Procedure and Object-
Oriented Abstraction

Scope and storage
management

555555

Procedure abstractions

o0 Procedures are fundamental programming abstractions

= They are used to support dynamically nested blocks
Paired function call and return jumps

= They have standalone semantics defined by an abstraction interface
input parameters, return values, global side effects
O Procedures are units of separate compilation
= They represent parameterized blocks of computation

int main(int argc, char* argv[]) float foo(...) float bar(...)

{

-{ ,///4"{
o / int a, b, c; / float r;
r = bar(..)7]

a = foo(...) «— | returnr;
D return r; +

}... N

cs5363

0 Global and local variables program main(input,output);

var X : integer;
outer block | X 0 function g(z: integer) :integer;
h(3) | 2 begin g := x+z end;
X 1 function h(z: integer) :integer;
var x : integer,
9(12) [2 3 begin x :=1; h:=g(z) end;

begin x := 0; print(h(3)) end
o Static scoping
Find global variables in enclosing blocks in program text
0 Dynamic scoping
Find global variables in the most recently evaluated blocks
Easier to implement in interpreted languages

o What is the scoping rule for C/C++, Java?

cs5363 3

Simplified memory model

o Runtime stack: activation records of blocks/functions
= Block entry: add new data to stack
= Block exit: remove outdated data
o Heap: data of varying lifetime
= Variables that last throughout the program
= Address may be contained by variables on the runtime stack

Code Data
—
~ Stack
Program —
Counter
—
L — Heap/
> static
Activation record pointer(rarp) cs5363 i data4

O Local variables --- activation records on stack

Declared inside a block (e.g. function body)
Enter block: allocate space
Exit block: de-allocate space

Local variables in an enclosing block
Already allocated before entering current Block
Remain allocated after exiting current block

Function parameters and return value
Allocated and initialized before entering function body
Formal parameters dallocated after exiting function body

o Global/static variables --- static data areas
Allocated when program is loaded to memory
Storage remain until program exits
o Dynamically allocated variables --- heap
Storage dynamically allocated at runtime (e.g., malloc in C)

Storage remain until explicitly de-allocated or garbage
collected

cs5363

o Allocate storage for each block dynamically

Allocate an activation record before evaluating each block
Storage for each local variable determined as compile time
Values of local variables evaluated at runtime

Delete the activation record after block exits

{ int x=0; Allocate AR with space for X, y
int y=x+1; Set values of x, y
Allocate AR for inner block
int z=(x+y)*(x-y);
{ (Xx+y)*(x-y) Set value of z
¥ Delete AR for inner block
i Delete AR for outer block

May need space for intermediate results such as (x+y), (x-y)

cs5363

Activation Records For Inline Blocks

{ int x=0;
int y=x+1;
{ int z=(x+y)*(x-y);
b

b

o Push activation record on stack
m Set caller ARP to rarp
= Set rarp to new AR

o Pop activation record off stack
= Reset rarp to caller’s ARP

o When making function calls

m Caller must also set return o _
address, return value addr, Activation record pointer(rarp)

saved registers, and parameters _
cs5363 7

Activation Records For Procedures

Activation record pointer(rarp)

o Access link

O

O

O

O

Pointer to activation record of the
enclosing block

Return address

Pointer to the instruction
immediately following function call

Return-result address

Address of the storage to put the
result to be returned

Register save area

Save register values before
function call

Restore register values before
return

Parameters

cs5363

Storage for function parameters
Values initialized by caller

Linkage Convention:
Implementing Function Calls

O Precall
Procedure p

= Push callee’s AR (increment rarp)

prologue = Set caller's ARP
Procedure g = Set return address
l = Set return result addr
& prologue = Save live register values
precall = initialize formal parameters
’“Q((0 Postreturn
postreturn %, = Restore live register values
g v = Pop callee’s AR(decrement rarp)
l epilogue o Prologue
= Initialize local variables
epilogue = Load local environment (access
link)
Linkage convention: o Epilogue
programs in different files must = Deallocate local variables
follow a single contract of = Goto return address
function call implementation Cs5363 9

Parameter Passing

o Formal and actual parameters
= Parameter declarations and
initializations
o Pass-by-value

Formal parameter

/

= Formal parameters contain values of
actual parameters

= Callee cannot change values of actual
parameters

o Pass-by-reference

= Formal parameters contain locations
of actual parameters

= Callee can change values of actual
parameters

int f (int %)
{
X .= X+1; return x;
¥
main() {
inty = 0;
print f%y)+y;
by

= Formal parameters in activation
record may be aliased

Aliasing: two names refer to same
location

o What about pass-by-pointer (in C)?

cs5363

/

Actual parameter

10

Example: What is the final
result?

pseudo-code ¢ o Draw the activation
oNte records for the
93991 evaluation
=7
int f (int x) o What parameter
{ passing is supported
X := x+1; return x; by the languages you
v know?
main() { o
. A G
inty = 0; §_\;S~by~

print f(y)+y;
)

cs5363 11

Exercise:
Managing Function Calls

1: program main(input,output)
2. var X : integar;
3: function f(y : integer)
4: Dbegin

5. f=(x+y)-2
6: end

7. function g(function h(b:integer):integer)
8. begin

9: var x : integer;

10: X:=17;

11: g =h(x);

12: end

13: begin

14: x:=5;

150 g(f);

16: end

cs5363

12

Accessing Variables In Memory

o Each memory store has an
address

= Base address: the starting
address of a data area
Local variables of current block
activation record pointer (rarp)

= Offset: the number of bytes
after the base address

Local variables of current block
predetermined at compile time

0 Address of variable
= base address + offset

cs5363

Accessing local variable a:

LoadAl rarp, @a =>rl

loadl @a => r1l
loadAO rarp, rl => r2

loadl @a => r1l
Add rarp, r1 => r2
load r2 => r3

13

Accessing Global/Static Variables

0 Allocated separately in static
data area Accessing global variable fee:

= Base address unknown until
program is loaded into memory

Use symbolic labels to substitute
at compile time

Symbolic labels replaced with
runtime value by assembler and

Loadl &fee => r1l
Lload rl => r2

Accessing foo.a:

loader LoadI &foo => ri
= Offset calculated at compile time | LoadAl r1, @foo_a => r3

Individual variables: offset=0

Group of data
= |layout pre-determined

LoadlI &foo =>rl
Add r1, @foo_a => r2
Load r2 => r3

cs5363 14

Variables of Enclosing Blocks

Outer block
int x=1;
. int g(int z) { return x+z; }
int h(int z) {
intx =1;
. return g(z); } h(3)
print h(3);

Use access link to find AR of an

enclosing block (static scoping)
o Access link is always set to frame g(3)
of closest enclosing lexical block

cs5363 15

o Accessing local variables int x=1;
Offset calculated at compile time int g(int z) { return x+z; }‘

Need to find the base address “nt h(int 2) {
The AR that contains the variable

o Lexical level of a block
Number of enclosing scopes
g: 1; h: 1; outer-block: O
o For each variable x

intx =1;
) return g(
print h(3);

Coordinate of x is <n, 0>, where)
o o] Coordinate for x: <0,8>
n: lexical level of block that .
defines x Lexical level of g: 1
O: offset of x in it's AR Load instructions:
If a block at lexical level m loadAl rarp, 4 =>rl
references x loadAIrl, 8 =>r2

Follow access link m-n times to
find the base address for x

cs5363 16

o Allocate a global array Runtime stack

(global display)

hold the address of most — Level0 AR
recent ARs at each lexical _

level Display

When pushing a new AR, levelO

save the previous AR at | —* Levell AR
the same lexical level, levell

modify global display level2

When popping an AR,

restore the global display level3

with saved AR at the — Level2 AR
current lexical level

O To access variable <n,o0>

use the ARP at element n — Level3 AR
of the global display

cs5363 17

0 Maintenance

Constant cost for global display

When entering every block at lexical level n, save the level-n ARP
from global display, replace it with new ARP

When exiting the block, restore the old level-n ARP into display

Varying cost for access links
If a level-m block invokes a level-n block
m==n-1 =» callee’s access link points to caller’'s AR
m==n =»callee’s access link = caller’s access link
m > n =>callee’s access link = caller’s level (n-1) access link

o Referencing variables in enclosing scope
Constant cost through global display
Varying cost through access links

o The tradeoff depends on the ratio of non-local references

o If ARs can outlive their invocation, access link must be used
The chosen approach by functional programming languages

cs5363 18

Managing memory

O Registers
= Data need to be loaded to registers before being operated on

= If a variable can be kept in register throughout its lifetime, it
does not need a storage

= Register-to-register model
Try to keep as many variables in registers as possible
Allocate memory storage later if not enough register

o Alignment and padding
= Target machines may restrain where data can be stored
Needs to be at 32/64 bit boundaries, etc.

o Cache and variable layout
= Data in memory can be loaded into cache and reused

o Managing the heap: dynamically allocate/free storage

cs5363 19

o Abstraction: information hiding
Separate interface and implementation details
m Function and data abstractions

0 Object-oriented programming
Organize concepts into objects and classes
Build extensible systems

O Language concepts
Encapsulation (access control): members can be private

only a few functions can access private data

Dynamic lookup definitions of functions (function pointers)
Object behavior can change dynamically
Subtyping polymorphism (relations between types)

Operations can be applied to multiple types of values

Inheritance (reuse of implementation)
Subclasses can modify and inherit behavior of base classes

cs5363 20

Static vs. dynamic lookup

o What about operator overloading (ad hoc polymorphism)?

int add(int x, inty) {return x +vy; }

float add(float x, floaty) { return x + y; }
= Static lookup: overloading is resolved at compile time
= Examples: C++ non-virtual functions, Java static functions

0 Dynamic lookup: resolved at run time
= C++ virtual functions, Java non-static functions
= Difference: flexibility vs. efficiency

class vehicle {
protected: double speed, fuel;
public: virtual void run() = 0;
i
class car : public vehicle {
public: virtual void run() { if (fuel > 0) fuel = fuel - 1;}
3

vehicle* a = new car; a->run();

cs5363 21

Static Binding of Methods

0 C++ class: non-virtual member functions

m Essentially global functions with an extra object pointer
parameter
class vehicle {
protected: double speed, fuel;
public: vehicle() : speed(0),fuel(0) {}
void start(double x) {speed = x;}

+s

vehicle* a = new vehicle; a->start(5);

o Java/C++: Static Methods/Variables
= Essentially global functions/variables in a name space
= A single instance of member for all class objects
class vehicle {
static protected double speed, fuel;
public static void start(double x) {speed = x;}
b
Vehicle::start(3.0); s5363 22

Implementing Dynamic Objects

o An object consists of
= Hidden data

o instance variables, also called member data
o hidden functions also possible

= Public operations
o methods or member functions
o can also have public variables in some languages
= Dynamic binding
o Put all the name-value bindings into a table
o Table can be changed, just like the activation record of a function
= Example: the vehecle/car objects

o Object-oriented program:
= Send messages to objects

cs5363 23

C++:
Object Layout and Single Inheritance

class A { int x; public: virtual int f() { return x;} };
Obiject a of type A class A vtable:

vptr - - Code for A::f
X

class B : public A {inty; public: virtual int f() { return y; }
virtual void f2() { ...} };

" Code for B::f \
~vptr -
L\\\ X

N ./ Code for B::f2
y \
b used as an object of A

cs5363 24

Looking up methods

Point object Point vtable Code for move

X

ColorPoint object ColorPoint vtable Code for move
X
C Code for darken

Data at same offset Function pointers at same offset

Point p = new Pt(3);
p->move(2); I (*(p->vptr[0]))(p,2)

cs5363

25

C++ method lookup

o C++ compiler knows all the base classes

= Offset of data and function pointer are same in
subclass and base class

= Offset of data and function pointer known at
compile time

= Code p->move(x) compiles to equivalent of
(*(p->vptrfmove_offset]))(p,x)

cs5363 26

Exercise: OO Memory Layout

o Draw the memory layout for the following
C++ code immediately before the main

function returns.
class A { int x; public: virtual void f(); };
class B: public A { int y; public: virtual void f(); };
class C: public B { int z; public: virtual void g(); };
int main() { C *pc = new C; B *pb = pc; A *pa = pc; }

cs5363 27

