
cs5363 1

Project1: Build A Small
Scanner/Parser

Introducing Lex, Yacc, and
POET

cs5363 2

Project1:
Building A Scanner/Parser
 Parse a subset of the C language

 Support two types of atomic values: int float
 Support one type of compound values: arrays
 Support a basic set of language concepts

 Variable declarations (int, float, and array variables)
 Expressions (arithmetic and boolean operations)
 Statements (assignments, conditionals, and loops)

 You can choose a different but equivalent language
 Need to make your own test cases

 Options of implementation (links available at class web site)
 Manual in C/C++/Java (or whatever other lang.)
 Lex and Yacc (together with C/C++)
 POET: a scripting compiler writing language
 Or any other approach you choose --- must document how to

download/use any tools involved

cs5363 3

This is just starting…
 There will be two other sub-projects

 Type checking
 Check the types of expressions in the input program

 Optimization/analysis/translation
 Do something with the input code, output the result

 The starting project is important because it
determines which language you can use for the
other projects
 Lex+Yacc ===> can work only with C/C++
 POET ==> work with POET
 Manual ==> stick to whatever language you pick

 This class: introduce Lex/Yacc/POET to you

cs5363 4

lex/flexMyLex.l
lex.yy.c

gcc/cc
lex.yy.c a.out

a.out Input stream tokens

Using Lex to build scanners

 Write a lex specification
 Save it in a file (MyLex.l)

 Compile the lex specification file by invoking lex/flex
 lex MyLex.l
 A lex.yy.c file is generated by lex
 Rename the lex.yy.c file if desired (> mv lex.yy.c MyLex.c)

 Compile the generated C file
 gcc -c lex.yy.c (or gcc -c MyLex.c)

cs5363 5

The structure of a lex specification
file

 Before the first %%
 Variable and Regular expression

pairs
 Each name Ni is matched to a

regular expression

 C declarations
%{
typedef enum {…} Tokens;
%}

 Copied to the generated C file

 Lex configurations
 Starts with a single %

 After the first %%
 RE {action} pairs

 A block of C code is matched to
each RE

 RE may contain variables
defined before %%

 After the second %%
 C functions to be copied to the

generated file

N1 RE1
…
Nm REm
%{
typedef enum {…} Tokens;
%}
% Lex configurations

%%
P1 {action_1}
P2 {action_2}
……
Pn {action_n}

%%
int main() {…}

declar
ations

Token
classes

Help
functions

cs5363 6

Example Lex Specification(MyLex.l)
cconst '([^\']+|\\\')'
sconst \"[^\"]*\"

%pointer

%{
 /* put C declarations here*/
%}

%%
foo { return FOO; }
bar { return BAR; }
{cconst} { yylval=*yytext;
 return CCONST; }
{sconst} { yylval=mk_string(yytext,yyleng);
 return SCONST; }
[\t\n\r]+ {}
. { return ERROR; }

Each RE variable must be surrounded by {}

cs5363 7

Exercise
 How to recognize C comments using Lex?

 “/*"([^“*”]|(“*”)+[^“*”“/”])*(“*”)+”/”

cs5363 8

YACC: LR parser generators
 Yacc: yet another parser generator

 Automatically generate LALR parsers (more powerful than LR(0),
less powerful than LR(1))

 Created by S.C. Johnson in 1970’s

Yacc compiler

C compiler

a.out

Yacc specification
Translate.y

y.tab.c

y.tab.c a.out

input output

Compile your yacc specification file by invoking yacc/bison
 yacc Translate.y
A y.tab.c file is generated by yacc
Rename the y.tab.c file if desired (> mv y.tab.c Translate.c)

Compile the generated C file: gcc -c y.tab.c (or gcc -c Translate.c)

cs5363 9

The structure of a YACC
specification file

 Before the first %%
 Token declarations

 Starts with %token %left
%right %nonassoc …

 In increasing order of token
precedence

 C declarations
%{
typedef enum {…} Tokens;
%}

 Copied to the generated C file

 After the first %%
 BNF or BNF + action pairs

 An optional block of C code is
matched to each BNF

 Additional actions may be
embedded within BNF

 After the second %%
 C functions to be copied to the

generated file

%token t1 t2 …
%left l1 l2…
%right r1 r2 …
%nonassoc n1 n2 …
%{
 /* C declarations */
%}
%%
BNF_1
BNF_2
……
BNF_n
%%
int main() {…}

declar
ations

Token
classes

Help
functions

cs5363 10

Example Yacc Specification
 Assign precedence and

associativity to terminals
(tokens)
 Precedence of productions =

precedence of rightmost
token

 left, right, noassoc
 Tokens in lower declarations

have higher precedence
 Reduce/reduce conflict

 Choose the production listed
first

 Shift/reduce conflict
 In favor of shift

 Can include the lex generated
file as part of the YACC file

%token NUMBER
%left ‘+’ ‘-’
%left ‘*’ ‘/’
%right UMINUS

%%
expr : expr ‘+’ expr
 | expr ‘-’ expr
 | expr ‘*’ expr
 | expr ‘/’ expr
 | ‘(‘ expr ‘)’
 | ‘-’ expr %prec UMINUS
 | NUMBER
 ;
%%
 #include <lex.yy.c>

cs5363 11

Debugging output of YACC
 Invoke yacc with debugging configuration

yacc/bison -v Translate.y
 A debugging output y.output is produced

state 699

 code5 -> code5 . AND @105 code5 (rule 259)
 code5 -> code5 . OR @106 code5 (rule 261)
 replRHS -> COMMA @152 code5 . RP (rule 351)

 OR shift, and go to state 161
 AND shift, and go to state 162
 RP shift, and go to state 710

Sample content of y.output

cs5363 12

The POET Language
 Questions to answer

 Why POET?
 What is POET?
 How POET works?
 POET in our class project

 Resources
 ttp://bigbend.cs.utsa.edu

cs5363 13

The POET Language
 Why POET?

 Conventional approach: yacc + bison

cs5363 14

The POET Language
 Why POET?

 Conventional approach: yacc + bison

Source => token => AST => AST’ => …

Lex: *.lex
Syntax: *.y
AST: ast_class.cpp
Driver: driver.cpp, Makefile, …

cs5363 15

The POET Language
 Lex + yacc

 Separate lex and grammar file
 flex, bison, gcc, makefile, …
 Mix algorithms with implementation details
 Difficult to debug

In a word: Complicated!

cs5363 16

The POET Language
 Why poet

 Combine lex and grammar in to one syntax file
 Integrated framework
 Interpreted

 Dynamic typed
 Debugging

 Transformation oriented
 Code template
 Annotation
 Advanced libraries

Less freedom but fast and convenient!

cs5363 17

The POET Language
 What is POET?

 Parameterized Optimizations for Empirical
Tuning

 Language
 Script language

bigbend.cs.utsa.edu/wiki/POET

cs5363 18

The POET Language
 Hello world!

<eval
 PRINT "Hello, world!“
 />

cs5363 19

The POET Language
 Another example
<eval
 a = 10;
 b = 20;
 errmsg = "a should be larger than b!";
 if (a > b) {
 PRINT("a+b is" ^ (a+b));
 } else {
 ERROR errmsg;
 }
/>

cs5363 20

The POET Language
 What is POET?

 Grammar
 C: arithmetic, control flow, variables, functions, …
 PHP: dynamic typed, XML-style code template, …

 Goal
 Source to source transformation

 Feature
 Interpreted
 Built-in libraries specialized for compilers
 Annotation

cs5363 21

The POET Language
 How POET works?

 Source-to-source transformation
 SED: sed
 AWK: word
 GREP: line
 POET: AST node

 Source1=>AST1=>AST2=>Source2
 Source <=> AST: grammar, annotation
 AST1 <=> AST2: C like transformation code

cs5363 22

The POET Language
 Advantages

 Grammar
 Interpreted
 Dynamic typed, debugging, …

 Framework
 Lex + Syntax => Grammar
*.lex, *.y => grammar.pt
 Split algorithm out of implementation detail

 Disadvantages
 Performance
 Learning curve
 Freedom VS convenience

cs5363 23

The POET Language
 POET and our class project

 Driver
 Grammar

pcg driver.pt
 –syntaxFile grammar.code
 –inputFile input.c

PCG: interpreter (mac, linux, windows, …)

cs5363 24

The POET Language
 Driver.pt
<input to=inputCode from="input.txt" />
<eval PRINT inputCode />

 Grammar.code
<define Exp INT | BinaryExp />

<code BinaryExp pars=(left:Exp, right:Exp,
op:"+"|"-"|"*"|"/")>

@left@ @op@ @right@
</code>

cs5363 25

The POET Language
 POET and our class project

 Built-in binaries
 poet/lib/Cfront.code

NO: Direct use Cfront.code
YES: copy, rewrite, ask questions, …

cs5363 26

Thanks!

cs5363 27

The POET Language
 POET is a scripting compiler writing language that can

 Parse/transform/output arbitrary languages
 Have tried subsets of C/C++, Cobol, Java; Fortran

 Easily express arbitrary program transformations
 Built-in support for AST construction, traversal, pattern matching,

replacement,etc.
 Have implemented a large collection of compiler optimizations

 Easily compose different transformations
 Built-in tracing capability that allows transformations to be defined

independently and easily reordered

 Supported data types
 strings, integers, lists, tuples, associative tables, code templates(AST)

 Support arbitrary control flow
 loops, conditionals, function calls, recursion

 Predefined library of code transformation routines
 Currently support many compiler transformations

cs5363 28

POET: Describing Syntax of
Programming Languages

 Syntax of input/output languages
expressed in a collection of code
templates
 Defines the grammar of a target

language

 Defines the data structure (AST)
used to store the input code

 Each code template is a
combination of BNF+AST
 Code template name: lhs of BNF

production

 Code template body: rhs of BNF
production

 Code template parameters:
terminals/non-terminals that have
values (need to be kept in AST)

 Top-down predictive recursive
descent parsing of the input

<code FunctionCall pars=(func,args) >
@func@(@args@)
</code>

<code FunctionDecl pars=(type:Type,
name:Name,
 params :
TypeDeclList) >
@type@ @name@(@params@)
</code>

<code FunctionDefn pars=(decl : FunctionDecl,
 body : StmtList) >
@decl@
{
 @body@
}

</code>

Example code templates for C

cs5363 29

An Example Translator Using
POET
<parameter inputFile message="input file name"/>
<parameter outputFile message="output file name"/>

<code StmtList/> <<* StmtList is a code template
<input from=(inputFile) syntax=“InputSyntax.code” parse=StmtList

to=inputCode/> <<* start non-terminal is StmtList
<********* For project1, stop here *****************>
<eval …… your operations to the input code ……/>

<output to=(outputFile) syntax=“OutputSyntax.code”
from=resultCode/>

To run your POET code (MyParser.pt)
 > POET/src/pcg -pinputFile=<myTestFile> -LPOET/lib MyParser.pt

cs5363 30

To start you on the syntax
definitions
include utils.incl <<*utilities to help you
<*** content of InputSyntax.code **>
<define TOKEN (("+" "+") ("-" "-") ("=""=") ("<""=") (">""=") ("!""=")

("+""=") ("-""=") ("&""&") ("|""|") ("-"">") ("*""/") CODE.INT_UL
CODE.FLOAT CODE.Char CODE.String)/>

<define PARSE CODE.StmtList/>
<define KEYWORDS ("case" "for" "if" "while" "float")/>
<define BACKTRACK FALSE/>

<code Comment pars=(content:(~"*/")...) >
/*@content@*/
</code>
<code StmtList pars=(content) parse=LIST(Stmt,"\n") />
<code Stmt parse=(content:StmtBlock|WhileStmt|IfElseStmt|ExpStmt)/>

<*For more details, see the POET tutorial ****>

