
 At each basic block bi, the set of expressions to

delete from bi
Delete(bi) = UEExpr(bi) – LaterIn(bi)
 If e ∈ Delete(bi), then the upward-exposed evaluation of

e is redundant in bi after all the insertions have been
made. Remove all such evaluations with a reference to
results of earlier evaluation

cs5363 31

Example for lazy code motion
B1: loadI 1 => r1
 i2i r1 => r2
 loadAI r0,@m => r3
 i2i r3 =>r4
 cmp_LT r2,r4 => r5
 cbr r5 => B2,B3
B2: mult r17,r18 => r20
 add r19, r20 => r21
 i2i r21 => r8
 addI r2, 1 => r6
 i2i r6 => r2
 cmp_GT r2, r4 => r7
 cbr r7 => B3,B2
B3: ……

Set of expressions:
 r1, r3, r5, r6, r7, r20, r21

CFG:

B1

B2

B3

cs5363 32

Summary
Machine independent optimizations

 Eliminate redundancy
 redundant expression elimination

 Specialize computation
 Constant propagation, peephole optimization

 Eliminate useless and unreachable code
 Dead code elimination

 Move operations to less-frequently executed
places

 Loop invariant code motion

 Enable other transformations
 Inlining, cloning, loop unrolling

cs5363 33

Appendix: Available Expression
Analysis: Compute local sets

S1: m := y * z
S2: y := y -z
S3: o := y * z

M

for each basic block n:S1;S2;S3;…;Sk

VarKill := ∅
DEExpr(n) := ∅
for i = k to 1
 suppose Si is “x := y op z”
 if y ∉ VarKill and z ∉ VarKill

 DEExpr(n) = DEExpr(n) ∪ {y op z}

 VarKill = VarKill ∪ {x}
 ExprKill(n) := ∅
 for each expression e in the procedure
 for each variable v ∈ e
 if v ∈ VarKill then

 ExprKill(n) := ExprKill(n) ∪ {e}

cs5363 34

Appendix: Example: applying
GRE

m:=a+b
n:=a+b

p:=c+d
r:=c+d

q:=a+b
r:=c+d

e:=b+18
s:=a+b
a:=e+f

e:=a+17
t:=c+d
d:=e+f

v:=a+b
w:=c+d
x:=e+f

y:=a+b
z:=c+d

A

B

C

D E

F

G

