Enhancing the Role of Inlining in Effective
Interprocedural Parallelization

Jichi Guo Mike Stiles

Qing Yi  Kleanthis Psarris

University of Texas at San Antonio
{jguo,mstiles,qingyi,psarris } @cs.utsa.edu

Abstract—The emergence of multi-core architectures makes
it essential for optimizing compilers to automatically extract
parallelism for large scientific applications composed of many
subroutines residing in different files. Inlining is a well-known
technique which can be used to erase procedural boundaries
and enable more aggressive loop parallelization. However, con-
ventional inlining cannot be applied to external libraries where
the source code is not available, and when overly applied, it
can degrade the effectiveness of compiler optimizations due to
excessive code complexity. This paper highlights some obstacles
we encountered while applying conventional inlining combined
with automatic loop parallelization using the Polaris optimizing
compiler and presents a new approach, annotation-based inlining,
to effectively overcome these obstacles. Our experimental results
show that the annotation-based inlining approach can eliminate
negative impact of conventional inlining while enhancing the
effectiveness of interprocedural parallelization for a majority of
applications from the PERFECT benchmark suite.

I. INTRODUCTION

As multi-core architectures become ubiquitous in modern
computing, optimizing compilers need to automatically extract
parallelism for large scale scientific applications composed of
many subroutines. Inlining is a well-known program trans-
formation which substitutes procedure invocations with their
corresponding implementations to erase artificial procedural
boundaries [9]. However, conventional inlining cannot be ap-
plied to recursive procedures or subroutines defined in external
libraries where the source code is not available. Further, when
excessively applied, it can cause code size explosion and
curtail the compiler’s effectiveness in applying optimizations
(e.g., automatic loop parallelization and register allocation)
due to the increased code complexity resulted from inlining.

This paper investigates techniques that enhance the effec-
tiveness of inlining to support more aggressive loop paral-
lelization by optimizing compilers. In particular, after identify-
ing limitations of conventional inlining while using the Polaris
compiler [7] to parallelize a collection of Fortran77 applica-
tions from the PERFECT benchmark suit [6], we present a new
inlining approach to overcome these limitations. Our results
show that the new approach can eliminate negative impact
of conventional inlining while enhancing the effectiveness of
interprocedural parallelization for a majority of the PERFECT
benchmarks.
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Department of Energy under Grant DE-SC001770
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Fig. 1. Workflow of our annotation-based inlining approach

Figure 1 shows the workflow of our enhanced inlining ap-
proach. In contrast to conventional inlining, which substitutes
a procedure invocation with the complete implementation of
the callee, we use annotations, which summarize the com-
putational structure and side effects of the callee, to replace
the invocation. The inlined code is then optimized by the
Polaris compiler which applies sophisticated loop dependence
analysis to automatically parallelize loops via OpenMP when
safe. The optimized code from Polaris is then piped into a
reverse inliner, which reverts the earlier inlined code back
to using the original procedure invocations but leaves the
OpenMP pragma intact. The output from the reverse inliner
is essentially the original input code optimized with automatic
parallelization, where the annotations, currently manually pro-
vided by developers, have been used to enable more aggressive
loop optimization by the Polaris compiler in spite of opaque
procedure calls. Our annotation-based inlining approach offers
the following advantages over conventional inlining.

o Inlining can be applied even for subroutines defined
in external libraries without their source code and for
recursive subroutines because developers can provide a
high-level summary of the semantics of these subroutines.

« The potential code size explosion problem can be avoided
entirely as the inlining transformations will be reverted
back to the original call statements after optimization.

e The user-supplied annotations do not need to include
irrelevant implementation details of the subroutines of
interest. After inlining, the code within the caller is
much easier to analyze compared to when it contains the
complete implementation of the callee.

The rest of this paper is organized as follows. Section II
summarizes limitations of conventional inlining when used to
support automatic loop parallelization by the Polaris compiler.
Section III presents details of our annotation-based inlining
approach. Section IV presents experimental results. Sections V
and VI present related work and conclusions.



II. AUTOMATIC PARALLELIZATION USING POLARIS

Polaris is a source-to-source Fortran 77 compiler which sup-
ports automatic parallelization of loops based on sophisticated
dependence analysis techniques [7]. It uses simple heuristics
controlled via command-line options to govern whether each
procedure call is inlined before parallelization analysis [17].
The default strategy inlines a procedure call only when the
procedure contains no I/O and not many statements (< 150
by default) and when the invocation is inside a loop nest.

Polaris includes a number of sophisticated dependence
analysis techniques which are fairly effective when analyzing
regular Fortran DO loops operating on array subscripts that are
linear combinations of the surrounding loop index variables.
However, it becomes overly conservative when encountering
non-linear array subscripts, which could be introduced by the
inlining transformation applied before the analysis. The fol-
lowing summarizes the main issues we found to significantly
hinder the effectiveness of Polaris loop parallelization analysis
when combined with conventional procedure inlining.

A. Loss of Parallelism Due To Inlining

In languages such as Fortran/C/C++, arrays are treated as
pointers into regions of data, and the same data operated by
different subroutines can be declared as arrays of different
shapes. Further, when optimizing Fortran subroutines, com-
pilers can assume different array parameters are not aliased
to each other. When subroutine invocations are inlined, the
abstraction layer is broken, and the inlined implementations
may become harder to analyze due to excessive code com-
plexity introduced by inlining. As a result, loops that can
be automatically parallelized by compilers when inside their
respective subroutines may become no longer parallelizable by
compilers after inlining, as discussed in the following.

1) Forward Substitution of Non-linear Subscripts: Fig-
ures 2-3 illustrate a situation where non-linear array subscripts
are introduced by inlining the invocation of subroutine PCINIT
at line 3 of Figure 3 with its implementation in Figure 2. Here
the actual parameters used in the invocation are indirect refer-
ences pointing to different regions of a global array 7. When
using these indirect array references to instantiate the formal
parameters X2, Y2, and Z2 of PCINIT in Figure 2, the array
references X2(I), Y2(I), and Z2(I) at lines 8-10 of Figure 2
become T(IX(7) + I), TUX(8) + 1) and T(IX(9) + I)
respectively. Because the values of I X (7), IX(8), and X (9)
are unknown at compile time, the inlining transformation has
created subscripted subscripts (array subscripts that contain
additional subscripted array references) which are non-linear
and considered non-analyzable by most dependence analysis
techniques. As a result, the loops at lines 3 and 6 of Figure 2
can no longer be automatically parallelized after inlining,
although Polaris dependence analysis can safely parallelize
them inside the PCINIT subroutine before inlining.

2) Linearization of Array Dimensions: Figures 4-5 illus-
trate a situation where common arrays operated by two differ-
ent subroutines are declared with different shapes. In particu-
lar, multi-dimensional arrays PP, PHIT, and TM1 are used at
line 5 of Figure 5 to invoke the subroutine MATMLT defined

1 SUBROUTINE PCINIT(X2,Y2,%2,..)
2 DIMENSION X2 (*),Y2(*),22 (%)
DO 200 N=1,NTYPES
NSP=NSPECT (N)
NS=NSITES (N)
DO 200 J=1,NsSP
I=I+1
X2 (I)=FX(I)*TSTEP*%2/2.D0/DSUMM (N)
Y2 (I)=FY (I)*TSTEP%%2/2.D0/DSUMM (N)
72 (I)=FZ(I)*TSTEP*%2/2.D0/DSUMM (N)

200 CONTINUE
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Fig. 2. A subroutine with automatically parallelizable loops at lines 3 and 6
1 DIMENSION T () ,S (%) ,W(*)
2 COMMON/WINDEX/ IX(99)
3 CALL PCINIT (T (IX(7)),T(IX(8)),T(IX(9)),..)

Fig. 3. A call site of the subroutine in Figure 2 (loops in PCINIT become

no longer automatically parallelizable after inlining)

in Figure 4. However, the corresponding formal parameters
M1, M2, and M3 are declared as single-dimensional arrays in
Figure 4. To inline the subroutine invocation, Polaris reconciles
the mismatched array declarations by linearizing PP, PHIT,
and TM1I in Figure 5 into single dimensional arrays without
any explicit shape information. After inlining, the compiler
can no longer precisely recognize the dependence constraints
of the inlined loops. As a result the three loops at lines 22, 23,
and 26 of Figure 4 can no longer be parallelized after inlining.

B. Missed Opportunities

Conventional inlining substitutes a subroutine invocation
with the entire implementation of the callee, where excessive
complexity in the callee’s implementation can force compiler
optimizations, e.g., automatic loop parallelization, to be overly
conservative due to the lack of domain-specific knowledge and

20 SUBROUTINE MATMLT (M1,M2,M3,L,M,N)

21 DOUBLE PRECISION M1 (L%M),M2 (M*N),M3 (L*N)
22 DO 120 JL=1,L

23 DO 110 JN=1,N

24 J=JL+L* (JN-1)

25 M3(J)=0.0

26 DO 100 JM=1,M

27 K1=JL+Lx (JM-1)

28 K2=JM+Mx (JN-1)

29 100 M3 (J)=M3(J)+M1 (K1) *M2 (K2)

30 110 CONTINUE
31 120 CONTINUE

32 RETURN
33 END
Fig. 4. A subroutine with automatically parallelizable loops at lines 22, 23,
and 26
DIMENSION PP (4,4,15),PHIT(4,4),TM1(4 4),...

3 DO 160 KS=1,15

4 KSM=KS-1

5 IF (KS.GT.1) CALL MATMLT (PP (1,1,KSM),PHIT,TML,4,4,4)

6 ENDIF

11 160 CONTINUE

Fig. 5. A call site which invokes the subroutine in Figure 4 (loops in
MATMLT are no longer automatically parallelizable after inlining)



1 SUBROUTINE FSMP (ID, IDE)

CALL GETCR(ID)

2

3 IRECT = IEGEOM (ID)

4 ICT = IECURV(ID)

5 K1 = AK1 (ICT)

6 K2 = AK2 (ICT)

7 K12 = AK12(ICT)

8 ISTRES = 0

9 CALL SHAPE1
10 IF (IDEDON (IDE).EQ.0) THEN
11 IDEDON (IDE) = 1
12 CALL FORMF (FE (1, IDE))
13 CALL CHOFAC (FE (1, IDE), NSFE, IERR)
14 IF (IERR.NE.0) THEN

15 WRITE(6,*) ’ F ELEMENT ’,IDE,’ IS SINGULAR '
16 STOP ’ F SINGULAR ’
17 ENDIF
18 CALL FORMS (SE (1, IDE))
19 CALL FORMM (ME (1, IDE))
20 CALL FORMNL (MNLE (1, IDE))
21 ENDIF
22 CALL GETLD (ID)
23 CALL FORMP (PE(1,1ID))
24 RETURN
25 END
Fig. 6. A subroutine excluded from inlining by Polaris
1C . LOOP OVER THE SUBSTRUCTURES .
2 DO 35 ISS = 1, NSS
3C . LOOP OVER THE ELEMENTS IN THIS SUBSTRUCTURE .
4 DO 30 K = 1, NEPSS(ISS)
5C . FORM THE ELEMENTAL ARRAYS .
6 ID = IDBEGS(ISS) - 1 + K
7 IDE = K
8 CALL FSMP (ID, IDE)
9 30 CONTINUE

10 35 CONTINUE

Fig. 7. A loop nest invoking the subroutine in Figure 6 (the inner K loop
at line 4 can be automatically parallelized after annotation-based inlining)

runtime information. The following discusses situations where
the complexity of subroutine implementations prevents them
from being effectively inlined or optimized.

1) Opaque Compositional Subroutines: Conventional in-
lining typically leaves out subroutines that make additional
non-trivial procedure calls, as inlining a chain of subroutine
invocations could result in serious code explosion. For ex-
ample, the subroutine FSMP in Figure 6 is excluded from
inlining by Polaris as it invokes a fair number of other sub-
routines. This subroutine serves to initialize a single column
of five arrays, FE (lines 12-13), SE (line 18), ME (line 19),
MNLE (line 20), and PE (line 23), using a large number of
global variables, including both scalar variables and arrays,
some of which are modified to hold intermediate results
of the internal computation. In spite of the complexity of
computation, distinct columns of the five arrays are modified
when invoking FSMP with different values for ID and IDE.
Figure 7 shows an example loop nest which invokes FSMP
with values for /D obtained from a global array IDBEGS
which returns a unique integer for each given value of I5S.
After feeding such information to the Polaris compiler via
annotations, the compiler is able to tell that distinct values of
ID and IDE are used at different iterations of the inner K
loop at line 4. As a result, it can automatically parallelize this
loop after annotation-based inlining is applied, discussed in
Section III-B2.

2) Debugging and Error Checking: In practical applica-
tions, debugging and error checking statements are often used
inside subroutines to ensure proper termination of the appli-

1 SUBROUTINE GETCR (K)
2 COMMON /ECOORD/ XY (2, ZNNPED)
5 100 CONTINUE
6 DO 200 I = 1, NNPED
7 J = ICOND(I,K)
8 XY (1,I) = XYG(1,J)
9 XY (2,1I) = XYG(2,J)
10 200 CONTINUE
11 RETURN
24 END
Fig. 8. Definition of subroutine GETCR invoked by FSMP in Figure 6
1 SUBROUTINE SHAPE1
2 COMMON /ECOORD/ XY (2, ZNNPED)
3 IF (NNPED.EQ.9) THEN
4 AX = XY (1,3) - XY(1,1)
5 AY = XY (2,5) - XY(2,3)
6 ELSE IF (NNPED.EQ.4) THEN
7 AX = XY(1,2) - XY (1,1)
8 AY = XY (2,3) - XY(2,2)
9 ELSE IF (NNPED.EQ.16) THEN
10 AX = XY (1,4) - XY(1,1)
11 AY = XY (2,7) - XY(2,4)
12 ELSE
13 CALL ERRORS (’ NNPED NOT IMPLEMENTED IN SHAPEL’
14 ENDIF
Fig. 9. Definition of subroutine SHAPEI invoked by FSMP in Figure 6

cation when processing erroneous input data. This situation
is illustrated by lines 14-17 of Figure 6, where the whole
program would abort if previous evaluation has resulted in
logical errors (indicated by the global /IERR variable). Since
debugging and error checking conditionals typically contain
program I/O and early termination of the program, conserva-
tive compilers need to disable optimizations of the surrounding
loops. However, pre-tested input data are often known to
not trigger erroneous conditions at runtime, where the error
handling statements are never executed. Even when errors
do occur, replication of error messages is often acceptable.
Such application-specific knowledge can be incorporated in
our annotation-based inlining mechanism to support more
aggressive loop parallelization, discussed in Section III-B3.
3) Use of Temporary Arrays: Many subroutines use tem-
porary arrays to store intermediate results of computation,
where each temporary array is first modified with new values
before being used for additional computation. When the whole
computation is inside a surrounding loop, compilers can apply
array kill analysis to determine whether any value of the array
comes from the previous iterations. If the whole array is killed
(reinitialized) at each iteration, the temporary array can be
privatized (duplicated within each thread) when parallelizing
the surrounding loop. However, the array kill analysis may
fail when only a subset of the array elements are modified,
and those being used later are not obviously covered by the
modifications. To illustrate such situations, Figures 8 and 9
provide two subroutine definitions invoked by the FSMP
routine in Figure 6. Here a global array XY is used as a
temporary array which is modified by the GETCR subroutine
in Figure 8 and then used by the SHAPEI subroutine in
Figure 9. Although GETCR modifies only a subset of the
elements in XY (specifically, it modifies XY(1:2,1:NNPED),
where NNPED <= ZNNPED), only those elements being



1 SUBROUTINE ASSEMR (ID, RHSE, RHSI, RHSB)

2 DO 40 IN = 1, NNPED

3 NODE = ABS (ICOND (IN, ID))

4 IBLOCK = IWHERD (NODE, 1)

5 IREL = IWHERD (NODE, 2)

6 IF (IBLOCK.EQ.NBLOCK) THEN

7 DO 10 I = 1, NDDF

8 RHSB (IREL+I-1) = RHSB(IREL+I-1) + RHSE (I, IN)
9 10 CONTINUE
10 ELSE

11 DO 20 I = 1, NDDF
12 RHST (IREL+I-1) = RHSI (IREL+I-1) + RHSE (I, IN)
13 20 CONTINUE
14 ENDIF
15 40 CONTINUE

16 RETURN

Fig. 10. A subroutine which contains indirect references in array subscripts

1 DO 10 K = 1, NEPSS(ISS)

2 ID = IDBEGS(ISS) + K - 1

3 IDE = IESMNO (ID)

4 CALL GETEU(ID, XE, X)

5 CALL MATMUL (ME (1,IDE), XE, MXE, NDFE, NDFE, 1)
6 CALL ASSEMR (ID, MXE, MXI, MXB)

7 10 CONTINUE

Fig. 11. A parallelizable loop invoking the subroutine in Figure 10

modified by GETCR are used in SHAPEI. However, due
to the complexity of the multiple conditionals in Figure 9,
a typical optimizing compiler would fail to discover the
coverage relation even after both subroutines are successfully
inlined. We resolve this issue by declaring that the whole
temporary array is reinitialized via user-supplied annotations,
shown in Figure 13 and discussed in Section III-B4.

4) Indirect References In Array Subscripts: Due to the lack
of knowledge about runtime values of different arrays, conven-
tional loop dependence analysis techniques are overly conser-
vative when array references are used inside the subscripts of
accessing other arrays. Figure 10 illustrates such an example,
where two global arrays, ICOND and IWHERD, which serve to
save one-to-one relations between data in different arrays, are
used to compute the subscripts of modifying two other arrays
RHSH and RHSI. After forward substitution of variables,
the subscripts used to modify RHSB and RHSI at lines 6-
13 become IWHERD(ABS(ICOND(IN,ID), 2) + I - 1, which
will always yield different values when given distinct values
of IN, ID and I. Therefore different elements of the arrays
RHIB and RHSI are modified when given distinct values of
IN, ID, and I. However, such application-specific information
is not available to the compiler, which must assume both
ICOND and IWHERD could have arbitrary unknown values.
Consequently the compiler must conservatively assume that
arbitrary elements of RHSH and RHSI could be modified and
must refrain from optimizing any loop that invokes ASSEMR
even if the implementation of ASSEMR has been inlined.
Figure 10 illustrates such a call site, where the K loop invokes
ASSEMR at line 6 with the values of ID uniquely determined
by the loop index variable K. We discuss how to enable Polaris
to safely parallelize this loop via annotation-based inlining in
Section III-BS.

III. ENHANCING THE ROLE OF INLINING

To improve the effectiveness of automatic loop paralleliza-
tion when encountering situations discussed in Section II,

we seek to enhance the role of inlining so that higher-
level semantics of subroutine invocations can be made readily
available to compilers. In particular, we use the following steps
to enhance the effectiveness of conventional inlining in sup-
porting automatic parallelization across procedural boundaries.

1) Annotate important subroutines to summarize their side
effects and loop structures required for accurate depen-
dence analysis. Then, substitute subroutine invocations
with the corresponding annotations instead of the actual
detailed implementations.

2) Use Polaris to apply conventional loop dependence
analysis and automatically parallelize loops when safe
by inserting OpenMP directives.

3) Apply a reverse inlining step which substitutes all the
inlined annotations with appropriate invocations of the
original subroutines. After this step, the only remaining
transformation to the original input code is the paral-
lelization of loops via OpenMP.

The reverse inlining step essentially reverses all the trans-
formations introduced by annotation-based inlining so that
the original input code can benefit from advanced compiler
optimizations without sacrificing its modularity. The correct
application of this step requires all the inlined annotations
be recognized and mapped back to correct invocations of the
original subroutines, which can be easily accomplished when
minimal transformations, e.g., insertion of OpenMP directives,
have been made to the inlined code. However, the task is
more challenging when interacting with more drastic program
transformations, e.g., loop blocking and software pipelining.
Section III-C discusses these issues in more detail.

The following first discusses our annotation language and
then illustrates how to use annotations to summarize the
higher-level semantics of subroutines and enable more effec-
tive parallelization after inlining. Section III-C presents our
algorithm for enhanced inlining. Section III-D discusses the
correctness and generality of the overall approach.

A. The Annotation Language

Figure 12 summarizes the syntax of our annotation lan-
guage, which can be used by developers to describe the side
effects and loop structures of important subroutines. When
these annotations are used to support subroutine inlining, a
compiler can correctly recognize the dependence constraints
carried by each subroutine invocation and subsequently suc-
cessfully parallelize surrounding loops when safe.

The statements supported by our language include loops,
if-conditionals, assignments, variable declarations, and return
statements. They are used to summarize the control-flow
structure and memory side effects of each subroutine. For
implementation details that cannot be expressed using these
statements, we provide two special operators, unique and
unknown, to summarize approximate relations between vari-
ables while omitting details of the computation. In particular,
y=unique(x1, ..., T, ) specifies that the value of y is uniquely
computed (determined) from those of variables x4, ..., x,; that
is, if y; is computed from (z1=v1, ..., £,=v,), ¥} is computed
from (z1=v], ..., x,=v),), and (v1,...,v,) # (v}, ...,v},), then



s:{sl s2..sn}
| if (e) sl [else s2]
| do (id=el:e2[:e3]) s
| var=e;
| vars=unknown(el, €2, ...);
| vars=unique(el, €2, ...);
| type vari,...,vary;
| return e;
var :id | id [ e1, ..., en T
vars @ var | (var, ..., var)
S, 81, -, Sp: statements;
e, €1, ..., € exXpressions;
id : variable name;
id [ e1, ..., e, ]: multi-dimensional array reference;
type vari,...,vary, : declaring types of variables;

Fig. 12. The annotation language

y1 # yi. Therefore, if the values of 1, ..., x,, are different at
distinct iterations of a loop surrounding y=unique(zy, ..., ),
then the values of y are guaranteed to be similarly different.
In contrast, y=unknown(x1,...,x,) specifies that the value
of variable y is computed from reading those of variables
1, .., Tp, but the relationship could be arbitrary. These
special-purpose operators serve to abstract away complex
implementation details which degrade the effectiveness of
compiler analysis, while keeping essential relations among
variables visible to the compiler.

Expressions supported by our annotation language include
most of the arithmetic operations in Fortran 77 combined
with memory references via scalar and array variables. The
Fortran 90 notation of array regions are supported so that
collective operations can be applied to arrays without requiring
explicit loops. The two special operators, unknown and
unique, can also be used directly inside expressions, where
their results do not need to be saved in variables before used.

B. Writing Annotations

Our annotation language serves to accurately summarize
the side effects and loop structures of subroutines without
exposing their local implementation details that are irrelevant
to the surrounding calling context. In particular, for each sub-
routine, the annotations aim to summarize relations between its
input parameters and output values as well as global variables
modified by the subroutine while omitting intermediate results
and variables that are local to the subroutine. The goal is
to minimize adverse side effects of conventional inlining
which may result in accidental loss of parallelism in the
inlined code. To demonstrate the capacity of this approach, the
following illustrates how to use user-supplied annotations to
overcome inefficiencies of automatic parallelization discussed
in Section II.

1) Avoiding Loss Of Parallelism: As discussed in Sec-
tion II-A, when conventional inlining breaks procedural
boundaries by substituting subroutine invocations with detailed
implementations, some parallel loops inside the inlined code
may become no longer parallelizable by compilers due to
unexpected interactions between the caller and callee. Our
annotation-based approach resolves this issue by preserving
all the original procedural boundaries and thereby entirely
eliminating the adverse side effects of conventional inining.
In particular, after we enable the compiler to perform in-
terprocedural dependence analysis by substituting subroutine

subroutine FSMP (ID,IDE) {

XY=unknown (XYG[:, ICOND[:,ID]],NSYMM);
IRECT=IEGEOM[ID];
K1=AK1 [IECURV[ID] ]
K2=AK2 [IECURV[ID]]
K12=AK12 [IECURV[ID]];
ISTRES=0;

(NDX, NDY, WIDET) =unknown (IRECT, XY, NDXI, NDETA, QDWGHT,

NQD, NNPED) ;

7
7

if (IDEDON[IDE]==0) {
IDEDON[IDE]=1;
FE[:, IDE]=unknown (WIDET, C, NB, NNPES, NOD, NSFE) ;
ME[:, IDE]=unknown (WIDET, N, NSYMM, RHO, NQD, NNPED) ;
SE[:, IDE] =unknown (WTDET, NB, N, NDX, NDY, K1,K2,K12,

NNPES, NQD, NNPED) ;
MNLE [ :, IDE] =unknown (WTDET, NB, NDX, NDY, KNONLN,
NNPES, NQD, NNPED) ;

}

P=unknown (PXYZ[:,ABS (ICOND[:,ID])],NNPED,GX, NSYMM) ;

PE[:,ID]=unknown (P, WIDET, N, NQD, NNPED) ;

}

Fig. 13. Annotations for the opaque subroutine defined in Figure 6

invocations with user-supplied annotations, the reverse inlining
step will replace the inlined annotations with the original sub-
routine invocations, thereby preserving the original procedural
boundaries as well as their optimizations.

2) Summarizing Opaque Subroutines: Since we substitute
subroutine invocations with summaries of their semantics
supplied by developers, our approach can be easily applied to
opaque subroutines with arbitrarily complex implementations.
As example, Figure 13 illustrates our annotations for the FSMP
subroutine in Figure 6, which was excluded from inlining
by Polaris due to its excess code complexity. In particular,
these annotations summarize the regions of global arrays (FE,
ME, SE, MNLE, PE) modified by all the subroutines invoked
from FSMP, the temporary global variables (XY, IRECT, K1,
K2, K12, ISTRES, NDX, NDY, WI'DET) modified in the pro-
cess, and the read-only global variables I[EGEOMI, IECURYV,
among others) used in the computation. The unknown oper-
ator is used extensively to omit local implementation details
(e.g., intermediate results) of relevant computation, allowing
invocations of the subroutine to be more accurately handled
by dependence analysis of their surrounding loops.

3) Debugging and Error Handling: Many subroutines in
large applications contain program output statements used
for debugging and error handling purposes. The presence of
these exception handling statements are typically treated with
extreme caution by compilers, where all reordering transfor-
mations of the surrounding loops are subsequently disabled.
However, since these statements are used for debugging/error
handling only, they are not triggered at runtime in most cases,
and even when triggered, precise exception handling is often
not required. Using our annotation-based inlining approach,
developers can choose to relax the consistency requirement
of exception handling when parallelizing their program, by
omitting these situations in the subroutine annotations. For
example, in Figure 13, the error checking conditional at
lines 14-17 of Figure 6 has been omitted in the annotations.
Therefore it no longer prevents loops surrounding invocations
of the FSMP subroutine from being safely parallelized.

4) Use Of Temporary Arrays: Complex subroutines often
use temporary arrays to hold intermediate results of the
internal computation. When these arrays are declared as local
variables, our annotations will omit their existence entirely



subroutine ASSEMR (ID,RHSE, RHSI, RHSB) {
do (IN=1:NNPED)
do (I=1:NDDF)
if (unique (ID,IN) == NBLOCK)
RHSB[unique (ID,IN,I)] += RHSE[I,IN];
else
RHSI [unique (ID,IN,I)] += RHSE[I,IN];
}

Fig. 14. Annotations for the subroutine in Figure 10

as they do not incur any visible side effects to the outside.
However, sometimes these arrays are declared in the global
scope and used to pass values from one subroutine to another.
An example global array used for this purpose is shown in
Figure 8, where the global array XY is modified in subroutine
GETCR to hold intermediate results and then used in the
subroutine SHAPE] in Figure 9. It is conceptually a temporary
array within the FSMP subroutine as only those elements
defined in GETCR are used in the subsequent calls to SHAPE]
and other subroutines. Similar global temporary arrays in
FSMP include NDX, NDY, WIDET and P, shown in Figure 13.
In our annotations, these arrays are modified and used as if
they are atomic scalar variables. Since modifications to these
variables precede all their uses in the annotations of subroutine
FSMP in Figure 13, they can be treated as private variables
when parallelizing a loop surrounding the invocation of FSMP,
shown in Figure 7. In particular, when parallelizing the K
loop in Figure 7, Polaris would peel the last iteration of the
loop before parallelizing all the other iterations by privatizing
temporary arrays in those iterations, so all the global arrays
have the same values as their original sequential computation
after the entire loop is finished.

5) Indirect References In Array Subscripts: Many Fortran
applications use global arrays to store dynamic relations
between different data structures. Most of these arrays are
initialized only once throughout the entire program to save a
one-to-one unique mapping between the related data. An ex-
ample subroutine using these special-purpose arrays is shown
in Figure 10, where /ICOND and IWHERD are global arrays
which contain one-to-one relations between elements stored
in different places. When they are used as subscripts to
access RHSB and RHSI in Figure 10, the subscript expressions
are non-linear, and compliers have to be overly conservative
when parallelizing the surrounding loops. To overcome these
difficulties, in Figures 14, we use the unique operator to
summarize the values of these arrays in terms of the relevant
input parameters and loop index variables (ID, IN, and I). The
declaration of the unique relation comes from domain-specific
knowledge of the developer. When using the annotations
in Figure 14 to substitute for the invocation of subroutine
ASSEMR in Figure 11, each unique operator will be replaced
with a linear expression which uniquely combines the involved
integer variables ID, IN, and I. As a result the compiler can
easily recognize that unique elements of arrays RHSB and
RHSI are modified at each distinct iteration of the surrounding
loop and thereby can safely parallelize the loop in Figure 11.

C. The Enhanced Inlining Algorithm

Figure 15 shows the key steps of our algorithm for applying
automatic parallelization with enhanced inlining support. The

Input: program source code and annotations for selected subroutines
Output: optimized source code
Algorithm:

1) Annotation-based inlining: For each call statement within the input program
where annotations are provided for the callee
a) Instantiate the corresponding annotations with actual parameters;
b) Replace the call statement with the instantiated annotations;
c) insert tags surrounding the instantiated code fragment from inlining.

2) Automatic parallelization: invoke Polaris to optimize the inlined code.
3) Reverse inlining: For each tagged code segment in the optimized source code:

a) Find the corresponding subroutine annotations from looking into the tag;

b) Match the tagged code segment against the corresponding annotations to
compute instantiation parameters;

¢) Replace the tagged code segment with a subroutine call using the instan-
tiation parameters.

Fig. 15. Automatic parallelization with annotation-based inlining

algorithm is comprised of three main phases: annotation-based
inlining, automatic parallelization, and reverse inlining. The
following explains each phase in detail.

1) Annotation-based Inlining: The implementation of this
step is similar to conventional inlining, except that subroutine
invocations are substituted with user-supplied annotations in-
stead of detailed implementations of the callees. Translating
annotations to the underlying programming language (e.g.,
Fortran) is trivial, except for the two special purpose operators,
unknown and unique. To translate each unknown operator,
we define a new uninitialized global array, modify the array
with all the operands of the unknown operator, and then
replace the unknown invocation with an access to the new
array. To translate each unique operator, we replace it with
a linear expression which uniquely combines all the relevant
integer variables. After inlining, a pair of special tags are
placed surrounding the inlined source code to support reverse
inlining at a later stage. Figures 18 shows the result of applying
annotation-based inlining to an invocation of the MATMLT
subroutine in Figure 5, using annotations in Figure 16.

In our algorithm, only subroutines with annotations are con-
sidered for inlining. Note that although the original implemen-
tation of MATMLT in Figure 4 declares the array parameters
M1, M2, M3 as having single dimensions, our annotations
declare them as two-dimensional matrices. Subsequently our
annotation-based inlining can avoid the unnecessary lineariza-
tion of array dimensions which may degrade the precision of
compiler analysis, as discussed in Section II-A.

2) Automatic parallelization: After applying annotation-
based inlining to the input program source, we optimize the
inlined code using the Polaris compiler (with conventional
inlining disabled), which performs advanced dependence anal-
ysis of the inlined code and automatically inserts OpenMP
directives to parallelize loops when safe and profitable (the
profitability is determined based on simplistic heuristics, e.g.,
all parallelized loop needs to exceed a certain number of
iterations). Figure 17 shows the result of applying loop paral-
lelization to our inlined code in Figure 18. Note that the pair of
special tags surrounding the inlined annotations remain intact
after the parallelization optimizations.

3) Reverse-inlining: After automatic parallelization, the
reverse-inlining step is performed to reverse the annotation-
based inlining transformation while keeping the OpenMP
directives inserted by the Polaris compiler intact. This step
is necessary to ensure correctness of program optimization.



subroutine MATMLT (M1,M2,M3,L,M,N) {
dimension M1[L,M], M2[M,N], M3[L,N];
M3 = 0.0;
do (JN=1:N)
do (JM=1:M)
M3[:,JN]

+= M1[:,JM] * M2[JM,JN];

}

Fig. 16. Annotations for the MATMLT subroutine in Figure 4

!$SOMP PARALLEL
! SOMP+DEFAULT (SHARED)
1SOMP DO
DO KS=1,15
IF (KS.GT.1)
* //@; BEGIN (Code)
* @annot inline MATMLT {
'SOMP PARALLEL
! SOMP+DEFAULT (SHARED)
1$SOMP DO
DO JL=1,4,1
DO JN=1,4,1
TM1 (JL, JN)=0.0
DO JM=1,4,1
TM1 (JL, JN) =TM1 (JL, JN)
*+PP (JL, JM, KS—1) xPHIT (JM, JN)
ENDDO
ENDDO
ENDDO
!$SOMP END DO NOWAIT
1$SOMP END PARALLEL
* @}
ENDIF

THEN

ENDDO
1$OMP END DO NOWAIT
!'SOMP END PARALLEL

Fig. 17. Call site of MATMLT in Figure 18 after parallelization

Specifically, while the user-supplied annotations are expected
to carry equivalent side effects and dependence constraints
as the real subroutine implementation, they are typically not
semantically equivalent to the original implementation, due to
simplification of internal implementation details and the use
of the special-purpose summary operations, e.g., the unknown
and unique operators. Therefore, the inlined annotations must
be reversed back to an equivalent subroutine invocation to
guarantee the correctness of the optimized code.

The reverse inlining transformation is applied to all the
tagged code segments created by the earlier annotation-based
inlining transformation. For each tagged fragment, it first finds
the corresponding subroutine annotations and then proceeds
to compute an instantiation value for each formal parameter
of the subroutine. Specifically, when using these parameter
values to instantiate the subroutine annotations, the resulting
code must be equivalent to the tagged code segment. Currently
we apply a pattern matching algorithm to compare the tagged
code segment and the inlining annotations node by node,
while allowing variable substitution, expression reordering,
and OpenMP directives inside the tagged segment. Since the
only optimization performed by Polaris is the insertion of
OpenMP directives, which are simply ignored in the pattern
matching process, a set of appropriate parameter values are
guaranteed to be found for each tagged code segment. These
values are then used as actual parameters to generate a
subroutine invocation so that each tagged code segment is
replaced with its original function call.

Figure 19 shows the resulting code after applying reverse

DIMENSION PP (4,4,15),PHIT (4,4),TM1 (4,4), ...

DO KS=1,15
KSM=KS-1
IF (KS.GT.1) THEN
x//@; BEGIN (Code)
@annot inline MATMLT ({
DO JL=1,4,1
DO JN=1,4,1
TM1 (JL, JN)=0.0
DO JM=1,4,1
TM1 (JL, JN) =TM1 (JL, JN) +
%PP (JL, JM, KSM) «PHIT (JM, JN)
ENDDO
ENDDO
ENDDO
@}
ENDIF

ENDDO

Fig. 18. Call site of MATMLT in Figure 5 after annotation-based inlining

!$OMP PARALLEL
! SOMP+DEFAULT (SHARED)

1SOMP DO
DO KS=1, 15, 1
IF (KS.GT.1) THEN
CALL MATMLT (PP (1,1,KS-1),PHIT(1,1),TML(1,1),4,4,4)
ENDIF
ENDDO

!$OMP END DO NOWAIT
!$OMP END PARALLEL

Fig. 19. Call site of MATMLT in Figure 17 after reverse-inlining

inlining to the parallelized loop in Figure 17. Note that while
the single optimization applied by Polaris is the insertion
of OpenMP directives, the compiler does perform several
normalization transformations, e.g., reordering of statements,
induction variable substitution, and constant propagation, to
the tagged code segments. As a result our reverse inlining
transformation cannot simply replace them with the original
subroutine calls. Our pattern matching algorithm is tolerant of
minor modifications to the inlined annotations and can auto-
matically extract the correct actual parameters in subroutine
invocation in spite of the normalization transformations.

D. Correctness, Efficiency, and Generality

The correctness of our enhanced inlining approach depends
on the soundness of the user-supplied annotations. Specifically,
if the annotations accurately summarize the side-effects and
dependence constraints of the subroutines, the automatic paral-
lelization optimization is guaranteed to be safe. Currently, such
consistency is not automatically verified, and we use runtime
testers to check and verify the correctness of our optimized
code. Our future work will develop techniques to automatically
verify the soundness of user-supplied annotations and to
automatically generate inlining annotations when possible.

The compile-time overhead of applying annotation-based
inlining is similar to that of conventional inlining except
that since user-supplied annotations are expected to be much
shorter than detailed implementations, the cost of applying
annotation-based inlining is lower, and the inlined annotations
are expected to be much easier to analyze by the compiler.



Applications | Descriptions

ADM Pseudospectral air pollution simulation

ARC2D Two-dimensional fluid solver of Euler equations

FLO52Q Transonic inviscid flow past an airfoil

OCEAN Two dimensional ocean simulation

BDNA Molecular dynamic package for the simulation of nucleic acids
MDG Molecular dynamics for the simulation of liquid water
QCD Quantum chromodynamics
TRFD A kernal simulating a two-electron integral transformation

DYFESM Structural dynamics benchmark (finite element)

MG3D Depth migration code

TRACK Missile tracking

TABLE I
SUMMARY OF THE PERFECT BENCHMARKS

Since all the inlined annotations are reversed back to using the
original subroutine invocations, the modularity of the original
program is not affected. The cost of applying reverse inlining
to each tagged code segment is proportional to the size of
the corresponding subroutine annotations, with constant cost
associated with tolerating local modifications of the inlined
annotations.

Our enhanced inlining approach can potentially enable
general-purpose compilers to better utilize domain-specific
knowledge from developers in supporting more effective inter-
procedural optimization of large-scale applications. So far we
have used this approach to support only automatic paralleliza-
tion via OpenMP. When applying pattern-matching to reverse
inlined code segments back to appropriate subroutine calls, our
reverse inlining transformation can tolerate local modifications
to the inlined code such as reordering of expressions, induction
variable substitutions, and insertion of OpenMP directives.
However, to extend our approach to similarly support other
optimizations such as loop blocking and unrolling, it may
become much more challenging to reverse the inlined code
segments back to appropriate subroutine calls after dramatic
modifications to the tagged segments. Therefore to apply this
approach more extensively in a general-purpose compiler, a
more systematic approach needs to be developed to compute
correct instantiation parameters after dramatic modifications to
the inlined annotations, which is a subject of our future work.

IV. EXPERIMENTAL RESULTS

To evaluate the effectiveness of our enhanced inlining
approach when used to enable more aggressive automatic
parallelization of loops, we selected 12 applications from
the PERFECT benchmark suite [27], summarized in Table I.
For each benchmark, we applied both conventional inlining
and our enhanced inlining combined with automatic loop
parallelization by the Polaris compiler. To measure the amount
of parallelism enabled by and the degree of code explosion
resulted from inlining, we counted the number of loops being
parallelized after optimization and the line numbers of the
resulting source code. We then use two multi-core machines,
an Intel Macintosh running MacOS 10.5 with two quad-core
3GHz Intel processors (32KB L1 cache per core) and an
AMD Opteron running Linux with two dual-core 3GHz AMD
Opteron processors (128KB L1 cache per core), to measure
the performance of the parallelized code. All benchmarks are
compiled using gfortran 4.2.1 on the Intel Mac and iFort 11.1
on the AMD Opteron, using the -O3 optimization flag.

A. Enhancing Automatic Loop Parallelization

Table II compares the number of automatically parallelized
loops by the Polaris compiler using three different inlining
configurations: disable inlining of all subroutines (i.e., no
inlining); inline implementations of subroutines with < 150
lines of source code via conventional inlining (the default
inlining strategy adopted by Polaris); and annotation-based
inlining, where our enhanced inlining approach is used. For
each configuration, we counted the number of automatically
parallelized loops (#par-loops) and the overall code size (the
number of source code lines with all comments removed) after
optimization by Polaris. Note that when conventional inlining
is applied, Polaris could fail to parallelize some loops which
were parallelizable when no inlining is applied, as discussed
in Section II-A. These loops are categorized as #par-loss
in Table II. Inlining may also enable additional loops being
parallelized beyond those parallelized using no-inlining, these
loops are categorized as #par-extra in Table II. If parallelized,
each loop in the original benchmark is counted only once,
even when inlining has made multiple copies of the original
loop and all copies are subsequently parallelized.

From table II, inlining (including both conventional inlining
and annotation-based inlining) is able to improve the effective-
ness of automatic parallelization for 6 out of the 12 PERFECT
benchmarks. For the other benchmarks, Polaris was not able
to identify additional parallelism from loops which contain
subroutine calls. Note that we have manually annotated a
subset of subroutines from the PERFECT benchmarks based
on careful inspection of their implementations. It may be
possible to parallelize more loops by annotating additional
subroutines. Our future work will investigate more systematic
application of our enhanced inlining approach by automati-
cally generating annotations. We have verified the correctness
of all the automatically parallelized loops via both manual
inspection and runtime testing of the parallelized code.

When combined with annotation-based inlining, the Polaris
compiler is able to identify 37 additional parallelizable loops
in different PERFECT benchmarks when compared with no-
inlining. Most of these loops invoke complex subroutines
which in turn invoke other routines, and the complexity of their
implementations would overwhelm most state-of-the-art pro-
gram analysis techniques. Since our annotation-based inlining
allows developers to intervene with their application-specific
knowledge, we are able to summarize the intended semantics
of these subroutines to enable more effective parallelization
of their surrounding loops. Examples of such annotations are
illustrated in Section III-B. When applying annotation-based
inlining, the code explosion problem is avoided entirely, as the
reverse inlining step has restored all the original subroutine
invocations (the small increase in code size is mostly due to
the extra OpenMP directives inserted to parallelize loops).

In contrast, conventional inlining enabled Polaris to paral-
lelize only a small subset (12 out of 37) of the extra parallel
loops identified by annotation-based inlining. Additionally,
after conventional inlining, Polaris can no longer parallelize
90 loops which were categorized as parallelizable when no
inlining is performed, due to issues discussed in Section II-A.



Total # No inlining Conventional inlining Annotation-based inlining
Applications of loops # par- code # par- #par- #par- code # par- #par- #par- code
) loops size loops extra loss size loops extra loss size
ADM 268 179 8261 153 3 29 8703 190 11 0 8380
ACAN 147 30 36774 30 0 0 36774 30 0 0 36797
QCD2 157 102 3498 102 0 0 4795 110 8 0 3574
MDG 52 37 1962 41 6 2 2459 43 6 0 2109
TRACK 87 54 3107 54 0 0 3465 55 1 0 3121
BDNA 219 129 6713 128 1 2 6371 134 5 0 6722
OCEAN 133 106 8607 106 0 0 8691 106 0 0 8631
DYFESM 197 133 4713 134 2 1 5674 139 6 0 4772
MG3D 150 51 22878 51 0 0 30100 51 0 0 22918
ARC2D 208 182 5185 139 0 43 4931 182 0 0 5290
FLO52Q 175 149 3547 149 0 0 3562 149 0 0 3551
TRFD 38 27 1703 14 0 13 636 27 0 0 1710
Totals 1831 1179 106948 1101 12 90 116161 1216 37 0 107575

*Code size is computed as the number of source code Tines with all comments removed.

TABLE II
AUTOMATICALLY PARALLELIZED LOOPS USING DIFFERENT INLINING STRATEGIES
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Fig. 20. Performance of automatically parallelized code

After conventional inlining, the code size increased by about
10% even when only small subroutines were inlined. The
increase is likely significantly higher when more extensive
inlining is applied via the conventional approach.

B. Performance of Optimized Code

Figure 20 presents the runtime speedups achieved by the
automatically parallelized benchmarks when using different
inlining configurations. Note that a majority of the PERFECT
benchmarks do not benefit from loop parallelization due to
their small input data size, which is a known issue for these
benchmarks [25]. To avoid degradation of performance by
excessive parallelization of loops, we used empirical perfor-
mance tuning to disable a selected set of loops from being
parallelized if their parallelization incurs a slowdown of the
overall execution time. As demonstrated in Figure 20, at most
10% performance improvement is achieved by automatic loop
parallelization combined with different inlining configurations.
Annotation-based inlining is able to achieve the best per-
formance for two benchmarks (ADM and MDG) and has

achieved similar performance as other inlining configurations
for the other benchmarks.

V. RELATED WORK

Inlining is a widely adopted technique which can be used by
compilers to erase procedural boundaries and apply optimiza-
tions to larger regions of code [1], [4], [30]. Ayers et. all [4]
shown that aggressive inlining and cloning based on profiled
information can dramatically improve the effectiveness of
a large number of back-end optimizations. However, when
excessively applied, inlining can cause the well-known code-
explosion problem [13] and could degrade the effectiveness
of many compiler optimizations as the input code becomes
overwhelmingly large and complex. Previous research has
developed a variety of heuristics, including temperature heuris-
tics [36], demand-driven online transformation [32], inlining
trials [14], and interprocedural flow analysis [3], [23], to
selectively apply inlining so that performance benefits can be
gained without incurring serious problems [2]. Other directions
include automatic tuning of different inlining heuristics [10],
combining inlining with hot code outlining [37], region-based
compilation [21], [24], and whole program optimization by
merging and re-dividing code regions [31].

This paper proposes an annotation-based inlining approach
to overcome the negative impact of conventional inlining
both in terms of code explosion and in terms of unexpected
complications. Our use of developer-supplied annotations to
summarize the semantics of opaque subroutines is similar to
the semantic inlining approach by Wu et al.[35], [34], which
allows their compiler to treat user-defined abstractions as prim-
itive types in Java. The Broadway[18] and DyC[16] compilers
used annotation languages to guide domain-specific optimiza-
tions and dynamic compilation of C code. Annotations and
semantic specifications have also been used extensively to
specify dynamic properties of lower-level implementations in
program verification [15], [11]. We focus on using annotations
to substitute for implementations of subroutines in inlining to
enable more aggressive automatic parallelization.

Optimizing compilers have a long history of supporting
automatic parallelization of user applications [33], [29], [26],
[8], [20], [19], [12]. This paper focuses on using inlining
to enable interprocedural parallelization without resorting to



expensive inter-procedural program analysis techniques [5],
[22], [28]. Our work is orthogonal to and can be integrated
with existing other compiler frameworks for automatic loop
parallelization besides the Polaris compiler.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents a study which exposes some serious
limitations of conventional inlining when using the Polaris
compiler [7] to parallelize a collection of Fortran applications
from the PERFECT benchmark suite [6]. We then present a
new annotation-based inlining approach to overcome the lim-
itations. Our experimental results show that the new approach
can eliminate most of the negative impact of conventional
inlining while significantly enhancing the effectiveness of au-
tomatic loop parallelization across procedural boundaries. Our
future work will develop techniques to automatically derive
necessary annotations and to verify the safety of manually
supplied annotations.
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