
cs5363 1

Register Allocation



cs5363 2

Register Allocation And Assignment
 Values in registers are easier and faster to access than memory

 Reserve a few registers for stack pointers, base addresses etc
 Efficiently utilize the rest of general-purpose registers

 Register allocation
 At each program point, select a set of values to reside in registers

 Register assignment
 Pick a specific register for each value, subject to hardware constraints
 Register classes: not all registers are equal

 Optimal register allocation/assignment in general are NP-complete
 Register assignment in many cases can be solved in polynomial time

…… 
     i := 0
s0: if i < 50 goto s1

goto s2 
s1: t1 := b * 2
      a := a + t1
      goto s0
S2: …

• Un-aliased calar variables
       i, a, b, t1  (can stay in registers)
• Need to know how variables will be
used after each statement.
     Live variable analysis



cs5363 3

The Register Allocation Problem

 At each point of execution, a program may have an arbitrary
number of live variables
 Only a subset may be kept in registers
 If a value cannot be kept in register, it must be stored in memory and

loaded again when next needed  spilling value to register
 Goal: make effective use of registers

 Minimize the number of loads and stores for spilling
 Register-to-register model

 Early translation stores all values in registers; select values to spill to
memory later

 Memory-to-memory model
 Early translation stores all values in memory; promote values to

register later
 Must decide which values do not require memory storage

Register
allocator

Input program Output program

Assumes infinite #
of registers

Uses registers on
machine



cs5363 4

Local Register Allocation
 Allocating registers for a single basic block

 Assumes register-to-register memory model
 Input program assumes infinite # of registers

 Assume all registers on target machine are equivalent
 Two approaches

 Top-down: count the number of references to each value
 the most heavily used values should reside in registers
 Weakness: dedicate a register to a value for entire duration of the

block
 Bottom-up: spill the value that is needed the latest

 For each variable use, compute the distance of its next use
 process each instruction in evaluation order; when running out of

registers, spill the value whose next use is farthest in the future
 Produces excellent result in many cases
 Not optimal: not all spilling takes the same number of cycles

 Clean vs. dirty spill: has the variable been modified?



cs5363 5

Global Register Allocation
 Allocate registers across basic block boundaries

 Compute the live range of each variable
 The collection of instructions that variables are alive
 Global live variable (dataflow) analysis

 Allocate registers to live ranges of variables
 Rename variables so that distinct live ranges map to distinct names
 Based on reaching definition analysis of variables

 Build an interference graph: overlapping live ranges cannot
share a register
 Nodes: live ranges of variables
 Put an edge between (n1,n2) if their live ranges overlap

 Graph-Coloring Based Allocation
 Assign a color (register) to each node of interference graph
 The source and sink of each edge must have different colors
 NP complete --- compilers must find fast approximations



cs5363 6

A Global Register Allocator

Find live
ranges

Build interference
graph

Coalesce
live ranges

Spill
costs

Find a coloringInsert spills
No spills

Spill reg reserved

No spill reg reserved



cs5363 7

Global Graph-coloring Register Allocation
 Build interference graph

 Split live ranges: disjoint def-use groups of a single variable
 Coalesce live range  eliminate register copies

 MOV LRi => LRj can be coalesced if they do not otherwise interfere
 Rank all live ranges according to their spilling cost

 Minimize the spilling cost vs. maximize the # of uses
 Solve the k-coloring problem ---- NP complete

 Remove all the unconstrained nodes (with <= k neighbors)
 These nodes can always be colored

 At each step, try color the current live range Ri with top priority
 When no register remains, pick live ranges to split or spill

 Spill: insert a store after every def and a load before every use
 Split:  break a live range into smaller but nontrivial pieces

 Modify interference graph and try to color the new graph



cs5363 8

Building Global Interference Graph
 Two live ranges interfere

only if one is alive at a
definition of the other
 at each operation, add

interference between
target of operation and
each live range that is
alive after the operation

 Variable copy requires
special treatment
 With x := y,  if x and y

do not interfere, can
merge the live ranges of
x and y

 Can allocate x and y to
the same register

 Remove register copy

For each live range r
   create a graph node n
For each basic block b
   LIVENOW := LIVEOUT(b)
   for each instruction in b in reverse
order: op Ra, Rb  Rc
       for each live range r ∈ LIVENOW
          add graph edge (Rc, r)
      remove Rc from LIVENOW
      add Ra and Rb to LIVENOW



cs5363 9

Example:
Global Interference Graph

…=>r0,…=>r17,
 …=>r18, …=>r19
B1: loadI 1          => r1
      i2i    r1          => r2
      loadAI r0,@m => r3
      i2i    r3          =>r4
      cmp_LT r2,r4 => r5
      cbr   r5          => B2a,B3
B2a:mult r17,r18   => r20
       add  r19, r20 => r21
       i2i    r21        => r8
B2: addI  r2, 1     => r6
      i2i    r6          => r2
      cmp_GT  r2, r4 => r7
      cbr  r7    => B3,B2
B3: returnCFG:

B1 B2 B3B2a

1
2
3
4
5
6
7
8
9
10
11
12
13
14

      UEvar  Varkill  LiveOut LiveOut 
B1      r0       r2,r3,        ∅          r2,r4,r17
                        r4,r5                     r18,r19

B2a     r17       r20,r21     ∅           r2,r4
            r18        r8
            r19     

B2     r2,r4      r6,r2,r7      ∅         r2,r4

B3      ∅           ∅            ∅           ∅  

R0

R1

R2R3

R4

R6

R7

R8
R17

R18 R19 R20

R21

R5



cs5363 10

After Coalescing Live Ranges
B1: loadI 1          => r2
      loadAI r0,@m => r4
      cmp_LT r2,r4 => r5
      cbr   r5          => B2a,B3
B2a:mult r17,r18   => r20
       add  r19, r20 => r8
B2: addI  r2, 1     => r2
      cmp_GT  r2, r4 => r7
      cbr  r7    => B3,B2
B3: return

Merge live ranges:
         r1  r2
         r3  r4
         r21r8
         r6r2

R0

R2

R4

R7

R8

R17

R18

R19

R20

R5

R0

R1

R2R3

R4

R6

R7

R8
R17

R18 R19 R20

R21

R5



cs5363 11

Estimating register spilling cost

 When insufficient registers are available, must choose
registers to spill into memory
 Choose the variables with the lowest spilling cost
 Address calculation --- where to spill

 Compilers can choose where to spill values
 E.g. Register-save area of local activation record

 Spilling cost: (memory load/store cost) * (# of spills)
 Negative spill costs

 live ranges that contain a single load /store and no other uses
 Infinite spill costs

 live ranges short enough that spilling never helps
 E.g., a use immediately following a definition

 Frequency of basic block execution
 Compilers annotate each block with an execution count
 E.g., assume each loop executes 10 times, and each unpredictable

branch is evaluated 50% of times

Cost = (address calculation + memory load/store)*frequency



cs5363 12

Estimating Spilling Cost

CFG:

B1 B2 B3B2a

1
2
3
4
5
6
7
8
9
10

r2(1),r2(3),r2(7),
r2(7w),r2(8)
r0(2)   
r4(2),r4(3),r4(8)
r5(3),r5(4)
r17(5)
r18(5)
r20(5),r20(6)
r19(6)
r8(6)
r7(8), r7(9)

Live ranges      spill cost

Assume address calc. has no cost
Each load/store: 3cycles  
Execution frequency: 
      B1(1),B2a(1),B2(10),B3(1)

R2

R0
R4
R5
R17
R18
R20
R19
R8
R7

96

3
36
∞
3
3
∞
3
3
∞

B1: loadI 1          => r2
      loadAI r0,@m => r4
      cmp_LT r2,r4 => r5
      cbr   r5          => B2a,B3
B2a:mult r17,r18   => r20
       add  r19, r20 => r8
B2: addI  r2, 1     => r2
      cmp_GT  r2, r4 => r7
      cbr  r7    => B3,B2
B3: return

Ranking: 
R5(∞),R20(∞),R7(∞),R2(96),R4(36),R0(3),R17(3),R18(3),R19(3),R8(3) 



cs5363 13

Graph-Coloring
 Rank all live ranges

 Live ranges with high spilling costs are ranked higher
 Color constrained live ranges first

 Live ranges with more than k interfering neighbors
 Unconstrained live ranges can always be colored

 At each step, try to color the current live range Ri with top priority
   if neighbors of Ri have not taken all the colors

        assign an available color (register) to Ri
else  /*no color is available for Ri*/
       invoke spilling or splitting mechanisms

Assume 5 physical registers: P1-P5
Unconstrained nodes: 
      R0,R7,R8,R20
Ordering of nodes for coloring
      R5   P1;  R2   P2 ;  R4   P3;
      R17 P4;  R18  P5 ;  R19spill
      R0  P1;    R7   P1;  R8  P1;
      R20 P1;  

R0

R2

R4

R7

R8

R17

R18

R19
R20

R5



cs5363 14

Result of register allocation
r0P1; r17P4; r18P5;
storeAI r19rarp,@m_r19
B1: loadI 1          => P2
      loadAI P1,@m => P3
      cmp_LT P2,P3 => P1
      cbr   P1          => B2a,B3
B2a:mult P4,P5   => P1
       loadAI rarp, @m_r19 => Pr
       add  Pr, P1 => P1
B2: addI  P2, 1     => P2
      cmp_GT  P2, P3 => P1
      cbr  P1   => B3,B2
B3: return

R5   P1;  R2   P2 ;  R4   P3;
R17 P4;  R18  P5 ;  R19spill
R0  P1;    R7   P1;  R8  P1;
R20 P1;  



cs5363 15

Appendix: Local Register Allocation
via Graph Coloring
 Local live variable analysis

 Set every variable ``not alive”
 Scan statements in reverse order
      at every i: x := y op z

 Alive(i) = current live variables
 Set x to “not alive”
 Set y and z to “alive”

                                 a, b
(1) t1 := a * a       t1, a, b
(2) t2 := a * b       t1, b, t2
(3) t3 := 2 * t2      t1, t3, b
(4) t4 := t1+t3       t4, b
(5) t5 := b * b        t4, t5
(6) t6 := t4+t5       none

 instruction              Alive

variable   live range         # of uses
  a               (1)-(2)             3
  b               (1)-(5)             3 
  t1              (2)-(4)            2
  t2              (3)                   1
  t3              (4)                   1
  t4              (5)-(6)            1
  t5              (6)                   1
  t6              none                0

a

bt1

t2 t3
t4

t5 t6

Interference graph


