
Exploring Parallelism At
Different Levels

Balanced composition and
customization of optimizations

DragonStar 2014 - Qing Yi 1 7/9/2014

DragonStar 2014 - Qing Yi 2

p1

Memory

Bus

p2 p3 p4

Exploring Parallelism
Focus on Parallelism at different granularities
p  On shared memory symmetric multiprocessors

n  The processors can run separate processes/threads
n  Starting processes and process synchronizations are expensive
n  Shared memory accesses can cause slowdowns
n  Processors have private caches and internal parallelism

7/9/2014

Means Of Parallelism
p  Data/Loop parallelism: single instruction stream

n  Threads operating concurrently on different data
n  E.g., OpenMP parallel for, CUDA/OpenCL kernels, vector

operations…
p  Task parallelism: explicit multi-tasking

n  Explicitly create/manage parallel threads or tasks, e.g.,
through pthreads, TBB, Cilk, …

n  Different threads communicate with each other via
common patterns of data sharing, e.g., task queues

p  Here we focus on data parallelism over loops
n  Loop parallelization: parallel do; Recognition of

reduction; Privatization of variables; pipelining
n  Loop selection, skewing, and interchange
n  Loop fusion (vs. loop fission/distribution)

7/9/2014 DragonStar 2014 - Qing Yi 3

Outline
p  Exploring parallelism at different levels

n  Loop parallelization at different granularities
p  OpenMP parallel for
p  SIMD vectorization
p  Pipelined parallelism

p  composition of optimizations
p  Balancing degree of parallelism, cost of

synchronization, memory performance, and CPU
efficiency

7/9/2014 DragonStar 2014 - Qing Yi 4

5

Loop Parallelization
p  It is valid to convert a sequential loop to a

parallel loop if the loop carries no
dependence.

p  It is safe to evaluate different iterations of I in parallel
DO I=1,N

 X(I) = X(I) + C
ENDDO

p  However, the same is not true for the following loop
DO I=1,N

 X(I+1) = X(I) + C
ENDDO

 Here values computed in one iteration are used in the next
DragonStar 2014 - Qing Yi 7/9/2014

6

Recognition of Reductions
p  Reducing an array of values into a single value

n  Sum, min/max, count reductions
S = 0.0
DO I = 1, N

 S = S + A(I)
ENDDO

p  Assuming commutativity and associativity
S = 0.0
DO k = 1, 4

 SUM(k) = 0.0
ENDDO
DO I = 1, N, 4

 SUM(1:3) = SUM(1:3) + A(I:I+3)
ENDDO
DO k = 1, 4

 S = S + SUM(k)
ENDDO

Not directly parallelizable

Can use vector registers to operate in parallel

7/9/2014 DragonStar 2014 - Qing Yi

7

DO I = 1, N!
 S = S + A(I)!
 T(I) = S!
ENDDO!

Recognition of Reductions
p Reduction recognized by

n  Presence of self true, output and anti
dependences

n  Absence of other true dependences

DO I = 1, N

 S = S + A(I)

ENDDO

7/9/2014 DragonStar 2014 - Qing Yi

DragonStar 2014 - Qing Yi 8

Privatization of Variables
p  A variable x in a loop L is privatizable if it is defined

before used along every path from the loop entry

p  Private and reduction variables must be identified

correctly for loop parallelization to be correct
n  To ensure no dependences (synchronizations) among threads

 DO I = 1,N!
S1 T = A(I)!
S2 A(I) = B(I)!
S3 B(I) = T!
 ENDDO!

 PARALLEL DO I = 1,N!
 PRIVATE t!
S1 t = A(I)!
S2 A(I) = B(I)!
S3 B(I) = t!
 ENDDO !

7/9/2014

#pragma omp for private(j)
for (i=0; i <N; i++) {
 for (j = 0; j < N; j++) {

 X[i][j] = X[i][j] + C;
}

Multi-level Loop Parallelism
p  Coarse-grained parallelism

n  Create multiple threads on different CPU cores
#pragma omp parallel for
for (i=0; i <N; i++) {

 X[i] = X[i] + C;
}

p  Fine-grained parallelism
n  Internal parallelism within each CPU core (e.g., SIMD

vectorization)
vec_splat(C,r1)
for (i=0; i<N; i = i + 4){
 vec_mov_mr(X+i,r2)
 vec_add_rr(r1,r2)
 vec_mov_rm(r2,X+i)
}

7/9/2014 DragonStar 2014 - Qing Yi 9

DragonStar 2014 - Qing Yi 10

Loop Strip Mining
p  Converts available parallelism into a form more

suitable for the hardware
 DO I = 1, N
 A(I) = A(I) + B(I)
 ENDDO

 k = CEIL (N / P)
 PARALLEL DO I = 1, N, k

 DO i = I, MIN(I + k-1, N)
 A(i) = A(i) + B(i)
 ENDDO
 END PARALLEL DO

7/9/2014

11

Loop Selection
p  Consider:

 DO I = 1, N
 DO J = 1, M
S A(I+1,J+1) = A(I,J) + A(I+1,J)
 ENDDO
 ENDDO

n  Direction matrix:
p  Interchanging the loops can lead to:

 DO J = 1, M
 A(2:N+1,J+1) = A(1:N,J) + A(2:N+1,J)
 ENDDO

p  Which loop to shift?
n  Select a parallel loop at outermost for coarse-grained parallelism
n  Select a parallel loop (with continuous memory access) at the

innermost level for fine-grained parallelism

< <
= <

7/9/2014 DragonStar 2014 - Qing Yi

DragonStar 2014 - Qing Yi 12

Loop Interchange
p  Move parallel loops to outermost level

n  In a perfect nest of loops, a particular loop can be
parallelized at the outermost level if and only if the
column of the direction matrix for that nest contain only
‘=‘ entries

p  Example
 DO I = 1, N

 DO J = 1, N
 A(I+1, J) = A(I, J) + B(I, J)
 ENDDO

 ENDDO
n  OK for vectorization
n  Problematic for coarse-grained parallelization

p  Should the J loop be moved outside ?
7/9/2014

DragonStar 2014 - Qing Yi 13

Loop Selection
p  Generate most parallelism with adequate granularity

n  Key is to select proper loops to run in parallel
n  Optimality is a NP-complete problem

p  Informal parallel code generation strategy
n  Select parallel loops and move them to the outermost position
n  Select a sequential loop to move outside and enable internal

parallelism
DO I = 2, N+1
 DO J = 2, M+1
 parallel DO K = 1, L
 A(I, J, K+1) = A(I,J-1,K)+A(I-1,J,K+2)+A(I-1,J,K)
 ENDDO
 ENDDO
ENDDO

= < <
< = >
< = =

7/9/2014

cs6363 14

= < =
< = =
= = <
= = =

Loop Skewing
DO I = 2, N+1
 DO J = 2, M+1
 DO K = 1, L
 A(I, J, K) = A(I,J-1,K) + A(I-1, J, K)
 B(I, J, K+1) = B(I, J, K) + A(I, J, K)
 ENDDO
 ENDDO
ENDDO

= < <
< = <
= = <
= = =

p  Skewed using k=K+I+J:
 DO I = 2, N+1
 DO J = 2, M+1
 DO k = I+J+1, I+J+L
 A(I, J, k-I-J) = A(I, J-1, k-I-J) + A(I-1, J, k-I-J)
 B(I, J, k-I-J+1) = B(I, J, k-I-J) + A(I, J, k-I-J)
 ENDDO
 ENDDO
 ENDDO

cs6363 15

Loop Skewing + Interchange
DO k = 5, N+M+1
 PARALLEL DO I = MAX(2, k-M-L-1), MIN(N+1, k-L-2)
 PARALLEL DO J = MAX(2, k-I-L), MIN(M+1, k-I-1)
 A(I, J, k-I-J) = A(I, J-1, k-I-J) + A(I-1, J, k-I-J)
 B(I, J, k-I-J+1) = B(I, J, k-I-J) + A(I, J, k-I-J)
 ENDDO
 ENDDO
ENDDO

p  Selection Heuristics
n  Parallelize outermost loop if possible
n  Make at most one outer loop sequential to enable

inner parallelism
n  If both fails, try skewing
n  If skewing fails, try minimize the number of outside

sequential loops

DragonStar 2014 - Qing Yi 16

Pipelined Parallelism For Stencils
p  Useful where complete

parallelization is not available
n  Fortran command DOACROSS

DO I = 2, N-1
 DO J = 2, N-1
 A(I, J) = .25 * (A(I-1,J)+A(I,J-1) +A(I

+1,J)+A(I,J+1))
 ENDDO
ENDDO

n  Pipelined Parallelism
DOACROSS I = 2, N-1
 POST (EV(1))
 DO J = 2, N-1
 WAIT(EV(J-1))
 A(I, J) = .25 * (A(I-1,J) + A(I,J-1)+

A(I+1,J) + A(I,J+1))
 POST (EV(J))
 ENDDO
ENDDO

7/9/2014

DragonStar 2014 - Qing Yi 17

Reducing Synchronization Cost
DOACROSS I = 2, N-1
 POST (E(1))
 K = 0
 DO J = 2, N-1, 2
 K = K+1
 WAIT(EV(K))
 DO j = J, MAX(J+1, N-1)
 A(I, J) = .25*(A(I-1,J) +

A(I,J-1) + A(I+1,J) + A(I,J+1)
 ENDDO
 POST (EV(K+1))
 ENDDO
ENDDO

7/9/2014

cs6363 18

Loop Distribution and Fusion
p  Loop distribution eliminates carried dependences

by separating them across different loops
n  Good only for fine-grained parallelism

p  Coarse-grained parallelism requires sufficiently
large parallel loop bodies
n  Solution: fuse parallel loops together after distribution
n  Loop strip-mining can also be used to reduce

communication
p  Loop fusion is often applied after loop distribution

n  Regrouping of the loops by the compiler

cs6363 19

 !
 DO I = 1,N!
S1 !A(I) = B(I)+C!
 ENDDO!
 DO I = 1,N!
S2 !D(I) = A(I+1)+E!
 ENDDO!

 DO I = 1,N!

S1 !A(I) = B(I)+C!

S2 !D(I) = A(I+1)+E!

 ENDDO!

Loop Fusion
p  Transformation: opposite of loop distribution

n  Combine a sequence of loops into a single loop
n  Iterations of the original loops now intermixed with each other

p  Safety: cannot have fusion-preventing dependences
n  Cannot bypass statements with dependences both from and to

the fused loops
n  Loop-independent dependences cannot become backward

carried after fusion
L1

L2 L3

Fusing L1 with L3 violates the
ordering constraint.

DragonStar 2014 - Qing Yi 20

 DO I = 1,N!

S1 !A(I+1) = B(I) + C!

 ENDDO!

 DO I = 1,N!

S2 !D(I) = A(I) + E!

 ENDDO!

 DO I = 1,N!

S1 !A(I+1) = B(I) + C!

S2 !D(I) = A(I) + E!

 ENDDO!

Loop Fusion Profitability
p  Parallel loops should

generally not be merged
with sequential loops.
n  A dependence is

parallelism-inhibiting if it
is carried by the fused
loop

n  The carried dependence
may be realigned via Loop
alignment

p  What if the loops to be
fused have different lower
and upper bounds?
n  Loop alignment, peeling,

and index-set splitting

7/8/2014

cs6363 21

The Typed Fusion Algorithm
p  Input: loop dependence graph (V,E)
p  Output: a new graph where loops to be fused are

merged into single nodes
p  Algorithm

n  Classify loops into two types: parallel and sequential
n  Gather all dependences that inhibit fusion --- call them

bad edges
n  Merge nodes of V subject to the following constraints

p  Bad Edge Constraint: nodes joined by a bad edge cannot
be fused.

p  Ordering Constraint: nodes joined by path containing non-
parallel vertex should not be fused

cs6363 22

3

1 2

4

5 6

7 8

1,3 2

4

5,8 6

7

1 2

4 5

6

3

1.3

2,4,6

5,8

7

Original loop graph	

 After fusing parallel loops	

After fusing sequential loops	

Typed Fusion Example

CASC

Loop Fusion/Fission For Locality

do I = 1, n
S1: b(I) = a(I) * 5
enddo
do I = 1, n
S2: c(I) = b(I) – 2
enddo

do I = 1, n
S1: b(I) = a(I) * 5
S2: c(I) = b(I) – 2
enddo

24

Putting It All Together
p  Good Part

n  Many transformations
imply more choices to
exploit parallelism

p  Bad Part
n  Choosing the right

transformation
n  How to automate

transformation selection?
n  Interference between

transformations
p  Effective optimization must

n  Take a global view of
transformed code

n  Know the architecture of
the target machine

p  Example of Interference!
DO I = 1, N!
!DO J = 1, M !!
! !S(I) = S(I) + A(I,J)!
!ENDDO!

ENDDO!
Sum Reduction gives..!
Parallel DO I = 1, N !!
!S(I) = S(I) + SUM(A(I,1:M))!

ENDDO!
Loop Interchange gives..!
DO J = 1, N !!
!S(1:N) = S(1:N) + A(1:N,J)!

ENDDO

7/9/2014 DragonStar 2014 - Qing Yi

