
cs5363 1

Procedure and Object-
Oriented Abstraction

 Scope and storage
management

cs5363 2

Procedure abstractions
 Procedures are fundamental programming abstractions

 They are used to support dynamically nested blocks
 Paired function call and return jumps

 They have standalone semantics defined by an abstraction interface
 input parameters, return values, global side effects

 Procedures are units of separate compilation
 They represent parameterized blocks of computation

int main(int argc, char* argv[])
{
 float a;
 …
 a = foo(…)
 …
}

float foo(…)
{
 int a, b, c;
 ….
 r = bar(…);
 return r;
}

float bar(…)
{
 float r;
 ….
 return r;
}

cs5363 3

Scoping rules
 Global and local variables

 Static scoping
 Find global variables in enclosing blocks in program text

 Dynamic scoping
 Find global variables in the most recently evaluated blocks
 Easier to implement in interpreted languages

 What is the scoping rule for C/C++, Java?

program main(input,output);
 var x : integer;
 function g(z: integer) :integer;
 begin g := x+z end;
 function h(z: integer) :integer;
 var x : integer;
 begin x := 1; h:=g(z) end;

 begin x := 0; print(h(3)) end

x 0

x 1
z 3

z 3

outer block

h(3)

g(12)

cs5363 4

Simplified memory model

Activation record pointer(rarp)

Program
Counter

DataCode

Heap/
static
data

Stack……

 Runtime stack: activation records of blocks/functions
 Block entry: add new data to stack
 Block exit: remove outdated data

 Heap: data of varying lifetime
 Variables that last throughout the program
 Address may be contained by variables on the runtime stack

cs5363 5

Managing Data Storage
 Local variables --- activation records on stack

 Declared inside a block (e.g. function body)
 Enter block: allocate space
 Exit block: de-allocate space

 Local variables in an enclosing block
 Already allocated before entering current Block
 Remain allocated after exiting current block

 Function parameters and return value
 Allocated and initialized before entering function body
 Formal parameters dallocated after exiting function body

 Global/static variables --- static data areas
 Allocated when program is loaded to memory
 Storage remain until program exits

 Dynamically allocated variables --- heap
 Storage dynamically allocated at runtime (e.g., malloc in C)
 Storage remain until explicitly de-allocated or garbage

collected

cs5363 6

Activation Record
 Allocate storage for each block dynamically

 Allocate an activation record before evaluating each block
 Storage for each local variable determined as compile time
 Values of local variables evaluated at runtime

 Delete the activation record after block exits

May need space for intermediate results such as (x+y), (x-y)

{ int x=0;

 int y=x+1;

 { int z=(x+y)*(x-y);

 };

};

Allocate AR with space for x, y
Set values of x, y
 Allocate AR for inner block
 Set value of z
 Delete AR for inner block
Delete AR for outer block

cs5363 7

Activation Records For Inline Blocks

 Push activation record on stack
 Set caller ARP to rarp
 Set rarp to new AR

 Pop activation record off stack
 Reset rarp to caller’s ARP

 When making function calls
 Caller must also set return

address, return value addr,
saved registers, and parameters

{ int x=0;

 int y=x+1;

 { int z=(x+y)*(x-y);

 };

};

Access link
x
y

0
1

x+y
x-y

1
-1

Access link
z -1

Activation record pointer(rarp)

Caller’s ARP

Caller’s ARP

cs5363 8

Activation Records For Procedures
 Access link

 Pointer to activation record of the
enclosing block

 Return address
 Pointer to the instruction

immediately following function call
 Return-result address

 Address of the storage to put the
result to be returned

 Register save area
 Save register values before

function call
 Restore register values before

return
 Parameters

 Storage for function parameters
 Values initialized by caller

Caller’s ARP

Parameters

Local variables

Activation record pointer(rarp)

Return-result addr

Access link

Return address

Register save area

cs5363 9

Linkage Convention:
Implementing Function Calls

 Precall
 Push callee’s AR (increment rarp)
 Set caller’s ARP
 Set return address
 Set return result addr
 Save live register values
 initialize formal parameters

 Postreturn
 Restore live register values
 Pop callee’s AR(decrement rarp)

 Prologue
 Initialize local variables
 Load local environment (access

link)
 Epilogue

 Deallocate local variables
 Goto return address

Procedure q

Procedure p

prologue

precall

postreturn

epilogue

prologue

epilogue

cal
l

return

Linkage convention:
programs in different files must
follow a single contract of
function call implementation

cs5363 10

Parameter Passing
 Formal and actual parameters

 Parameter declarations and
initializations

 Pass-by-value
 Formal parameters contain values of

actual parameters
 Callee cannot change values of actual

parameters
 Pass-by-reference

 Formal parameters contain locations
of actual parameters

 Callee can change values of actual
parameters

 Formal parameters in activation
record may be aliased

 Aliasing: two names refer to same
location

 What about pass-by-pointer (in C)?

int f (int x)
 {
 x := x+1; return x;
 };
main() {
 int y = 0;
 print f(y)+y;
}

Formal parameter

Actual parameter

cs5363 11

Example: What is the final
result?

 Draw the activation
records for the
evaluation

 What parameter
passing is supported
by the languages you
know?

int f (int x)
 {
 x := x+1; return x;
 };
main() {
 int y = 0;
 print f(y)+y;
}

pseudo-code

pas
s-b
y-re
f

=>
2

pass-by-value
=>1

cs5363 12

Exercise:
Managing Function Calls

1: program main(input,output)
2: var x : integar;
3: function f(y : integer)
4: begin
5: f = (x + y) - 2
6: end
7: function g(function h(b:integer):integer)
8: begin
9: var x : integer;
10: x := 7;
11: g = h(x);
12: end
13: begin
14: x := 5;
15: g(f);
16: end

cs5363 13

Accessing Variables In Memory
 Each memory store has an

address
 Base address: the starting

address of a data area
 Local variables of current block
 activation record pointer (rarp)

 Offset: the number of bytes
after the base address

 Local variables of current block
 predetermined at compile time

 Address of variable
 base address + offset

LoadAI rarp, @a => r1

loadI @a => r1
loadA0 rarp, r1 => r2

loadI @a => r1
Add rarp, r1 => r2
load r2 => r3

Accessing local variable a:

cs5363 14

Accessing Global/Static Variables
 Allocated separately in static

data area
 Base address unknown until

program is loaded into memory
 Use symbolic labels to substitute

at compile time
 Symbolic labels replaced with

runtime value by assembler and
loader

 Offset calculated at compile time
 Individual variables: offset=0
 Group of data

 layout pre-determined

LoadI &fee => r1
Load r1 => r2

Accessing global variable fee:

LoadI &foo => r1
LoadAI r1, @foo_a => r3

Accessing foo.a:

LoadI &foo => r1
Add r1, @foo_a => r2
Load r2 => r3

cs5363 15

Variables of Enclosing Blocks
int x=1;
int g(int z) { return x+z; }
int h(int z) {
 int x = 1;
 return g(z); }
print h(3);

x 1

x 1
z 3

z 3

Outer block

h(3)

g(3)
control link
access link

access link
control link

 Use access link to find AR of an
enclosing block (static scoping)

 Access link is always set to frame
of closest enclosing lexical block

access link
control link

h(3)

cs5363 16

Coordinates of Variables
 Accessing local variables

 Offset calculated at compile time
 Need to find the base address

 The AR that contains the variable

 Lexical level of a block
 Number of enclosing scopes

 g: 1; h: 1; outer-block: 0

 For each variable x
 Coordinate of x is <n, o>, where

 n: lexical level of block that
defines x

 O: offset of x in it’s AR
 If a block at lexical level m

references x
 Follow access link m-n times to

find the base address for x

int x=1;
int g(int z) { return x+z; }
int h(int z) {
 int x = 1;
 return g(z); }
print h(3);

Coordinate for x: <0,8>
Lexical level of g: 1
Load instructions:
 loadAI rarp, 4 => r1
 loadAI r1, 8 => r2

cs5363 17

Global Display
 Allocate a global array

(global display)
 hold the address of most

recent ARs at each lexical
level

 When pushing a new AR,
save the previous AR at
the same lexical level,
modify global display

 When popping an AR,
restore the global display
with saved AR at the
current lexical level

 To access variable <n,o>
 use the ARP at element n

of the global display

Display

level0

level1

level2

level3

Runtime stack

Level0 AR

…

Level1 AR

Level2 AR

…

…
Level3 AR

…

cs5363 18

Global Display vs. Access Links
 Maintenance

 Constant cost for global display
 When entering every block at lexical level n, save the level-n ARP

from global display, replace it with new ARP
 When exiting the block, restore the old level-n ARP into display

 Varying cost for access links
 If a level-m block invokes a level-n block
 m==n–1  callee’s access link points to caller’s AR
 m==n callee’s access link = caller’s access link
 m > n callee’s access link = caller’s level (n-1) access link

 Referencing variables in enclosing scope
 Constant cost through global display
 Varying cost through access links

 The tradeoff depends on the ratio of non-local references
 If ARs can outlive their invocation, access link must be used

 The chosen approach by functional programming languages

cs5363 19

Managing memory
 Registers

 Data need to be loaded to registers before being operated on
 If a variable can be kept in register throughout its lifetime, it

does not need a storage
 Register-to-register model

 Try to keep as many variables in registers as possible
 Allocate memory storage later if not enough register

 Alignment and padding
 Target machines may restrain where data can be stored

 Needs to be at 32/64 bit boundaries, etc.

 Cache and variable layout
 Data in memory can be loaded into cache and reused

 Managing the heap: dynamically allocate/free storage

cs5363 20

Object-Orientation
 Abstraction: information hiding

 Separate interface and implementation details
 Function and data abstractions

 Object-oriented programming
 Organize concepts into objects and classes
 Build extensible systems

 Language concepts
 Encapsulation (access control): members can be private

only a few functions can access private data
 Dynamic lookup definitions of functions (function pointers)

Object behavior can change dynamically

 Subtyping polymorphism (relations between types)
Operations can be applied to multiple types of values

 Inheritance (reuse of implementation)
Subclasses can modify and inherit behavior of base classes

cs5363 21

Static vs. dynamic lookup
 What about operator overloading (ad hoc polymorphism)?

int add(int x, int y) { return x + y; }
float add(float x, float y) { return x + y; }

 Static lookup: overloading is resolved at compile time
 Examples: C++ non-virtual functions, Java static functions

 Dynamic lookup: resolved at run time
 C++ virtual functions, Java non-static functions
 Difference: flexibility vs. efficiency

class vehicle {
 protected: double speed, fuel;
 public: virtual void run() = 0;
};
class car : public vehicle {
 public: virtual void run() { if (fuel > 0) fuel = fuel – 1;}
};
vehicle* a = new car; a->run();

cs5363 22

Static Binding of Methods
 C++ class: non-virtual member functions

 Essentially global functions with an extra object pointer
parameter
class vehicle {
 protected: double speed, fuel;
 public: vehicle() : speed(0),fuel(0) {}
 void start(double x) {speed = x;}
};
vehicle* a = new vehicle; a->start(5);

 Java/C++: Static Methods/Variables
 Essentially global functions/variables in a name space
 A single instance of member for all class objects
class vehicle {
 static protected double speed, fuel;
 public static void start(double x) {speed = x;}
};
Vehicle::start(3.0);

cs5363 23

Implementing Dynamic Objects
 An object consists of

 Hidden data
 instance variables, also called member data
 hidden functions also possible

 Public operations
 methods or member functions
 can also have public variables in some languages

 Dynamic binding
 Put all the name-value bindings into a table
 Table can be changed, just like the activation record of a function

 Example: the vehecle/car objects

 Object-oriented program:
 Send messages to objects

hidden data

method1msg1

.

methodnmsgn

cs5363 24

C++:
Object Layout and Single Inheritance
class A { int x; public: virtual int f() { return x;} };

Object a of type A

vptr

x 3

class A vtable:

Code for A::f

Object b of type B

vptr

x 3

class B vtable:

Code for B::f

5y
Code for B::f2

class B : public A { int y; public: virtual int f() { return y; }
 virtual void f2() { … } };

b used as an object of A

f

f

f2

cs5363 25

Looking up methods

3

5

blue

Point object

ColorPoint object

x

vptr

x

vptr

c

Point vtable

ColorPoint vtable

Code for move

Code for move

Code for darken

Data at same offset Function pointers at same offset

Point p = new Pt(3);
p->move(2); // (*(p->vptr[0]))(p,2)

cs5363 26

C++ method lookup
 C++ compiler knows all the base classes

 Offset of data and function pointer are same in
subclass and base class

 Offset of data and function pointer known at
compile time

 Code p->move(x) compiles to equivalent of
(*(p->vptr[move_offset]))(p,x)

cs5363 27

Exercise: OO Memory Layout
 Draw the memory layout for the following

C++ code immediately before the main
function returns.

class A { int x; public: virtual void f(); };
class B: public A { int y; public: virtual void f(); };
class C: public B { int z; public: virtual void g(); };
int main() { C *pc = new C; B *pb = pc; A *pa = pc; }

