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Abstract. Conventional compilers provide limited external control over
the optimizations they automatically apply to attain high performance.
Consequently, these optimizations have become increasingly ineffective
due to the difficulty of understanding the higher-level semantics of the
user applications. This paper presents a framework that provides inter-
active fine-grained control of compiler optimizations to external users
as part of an integrated program development environment. Through
a source-level optimization specification language and a Graphical User
Interface (GUI), users can interactively select regions within their source
code as targets of optimization and then explicitly compose and config-
ure how each optimization should be applied to maximize performance.
The optimization specifications can then be downloaded and fed into a
backend transformation engine, which empirically tunes the optimiza-
tion configurations on varying architectures. When used to optimize a
collection of matrix and stencil kernels, our framework was able to attain
1.84X/3.83X speedup on average compared with using icc/gcc alone.

1 Introduction

As software applications continue to become more complex and difficult to an-
alyze, compilers have to be increasingly conservative and refrain from many
optimization opportunities, due to the lack of sufficient understanding of their
input code. While developers are allowed some control over various strategies
adopted by compilers through command line options, these controls are limited
to very high level instructions, e.g., whether to attempt -O1, -O2, or -O3 opti-
mizations. The internal decisions within the compiler are kept entirely away from
developers. Although developers can insert pragmas into their code to guide op-
timizations of specific code regions, these pragmas are not always respected, as
the compiler makes the correctness guarantee of the compiled code a top priority.

It is well known that compiler optimizations are generally over-conservative,
not only because of the difficulty of understanding the higher-level semantics
of an input code via static program analysis, but also because of the unpre-
dictable interactions among the optimizations as the compiler tries to manage
the increasingly large collection of machine resources, e.g., registers, caches, and
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shared memories, of the evolving modern architectures. In short, compilers need
to allow developers to help more, especially when they are experts of high per-
formance computing. By allowing developers to exert more deliberate and fine-
grained control over compiler optimizations, their code may be more intelligently
optimized without compromising program correctness.

This paper presents an integrated program development environment that
provides compiler optimizations as an interactive toolset for developers to con-
veniently improve the efficiency of their applications. Our environment supports
extensive parameterization for a set of available optimizations, fine-grained co-
ordination among the optimizations once selected to optimize a piece of source
code, and the empirical tuning of optimization configurations based on runtime
feedback of differently optimized code. The objective is to provide a convenient
interface for developers to control the optimization decisions without compro-
mising the correctness or readability of their code.

Figure 1 shows the overall workflow
of our interactive environment, which in-
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level (VHL) specification language and
passed to an Optimization Synthesis com-
ponent, which converts the VHL specifi-
cation into a lower-level implementation
encoded using the POET program trans-
formation language [18]; The POET Transformation Engine component then
interprets the lower-level POET script to generate an optimized variant of the
annotated input source code. The developer may then test the performance gain
of the optimizations and repeat the process until satisfactory performance is
attained. The POET optimization script can be ported to different machines
together with an annotated input program generated by the GUI. The POET
transformation engine, easily installed on each machine, can then provide empiri-
cal tuning support by automatically interpreting the POET scripts with different
optimization configurations until satisfactory performance is achieved.
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Fig. 1: The optimization workflow

Our environment currently supports a number of source-level loop and data
layout optimizations, including OpenMP parallelization, loop distribution, fu-
sion, interchange, skewing, blocking, unroll&jam, unrolling, array copying, and
scalar replacement, which are known to be machine sensitive and to interact



with one another in unpredictable ways. The key technical challenges addressed
by our environment while interactively integrating these optimizations include:

— Extensive parameterization of optimizations: each optimization can be in-
dependently toggled on/off for each code region and associated with an ar-
bitrarily large configuration space, e.g., cache/parallelization /register block-
ing factors. Fine-grained coordination among the optimizations is inherently
supported through careful ordering of the selected optimizations and tracing
of the code regions being modified.

— Programmable composition of extensively parameterized optimizations: the
automatically generated POET output serves as an optimization script that
intelligently composes the user-selected optimizations one after another while
eliminating potential risks of unpredictable interactions among them.

Auto-tuning of the optimized code is supported using the extension of a previ-
ously developed transformation-aware search algorithm [19]. On two machines,
we have used the environment to optimize six scientific kernels and have attained
1.84X/3.83X speedup compared to using a vendor compiler alone.

The rest of the paper is organized as follows. Section 2 introduces our GUI
for supporting interactive optimization selection and configuration. Section 3 in-
troduces the POET transformation engine and how it can be used support the
programmable control and flexible composition of the optimizations. Section 4
presents our optimization synthesis component, which automatically converts
VHL specifications into a POET optimization script tailored for the user ap-
plication. Experimental evaluation is presented in Section 5. Section 6 discusses
related work. Finally, conclusions are drawn in Section 7

2 The Graphical User Interface

Developed to allow interactive selection and customization of compiler opti-
mizations, our web-based GUI is implemented in JavaScript and HTML, with
an Apache and PHP backend. The interface allows a user to upload an arbi-
trary number of files either as the source code of an application, optionally with
previously selected regions of code annotated as optimization targets, or as an
existing VHL specification saved from previous runs of the GUI to optimize some
selected regions of the source code. For each uploaded source code, a user can se-
lect desired regions of code as targets of optimization, and customize the desired
optimizations for each selected target. Then, the GUI automatically inserts code
annotations that tag the selected optimization targets into the source and then
generates a VHL specification from the user’s customization. Both the annotated
source code and VHL specifications can be downloaded and saved by the user for
future use. At any time, the user can instruct the GUI to pass the active source
code and its VHL specification to the optimization synthesis and POET trans-
formation components in the background, to generate optimized source code on
the fly to be examined and experimented with by the user. Both the optimized
source code and the auto-generated POET scripts can also be downloaded at
any time as desired by the user.



Figure 3(a) shows the VHL spec-
ification that the GUI automatically A e T sty
generated for the matrix-multiplication I:| e
kernel shown in Figure 4(a). The se- E
quence of interactions between the user
and the GUI to generate the VHL
specifications is shown in Figure 2.
The process starts with the user up-
loading a source code file (e.g. Fig-
ure 4(a)) to optimize. The uploaded file
is then automatically parsed and ana-
lyzed by the GUI, which displays the
code back to the user on the main panel
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each pre-specified optimization is vali-
dated, and the valid optimizations are
added into the optimization configura-
tion panel. The user can select high-
lighted code regions by clicking on the highlighted text and then providing a
name to tag the selected optimization target. Once the targets have been identi-
fied, optimizations may be constructed. The user can interact with two HTML
pick-lists to create each optimization: the first pick-list is comprised of all user-
defined optimization targets, and the second holds all supported optimizations.
Once the target and optimization have been selected, a new optimization auto-
matically appears in the optimization configuration panel, with a set of addi-
tional parameters to be further customized when the user clicks the optimiza-
tion’s “Edit” button. A majority of parameters are initially set to default values
and can be automatically tuned later to suit the needs of user applications. If a
user specifies out-of-range values for any parameters, the GUI will immediately
display an error message on the screen.
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Fig. 2: Interacting with the user

Our framework allows developers to experiment with an assortment of opti-
mizations as a toolbox without requiring detailed knowledge of the optimizations.
When a set of optimizations is ready for testing, an “Apply Optimizations” but-
ton is clicked to start the automated process. The GUI first encodes the selected
optimizations into the VHL specification language. It then passes the specifi-
cation and source code to the Optimization Synthesis and POET Translation
Engine components, with a logging panel displaying their working status. If the
optimizations are successfully applied, the optimized source code is displayed
on the main panel of the GUI. At this point the optimized source code and its
VHL specifications are immediately available for download, allowing the users
to save, examine, and test them for correctness or profitability. In the event that
the optimized source code is unsatisfactory, the user can move back to the origi-



1: include opt.pi

2: <parameter N2_blk_sz default=(32 32 32) />

3: <parameter N2_par_blk_sz default=(256) />

4: <trace inputCode,N1,N2,N4,N3 />

5: <input from="mm.c" syntax="Cfront.code" to=inputCode/>
Nests: N1, N2, N3, N4 6: <trace N2_cleanup=(N2) /> <trace N2p=(N2_cleanup) />
PermuteLoops:inner_loop=N3 target=N2 7: <trace N2_private = (("j" "k" "i")) />

order="3,1,2" 8.

FuseLoops: loop_to_fuse=N1 target=N2 9:<eval EraseTraceHandle[repl=N2p] (N2, inputCode) ;
FuseLoops: loop_to_fuse=N1 target=N4 10: PermuteLoops[order=(3 1 2)](N3[N.body],N2);

ParallelizeLoop: target=N2 11: FuseLoops(N1,N2);
private=j,k,i 12: FuseLoops(N1,N4);

BlockLoops: inner_loop=N3 target=N2 13: BlockLoops[factor=N2_par_blk_sz] (N2p[Nest.body],N2p);
factor=32,32,32 14: ParallelizeLoopl[private=N2_private] (N2p);

15: TraceNestedLoops(N2_cleanup,N2p[Nest.body]);

16: BlockLoops[factor=N2_blk_sz;
trace_ivars=N2_private] (N3,N2);

17: CleanupBlockedNests(N2_cleanup); />

18: <output syntax="Cfront.code" from=inputCode />

(a) VHL specification (b) auto-generated POET script

Fig. 3: Applying loop optimizations to a matrix-multiplication kernel

nal source code and VHL specification to start over. Multiple files are supported
by the GUI, with an HTML pick-list holding the names of all uploaded source
files. As each file is selected in this pick-list, its content is displayed on the main
panel, along with its previously configured optimizations in the optimization
configuration panel.

3 The POET Transformation Engine

POET is a scripting language [20, 18] designed to support programmable con-
trol and flexible composition of heavily parameterized compiler optimizations.
As shown in Figure 1, the transformation engine includes two components: the
POET language interpreter, and an empirical search engine. The POET inter-
preter takes three inputs: the POET script describing what optimizations to
apply, an annotated source code of the input program to optimize, and config-
urations of the optimization parameters. It then applies the desired optimiza-
tions and generates an optimized code. The empirical search engine [19], on
the other hand, automatically explores the configuration space of the optimiz-
ing transformations and iteratively experiments with differently optimized code
until satisfactory performance is attained. This empirical tuning support allows
the optimized code to be automatically ported to different platforms without re-
quiring the user to set the best optimization configurations. Both the language
interpreter (together with its optimization libraries in POET) and the search
engine are lightweight and can be easily ported to different machines, thereby
supporting the performance portability of applications optimized through our
interactive GUI.

Figure 3(b) illustrates the auto-generated POET optimization script from
the VHL specification in (a). The inclusion of file opt.pi at line 1 in the script



ensures that the POET opt library, which supports a large number of compiler
optimizations, can be invoked by the given script. Lines 2-3 declare configuration
parameters (blocking factors) of the optimizations to be empirically tuned by
the search engine. Line 4 declares 5 special global variables (inputCode, N1 -
N4) called coordination handles [21], which have been used to tag various frag-
ments of the input code, as these code fragments are used either as the targets or
additional configuration parameters of the selected optimizations. These coordi-
nation handles are embedded inside the input code, illustrated in Figure 4(a)-
(e), to automatically keep track of modifications to their content as the input
code goes through each of the optimizations in the VHL specification. Line 5
parses the matrix multiplication code using C syntax descriptions specified in
file Cfront.code and then stores the resulting AST to the coordination handle
inputCode. Lines 6-7 declare two additional coordination handles, similarly em-
bedded in the input code illustrated in Figure 4(a)-(e). Lines 9-17 serve to apply
the 5 optimizations specified in the VHL specification one after another, by using
the 7 coordination handles (declared at lines 4, 6, and 7) and the tuning param-
eters (declared at lines 2-3) as parameters to invoke the underlying optimization
implementations from the POET opt library. Each optimization modifies these
handles to coordinate their transformations of the input code. Finally, the output
command at line 18 unparses the optimized AST to standard output.

4 Optimization Synthesis

The optimization synthesis component automatically translates a VHL specifi-
cation obtained from the GUI, e.g., Figure 3(a), into a POET script that the
POET Transformation Engine can use to systematically optimize the selected
targets embedded inside the user application by the GUI. Our algorithm in Fig-
ure 5 shows the steps taken for this process. As illustrated in Figure 3(b), the
resulting POET script needs to correctly perform the following tasks.

1. Parameterization of the optimizations: due to the difficulty of predicting the
potential interactions among the optimizations and the characteristics of the
machines that the input application may be ported to, all machine-sensitive
optimizations need to be parameterized, so that their configurations can be
empirically tuned later by the POET transformation engine.

2. Collective customization of the optimizations: since the user can select many
optimizations for each region of code, the individually configured optimiza-
tions must be collectively customized to maximize their overall effectiveness.

3. Fine-grained coordination among optimizations: since the optimizations in
the VHL specification must be applied one after another in the POET script,
an earlier optimization may modify the input to such a point that a later
one can no longer be applied correctly, unless all optimizations carefully
coordinate with one another at every step.

To address the above challenges in a fully extensible fashion so that it can be
easily made to include more optimizations in the future, our algorithm uses five



inputCode:{ inputCode:{

inputCode:{
void gemm(double *a,double void gemm(double *a,double

void gemm(double *a,double

1: *b,double *c, double t,int n) 1: *b,double *c,double t,int n) 1. *h double *c,double t,int n)
2: 2: .
3: int i,j,k; 3: int i,jk; § int i,j,k;
4: {Nl:{for (j=0; j<n; j ++) 4: Nl:{for (j =0;j <mn;j++) 4 N2p:{N2_cleanup:N2:{
5: for (i=0;i<mn;i++) 5. for (i=0;i<mn;i++) for (j=0:j<nij++)
6:  clj*n+i] = t*c[j*n+i];} 6: cli*n+i] = t*c[i*n+i];} 5: Nd:{for (i=0; i<n; i++) {
7: N2p:{N2_cleanup:{N2:{ 7: N2p:{N2_cleanup:N2:{ 6:  N1:{c[j*n-+i]=t*c[j*n+i];}
for (k=0; k<n; k++) for (j=0;j<n;j++) 7: N3:{for (k=0; k<n; k++)

8: N4:{for (j=0; j<n; j++) 8: N4:{for (i=0;i<mn;i++) g. clj*n+i] +=
9:  N3:{for (i=0; i<n; i++) 9: N3:{for (k=0; k<n; k++) alk*n-Hi] * b[j*n+k]; }
10:  c[j*n+i] += 10:  c[j*n+i] += 9: }}}

alk*n+i] * b[j*n+k]; }}} alk*n+i] * b[j*n+k]; }}}} 10:1}
11:}} 11:}}

(a) original code (b) after loop permutation (c) after loop fusion

inputCode:{
) void gemm(double *a,double
inputCode:{ 1: *b,double *c,double t,int n)

void gemm(double *a,double 2.
1: *b,double *c,double t,int n) 3: int i,j,k,j1,k1,j2,il;
2: 4: N2p:{#pragma omp for private(jl,j,i,k,j2,i1,k1)
3: int 1,j,k,i1,j1,k1; 5: for (j1 = 0; j < n; j +=256)
4: N2p:{#tpragma omp for private(j1,j,i,k) 7. N2_cleanup:{
5: for (j1 = 0; j < n; j +=256) 8: N2:{for (j2=0; j2<min(256,n-j1); j2+=32)
6: N2_cleanup:{ 9: N:{for (il = 0; il<n; i1+=32)
7: N2:{for (j=0; j<min(256,n-j1); j++)  10: N3:{for (k1=0; kl<n; k1+=32)
8: N4:{ for (i =0;i<n;i++) { 11: for (j=0; j<min(32,n-j1-j2); j++)
9: Nl:{c[j*n+i]=t*c[j*n+i];} 12: for (i=0; i<min(32,n-i1); i++) {
10: Nf[i:*{for ](k:O; k<n; k++) 13: if (k1 == 0)
11 cfj*n+i] += 14:  N1:{ c[(j14j24))*n+(i1+i)] =

a[l*n+i] * b[j*n+k|; } tic[(5(1+j2+j)2‘n+(i(1+i)]);]}
12: }}1}} 15: for (k = k1; k<min(k1432,n); k ++)
13:}} 160 c[(j1+i2-+))*n+(il+)] +=

a[(kl+k)*n+(il+i)] * b[(j1+j2+])*n+(k1+k)]|;
(d) after loop parallelization 17 } )
18:}}

(e) after loop blocking
Fig. 4: Optimized code from Optimization specifications

configuration tables, summarized in the following, to save all information about
the optimizations currently supported.

4.1 Configuration Tables

As shown at the beginning of Figure 5, our GenOptScript algorithm requires six
input parameters, including the VHL specification (spec), alongside the following
five extensible configuration tables, which save all the relevant information about
the optimizations currently supported by our environment.

The optimization table (named opt_table in Figure 5): indexed by the opti-
mization names, this table stores the interface of each optimization and cate-
gorizes its parameters into three groups: the required input parameters, whose
values must be supplied by the VHL specification; the optional parameters, each
of which has a default value if not part of the VHL specification; and tuning pa-
rameters, which represent machine-sensitive configurations of the optimization
and need to be empirically tuned.



GenOptScript(spec, opt_table, param_table, cleanup_table, group_table, interfere_table)
1: if not verify_correctness(spec,opt_table,param_table) then report_error endif
2: /* coordination handles */handles=lookup_optimization_targets(spec);
/*tuning parameters*/ tuning=0; /* opt invocations*/ xforms = 0; cleanup = 0;
3: for each f = (opt-name, opt_target, opt_config) € spec do
3.0: opt_table_spec = lookup_opt_params(opt_table, opt_name);
3.1: /* collect tuning parameters of the opt */
for each (p-name, p_type) € opt_table_spec where p_type is a tuning parameter do
tune_name=concat(p-name, opt_target); tune_info = lookup_param_info(param_table,p_name);
tuning = tuning U { gen_tuning_decl(tune_name, tune_info)};
opt_config = opt_config U { gen_opt_config(p-name, tune_name)};
3.2: /* collect any cleanup invocation required */
for each clnup_opt € lookup_cleanup_spec(cleanup_table, opt_-name) do
append_opt(cleanup, instantiate(clnup_opt, opt_config), group-table);
3.3: /* categorize loop handles into groups */
grp-idx = lookup_group-index(group-table, opt_name);
for each (p-name, p_type) € opt_table_spec where p_type requires a coordination handle do
p-val = lookup-_value(opt_config, p_-name)
if p_val != null then
new_val = gen_group_handle(p_val, grp-idx); modify_value(opt_config, p_-name, new_val);
handles = append_handles(handles, new_val, grp-idz);
3.4: /* generate fix-up invocations to accommodate interferences*/
insert_before = insert_after = 0;
for each unprocessed opt g = (opt-name_-2, opt_target, opt_config-2) € spec U cleanup do
(new_params, opt_before, opt_after) = lookup_fixup(interfere_table, opt_name, opt_name2);
opt_config = opt_config U { instantiate(new_params, opt_config, opt_config-2) } ;
append_opt(insert_before, instantiate(opt_before, opt_config, opt_config_2), group_table);
append_opt(insert_after, instantiate(opt_after,opt_config,opt_config_2), group-table);
cur_opt = concat(insert_before, gen_opt_invoke(opt_name,opt_target, opt_config), insert_after);
3.5: append_opt(xforms, cur_opt, group_table);
4: return gen_ POET _script(tuning, handles, xforms, cleanup);

Fig. 5: Optimization synthesis algorithm

The parameter table (named param_table in Figure 5): indexed by the name
of each parameter that may be used to configure an optimization, this table
saves the semantics of the parameter irrespective of where it is used, including
the range of acceptable values, its default value if unspecified in the VHL, and
whether grouping is required if the parameter needs to be coordinated when
multiple optimizations are applied to a single code region.

The cleanup table (named cleanup_table in Figure 5): indexed by the opti-
mization names, this table defines any additional followup operations that are
required at the end of the POET script for each optimization, if the optimization
is in the VHL specification. For example, if either loop blocking or unroll&jam
are to be applied, the cleanup_table specifies additional loop splitting operations
to clean up expensive conditionals inside of the optimized loops.

The grouping table (named group_table in Figure 5): indexed by the optimiza-
tion names, this table assigns each optimization to a group uniquely identified by
an integer (group_idx), which when combined with the values of an optimization
configuration parameter, uniquely identifies a coordination handle to be created
and used by the optimization. To elaborate, each configuration parameter of an
optimization requires a coordination handle to keep track of interferences from
other optimizations. Optimizations of the same group can have their parameters
share the same handle, if the parameters have the same value in the VHL. The



group indices are further used as ordering constraints of the optimizations when
they are appended to the final POET output at Steps 3.2 and 3.4 of Figure 5. In
particular, optimizations targeting the same handle are ordered by the contain-
ment relationship of their optimized code: OpenMP parallelization is done first,
whose optimized code contains those of additional cache reuse optimizations,
which generate code that in turn is used as input to CPU-level optimizations.

The interference table (named interfere_table in Figure 5): indexed by pairs
of optimization names, this table specifies how to resolve interferences between
each pair of optimizations through two remedies: by directly modifying the con-
figuration of the interfering optimization (e.g., by modifying the private variables
of OpenMP parallelization after new local variables are created), and by insert-
ing additional POET instructions to adjust the coordination handles, before or
after the interfering optimization.

4.2 The Algorithm

Using the five configuration tables described above, our optimization synthesis
algorithm translates a VHL specification into a lower-level implementation using
the inherit support of optimization parameterization and fine-grained coordina-
tion supported by the POET language [17] through the following steps.

Input validation (Steps 1 and 2 of Figure 5) The algorithm starts by
verifying the consistency of the input VHL specification against information
obtained from the opt_table and the param_table (Step 1). Specifically, the algo-
rithm verifies that all the required parameters for each optimization have been
given a valid value, and all constraints between values of different parameters
are satisfied. Then (Step 2), it initializes the four components of the final POET
output: the declarations of all tuning parameters (tuning), the declarations of all
coordination handles (handles), the list of POET invocations to be translated
from the VHL specification (zforms), and the list of follow-up POET operations
required to clean up the optimizations (cleanup). The validation provided by
our GUI is purposefully limited to allow the developer to circumvent any over
conservativeness by a conventional compiler as long as the manually specified
optimizations can be carried out in a meaningful fashion, as enforced by the
checking of optimization parameters.

Parameterization of the optimizations (Steps 3.0 and 3.1) For each op-
timization in the VHL specification, Step 3.0 obtains its parameter specifications
from the opt_table. Step 3.1 then identifies all the parameters that need to be
empirically tuned, adds a new global variable declaration for each found tun-
ing parameter, and then uses these tuning variables to customize (through the
opt_config variable) the optimization from the VHL specification. These tuning
variables are declared at line 2-3 of the example POET output in Figure 3(b)
and are used to customize the later optimizations at lines 10-17. If a value is
given to the tuning parameter in the VHL specification, the specified value is
used; otherwise, a default value obtained from the param_table is used.



Collective customization of the optimizations (Steps 3.2 and 3.5) The
customization of the optimizations includes two aspects: the addition of any
followup operations to be included in the final POET output, obtained from
the cleanup_table for each optimization specified in the VHL at Step 3.2; and
the adoption of predefined ordering of the optimizations, obtained from the
group_table and enforced by the append_opt invocation at steps 3.2 and 3.5.
Optimizations that belong to the same group are ordered as they appear in the
original VHL specification. For example, the final POET output in Figure 3(b)
contains the additional optimization CleanupBlockedNests to cleanup after the
BlockLoops optimization in the VHL specification, and all the optimizations
are ordered so that loop parallelization is applied first, followed by cache-level
optimizations (e.g., loop permutation and blocking), which are in turn followed
by CPU-level optimizations (e.g., loop unroll&jam and unrolling).

Fine-grained coordination (Steps 3.3 and 3.4) As the optimizations must
be applied one after another in the POET script, each optimization must care-
fully coordinate with the others in the POET output. Our algorithm automati-
cally supports such coordinations through two steps. First, in Step 3.3, it creates
a coordination handle for each configuration parameter that may be affected by
other optimizations. Then, in Step 3.4, it inserts POET operations to adjust the
values of all the affected coordination handles as each optimization is applied.

Since multiple optimization parameters may refer to the same piece of input
code, their coordination handles need to be carefully managed so that their
nesting relationships will not change irrespective of how many optimizations
have been applied. In particular, our group_table organizes all the optimizations
into distinct groups, with each group identified by a unique integer index, based
on two constraints: (1) the parameters of all optimizations in the same group
can share a single coordination handle if the parameters refer to the same piece
of input code in the VHL specification, because their values will always remain
the same; and (2), if two optimizations belong to distinct groups (e.g., loop
blocking and loop unroll&jam), and some of their parameters refer to the same
piece of input code in the VHL specification (e.g., both operating on the same
target), then the optimization with the larger group index will always have a
coordination handle that contains that of the smaller group index. This handle
composition process is enforced by the append_handles operation in Step 3.3.

Figure 3(b) shows the handle grouping and composition results for the VHL
specification in Figure 3(a). Here two additional coordination handles, N2_cleanup
and N2p, are created at lines 6 to be nested outside of the original optimiza-
tion target N2 from the VHL. ParallelizeLoop has the highest group index and
therefore is configured with the outermost coordination handle, N2p. Next, the
cleanup optimization required for loop blocking causes yet another coordination
handle, N2_cleanup, to be created and nested inside N2p, but outside of N2.
PermuteLoops, FuseLoops, and BlockLoops belong to a single group that has
the lowest group index, therefore sharing the handle created to trace the original
optimization target. Figures 4 (b)-(e) illustrate how these coordination handles
adjust as the input code is modified by each optimization specified.



The actual adjustment of the coordination handles are implemented by POET
operations inserted by Step 3.4 of the algorithm, which looks in the interference
table to identify what coordination is required for each pair of optimizations
from the VHL specification or the cleanup operations to be inserted. Then, the
coordination is applied either through direct modification of the optimization
configurations or through POET operations inserted before or after the interfer-
ing optimization to adjust affected coordination handles.

Two interferences exist in the VHL specification from Figure 3(a). The first
occurs between ParallelizeLoop and BlockLoops and is accommodated by insert-
ing the trace_ivars configuration for BlockLoops at line 16 of Figure 3(b), so that
new local variables created by BlockLoops are included as private variables of the
OpenMP pragma. The second interference occurs between the ParallelizeLoop
and the auto-generated CleanupBlockedNests and entails line 13 to be inserted
before ParallelizeLoop to stripmine the loop being parallelized into two nested
ones, so that the inner one can be used as target for additional single-thread
optimizations, by moving the N2_cleanup handle to the inner loop at line 15.

Outputting the result (Step 4) After obtaining all the necessary compo-
nents, the final POET script is generated by simply putting everything together.

5 Experimental Evaluation

While our environment currently supports only a limited number of loop and ar-
ray optimizations, shown in Table 1, our hypothesis is that when explicitly spec-
ified, the impact of these optimizations can be enhanced significantly through
collective customization, fine-grained coordination, and empirical performance
tuning, especially when a compiler fails to automatically recognize opportunities
of applying some of them due to insufficient understanding of the input code.

To validate our hypotheses, we used our environment to interactively specify
optimizations for six matrix and stencil computation kernels, shown in Table
1. All kernels are implemented in C/C++ in a form that is easy to analyze, as
illustrated in Figure 4(a). For each kernel, we selected the optimizations that can
be safely applied to potentially improve its performance and relied on the empir-
ical tuning support by the backend POET transformation engine to determine
the best configurations. Three implementations are generated for each kernel:
an ICC/GCC version, generated by using the vendor compiler (icc or gee) to
optimize the original code (with the -O3 flag); a GUI-Default version, generated
by additionally applying optimizations interactively specified through our envi-
ronment, using a default configuration for each optimization; and a GUI-Tune
version, which further employs empirical tuning to find the best GUI-specified
optimization configurations.

All kernels are evaluated on two platforms shown in Table 2, with the ma-
chines kept otherwise idle while running the experiment. Each evaluation is re-
peated 10 times, and the average elapsed time of running each kernel imple-
mentation is used to compute its GFLOPS (billion floating point operations per
second). The variation among different runs is less than 10%.



[Kernel [Description

[ Data Size [ Interactive Optimizations

o | ParallelizeLoop, BlockLoops,
dger Rank one update 10240 UnrollJam, ScalarRepl, UnrollLoop
PermuteLoops, FuseLoops,
dgemm |dense matrix-matrix multiplication 12802 | ParallelizeLoop, BlockLoops,
UnrollJam, ScalarRepl
. e ParallelizeLoop, BlockLoops
2 P, ps,
dgemvN|dense matrix-vector multiplication 10240 UnrollJam, UnrollLoop
dense matrix-vector multiplication with o> | ParallelizeLoop, BlockLoops,
dgemvT transpose 10240 UnrollJam, UnrollLoop
jacobi7 |3D 7-point Stencil 1083  |FaratlehzeLoop, BlockLoops,
SkewLoops
vmult |Sparse matrix-vector multiplication 51202 |ParallelizeLoop
Table 1: Kernels used for experiments
CPU Intel(R) Xeon(R) CPU E5-2420{AMD Opteron(tm) Processor 6128
1.90 GHz, 12 Cores 2.00 GHz, 24 Cores
L1-Data 32 KBytes 64 KBytes
Cache L1-Instruction||32 KBytes 64 KBytes
L2-Private 256 KBytes 512 KBytes
L3-Shared 15360 KBytes 5118 KBytes
Main Memory 16 GiB 64 GiB
Operating System [|CentOS 6.6, Linux 2.6.32 Ubuntu 14.04.2, Linux 3.13.0
Compiler icc 15.0.0 with -O3 flag gee 4.8.2 with -O3 flag

Table 2: Machine configuration

Figure 6(a) compares the performance of the differently optimized versions
on the Intel platform. Even without empirical tuning, the additional optimiza-
tions applied by our environment were able attain 1.43X speedup on average for
the kernels, and empirical tuning is able to further boost the average speedup
to a factor of 1.84. An interesting observation is that without empirical tuning,
the performance of the GUI-Default-ICC version for the kernel jacobi7 did not
improve the performance of the original version, while with tuning we were able
to attain 2.48X better performance. Since many of the optimizations we cur-
rently support are heavily machine sensitive, it is important to use the proper
configurations to attain the desired performance improvement. The best speedup
of 3.5X for the GUI-Tune-ICC version is attained for the dgemm kernel, which
performs an order of N3 computations on N? data. Here BlockLoops can signif-
icantly improve the performance by reusing the data already brought in cache,
thereby changing the kernel’s behavior from memory-bound to CPU-bound. For
the other kernels, e.g., dger and vmult, which are fundamentally memory bound
due to the lack of data reuse, our optimizations are not very effective and are
able to attain only 1.05X speedup for dger and 1.17X speedup for vmult.

Figure 6(b) shows our evaluation results on the AMD platform. Here, every
kernel, when optimized using our interactive environment, was able to attain
significantly better performance when compared to using the gcc compiler alone.
On average, our environment was able to attain 3.14X performance improvement
over the original version with the default configurations of the optimizations,
and empirical tuning was able to attain 3.83X additional speedup. Specifically,
it attained an extra performance improvement of up to 8.67X and 5.28X for the
dense matrix computation kernels dgemvN and dgemm respectively and a 1.9X
improvement for the vmult kernel with the GUI-Tune-GCC version.
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Fig. 6: Evaluation results of GUI

6 Related Work

Existing research has developed a large collection of compiler optimizations to
automatically improve the performance of scientific applications [6,7,16,1, 3].
Many of these optimizations can be naturally parameterized, e.g, loop block-
ing [10], fusion [11], unrolling [12], and software pipelining [8]. Cohen, et al. [3]
used the polyhedral model to parameterize the composition of loop optimiza-
tions. Our framework supports many of these optimizations, with parameterized
configurations, and aims to make them available as a toolset for interactive use
by developers to attain portable high performance.

The importance of facilitating effective communication between optimizing
compilers and developers has been well-recognized. Hall et al.[5] allows develop-
ers to provide a sequence of loop transformation recipes to guide optimizations
by their compiler. The X language [4] uses C/C++ pragmas to guide the ap-
plication of a collection of loop- and statement-level optimizations. Our work
similarly provides direct access of compiler optimizations to the developers. Our
framework provides additional support for interactive selection, extensive pa-
rameterization, and automated coordination of the optimizations.

Our work uses the POET language [20, 18] to provide the underlying support
for the interactive composition of parameterized compiler optimizations. Existing
work has demonstrated that through fine-grained coordination and collective
customization, POET can be used to specialize compiler optimizations to attain
a highest level of portable performance for dense linear algebra kernels [22,15,
21]. Yi [17] has used a source-to-source optimizing compiler to automatically
produce parameterized POET scripts so that the optimization composition can
be revised by developers if desired, and the optimization configurations can be
empirically tuned. As a complimentary framework for this work, our GUI can
be used to provide an interactive interface for developers to conveniently revise
optimization decisions by their compilers. Our auto-generated POET scripts
can be easily integrated with existing empirical tuning research [9,13, 14,23, 2]
to automatically find desirable optimization configurations.



7 Conclusions And Future Work

We have presented a framework to enable compiler optimizations being used as
an interactive toolset by developers. Our framework addresses the key technical
challenge of interactive selection and composition of extensively parameterized
compiler optimizations, while using the POET transformation engine [20, 18]
to support the programmable customization and empirical tuning of differently
optimized code. We have demonstrated the practicality of this framework by
using it to optimize six commonly used scientific computing kernels and have
shown that significantly better performance can be achieved by the interactive
optimization framework than using the conventional optimizing compilers alone.
Our approach exposes compiler optimizations to be interactively controlled
and customized by developers by providing each optimization an explicit well-
defined parameter space, far beyond the optimization flags supported by conven-
tional compilers. We currently support only a subset of the optimizations applied
manually by high performance computing specialists, consequently our attained
performance still lag far behind those of hand optimized kernels. We expect to
significantly increase the collection of optimizations in the future while efficiently
exploring their configuration spaces to enhance application performance.
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