Register Allocation

555555

O

O

Values in registers are easier and faster to access than memory
Reserve a few registers for stack pointers, base addresses etc
Efficiently utilize the rest of general-purpose registers

Register allocation

At each program point, select a set of values to reside in registers

Register assignment

Pick a specific register for each value, subject to hardware constraints
Register classes: not all registers are equal

Optimal register allocation/assignment in general are NP-complete
Register assignment in many cases can be solved in polynomial time

i:=0

sO: if i < 50 goto s1
goto s2

sl:tl1 :=b*2
a:=a+tl
goto sO

S2: ...

e Un-aliased calar variables
i, a, b, t1 (can stay in registers)
e Need to know how variables will be
used after each statement.
Live variable analysis

cs5363 2

Input program -
R Register
Assumes infinite # allocator

Output program

of registers

> :
Uses registers on
machine

O At each point of execution, a program may have an arbitrary

number of live variables

Only a subset may be kept in registers

If a value cannot be kept in register, it must be stored in memory and
loaded again when next needed = spilling value to register

0 Goal: make effective use of registers

Minimize the number of loads and stores for spilling

O Register-to-register model

Early translation stores all values in registers; select values to spill to

memory later
o Memory-to-memory model

Early translation stores all values in memory; promote values to

register later

Must decide which values do not require memory storage

cs5363

o Allocating registers for a single basic block

Assumes register-to-register memory model
Input program assumes infinite # of registers

Assume all registers on target machine are equivalent

o Two approaches

Top-down: count the number of references to each value
the most heavily used values should reside in registers

Weakness: dedicate a register to a value for entire duration of the
block

Bottom-up: spill the value that is needed the latest
For each variable use, compute the distance of its next use

process each instruction in evaluation order; when running out of
registers, spill the value whose next use is farthest in the future

Produces excellent result in many cases

Not optimal: not all spilling takes the same number of cycles
= Clean vs. dirty spill: has the variable been modified?

cs5363

0 Allocate registers across basic block boundaries

Compute the live range of each variable
The collection of instructions that variables are alive
Global live variable (dataflow) analysis

Allocate registers to live ranges of variables
Rename variables so that distinct live ranges map to distinct names
Based on reaching definition analysis of variables

o Build an interference graph: overlapping live ranges cannot
share a register

Nodes: live ranges of variables
Put an edge between (n1,n2) if their live ranges overlap

o Graph-Coloring Based Allocation

Assign a color (register) to each node of interference graph
The source and sink of each edge must have different colors
NP complete --- compilers must find fast approximations

cs5363 5

A Global Register Allocator

Find live
ranges

|

No spill reg reserved

Build interference
graph

Coalesce
live ranges

Spill
costs

i

Insert spills [«

Spill reg reserved

v

cs5363

Find a coloring

No spills
—>

O

O

O

O

Build interference graph
Split live ranges: disjoint def-use groups of a single variable
Coalesce live range = eliminate register copies
MOV LRi => LRj can be coalesced if they do not otherwise interfere
Rank all live ranges according to their spilling cost
Minimize the spilling cost vs. maximize the # of uses

Solve the k-coloring problem ---- NP complete
Remove all the unconstrained nodes (with <= k neighbors)
These nodes can always be colored
At each step, try color the current live range Ri with top priority
When no register remains, pick live ranges to split or spill
Spill: insert a store after every def and a load before every use
Split: break a live range into smaller but nontrivial pieces

Modify interference graph and try to color the new graph

cs5363 7

Building Global Interference Graph

o Two live ranges interfere
only if one is alive at a

definition of the other For each live range r
= at each operation, add create a graph node n
interference between F h basic block b
target of operation and Or €ach basic bioc
each live range that is LIVENOW := LIVEOUT(b)
alive after the operation for each instruction in b in reverse
0 Variable copy requires order: op Ra, Rb =& Rc
special treatment for each live range r € LIVENOW
= Withx :=vy, ifxandy add graph edge (Rg, r)
do not interfere, can remove Rc from LIVENOW
)Tglf]%eythe live ranges of add Ra and Rb to LIVENOW

Can allocate x and y to
the same register

Remove register copy

cs5363

Example:

Global Interference Graph

..=>r0,...=>r17,

L | =>r18, ..=>r19

2 | B1: loadI 1 => r1

3 i2i ri =>r2

4 loadAlI rO,@m => r3

> i2i r3 =>r4

6 cmp_LT r2,r4 => r5

/ cbr r5 => B2a,B3

8 | B2a:mult ri7,r18 =>r20

9 add r19, r20 => r21

10 i2i r21 =>r8

11 /' B2: addI r2, 1 =>r6

12 i2i r6 => r2

13 cmp_GT r2,r4 =>r7

14 cbr r7 => B3,B2
CFG: B3: return

Bl —» BZaJBQ» B3

UEvar Varkill LiveOut LiveOut
Bl r0 r2,r3, %) r2,r4,r17
r4,r5 ri8,rlo9
B2a ri7 r20,r21 @& r2,r4
ri8 r8
rio
B2 r2,ré4 r6,r2,r7 %) r2,r4
B3 %) %) %) %)
R7

R3 i R21

0%

Vi

After Coalescing Live Ranges

Bl: loadI 1 =>r2
loadAI rO,@m => r4
cmp_LT r2,r4 => r5
cbr r5 => B2a,B3

B2a:mult r17,r18 => r20
add r19, r20 => r8

B2: addI r2, 1 =>r2
cmp_GT r2, r4 =>r7/
cbr r7 => B3,B2

B3: return

Merge live ranges:
ri >r2
r3->r4
r21-r8
ré->r2

R7

RO R21
R3 2 R6
R/ < “0

Cost = (address calculation + memory load/store) *frequency

o When insufficient registers are available, must choose
registers to spill into memory
Choose the variables with the lowest spilling cost
Address calculation --- where to spill

Compilers can choose where to spill values
E.g. Register-save area of local activation record

o Spilling cost: (memory load/store cost) * (# of spills)
Negative spill costs
live ranges that contain a single load /store and no other uses
Infinite spill costs
live ranges short enough that spilling never helps
E.g., a use immediately following a definition
Frequency of basic block execution

Compilers annotate each block with an execution count

E.g., assume each loop executes 10 times, and each unpredictable
branch is evaluated 50% of times

cs5363 11

Live ranges spill cost

1 |Bl:loadI 1 =>r2 R2 | r2(1),r2(3),r2(7), | 96
2 loadAI rO,@m =>r4 r2(7w),r2(8)
3 cmp_LT r2,r4 => r5 RO | r0(2) 3
4 cbr r5 =>B23,B3| R4 |r4(2),r4(3),r4(8) | 36
5 |B2a:multrl7,r18 =>r20 R5 | r5(3),r5(4) 00
6 add r19, r20 => r8 R17| r17(5) 3
7 |B2:addI r2,1 =>r2 R18| r18(5) 3
8 cmp_GT r2,r4 =>r7 R20| r20(5),r20(6) 0
9 cbr r7 => B3,B2 R19|r19(6) 3
10 | B3: return R8 | r8(6) 3
CEG: R7 | r7(8), r7(9) 00
Q Assume address calc. has no cost
B1 — B2a B2 B3 Each load/store: 3cycles
w Execution frequency:
B1(1),B2a(1),82(10),B3(1)
Ranking:

R5(«),R20(«),R7(«),R2(96),R4(36),R0(3),R17(3),R18(3),R19(3),R8(3)

cs5363 12

o Rank all live ranges
Live ranges with high spilling costs are ranked higher
o Color constrained live ranges first
Live ranges with more than k interfering neighbors
Unconstrained live ranges can always be colored
O At each step, try to color the current live range Ri with top priority
if neighbors of Ri have not taken all the colors
assign an available color (register) to Ri
else /*no color is available for Ri*/
invoke spilling or splitting mechanisms

Assume 5 physical registers: P1-P5
Unconstrained nodes:
RO,R7,R8,R20
Ordering of nodes for coloring
R5 = P1; R2 2 P2; R4 = P3;
R17=> P4; R18 = P5; R19=->spill
RO=>P1; R7 = P1; R8= P1;
R20=> P1;

cs5363 13

Result of register allocation

rO=>P1; r17=>P4; r18=>P5;

storeAl ri9rarp,@m_r19 R5 & P1; R2 & P2; R4 > P3;

B1l: loadI 1 —> P2 R17=> P4; R18 = P5; R19=>spill
loadAI P1,@m => P3 RO=> P1; R7 = P1; R8=> P1;
cmp_LT P2,P3 => P1 R20=> P1;
cbr P1 => B2a,B3

B2a:mult P4,P5 => P1
loadAI rarp, @m_r19 => Pr
add Pr, P1 => P1

B2: addl P2, 1 => P2
cmp_GT P2, P3 =>P1
cbr P1 => B3,B2

B3: return

cs5363 14

Appendix: Local Register Allocation
via Graph Coloring

o Local live variable analysis Instruction Alive
= Set every variable " "not alive” a, b
= Scan statements in reverse order (1)tl:=a *a tli,a, b
ateveryi: x:=yopz (2)t2:=a*b tl, b, t2
Alive(i) = current live variables (3)t3:=2 *t2 t1, t3, b
Set x to “not alive” (4) t4 := t1+t3 t4, b
Set y and z to “alive” (5)t5:=b *b t4, t5

(6) t6 := t4+t5 none

Interference graph

variable live range # of uses
a (1)-(2) 3 / \
b (1)-(5) 3 tl/
t1 (2)-(4) 2
t2 (3) 1 \
t3 (4) 1
t4 (5)-(6) 1
t5 (6) 1
t6 none 0

t5 t6

cs5363 15

