
Modeling Optimization of Stencil Computations Via
Domain-level Properties

Brandon Nesterenko

Qing Yi

Brandon Runnels

University of Colorado Colorado Springs

Colorado Springs, CO, USA

Pei-Hung Lin

Chunhua Liao

Lawrence Livermore National Laboratory

Livermore, CA, USA

Abstract
Stencil computations are widely used in the scientific simula-

tion domain, and their performance is critical to the overall

efficiency of many large-scale numerical applications. Many

optimization techniques, most of them varying strategies of

tiling and parallelization, exist to systematically enhance the

efficiency of stencil computations. However, the effective-

ness of these optimizations vary significantly depending on

the wide range of properties demonstrated by the different

stencils. This paper studies several well-known optimization

strategies for stencils and presents a new approach to ef-

fectively guide the composition of these optimizations, by

modeling their interactions with four domain-level proper-

ties of stencils: spatial dimensionality, temporal order, order

of accuracy, and directional dependence. When using our

prediction model to guide optimizations for five real-world

stencil applications, we were able to identify optimization

strategies that outperformed two highly optimized stencil

libraries by an average of 2.4x.

1 Introduction
In the scientific simulation domain, stencils are widely used

in a variety of applications[20]. Often, the efficiency of the

overarching application is critically linked to the perfor-

mance of its stencils, where a large effort of work exists

to optimize their performance. More specifically, many ap-

proaches exist to optimize their performance, including both

automatic optimization frameworks by using compilers[9,

29] and domain-specific languages (DSLs)[26, 30]; and man-

ual optimization by using libraries such as AMReX[13]

or modifying the source code implementations to directly

manage hardware resources. Where a majority of these

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

PMAM’22, April 2–6, 2022, Seoul, Republic of Korea
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9339-3/22/04. . . $15.00

https://doi.org/10.1145/3528425.3529103

Figure 1. Impact of dimensionality on the effectiveness of

rectangular (R), partial diamond (Pd), and full diamond (Fd)

tiling with thread-level parallelism with 16 threads.

optimizations are mostly variations of tiling[8, 28] and

parallelization[18] and can be systematically applied to a

wide variety of stencils, their effectiveness can be inconsis-

tent due to the vast range of behaviors that their underlying

computations can exhibit[21].

To illustrate the wide variation of optimization effective-

ness, figure 1 compares the impact of applying three differ-

ent optimization strategies to three implementations of a

heat equation (
𝜕𝑢
𝜕𝑡

= 𝛼∆𝑢), which simulates heat propaga-

tion for an isotropic and homogeneous medium [14]. Here

the three different implementations respectively instanti-

ate the equation to be one-dimensional, two-dimensional,

and three-dimensional. Each variation combines thread-level

parallelism (using sixteen threads) with one of three differ-

ent memory tiling strategies: (1) rectangular tiling, which
strip-mines data accessed by a loop nest into rectangular

blocks, with outer loops enumerating distinct blocks of data,

and each block updated by an equal number of inner loops

[28]; (2) full diamond loop tiling, which alternatively uses

diamonds as the block shapes to allow for more concurrency

and better load balancing among tasks that update distinct

blocks of data[8]; and (3) partial diamond loop tiling, which
works similarly as full-diamond loop tiling but places addi-

tional restrictions on the number of dimensions that can be

tiled[8]. Rectangular tiling provides the highest speedup (4x)

for the one-dimensional implementation, as it introduces the

least amount of runtime overhead compared to the diamond

tiling strategies. As the dimensions of the stencil increase,

full-diamond tiling provides the highest speedup (16x) for

the two-dimensional implementation, where more data are

35

https://doi.org/10.1145/3528425.3529103
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3528425.3529103&domain=pdf&date_stamp=2022-04-18

PMAM’22, April 2–6, 2022, Seoul, Republic of Korea B. Nesterenko et al.

Figure 2. Workflow showing the process to iteratively navi-

gate the optimization space for a stencil

shared across thread boundaries. Partial-diamond tiling pro-

vides the best speedup (6.7x) for the three-dimensional im-

plementation, by lowering the runtime overhead of tiling

compared to full-diamond tiling.

This paper aims to study the relationship between domain-

level properties of stencils and optimization effectiveness,

in order to model the interactions among the various opti-

mizations and suggest the most effective optimization strat-

egy for an arbitrary stencil. We have identified four higher-

order properties of stencils: spatial dimensionality, tempo-

ral order, order of accuracy, and directional dependence,

which have shown the most prominent influences to the

data-access patterns of stencils. This paper focuses on corre-

lating these properties with five well-known optimizations

for stencils: OpenMP parallelization[11], rectangular loop

tiling[28], partial and full diamond loop tiling[8], and multi-

plicative inversion[17]. There are three main challenges that

we address:

1. Addressing safety complications from applying an op-

timization.

2. Selecting among multiple alternative code transforma-

tions that serve similar purposes.

3. Effectively configuring the transformations and exe-

cution configurations for a given architecture.

Figure 2 presents our workflow. The applicability filter
provides a set of optimizations that are both 1) safe to ap-

ply to the source code, i.e. those that won’t interfere with

previously applied optimizations, and 2) supported by the

underlying hardware platform. This component takes two

sets of input into consideration: opportunity indicators and
hardware properties, which respectively expose potential per-

formance improvement opportunities in the input source

code (e.g. whether the code can be parallelized) and the hard-

ware platform (e.g., whether multi-threading is supported by

the hardware). As some of the selected optimizations may

serve similar purposes, the prediction model predicts the rela-
tive effectiveness of each, and outputs the one which should

be most effective, and additionally predicts a set of tuning

parameter values to configure it. This decision is made by

considering a set of pre-selected domain-level properties of
the stencil computation, its current execution configuration,
and the properties of the hardware platform on which it will

run. After applying the optimization recommended by our

prediction model, either manually by developers or auto-

matically through some compiler-based tools, the optimized

code can be again optimized via our workflow, until all the

applicable optimizations have been applied.

For the predictionmodel to predict themost beneficial opti-

mization and configuration, it performsmulti-variate polyno-

mial regression analysis on a data set of performance metrics

from profiling runs of 456,516 automatically generated and

optimized stencil variants. To create these variants, we de-

veloped a special-purpose stencil code generator and profiler

that parameterizes domain-level properties, optimization

strategies, optimization configurations, and execution config-

urations. The regression model itself functions as a black box

which uses a stencil’s domain-level properties and execution

configuration as its inputs, and predicts the speedup of each

supported optimization to determine which optimization

will be most profitable. We test the accuracy of this model

by splitting the generated data set into training and testing

sets, where 66% of the optimization strategies suggested by

our model resulted in the optimal strategy, and 89% of the

suggestions had performance values which fell within 10%

of the performance of the optimal strategy. Our optimizer is

then used to guide the optimization of five stencil kernels

which are prominent in the scientific computing domain.

Specifically, we use the Allen-Cahn[1], heat[5], Laplacian[7],

Poisson for electrostatics[12], and wave[6] stencil kernels.

We then compare the stencil implementations guided by us-

ing our optimization process against those optimized via

AMReX[13] and Pochoir[26]. We show that in most cases,

our optimization process outperforms these libraries (aver-

age of 2.4x). The case where our process did not result in

highest performance is a result of our current prototype,

which does not yet consider the breadth of all available sten-

cil optimization types. Our future work entails extending our

model with additional types of optimizations, e.g. dynamic

programming, to cover these cases.

Our main technical contributions are as follows:

• We introduce a code optimization process that is unique

in its internal representation and iteration of the opti-

mization space using four different aspects of stencils:

domain-, hardware-, code-, and execution-level. Our

prototype focuses on properties that are tightly tied

to multi-core architectures and memory performance.

• We show our approach is highly effective on five dis-

tinct stencil computations in comparison to two state-

of-the-art grid computing libraries.

36

Modeling Optimization of Stencil Computations Via Domain-level Properties PMAM’22, April 2–6, 2022, Seoul, Republic of Korea

for (in t t = 0 ; t < T ; t ++)

for (in t i = 1 ; i < N − 1 ; i ++)

A[(t +1)%2] [i] = 0 . 1 2 5 ∗ (

− 4 . 0 ∗A[t %2] [i]

+ A[t %2] [i +1] + A[t %2] [i − 1]) ;

Listing 1. One-dimensional, second-order accurate heat

equation

(a) OpenMP Paralleliza-

tion

(b) Rectangular tiling (c) Diamond tiling

Figure 3. Impact of different optimization techniques on

stencils (the x axis is the spatial dimension (from i=1 to N-1),

and the y axis is the temporal loop iteration (from t=0 to T))

The remainder of this paper is organized as follows. Sec-

tion 2 provides a background on the supporting optimiza-

tions of stencils. Section 3 provides a background on stencil

codes and their domain-level properties. Section 4 describes

our approach. Section 5 provides our experimental results.

Section 6 discusses related works, and section 7 concludes.

2 Background: Stencil Optimization
For the purpose of this paper, we define stencils as com-

putations that operate on multi-dimensional array represen-

tations of structured grids. Listing 1 implements the one-

dimensional heat equation; the 𝑖 loop updates each point in a

structured grid as a weighted contribution from its neighbor-

ing points[22], and the 𝑡 loop repeats the computation until

convergence. Specifically, at each time-step 𝑡 , the simulation

computes a new value for each point (𝑖) in the grid for the

next time step 𝑡 + 1 by using values of the neighboring points

(𝑖 +1 and 𝑖−1) from the current time-step 𝑡 . Within the scope

of this paper, we study five well-known optimizations for

stencil computations.

OpenMP Parallelization[11]. Illustrated in figure 3(a),

this optimization partitions the spatial dimensions of a stencil

to be evaluated on multiple threads, each thread receiving an

equal portion of the stencil to compute. The optimization is

profitable when the data size of a stencil is sufficiently large.

Rectangular tiling[28]. illustrated in figure 3(b), this op-

timization strip-mines all the spatial dimensions of a stencil

into rectangular blocks, with a set of outer loops enumer-

ating all the blocks that comprise the overall stencil, and

the inner loops traversing each block of data to perform

needed computation[28]. When combined with OpenMP

parallelization, each thread is assigned multiple blocks of

data to compute, and as the time step loop progresses, the

blocks assigned to each thread (colored yellow and blue in

Figure 4. The impact spatial dimensionality and order of

accuracy have on stencil data-access pattern

Figure 3(b)) shift to the left to accommodate dependence

relations among neighboring blocks, so that tasks assigned

to different threads can start in a pipelined fashion.

Diamond tiling[8]. as an extension to rectangular tiling,

this optimization has two variants: full and partial. In essence,

it divides all the rectangular blocks into two groups, colored

yellow and blue in figure 3(c), so that when parallelized,

all blocks in the same group are entirely independent of

each other and can proceed concurrently, while blocks that

belong to distinct groups wait for one another. To account for

dependence across time steps, the block size changes at each

time step to avoid cross-thread communications, resulting

in tile shapes that resemble diamonds. Full diamond tiling
exploits the nearest neighbor accesses in all dimensions;

however, this can lead to overhead due to overly complex

tile shapes. Partial diamond tiling only considers a subset of

a stencil’s dimensionality to reduce this overhead.

Multiplicative inversion[17]. this optimization substi-

tutes division operations with constant denominators by

using multiplication of the multiplicative inverse, i.e.,
𝑎
𝑏
be-

comes 𝑎 ∗ 𝑏−1
. By pre-computing and saving the multiplica-

tive inverse value outside of loops, the overall computation

overhead is reduced.

3 Stencil Properties
A key incentive of this paper is to extract and model the

impact of important properties of stencil computations and

hardware platforms to identify an optimization workflow

that can effectively enhance their performance. The follow-

ing subsections introduce these factors.

3.1 Domain-Level Properties of Stencils
The main factors that impact a stencil’s performance are its

computation and data access patterns, which can be catego-

rized using domain-level properties of the stencil computa-

tion. For our purpose of modeling optimization effectiveness,

we have identified four domain-level properties, detailed

below, which we show are particularly relevant in the effec-

tiveness of tiling and parallelization optimizations.

Spatial Dimensionality. This property defines the num-

ber of independent variables, discounting the time variable,

37

PMAM’22, April 2–6, 2022, Seoul, Republic of Korea B. Nesterenko et al.

Figure 5. The impact temporal order has on stencil data-

access pattern

used in the overarching partial differential equation. For ex-

ample, although the 3D heat equation
𝜕𝑢
𝜕𝑡

= 𝛼

(
𝜕2𝑢
𝜕𝑥2

+
𝜕2𝑢
𝜕𝑦2

+
𝜕2𝑢
𝜕𝑧2

)
has four terms with independent variables, 𝑡 is a time vari-

able, therefore the spatial dimensionality is 3. The spatial

dimensionality property defines both 1) the number of spa-

tial dimensions of the underlying storage array in the stencil

implementation, and 2) the shape of the stencil lattice up-

date. To illustrate, figure 4 shows the data access pattern of

a one-dimensional stencil, which accesses three data points

in a line at each iteration of its nested loop. Increasing the

spatial dimensionality to two not only adds an additional

dimension to the storage array but also changes the stencil

update shape to a cross, by accessing the neighboring points

of each stencil update in both dimensions.

Order of Accuracy. This property defines how many

neighboring elements are used in each dimension to up-

date each element of the stencil grid, to ensure a desired

rate of error reduction by each time step. For example, the

first two stencils in figure 4 are second order accurate, as

they use two neighbors in each dimension to compute each

lattice update. The third stencil uses four neighbors in each

dimension to perform the update, therefore increasing the

order of accuracy to four.

Temporal Order. Conceptually representing the order

of the derivative taken with respect to the time indepen-

dent variable in the PDE, this property is represented in the

stencil implementation by how many results computed by

the previous time steps are accessed in each lattice update.

Specifically, higher temporal order problems require more

results of the previous time steps to be saved for later uses.

For example, the heat equation (
𝜕𝑢
𝜕𝑡

= 𝛼∆𝑢) is first temporal

order, because it is derived from the term
𝜕𝑢
𝜕𝑡
. In its imple-

mentation (listing 1), the lattice update uses the previous

time step, (𝑡%2), to calculate the new value, at ((𝑡 + 1) %2).
Directional Dependence. Conceptually this property rep-

resents whether each spatial dimension of a stencil diffuses

in an isotropic or anisotropic fashion: isotropic stencils diffuse
equally in all directions/dimensions, whereas anisotropic dif-

fusions are direction dependent. At the implementation level,

this property is represented by how each data element in a

lattice update (LUP) is weighted. Because isotropic diffusion

assumes uniform grid spacing [14], its stencil implementa-

tion uses constant values as coefficients to uniformly scale

for (in t t = 0 ; t < T ; t ++)

for (in t i = 1 ; i < N − 1 ; i ++)

A[(t +1)%2] [i] =

c [0] [i] ∗ u_0_0 [t %2] [i]

+ c [1] [i] ∗ u_0_0 [t %2] [i −1]

+ c [2] [i] ∗ u_0_0 [t %2] [i + 1] ;

Listing 2. Fully anisotropic 1D heat stencil

the neighboring points at each LUP. For example, the heat

equation in listing 1 weighs all neighboring points with a

constant value 1, and prior values of the updated point with

-4. In contrast, an anisotropic stencil scales each point dif-

ferently by storing the desired coefficients inside additional

grids. For example,
𝜕𝑢
𝜕𝑡

= ∇ · (𝛼 (𝑥) ∇𝑢), is an anisotropic

variant of the heat equation and uses the function 𝛼(𝑥) to

weigh the points. Listing 2 shows the corresponding code for

this equation, where the coefficients for each term are stored

in an extra array 𝑐 . Additionally, for stencils with spatial

dimensionality higher than one, only distinct dimensions

can be anistropic, e.g. ∇ · (𝛼 (𝑥) ∇𝑢 (𝑥,𝑦)). This would result
in corresponding coefficient grids with smaller dimensional-

ity than the stencil’s spatial grid; however, in the scope of

this paper, we assume anisotropy in all dimensions, as it is a

super-set and can still be used for semi-anisotropic stencils.

Three additional properties, mixed derivatives, where

derivatives are taken with respect to multiple independent

variables, e.g.
𝜕2𝑢
𝜕𝑥𝜕𝑦

; skewing, which changes the pattern in

which nearest neighbors are accessed, e.g. from using directly

adjacent points to corner points; and iterative method, which

determines how the solution will converge, are additional

important properties which we leave for our future studies.

This study focuses on the widely popular Jacobi method[10],

non-skewed data accesses, and pure derivatives.

3.2 Performance Of Stencils
While a wide variety of hardware platforms, including CPUs,

GPGPUs, and other accelerators[22–24], can be used to run

stencils efficiently, for the scope of this paper, we focus on

CPU-based multicore architectures, where the performance

of a stencil computation is largely determined by their usage

of the underlying memory hierarchy and processors. We

intend to address a wider variety of hardware architectures

in our future work.

Without explicit optimization, the computation and data-

access patterns of stencil computations typically run ineffi-

ciently on existing multi-core architectures, as the computa-

tion traverses a large amount of data within each time step.

Additionally, the degree of concurrency among the different

threads often determines the overall performance. Another

factor that impacts stencil performance is division, which

often compute coefficients and step sizes. Division can take

3-6 times as long as other operations [3], making it difficult

to hide its long latency.

The performance of a stencil can also be influenced by its

execution configuration, specifically any pre-set constraints

38

Modeling Optimization of Stencil Computations Via Domain-level Properties PMAM’22, April 2–6, 2022, Seoul, Republic of Korea

on the environment in which the stencil must run. Examples

of such factors include the size and layout of the input data a

stencil computation needs to operate on, the number of time

steps that the computation needs to run before convergence

can be achieved, and the number of threads available to be

dedicated to the stencil computation.

4 Modeling Optimization Effectiveness
In this paper, we focus on modeling the effectiveness of five

optimizations: rectangular loop tiling, partial diamond tiling,

full diamond tiling, OpenMP parallelization, and multiplica-

tive inversion. The goal is to predict the optimization that

is expected to produce the highest speedup based on the

data access patterns (represented by domain-level properties

of a stencil) and execution configurations of a given sten-

cil computation. The key strategy is to identify the factors

which contribute to a stencil’s inefficient use of hardware

resources, and predict the optimization which should best

address these factors and improve performance.

Figure 2 presents the overall workflow of our prediction

process, which includes two main components. First, the

applicability filter identifies a set of optimizations which

target the underlying stencil and hardware platform. More

specifically, this component cross-references coding patterns

(exposed via opportunity indicators) with properties of the

underlying hardware to identify potential inefficiencies of

hardware resources. The set of potentially beneficial opti-

mizations is the combination of all optimizations which tar-

get these inefficiencies. The prediction model then predicts

and configures the optimization from this set that should

provide the highest speedup for the stencil. More specifi-

cally, this prediction uses regression analysis that correlates

properties which contribute to a stencils data access pattern

to an optimizations effectiveness. These properties consist

of domain-level properties, which are extracted automat-

ically from the stencil’s source code using a preliminary

code analyzer we developed, and execution configuration,

which is provided by a user. The optimization is then tuned

to the underlying hardware resources using the execution

configuration and hardware properties.

The workflow is repeatable to allow for multiple rounds

of optimization to be applied. In particular, after applying an

optimization, the stencil’s source code properties will change.

Upon performing a new round of optimization, the applica-

bility filter will not detect as many potential inefficiencies,

and the set of potentially beneficial optimizations suggested

to the prediction model will be reduced. The repetition ends

when either the applicability filter can no longer identify any

relevant optimizations, or the prediction model no longer

predicts any optimization to be beneficial.

4.1 The Applicability Filter
The applicability filter in our workflow provides the needed

check to make sure only potentially profitable optimizations

are applied to a stencil. It is assumed that the correctness of

Algorithm 1 Applicability Filter Algorithm

function IdentifyPromisingOptimizations(𝑂𝐼 , 𝐻𝑃)

𝑝𝑟𝑜𝑚𝑖𝑠𝑖𝑛𝑔_𝑜𝑝𝑡𝑠 ← ∅
for each 𝑜𝑝𝑡 ∈ 𝑆𝑈𝑃𝑃𝑂𝑅𝑇𝐸𝐷_𝑂𝑃𝑇𝐼𝑀𝐼𝑍𝐴𝑇𝐼𝑂𝑁𝑆 do

𝑖𝑠_𝑜𝑝𝑡_𝑓 𝑎𝑣𝑜𝑟𝑎𝑏𝑙𝑒 ← 𝑇𝑅𝑈𝐸

for each 𝑜𝑖 ∈ 𝑂𝐼 do
if ! 𝑖𝑠_𝑏𝑒𝑛𝑒𝑓 𝑖𝑐𝑖𝑎𝑙_𝑓 𝑜𝑟 (𝑜𝑝𝑡, 𝑜𝑖) then

𝑖𝑠_𝑜𝑝𝑡_𝑓 𝑎𝑣𝑜𝑟𝑎𝑏𝑙𝑒 ← 𝐹𝐴𝐿𝑆𝐸

break

end if
end for
for each ℎ𝑝 ∈ 𝐻𝑃 do

if ! 𝑡𝑎𝑟𝑔𝑒𝑡𝑠(𝑜𝑝𝑡,ℎ𝑝) then
𝑖𝑠_𝑜𝑝𝑡_𝑓 𝑎𝑣𝑜𝑟𝑎𝑏𝑙𝑒 ← 𝐹𝐴𝐿𝑆𝐸

break

end if
end for
if 𝑖𝑠_𝑜𝑝𝑡_𝑓 𝑎𝑣𝑜𝑟𝑎𝑏𝑙𝑒 then

𝑎𝑝𝑝𝑒𝑛𝑑(𝑝𝑟𝑜𝑚𝑖𝑠𝑖𝑛𝑔_𝑜𝑝𝑡𝑠, 𝑜𝑝𝑡)

end if
end for
return 𝑝𝑟𝑜𝑚𝑖𝑠𝑖𝑛𝑔_𝑜𝑝𝑡𝑠

end function

each optimization will be guaranteed either manually by the

developer or automatically by some software tools.

Algorithm 1 details how the applicability filter determines

the set of potentially beneficial optimizations. We define

a function, 𝐼𝑑𝑒𝑛𝑡𝑖 𝑓 𝑦𝑃𝑟𝑜𝑚𝑖𝑠𝑖𝑛𝑔𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠 , which takes

two inputs:𝑂𝐼 , for opportunity indicators, and 𝐻𝑃 , for hard-

ware properties; and outputs a set of optimizations,𝑂 , which

are potentially beneficial to the stencil. The output set of

optimizations, 𝑝𝑟𝑜𝑚𝑖𝑠𝑖𝑛𝑔_𝑜𝑝𝑡𝑠 , is initialized as an empty set

(∅). An optimization is considered promising if it is applica-

ble to both 1) the underlying source code, which is exposed

via opportunity indicators, and 2) the hardware, which is

exposed via hardware properties.

Table 1 defines the opportunity indicators and hardware

properties we use for the scope of this study, and their corre-

lations with optimizations. Specifically, we define three op-

portunity indicators and two hardware properties, which are

referenced by the functions 𝑖𝑠_𝑏𝑒𝑛𝑒 𝑓 𝑖𝑐𝑖𝑎𝑙_𝑓 𝑜𝑟 and 𝑡𝑎𝑟𝑔𝑒𝑡𝑠

in algorithm 1, respectively. The first opportunity indicator,

iteration-space traversal of linear-order, classifies whether all
loops in a stencil traverse the stencil in a single pass. This

hints that the code may not be efficiently using the cache

hierarchy when the stencil is large, and is an indicator for

all the tiling optimizations, i.e. rectangular and partial/full

diamond tiling. The second indicator, serial execution, is set
to true if the source code is sequential (not already paral-

lelized). It is therefore an indicator for parallelization, i.e.,

OpenMP, which modifies the computation to use multiple

cores of the hardware platform. The third indicator, number
of constant denominators per lattice update (LUP) > 0, indi-
cates whether the stencil computation contains divisions

with denominator values that don’t change across LUPs, and

identifies multiplicative inversion.

39

PMAM’22, April 2–6, 2022, Seoul, Republic of Korea B. Nesterenko et al.

Optimization Opportunity Indicators Hardware Target
Rectangular Tiling iteration-space traversal of linear-order Multi-level Cache

Partial Diamond Tiling iteration-space traversal of linear-order Multi-level Cache, Multicore

Full Diamond Tiling iteration-space traversal of linear-order Multi-level Cache, Multicore

OpenMP Parallelization serial execution Multicore

Multiplicative Inversion num constant denominators per LUP > 0 Any

Table 1. Conditions for an optimization to be valid

The applicability filter component uses two hardware-

level properties to select applicable optimizations. The first

property, multi-level cache, indicates whether the hardware
has multiple levels of cache, which is an indicator for opti-

mizations that target multi-level caches, e.g., variations of

tiling. The second property, multicore, indicates how many

cores are available in the underlying platform and thereby

indicates whether any parallization optimization is appli-

cable. Additional opportunity indicators likely need to be

included to accommodate new types of optimizations or to

target alternative types of architectures (e.g., GPUs). How-

ever, our experimental results show that the five indicators

in table 1 are sufficient for selecting the five optimizations

and the multi-core architecture we target.

4.2 The Prediction Model
After identifying potentially profitable optimizations for a

stencil, the prediction model predicts the one which should

provide the highest speedup. This is a two-step process: 1)

predicting the optimization which should provide the high-

est speedup, and 2) predicting a configuration which should

maximize the speedup from applying the optimization. We

build a series of multi-variate linear regression models with

interaction[4] to predict both the maximum speedup that

an optimization can attain (step 1), and the speedup that

an optimization will provide under a given configuration

of tuning parameters (step 2). Fundamentally, each model

predicts the speedup of a particular optimization using a

given set of inputs. The regression models for step 1 predict

the maximum speedup of each supported optimization using

two inputs: the input stencil’s domain-level properties and

execution configuration. The regression models for step 2

extend the prediction from step 1 to predict the real speedup

of the optimization by adding another input: a particular

configuration of the optimization’s tuning parameters. The

set of tuning parameters can change depending on the spa-

tial dimensionality of the stencil, as higher dimensionalities

will use more loop blocking factors. The prediction for step

two then chooses from multiple potential models for each

optimization based on the spatial dimensionality of the sten-

cil.

To build the regression models, we automatically generate

a data-set of 456,516 stencil variants that differ from one

another by domain-level properties of the stencil, execution

configuration, optimizations applied, and tuning parameters

of each optimization. To ensure the results of each prediction

are consistent with one-another, their models are constructed

Problem 1D 2D 3D

T_blk {1,8,64} {1,8,64} {1,8,64}

X_blk {512,1024,2048} {4,16,64} {1,4,16}

Y_blk {256,512,1024} {2,8.32}

Z_blk {64,128,256}

Table 2. Tuning Parameter Values for Prediction

using the same data set. As wemaintain a separate regression

model for each optimization, and each model is trained with

a subset of this overall data set. Each prediction model is

implemented by using the 𝑙𝑚() function from the stats R
package.

Algorithm 2 details the underlying logistics of this pro-

cess using a function, 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝐵𝑒𝑠𝑡𝑂𝑝𝑡 , which takes three

inputs of an input stencil, 𝐷 , its domain-level properties, 𝐸,

its execution configuration, and 𝐻𝑃 , the hardware proper-

ties where it will run; and has two outputs: 𝑏𝑒𝑠𝑡_𝑜𝑝𝑡 , the

optimization which should provide the highest speedup, and

𝑏𝑒𝑠𝑡_𝑐 𝑓 𝑔, the tuning parameters which should yield the high-

est speedup for 𝑏𝑒𝑠𝑡_𝑜𝑝𝑡 . The algorithm has two steps. Step
1 selects the optimization which should provide the highest

speedup for the stencil. It predicts the maximum speedup of

each supported optimization, and the optimization which is

predicted to have the highest speedup is stored in 𝑏𝑒𝑠𝑡_𝑜𝑝𝑡 .

The regression model is selected using 𝑔𝑒𝑡_𝑜𝑝𝑡_𝑚𝑜𝑑𝑒𝑙 by

looking up the predictor for the optimization in the cur-

rent iteration. The maximum speedup is predicted by calling

𝑝𝑟𝑒𝑑𝑖𝑐𝑡_𝑚𝑎𝑥_𝑠𝑝𝑒𝑒𝑑𝑢𝑝 with the model and predictor vari-

ables. Step 2 predicts the optimal configuration for the se-

lected optimization’s tuning parameters. In particular, it pre-

dicts the actual speedup that the optimization would pro-

vide under various different configurations of tuning pa-

rameters, with each configuration stored in 𝑇 . The function

𝑔𝑒𝑡_𝑐 𝑓 𝑔_𝑚𝑜𝑑𝑒𝑙 determines the correct regression model to

use with a mapping based on the selected optimization and

spatial dimensionality of the stencil. The speedup is then

predicted by calling 𝑝𝑟𝑒𝑑𝑖𝑐𝑡_𝑟𝑒𝑎𝑙_𝑠𝑝𝑒𝑒𝑑𝑢𝑝 . Where 𝑇 stores

the tuning parameters that were used to train the model on

a specific machine, the function 𝑠𝑐𝑎𝑙𝑒_𝑓 𝑜𝑟_𝑚𝑎𝑐ℎ𝑖𝑛𝑒 updates

these values for the target architecture.

The tuning parameters that the model currently consid-

ers are the blocking factors of loop tiling optimizations and

the number of threads for parallelization. We consider four

blocking factors: one for the time dimension 𝑡 , and three for

the spatial dimensions 𝑥 ,𝑦, and 𝑧. Table 2 provides the values

we consider for each blocking factor. The values we consider

for each blocking factor depends on the spatial dimension-

ality of the problem, as the size of a block is determined

40

Modeling Optimization of Stencil Computations Via Domain-level Properties PMAM’22, April 2–6, 2022, Seoul, Republic of Korea

Algorithm 2 Optimization Prediction Algorithm

function PredictBestOpt(𝐷 , 𝐸, 𝐻𝑃)

𝑏𝑒𝑠𝑡_𝑜𝑝𝑡 ← 𝜖 ⊲ Step 1: Predicting the best optimization

𝑠𝑝𝑒𝑒𝑑𝑢𝑝𝑚𝑎𝑥 ← 0

for each 𝑜𝑝𝑡 ∈ 𝑆𝑈𝑃𝑃𝑂𝑅𝑇𝐸𝐷_𝑂𝑃𝑇𝐼𝑀𝐼𝑍𝐴𝑇𝐼𝑂𝑁𝑆 do
𝑜𝑝𝑡_𝑚𝑜𝑑𝑒𝑙 ← 𝑔𝑒𝑡_𝑜𝑝𝑡_𝑚𝑜𝑑𝑒𝑙 (𝑜𝑝𝑡)

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠 ← 𝐷 ∪ 𝐸
𝑠𝑝𝑒𝑒𝑑𝑢𝑝𝜙 ← 𝑝𝑟𝑒𝑑𝑖𝑐𝑡_𝑚𝑎𝑥_𝑠𝑝𝑒𝑒𝑑𝑢𝑝(𝑜𝑝𝑡_𝑚𝑜𝑑𝑒𝑙, 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠)

if 𝑠𝑝𝑒𝑒𝑑𝑢𝑝𝜙 > 𝑠𝑝𝑒𝑒𝑑𝑢𝑝𝑚𝑎𝑥 then
𝑏𝑒𝑠𝑡_𝑜𝑝𝑡 ← 𝑜𝑝𝑡

𝑠𝑝𝑒𝑒𝑑𝑢𝑝𝑚𝑎𝑥 ← 𝑠𝑝𝑒𝑒𝑑𝑢𝑝𝜙
end if

end for
if 𝑆𝑚𝑎𝑥 < 1 then

return 𝜖, 𝜖

end if
𝑏𝑒𝑠𝑡_𝑐 𝑓 𝑔← 𝜖 ⊲ Step 2: Configuring the optimization

𝑠𝑝𝑒𝑒𝑑𝑢𝑝𝑚𝑎𝑥 ← 0

𝑡𝑢𝑛𝑖𝑛𝑔_𝑝𝑎𝑟𝑎𝑚𝑠 ← 𝑔𝑒𝑡_𝑡𝑢𝑛𝑖𝑛𝑔_𝑝𝑎𝑟𝑎𝑚𝑠(𝑏𝑒𝑠𝑡_𝑜𝑝𝑡)

for each𝑇 ∈ 𝑒𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑒_𝑣𝑎𝑙𝑢𝑒𝑠(𝑡𝑢𝑛𝑖𝑛𝑔_𝑝𝑎𝑟𝑎𝑚𝑠) do
𝑐 𝑓 𝑔_𝑚𝑜𝑑𝑒𝑙 ← 𝑔𝑒𝑡_𝑐 𝑓 𝑔_𝑚𝑜𝑑𝑒𝑙 (𝑜𝑝𝑡, 𝐷.𝑠𝑝𝑎𝑡𝑖𝑎𝑙_𝑑𝑖𝑚)

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠 ← 𝐷 ∪ 𝐸 ∪𝑇
𝑠𝑝𝑒𝑒𝑑𝑢𝑝𝜙 ← 𝑝𝑟𝑒𝑑𝑖𝑐𝑡_𝑟𝑒𝑎𝑙_𝑠𝑝𝑒𝑒𝑑𝑢𝑝(𝑐 𝑓 𝑔_𝑚𝑜𝑑𝑒𝑙, 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠)

if 𝑠𝑝𝑒𝑒𝑑𝑢𝑝𝜙 > 𝑠𝑝𝑒𝑒𝑑𝑢𝑝𝑚𝑎𝑥 then
𝑠𝑐𝑎𝑙𝑒𝑑_𝑐 𝑓 𝑔← 𝑠𝑐𝑎𝑙𝑒_𝑓 𝑜𝑟_ℎ𝑎𝑟𝑑𝑤𝑎𝑟𝑒(𝑇,𝐻𝑃)

𝑏𝑒𝑠𝑡_𝑐 𝑓 𝑔← 𝑠𝑐𝑎𝑙𝑒𝑑_𝑐 𝑓 𝑔

𝑠𝑝𝑒𝑒𝑑𝑢𝑝𝑚𝑎𝑥 ← 𝑠𝑝𝑒𝑒𝑑𝑢𝑝𝜙
end if

end for
return 𝑏𝑒𝑠𝑡_𝑜𝑝𝑡,𝑏𝑒𝑠𝑡_𝑐 𝑓 𝑔

end function

by the length of its sides. These values aim to individually

capture when each tuning parameter is most beneficial to

the effectiveness of the optimization, independent of archi-

tecture. More specifically, they represent a small, medium,

and large factor with respect to the dimensionality of the

problem. The small, medium, and large factors are translated

to values that are more appropriate to the specific multi-core

architecture where the stencil will run. In particular, we scale

the tuning parameters in spatial dimensions to preserve the

ratio between the working set size and L3 cache size between

the training and target machines. Specifically, we use the

following equation to scale the tuning parameters for each

dimension

∀𝑖 ∈ 𝑑, 𝛽𝑖𝑡 ←
𝑑

√︄
(𝛽𝑖𝑠)

𝑑 ∗𝐶𝑡

𝐶𝑠

(1)

where 𝑑 is the spatial dimensionality of the stencil, 𝛽𝑖𝑠 and

𝛽𝑖𝑡 are the blocking factors for the source (i.e. training) and

target machines in the 𝑖 dimension, and𝐶𝑠 and𝐶𝑡 are the L3

cache sizes of the source and target machines. For the number

of threads to use, we consider all values lower than that given

in the execution configuration, where each iteration divides

the last value by two, and uses it if a power of two, otherwise

the next highest power of two.

The success of our prediction model depends on our se-

lection of domain-level properties to represent data-access

CPU Intel Xeon Gold 6130 Intel E5-2420

Cache

L1-Data 32 KB 32 KB

L2-Private 1,024 KB 256 KB

L3-Shared 22,528 KB 15,360 KB

Main Memory 64 GB 12 GB

Number of Cores 16 12

Table 3.Machine configuration

patterns of an arbitrary stencil. The list of domain-level prop-

erties we currently support serves to demonstrate the useful-

ness of this approach and currently includes spatial dimen-

sionality, temporal order, order of accuracy, and directional

dependence, explained in details in section 3.1. The imple-

mentation of a stencil computation can be more effectively

optimized by our prediction model if its entire data access

pattern can be derived from these domain-level properties.

Our future work will include additional properties , e.g., iter-

ative methods, skewing, and derivative types.

4.3 Training the Prediction Model
To train the prediction model with a sufficiently represen-

tative data set that encompasses the varying interactions

among data-access patterns, execution configurations, and

optimization profitability, we developed a stencil kernel gen-

erator which automatically generates un-optimized sten-

cil computations from input domain-level properties. We

then define a sub-domain for each supported domain-level

property to enumerate valid combinations of the property

values: spatial dimension: {1,2,3}, temporal order: {0, 1, 2}; or-

der of accuracy:{2,4}, and directional dependence: {isotropic,

anisotropic}. We use these values because their combina-

tions can fully describe the data access patterns of many

stencils, e.g. wave[6] and Laplacian[7]. By enumerating the

variations of these properties (in contrast to enumerating

the actual variations of their underlying implementations),

we can focus on the semantic-level variations of the stencil

computations, without being limited by idiosyncrasies of

their underlying implementations (e.g., how the data is laid

out in memory or whether registers/caches are reused).

For each auto-generated un-optimized stencil kernel, we

create a large collection of its optimized variants by apply-

ing each optimization both individually and by combining it

with other related optimizations. For example, we combine

OpenMP parallelization with each distinct tiling strategy to

generate optimized variants. We invoked the Pluto[9] com-

piler v0.12 to apply Rectangular tiling, partial/full diamond

tiling, and OpenMP parallelization. Multiplicative inversion

is applied by our special-purpose stencil generator. For each

tiling optimization, we use the same blocking factors to train

the model as for the prediction itself, where the values are

detailed in table 2. This is to keep the training and prediction

input constant, as the predicted values can be adjusted to

match the cache size of the target architecture itself. Each

differently optimized stencil variant is run under different

combinations of execution configurations, including num-

ber of time steps {32, 64, 128}, input sizes {16MB, 32MB, and

41

PMAM’22, April 2–6, 2022, Seoul, Republic of Korea B. Nesterenko et al.

65Mb}, and number of threads for combinations that include

OpenMP parallelization {1,4,16}. The performance of

each execution is calculated by normalizing its execution

time against the total number of floating point operations

performed.

5 Experimental Results
5.1 Experimental Configuration
We have implemented our applicability filter and prediction

model in R. Our special-purpose stencil C code generator

was implemented using the POET language [29].

We validated our regression-based prediction model by

analyzing its prediction accuracy in correctly correlating

domain-level properties and execution configurations with

optimization effectiveness and by using it to optimize five

real stencil computations: Laplacian, Poisson for electrostat-

ics, heat, wave, and Allen-Cahn. These kernels were chosen

because they are common in the scientific simulation domain,

e.g. fluid mechanics[7], electromagnetics[12], elasticity[6],

diffusion[5], and materials science[1]. The un-optimized ver-

sions for the heat, wave, Laplacian, and Poisson PDEs were

obtained from Burkadt’s website[2]. The Allen-Cahn source

code was derived from the Yamanka Lab[1], which was orig-

inally written in Python, and we converted to C.

We compare the performance attained via our workflow

against that attained by having the stencil computations

invoke the libraries, AMReX[13] and Pochoir[26]. AMReX

uses a generalized divide-and-conquer parallelization tech-

nique that is well-suited to the general computational pattern

of structured grid. We use AMReX’s single-node OpenMP

parallelization scheme, as our work focuses on single-node

optimization. This scheme uses OpenMP to distribute threads

among processors, alongside rectangular tiling of the spatial

domain. Pochoir is a domain-specific language for stencils

that uses a cache-oblivious dynamic programming algorithm

to decompose sub-regions of the grid into trapezoidal shapes,

and thread-level parallelism via PThreads to compute sub-

grids concurrently.

All training and testing measurements were run on an

Intel Xeon Gold 6130 CPU (shown in table 3). All stencil

implementations were compiled with GCC 7.5.0 to gener-

ate their binaries. Each stencil was run four times, with a

normalized standard deviation of 2%.

To test our prediction model across different machines,

we optimized the five stencil case studies on an Intel E5-2420

machine (shown in table 3) using the previously produced

model from the Xeon Gold machine. Each stencil was com-

piled on the Intel E5-2420 machine using GCC 4.8.5.

5.2 Accuracy of Prediction
We analyze the accuracy of our prediction model by splitting

the automatically generated stencil performance data set into

a training and testing set, where we analyze the accuracy

and error of predicting optimization strategies of the testing

Figure 6.Comparing the performance attained from optimiz-

ing the case studies in table 4 using our proposed approach

against optimized libraries

set on our model built from the training set. As the user-

level inputs into the prediction model are the domain-level

properties of a stencil, its execution configuration, and the

number of divisions in the underlying stencil, we separate

the training and testing subsets based on unique combina-

tions of these predictor variables. This results in 4,860 unique

combinations. We randomly select 5% of these combinations,

or 243 unique input combinations, to be used as testing data,

and use the optimization combination and configuration that

resulted in the highest speedup to compare our prediction

against. The remaining 95% of inputs, along with all com-

binations of optimizations and configurations, or 433,690

differently optimized stencil variants, are used as the train-

ing set of the model.

To evaluate the accuracywhen predicting the optimization

strategy of the testing set, we analyze the residuals of the

predictions and the relative root mean squared error (rRMSE)

of the model. 66% of the predictions resulted in the optimal

strategy, 78% of the predictions had speedups within 5% of

the optimal speedup, and 89% of the predictions had speedups

within 10% of the optimal speedup. The rRMSE was 5.3%.

5.3 Optimization Effectiveness
Figure 6 presents the GFLOPS attained for the five PDE use

cases from table 4 by comparing results attained by using our

optimization workflow with those attained by invoking the

optimized software libraries AMReX and Pochoir. Pochoir

is only able to handle isotropic stencils, and is thereby only

used on the Allen-Cahn and wave case studies.

For Allen-Cahn, our tool applied partial diamond tiling

with multiplicative inversion, which resulted in 4.3x and 5.2x

higher speedups than AMReX and Pochoir, respectively. In

particular, the speedup over AMReX comes from specializing

the tiling strategy to take better advantage of the data ac-

cess pattern; the speedup over Pochoir comes from a smaller

input size, resulting in Pochoir’s dynamic programming ap-

proach having more overhead. Additionally, our tool applied

multiplicative inversion, which neither of the other software

libraries utilize. For heat, our tool applied partial diamond

tiling with OpenMP parallelization with 16 threads, which

resulted in a 1.6x higher speedup than AMReX. This speedup

comes from specializing the tiling strategy to the specific

42

Modeling Optimization of Stencil Computations Via Domain-level Properties PMAM’22, April 2–6, 2022, Seoul, Republic of Korea

Stencil Laplacian Poisson Wave Heat Allen-Cahn

Equation
0 = ∇·
(𝛼 (𝑥) ∇𝑢)

− 𝜌

𝜖
= ∇·

(𝛼 (𝑥, 𝑦) ∇𝑢)
𝜕2𝑢

𝜕𝑡2
= 𝑐2

∆𝑢
𝜕𝑢
𝜕𝑡

= ∇·
(𝛼 (𝑥, 𝑦, 𝑧)∇𝑢)

𝜕𝜙

𝜕𝑡
= −

√
2𝑊
6𝛼

𝑀

(
𝜕 (𝜙)
𝜕𝜙
(𝑔𝐵 − 𝑔𝐴) +𝑊

𝜕𝑞 (𝜙)
𝜕𝜙

−𝛼2
∆𝑢

)
Dimension 1 2 2 3 3

Order of Accuracy 4 4 4 2 2

Temporal Order 0 0 2 1 1

Directional Dependence Anisotropic Anisotropic Isotropic Anisotropic Isotropic

Timesteps 32 256 128 64 32

Input Size 131MB 16MB 134MB 80MB 33MB

N Threads 8 16 16 16 1

Is iteration space

traversal of linear order

T T T T T

Is serial execution T T T T T

Is constant denominators

per LUP > 0

F T F F T

Table 4. Equation, domain-level properties, execution configurations, initial opportunity indicator values

Figure 7. Comparing the speedups attained using our opti-

mization approach using different machines

data access pattern. For Laplacian, our tool only applied

rectangular tiling, which resulted in a 1.9x higher speedup

than AMReX. In this case, both our proposed strategy and

AMReX use rectangular tiling; however, the speedup from

our approach comes from the lack of parallelization. The 8

threads used by AMReX incurred additional overhead that

our strategy recommended against. For Poisson, our tool ap-

plied full diamond tiling with OpenMP parallelization with

16 threads, which resulted in a 1.8x higher speedup than

AMReX. This speedup comes from specializing the tiling

strategy to the specific data access pattern. For wave, our

tool applied full diamond tiling with OpenMP parallelization

with 16 threads, which resulted in 1.1x higher speedup than

AMReX, but a 60% slowdown compared to Pochoir. Here,

Pochoir outperforms our strategy, as the overhead induced

by dynamic programming is lessened due to the larger input

size of the program. In comparison to AMReX, our strat-

egy specializes a tiling strategy to attain a higher level of

performance. Overall, the key advantages of our proposed

strategy are 1) individual optimizations can be strategically

selected from a choice of multiple with similar purposes, 2)

each optimization can be specially configured to the problem

at hand, and 3) optimizations can be strategically disabled, if

its application will result in slowdown.

5.4 Reproducibility Across Architectures
Here, we analyze the consistency of the optimization strate-

gies tailored by our model work on machines of differing

numbers of cores and cache/memory sizes. In particular, we

optimize the same five stencils from table 4 on the Intel E5-

2420 machine shown in table 3 which has 12 cores, 12GB of

main memory, and a 16 MB L3 cache size; compared to the

machine which trained the model, which has 16 cores, 64GB

of main memory, and a 23 MB L3 cache size. The blocking

factors for the tiling optimizations are scaled to match this

machine’s L3 cache using equation 1. The resulting differ-

ence in speedups for the Allen-Cahn, heat, Laplacian, Pois-

son, and Wave equations are then 17%, 15%, 14%, 21%, and

13% between the two machines.

6 Related Work
Our research belongs in the general area of performance anal-

ysis and optimization for computational workloads. Specifi-

cally, we investigate performance modeling and optimization

prediction for stencil computations.

Exploring analytical modeling to predict performance and

optimizations of stencils has beenwidely studied. Hammer[16]

and Laukemann[19] develop tools to predict performance

and scaling behavior of loops using the roofline[27] and

execution-cache-memory[25] analytical models. Guerrera[15]

leverages analytical models to generate optimized stencil ker-

nels for specific architectures. In contrast to using analytical

modeling to predict performance, our work uses code-level

properties to indicate a potential presence of a bottleneck,

and uses regressionmodeling to predict the best optimization

to eliminate the identified bottleneck.

Rahman [22] presents a stencil optimization process which

similarly uses regression analysis of stencil performance. In

particular, their work derives formulas that will predict a

stencil’s execution time using hardware counters as input,

and uses this to compose and tune optimizations to reduce

bottlenecks on certain hardware resources. Our work, in

contrast, leverages domain-level knowledge about the stencil

at hand to predict optimization profitability.

Domain specific languages (DSLs) provide an alterna-

tive method to attain high performance applications us-

ing higher-level specifications of the problem at hand, in

43

PMAM’22, April 2–6, 2022, Seoul, Republic of Korea B. Nesterenko et al.

which a special purpose compiler translates into machine

code. Prominant examples of stencil DSLs are Pochoir[26],

which uses a divide-and-conquer parallelization algorithm,

and Snowflake [30], which uses micro-compilers to perform

multiple optimization passes over its AST to generate more

customizable code. Our work, in contrast, identifies opti-

mizations for existing code using higher-level properties of

an input stencil rather than generating new code from a

higher-level specification.

7 Conclusion
To summarize, we show that domain-level properties can

be used to predict effective optimization strategies for sten-

cils. We define a repeatable two step optimization approach

that first identifies an initial set of optimizations that are

compatible with the stencil, and then uses regression to pre-

dict the most beneficial optimization among them. We use

our optimization approach to optimize five different partial

differential equations to attain an average of 2.4x higher

speedup over two highly-optimized stencil libraries.

References
[1] [n.d.]. Allen-Cahn-2d. http://web.tuat.ac.jp/~yamanaka/pcoms2019/

Allen-Cahn-2d.html (Accessed on 08/19/2020).

[2] [n.d.]. C Codes. https://people.sc.fsu.edu/~jburkardt/c_src/c_src.html
(Accessed on 10/18/2020).

[3] [n.d.]. Is division slower than multiplication? | searchivarius.org. http:
//searchivarius.org/blog/division-slower-multiplication (Accessed on

07/06/2020).

[4] [n.d.]. Multiple Linear Regression with Interactions | Introduction to

Statistics | JMP. https://www.jmp.com/en_us/statistics-knowledge-
portal/what-is-multiple-regression/mlr-with-interactions.html (Ac-
cessed on 10/18/2020).

[5] 2020. FD1D_HEAT_EXPLICIT - Time Dependent 1D Heat Equation,

Finite Difference, Explicit Time Stepping. https://people.sc.fsu.edu/
~jburkardt/cpp_src/fd1d_heat_explicit/fd1d_heat_explicit.html (Ac-
cessed on 10/02/2020).

[6] 2020. FD1D_WAVE - Finite Difference Method, 1D Wave Equa-

tion. https://people.sc.fsu.edu/~jburkardt/cpp_src/fd1d_wave/fd1d_
wave.html (Accessed on 10/02/2020).

[7] 2020. LAPLACIAN - The Discrete Laplacian Operator. https://people.
sc.fsu.edu/~jburkardt/cpp_src/laplacian/laplacian.html (Accessed on

10/02/2020).

[8] Uday Bondhugula, Vinayaka Bandishti, and Irshad Pananilath. 2016.

Diamond tiling: Tiling techniques to maximize parallelism for stencil

computations. IEEE Transactions on Parallel and Distributed Systems
28, 5 (2016), 1285–1298.

[9] Uday Bondhugula and Jagannathan Ramanujam. 2007. Pluto: A prac-

tical and fully automatic polyhedral parallelizer and locality optimizer.

(2007).

[10] José María Cecilia, José Manuel García, and Manuel Ujaldón. 2010.

CUDA 2D stencil computations for the Jacobi method. In International
Workshop on Applied Parallel Computing. Springer, 173–183.

[11] Leonardo Dagum and Ramesh Menon. 1998. OpenMP: an industry

standard API for shared-memory programming. IEEE computational
science and engineering 5, 1 (1998), 46–55.

[12] Steven Ellingson. 2018. Electromagnetics Volume 1 (beta). Virginia

Tech Libraries.

[13] Zhang et al. 2019. AMReX: A Framework for Block-Structured Adap-

tive Mesh Refinement. Journal of Open Source Software 4, 37 (2019),
1370. https://doi.org/10.21105/joss.01370

[14] Bengt Fornberg. 1988. Generation of finite difference formulas on

arbitrarily spaced grids. Mathematics of computation 51, 184 (1988),

699–706.

[15] Danilo Guerrera. 2021. Stempel. https://github.com/RRZE-HPC/
stempel

[16] Julian Hammer, Georg Hager, Jan Eitzinger, and Gerhard Wellein. 2015.

Automatic loop kernel analysis and performance modeling with kern-

craft. In Proceedings of the 6th International Workshop on Performance
Modeling, Benchmarking, and Simulation of High Performance Comput-
ing Systems. 1–11.

[17] Intel Intel. 64. and IA-32 Architectures Optimization ReferenceManual,

September 2014.

[18] Sriram Krishnamoorthy, Muthu Baskaran, Uday Bondhugula, Jagan-

nathan Ramanujam, Atanas Rountev, and Ponnuswamy Sadayappan.

2007. Effective automatic parallelization of stencil computations. ACM
sigplan notices 42, 6 (2007), 235–244.

[19] Jan Laukemann, Julian Hammer, Johannes Hofmann, Georg Hager,

and Gerhard Wellein. 2018. Automated instruction stream throughput

prediction for intel and amd microarchitectures. In 2018 IEEE/ACM per-
formance modeling, benchmarking and simulation of high performance
computer systems (PMBS). IEEE, 121–131.

[20] Pei-Hung Lin, Qing Yi, Daniel Quinlan, Chunhua Liao, and Yongqing

Yan. 2016. Automatically optimizing stencil computations on many-

core NUMA architectures. In International Workshop on Languages
and Compilers for Parallel Computing. Springer, 137–152.

[21] Brandon Nesterenko, Qing Yi, and Jia Rao. 2018. Improving resource

utilization through demand aware process scheduling. In Proceedings
of the 47th International Conference on Parallel Processing. 1–10.

[22] Shah M Faizur Rahman, Qing Yi, and Apan Qasem. 2011. Understand-

ing stencil code performance onmulticore architectures. In Proceedings
of the 8th ACM International Conference on Computing Frontiers. 1–10.

[23] Kentaro Sano, Yoshiaki Hatsuda, and Satoru Yamamoto. 2013. Multi-

FPGA accelerator for scalable stencil computation with constant mem-

ory bandwidth. IEEE Transactions on Parallel and Distributed Systems
25, 3 (2013), 695–705.

[24] Andreas Schäfer and Dietmar Fey. 2011. High performance stencil

code algorithms for GPGPUs. Procedia Computer Science 4 (2011),

2027–2036.

[25] Holger Stengel, Jan Treibig, Georg Hager, and Gerhard Wellein. 2015.

Quantifying performance bottlenecks of stencil computations using

the execution-cache-memory model. In Proceedings of the 29th ACM
on International Conference on Supercomputing. 207–216.

[26] Yuan Tang, Rezaul Alam Chowdhury, Bradley C Kuszmaul, Chi-Keung

Luk, and Charles E Leiserson. 2011. The pochoir stencil compiler. In

Proceedings of the twenty-third annual ACM symposium on Parallelism
in algorithms and architectures. 117–128.

[27] Samuel Williams, Andrew Waterman, and David Patterson. 2009.

Roofline: an insightful visual performance model for multicore ar-

chitectures. Commun. ACM 52, 4 (2009), 65–76.

[28] Michael Wolfe. 1989. More iteration space tiling. In Proceedings of the
1989 ACM/IEEE conference on Supercomputing. 655–664.

[29] Qing Yi, Keith Seymour, Haihang You, Richard Vuduc, and Dan Quin-

lan. 2007. POET: Parameterized optimizations for empirical tuning. In

2007 IEEE International Parallel and Distributed Processing Symposium.

IEEE, 1–8.

[30] Nathan Zhang, Michael Driscoll, Charles Markley, Samuel Williams,

Protonu Basu, and Armando Fox. 2017. Snowflake: A lightweight

portable stencil dsl. In 2017 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW). IEEE, 795–804.

Acknowledgments
Prepared by LLNL under Contract DE-AC52-07NA27344

with IM release number LLNL-CONF-815179

44

http://web.tuat.ac.jp/~yamanaka/pcoms2019/Allen-Cahn-2d.html
http://web.tuat.ac.jp/~yamanaka/pcoms2019/Allen-Cahn-2d.html
https://people.sc.fsu.edu/~jburkardt/c_src/c_src.html
http://searchivarius.org/blog/division-slower-multiplication
http://searchivarius.org/blog/division-slower-multiplication
https://www.jmp.com/en_us/statistics-knowledge-portal/what-is-multiple-regression/mlr-with-interactions.html
https://www.jmp.com/en_us/statistics-knowledge-portal/what-is-multiple-regression/mlr-with-interactions.html
https://people.sc.fsu.edu/~jburkardt/cpp_src/fd1d_heat_explicit/fd1d_heat_explicit.html
https://people.sc.fsu.edu/~jburkardt/cpp_src/fd1d_heat_explicit/fd1d_heat_explicit.html
https://people.sc.fsu.edu/~jburkardt/cpp_src/fd1d_wave/fd1d_wave.html
https://people.sc.fsu.edu/~jburkardt/cpp_src/fd1d_wave/fd1d_wave.html
https://people.sc.fsu.edu/~jburkardt/cpp_src/laplacian/laplacian.html
https://people.sc.fsu.edu/~jburkardt/cpp_src/laplacian/laplacian.html
https://doi.org/10.21105/joss.01370
https://github.com/RRZE-HPC/stempel
https://github.com/RRZE-HPC/stempel

	Abstract
	1 Introduction
	2 Background: Stencil Optimization
	3 Stencil Properties
	3.1 Domain-Level Properties of Stencils
	3.2 Performance Of Stencils

	4 Modeling Optimization Effectiveness
	4.1 The Applicability Filter
	4.2 The Prediction Model
	4.3 Training the Prediction Model

	5 Experimental Results
	5.1 Experimental Configuration
	5.2 Accuracy of Prediction
	5.3 Optimization Effectiveness
	5.4 Reproducibility Across Architectures

	6 Related Work
	7 Conclusion
	References
	Acknowledgments

