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Project1: Build A Small
Scanner/Parser

Introducing Lex, Yacc, and
POET
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Project1:
Building A Scanner/Parser
 Parse a subset of the C language

 Support two types of atomic values: int  float
 Support one type of compound values: arrays
 Support a basic set of language concepts

 Variable declarations (int, float, and array variables)
 Expressions (arithmetic and boolean operations)
 Statements (assignments, conditionals, and loops)

 You can choose a different but equivalent language
 Need to make your own test cases

 Options of implementation (links available at class web site)
 Manual in C/C++/Java (or whatever other lang.)
 Lex and Yacc (together with C/C++)
 POET: a scripting compiler writing language
 Or any other approach you choose --- must document how to

download/use any tools involved
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This is just starting…
 There will be two other sub-projects

 Type checking
 Check the types of expressions in the input program

 Optimization/analysis/translation
 Do something with the input code, output the result

 The starting project is important because it
determines which language you can use for the
other projects
 Lex+Yacc ===> can work only with C/C++
 POET ==> work with POET
 Manual ==> stick to whatever language you pick

 This class: introduce Lex/Yacc/POET to you
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lex/flexMyLex.l
lex.yy.c

gcc/cc 
lex.yy.c a.out

a.out Input stream tokens

Using Lex to build scanners

 Write a lex specification
 Save it in a file (MyLex.l)

 Compile the lex specification file by invoking lex/flex
           lex MyLex.l
 A lex.yy.c file is generated by lex
 Rename the lex.yy.c file if desired (> mv lex.yy.c MyLex.c)

 Compile the generated C file
   gcc -c lex.yy.c  (or gcc -c MyLex.c)
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The structure of a lex specification
file

 Before the first %%
 Variable and Regular expression

pairs
 Each name Ni is matched to a

regular expression

 C declarations
%{
typedef enum {…} Tokens;
%}

 Copied to the generated C file

 Lex configurations
 Starts with a single %

 After the first %%
 RE {action} pairs

 A block of C code is matched to
each RE

 RE may contain variables
defined before %%

 After the second %%
 C functions to be copied to the

generated file

N1 RE1
…
Nm REm
%{
typedef enum {…} Tokens;
%}
% Lex configurations

%%
P1  {action_1}
P2  {action_2}
……
Pn  {action_n}

%%
int main() {…}

declar
ations

Token
classes

Help
functions
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Example Lex Specification(MyLex.l)
cconst   '([^\']+|\\\')'
sconst  \"[^\"]*\"

%pointer

%{
  /* put C declarations here*/
%}

%%
foo { return FOO; }
bar { return BAR; }
{cconst} { yylval=*yytext;
                 return CCONST; }
{sconst} { yylval=mk_string(yytext,yyleng);
                 return SCONST; }
[ \t\n\r]+   {}
.        { return ERROR; }

Each RE variable must be surrounded by {}
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Exercise
 How to recognize C comments using Lex?

 “/*"([^“*”]|(“*”)+[^“*”“/”])*(“*”)+”/”
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YACC: LR parser generators
 Yacc: yet another parser generator

 Automatically generate LALR parsers (more powerful than LR(0),
less powerful than LR(1))

 Created by S.C. Johnson in 1970’s

Yacc compiler

C compiler

a.out

Yacc specification
Translate.y

y.tab.c

y.tab.c a.out

input output

Compile your yacc specification file by invoking yacc/bison
           yacc Translate.y
A y.tab.c file is generated by yacc
Rename the y.tab.c file if desired (> mv y.tab.c Translate.c)

Compile the generated C file:   gcc -c y.tab.c  (or gcc -c Translate.c)
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The structure of a YACC
specification file

 Before the first %%
 Token declarations

 Starts with %token %left
%right %nonassoc …

 In increasing order of token
precedence

 C declarations
%{
typedef enum {…} Tokens;
%}

 Copied to the generated C file

 After the first %%
 BNF or BNF + action pairs

 An optional block of C code is
matched to each BNF

 Additional actions may be
embedded within BNF

 After the second %%
 C functions to be copied to the

generated file

%token t1 t2 …
%left l1 l2…
%right r1 r2 …
%nonassoc n1 n2 …
%{
  /* C declarations */
%}
%%
BNF_1
BNF_2
……
BNF_n
%%
int main() {…}

declar
ations

Token
classes

Help
functions
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Example Yacc Specification
 Assign precedence and

associativity to terminals
(tokens)
 Precedence of productions =

precedence of rightmost
token

 left, right, noassoc
 Tokens in lower declarations

have higher precedence
 Reduce/reduce conflict

 Choose the production listed
first

 Shift/reduce conflict
 In favor of shift

 Can include the lex generated
file as part of the YACC file

%token NUMBER
%left ‘+’  ‘-’
%left ‘*’  ‘/’
%right UMINUS

%%
expr : expr ‘+’ expr 
         | expr ‘-’ expr
         | expr ‘*’ expr
         | expr ‘/’ expr
         | ‘(‘ expr ‘)’
         | ‘-’ expr %prec UMINUS
         | NUMBER
         ;
%%
    #include <lex.yy.c>
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Debugging output of YACC
 Invoke yacc with debugging configuration

yacc/bison -v Translate.y
 A debugging output y.output is produced

state 699

    code5  ->  code5 . AND @105 code5   (rule 259)
    code5  ->  code5 . OR @106 code5   (rule 261)
    replRHS  ->  COMMA @152 code5 . RP   (rule 351)

    OR          shift, and go to state 161
    AND       shift, and go to state 162
    RP          shift, and go to state 710

Sample content of y.output
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The POET Language
 Questions to answer

 Why POET?
 What is POET?
 How POET works?
 POET in our class project

 Resources
 ttp://bigbend.cs.utsa.edu
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The POET Language
 Why POET?

 Conventional approach: yacc + bison
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The POET Language
 Why POET?

 Conventional approach: yacc + bison

Source => token => AST => AST’ => …

Lex: *.lex
Syntax: *.y
AST: ast_class.cpp
Driver: driver.cpp, Makefile, …



cs5363 15

The POET Language
 Lex + yacc

 Separate lex and grammar file
 flex, bison, gcc, makefile, …
 Mix algorithms with implementation details
 Difficult to debug

In a word: Complicated!
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The POET Language
 Why poet

 Combine lex and grammar in to one syntax file
 Integrated framework
 Interpreted

 Dynamic typed
 Debugging

 Transformation oriented
 Code template
 Annotation
 Advanced libraries

Less freedom but fast and convenient!
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The POET Language
 What is POET?

 Parameterized Optimizations for Empirical
Tuning

 Language
 Script language

bigbend.cs.utsa.edu/wiki/POET
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The POET Language
 Hello world!

<eval
   PRINT "Hello, world!“
 />
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The POET Language
 Another example
<eval
  a = 10;
  b = 20;
  errmsg = "a should be larger than b!";
  if (a > b) {
    PRINT("a+b is" ^ (a+b));
   } else {
    ERROR errmsg;
  }
/>
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The POET Language
 What is POET?

 Grammar
 C: arithmetic, control flow, variables, functions, …
 PHP: dynamic typed, XML-style code template, …

 Goal
 Source to source transformation

 Feature
 Interpreted
 Built-in libraries specialized for compilers
 Annotation
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The POET Language
 How POET works?

 Source-to-source transformation
 SED: sed
 AWK: word
 GREP: line
 POET: AST node

 Source1=>AST1=>AST2=>Source2
 Source <=> AST: grammar, annotation
 AST1 <=> AST2: C like transformation code
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The POET Language
 Advantages

 Grammar
 Interpreted
 Dynamic typed, debugging, …

 Framework
 Lex + Syntax => Grammar
*.lex, *.y => grammar.pt
 Split algorithm out of implementation detail

 Disadvantages
 Performance
 Learning curve
 Freedom VS convenience
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The POET Language
 POET and our class project

 Driver
 Grammar

pcg driver.pt
 –syntaxFile grammar.code
 –inputFile input.c

PCG: interpreter (mac, linux, windows, …)
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The POET Language
 Driver.pt
<input to=inputCode from="input.txt" />
<eval PRINT inputCode />

 Grammar.code
<define Exp INT | BinaryExp />

<code BinaryExp pars=(left:Exp, right:Exp,
op:"+"|"-"|"*"|"/")>

@left@ @op@ @right@
</code>
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The POET Language
 POET and our class project

 Built-in binaries
 poet/lib/Cfront.code

NO: Direct use Cfront.code
YES: copy, rewrite, ask questions, …
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Thanks!
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The POET Language
 POET is a scripting compiler writing language that can

 Parse/transform/output arbitrary languages
 Have tried subsets of C/C++, Cobol, Java; Fortran

 Easily express arbitrary program transformations
 Built-in support for AST construction, traversal, pattern matching,

replacement,etc.
 Have implemented a large collection of compiler optimizations

 Easily compose different transformations
 Built-in tracing capability that allows transformations to be defined

independently and easily reordered

 Supported data types
 strings, integers, lists, tuples, associative tables, code templates(AST)

 Support arbitrary control flow
 loops, conditionals, function calls, recursion

 Predefined library of code transformation routines
 Currently support many compiler transformations
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POET: Describing Syntax of
Programming Languages

 Syntax of input/output languages
expressed in a collection of code
templates
 Defines the grammar of a target

language

 Defines the data structure (AST)
used to store the input code

 Each code template is a
combination of BNF+AST
 Code template name: lhs of BNF

production

 Code template body: rhs of BNF
production

 Code template parameters:
terminals/non-terminals that have
values (need to be kept in AST)

 Top-down predictive recursive
descent parsing of the input

<code FunctionCall pars=(func,args) >
@func@(@args@)
</code>

<code FunctionDecl pars=(type:Type,
name:Name,
                                             params :
TypeDeclList) >
@type@ @name@(@params@)
</code>

<code FunctionDefn pars=(decl : FunctionDecl,
                                               body : StmtList) >
@decl@
{
  @body@
}

</code>

Example code templates for C 
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An Example Translator Using
POET
<parameter inputFile message="input file name"/>
<parameter outputFile  message="output file name"/>

<code StmtList/>   <<* StmtList is a code template
<input from=(inputFile) syntax=“InputSyntax.code”  parse=StmtList

to=inputCode/>    <<* start non-terminal is StmtList
<********* For project1, stop here *****************>
<eval  …… your operations to the input code ……/>

<output to=(outputFile) syntax=“OutputSyntax.code”
from=resultCode/>

To run your POET code (MyParser.pt)
     > POET/src/pcg -pinputFile=<myTestFile> -LPOET/lib MyParser.pt
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To start you on the syntax
definitions
include utils.incl  <<*utilities to help you
<*** content of InputSyntax.code **>
<define TOKEN  (("+" "+") ("-" "-") ("=""=") ("<""=") (">""=") ("!""=")

("+""=") ("-""=") ("&""&") ("|""|") ("-"">") ("*""/") CODE.INT_UL
CODE.FLOAT CODE.Char CODE.String)/>

<define PARSE CODE.StmtList/>
<define KEYWORDS ("case" "for" "if" "while" "float")/>
<define BACKTRACK FALSE/>

<code Comment pars=(content:(~"*/")...) >
/*@content@*/
</code>
<code StmtList pars=(content) parse=LIST(Stmt,"\n") />
<code Stmt parse=(content:StmtBlock|WhileStmt|IfElseStmt|ExpStmt)/>

<*For more details, see the POET tutorial ****>


