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Most scientific computations serve to apply mathematical operations to a set of preconceived data structures,
e.g., matrices, vectors, and grids. In this paper, we use a number of widely used matrix computations from
the LINPACK library to demonstrate that complex internal organizations of data structures can severely
degrade the effectiveness of compilers optimizations. We then present a data layout oblivious optimization
methodology, where by isolating an abstract representation of the computations from complex implementa-
tion details of their data, we enable these computations to be much more accurately analyzed and optimized
through varying state-of-the-art compiler technologies. We evaluated our approach on an Intel 8-core plat-
form using two source-to-source compiler infrastructures, Pluto and EPOD. Our results show that while the
efficiency of a computational kernel differ when using different data layouts, the alternative implementa-
tions typically benefit from a common set of optimizations on the operations. Therefore separately optimizing
the operations and the data layout of a computation could dramatically enhance the effectiveness of compiler
optimizations compared with the conventional approaches of using a unified representation.
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1. INTRODUCTION

A majority of scientific applications, in spite of their varying domains, heavily rely on a
number of data-intensive kernels to compute desired solutions. These kernels typically
serve to apply a sequence of domain-specific operations to a preconceived set of com-
pound data structures, e.g., matrices, vectors, grids, and graphs. The operations may
read or modify different portions of these data and then combine their values in vary-
ing ways. To effectively optimize these computations, e.g., to parallelize operations on
different portions of a matrix, a compiler must be able to correctly decipher the depen-
dence relations among statements operating on different data, e.g., by accurately dis-
tinguishing operations on different coordinates of a matrix [Allen and Kennedy 2001].
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While compilers have used dependence analysis as the foundation of optimization
for more than thirty years, the accuracy of dependence analysis could be severely de-
graded by complex data structures. Take the well-understood dense matrix multipli-
cation for instance. When the matrix is rectangular and stored in a single-dimensional
array, a general purpose compiler can attain a level of performance [Yotov et al. 2003;
Chen et al. 2005] comparable to that achieved by empirically tuned ATLAS [Wha-
ley et al. 2001]. However, non-rectangular matrices such as triangular, banded, and
banded triangular ones [Mullhaupt and Riedel 2001] are typically stored in compacted
forms to save space, as illustrated in Figure 1. When storing a non-rectangular matrix
in a packed layout such as those in Figure 1(b), the array subscripts used to reference
elements of the matrix could be extremely complex, which could easily overwhelm the
internal dependence analysis of a compiler and thus thwart all optimizations to the
matrix computation code. Section 2 shows an example of such failures in more detail.
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Fig. 1: Data layout for triangular, banded, and banded triangular matrices

We present a layout-oblivious optimization methodology to overcome these difficul-
ties. In particular, our method seeks to isolate the high level semantics of operations
from the organization details of compound data structures and thereby to derive an
abstract specification of operations to be applied to the data. The simplified computa-
tion can then be accurately analyzed and optimized through varying state-of-the-art
compiler technologies. Finally, the optimized operations are combined with the previ-
ously isolated implementation details of their data to generate the final optimized code
of the original computation.

To evaluate our methodology, we optimized 10 matrix computations using two state-
of-the-art source-to-source optimizing compilers: Pluto [Bondhugula et al. 2008] and
EPOD [Cui et al. 2011], which include automatic loop parallelization and memory
performance optimizations for multicore architectures. The experimental results have
confirmed the effectiveness of our approach in optimizing computations that operate
on complex data structures and have shown that although the efficiency of the compu-
tation could differ when implementing matrices with different layouts, the alternative
implementations typically benefit from a common set of optimizations on the opera-
tions. Therefore separately optimizing operations and the data layout of a computa-
tion can significantly enhance the effectiveness of compiler optimizations compared
with the conventional approaches of using a unified representation.

Our contributions include the following.

— We propose a layout oblivious methodology which promotes a separation of concerns
between the abstract semantics of operations to be applied and the organizational
details of compound data. We demonstrate the effectiveness of this methodology by
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optimizing 10 matrix computations using different data layouts. While our imple-
mentation currently targets only matrix computations, it can be extended to accom-
modate other general-purpose data structures in a straightforward fashion.

— We have fully implemented our optimization methodology using the POET lan-
guage [Yi 2012] and developed a framework so that the implementation can be con-
nected with arbitrary source-to-source compilers. We demonstrate the effectiveness
of the framework by integrating it with two state-of-the-art source-to-source compil-
ers, Pluto [Bondhugula et al. 2008] and EPOD [Cui et al. 2011].

— Our methodology includes a symbolic evaluation algorithm which automatically rec-
ognizes the high-level semantics of complex data structure operations based on a
limited collection of user annotations and thereby to derive a normalized abstract
specification of the relevant operations. In sync with the normalization algorithm, a
de-normalization algorithm is presented to re-integrate the optimized abstract oper-
ations with different implementations of complex data structures.

The rest of the paper is organized as follows. Section 2 uses an example to demon-
strate how complex data layout schemes can effectually paralyze an otherwise capable
optimizing compiler. Section 3 shows our overall optimization methodology. Section 4
presents our annotation language for users to describe the intended semantics of their
data structures. Section 5 introduces our symbolic evaluation algorithm and the algo-
rithm to combine optimized abstract operations with different organizations of data.
Section 6 presents experimental results. Finally, Section 7 discusses related work, and
Section 8 concludes.

2. A MOTIVATING EXAMPLE

Figure 1 illustrates three special forms of dense matrices commonly used in linear al-
gebra. These matrices require special treatment because they contain a large number
of zero elements, and the locations of the zero elements are known before runtime.
To save space, typically only the non-zero elements are stored for these matrices, as
demonstrated by Figure 1(b), whereas the matrices are said to be stored in their packed
forms. In the following, we examine the abstract and packed layout forms for each of
the three special types of matrices.

— Triangular Matrix, where all the non-zero elements are below the diagonal of the
matrix, which is known as a lower triangular matrix, or above the diagonal of the
matrix, which is known as upper triangular. When stored in the packed layout, since
only the non-zero elements of a n x n triangular matrix need to be saved, only an
array of size (X}}_; k = n*n/2) is required.

— Banded Matrix, which has all the non-zero elements within a narrow band diago-
nally bordered by two constants k1,k2 > 0 s.t. a;; # 0 only if i — k1 < j < i+ k2. When
stored in a packed form, a banded matrix requires only an array of size nx (k1+k2+1),
as illustrated in Figure 1(b).

— Banded Triangular Matrix, which is a special form of the banded matrix and has
all the non-zero elements below or above the main diagonal,; i.e., it is a banded matrix
with k1 =0or k2 = 0.

The condensed storage formats for the above special matrix forms can pose over-
whelming challenges for compilers to optimize their computations, e.g., to parallelize
their operations or reuse their memory references in the cache or the registers. To
illustrate such a situation, Figure 2(a) shows a code segment selected from the LIN-
PACK sppfa routine, which operates on a packed lower triangular matrix shown in
Figure 2(b). Since all the non-zero elements in the lower-triangular matrix are con-
densed into a single one-dimensional array ap, the k-th row of the matrix is mapped to
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jj=0;
for = 0;]j<mn;j++) {
kk=0;
i+=5
for (k=0; k <j; k++) {
kk +=Xk;

for i=0;1i<k;it++)
ap[jj+k] = ap[jj+k] - ap[jj+i] * ap[kk+i];

H
}
(a) Example for packed triangular matrix
i—lth column
k-th column

k-th row—
j-th row— 1
packed & y
storage | | ) | | h “ | |

ap ap(kk+i) ap(jj+i) ap(jjtk)

(b) Access pattern for packed triangular matrix

for j=0;j <n; j++)
for (k =0; k <j; k++)
for 1= 0;1<k;it++)
ap(J, k) = ap(j, k) - ap(j, 1) * ap(k, 1);

(c) Mapping to the abstract form
(ap(k,i) for the element in k-th row and i-th column)

Fig. 2: Example of packed matrix access.

a contiguous region in the array starting at location Zf:o ¢ and ending at Zf:o i+k.In
Figure 2(a), the variables jj and kk are used to keep track the starting locations of the
rows of the original matrix referenced by loop index variables j and k respectively. The
values of jj and kk are modified at each iteration of the j and k loops respectively. Be-
cause they have a non-linear relation with the values of the corresponding loop index
variables, no state-of-the-art compiler can accurately determine the relations among
array references ap[jj + k|, ap[jj + i], and ap[kk + i]. As a result, the compiler has to
determine that arbitrary elements of the array ap could be accessed by each reference
and thus refrain from applying any reordering optimizations to the given code.
Although analyzing non-linear array subscripts is beyond the ability of existing com-
piler technologies, the code in Figure 2(a) can be effectively optimized by a compiler if
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it is translated to the form in Figure 2(c), which specifies the intended matrix opera-
tions by (a). The conversion, however, requires the domain-specific knowledge that the
array ap in Figure 2(a) implements the packed storage form of a lower triangular ma-
trix. With such knowledge, a symbolic evaluation algorithm can be applied to translate
each access to array ap into the intended matrix coordinates, e.g., by mapping the sin-
gle dimensional access ap[kk + i] to an abstract matrix access ap(k, ), which indicates
that the element at the k-th row and i-th column of the matrix is being accessed. In
the following, we present a new optimization methodology which automatically sup-
port the optimization of the code fragment in Figure 2(a) by first converting it to (c)
and then converting the optimized code of (c¢) back into using the original condensed
storage format.

3. THE OVERALL APPROACH

Source code Normalized code Optimized Optimized
(general/packed) (abstract coordinate) normalized code source code
_ e ey _
—> Matrix > Optimization —1 Matrix )

—» Normalization
Matrix

annotations

De-normalization

Fig. 3: Overview of optimization approach.

Figure 3 shows an overview of our approach, which takes two inputs, the computa-
tional kernel to be optimized and a set of annotations that specify the internal layout
of matrices used in the kernel. It produces optimized code through the following steps.

(1) Matrix normalization. This step seeks to isolate the high level semantics of ma-
trix operations from implementation details of matrices within the input compu-
tation, by automatically converting all the relevant array references to a higher
level representation which uses (row,column) coordinates to access each abstract
matrix, e.g., by converting the code in Figure 2(a) to Figure 2(c).

(2) Optimization. This step applies state-of-the-art compiler optimizations, e.g., loop
parallelization, tiling, array copying, unroll-and-jam, and scalar replacement, to
abstract matrix operations within the normalized code.

(3) Matrix de-normalization. This step takes the optimized code from Step (2) and
modifies all the references of abstract matrix coordinates to instead access the
corresponding locations in their original condensed matrix storage forms. In par-
ticular, this step can be used to convert the optimized code of Figure 2(c) back to
using packed triangular matrices as shown in Figure 2(a).

Within our approach, step (2) (the optimization step) is not bound to any specific
compiler and only requires the compiler to be source-to-source, so that its output code
could be further modified by Step (3). Note that some layout-sensitive optimizations,
e.g., SSE vectorization, which requires vectorized array references to be contiguous
and properly aligned with cache line boundaries, need to be turned off at step (2) and
should be instead applied after the layout-oblivious optimizations and the matrix de-
normalization step have been completed. In the following, we first introduce our matrix
annotation language and then present algorithmic details of automatically normaliz-
ing and de-normalizing the matrix operations. Since our framework can be used to
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(1) Function definition:

%fun_name(pl,...pn) = el if (c)

| €2 otherwise;

(2) Type definition:

@type_name(pl,...,pn) =

@matrix : (row:[l..ul,col:[l..ul) = e;

(3) Variable annotation:

$x : @type_name(el,...,en);

* pl,...,pn: parameter names;

* e, el, €2, ..., en: integer expressions;

* ¢ : a boolean expression;

*[1..u] : an integer type with values >1and < u;
* fun_name: the name of a local function;

* type_name: type name of special matrices;

* x: name of a matrix variable in the input code;

Fig. 4: Matrix Annotation Language

(1) /* %lpack_func(k) = 0 if k==0

| k + Ipack_func(k-1) otherwise;
(2) @lower_tri(n) = @matrix(row:[0..n-1],col:[0..i]) = (Ipack_func(row)+col);
(3) $ap:lower_tri(n);*/

4) jj=0;

(5) for G =0;j < n;j++){
6) kk =0;

(7) i+=j;

(8)  for (k= 0;k < j; k++) {
9 kk +=k;

(10)  for (i=0;i < k; i++)

(11) apljj+k] = apljj+k] - ap[jj+i] * ap[kk+i;
(12)

(13) }

Fig. 5: Example annotations

support arbitrary source-to-source compiler optimizations as long as these optimiza-
tions do not have special requirements on the layout of the abstract matrices, details
of these optimizations are omitted in this paper.

4. MATRIX ANNOTATIONS

Figure 4 shows our matrix annotation language designed to allow programmers to
easily define the intended semantics of data structures in matrix computations, e.g.,
which variables have matrices as their values, whether the matrix is stored in a packed
form, and given the coordinate of a matrix element, how to access its element from
the packed form. The abstract syntax of the language is shown in Figure 4, which
includes three types of annotations: function definitions, type definitions, and variable
annotations. Figure 5 shows some example annotations for the lower triangular matrix
computation in Figure 2(a). The following explains each type of annotations in detail.

Function Definitions. Shown at line (1) of Figure 4, function definitions are used by
our annotation language to express complex non-linear functions that may be required
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to annotate access functions of different matrix storage forms. A function definition
can be self-recursive or recursive in terms of other functions, where the if and other-
wise keywords can be used to define the base and recursive cases of the function. In
Figure 5, the function Ipack_func(k) is defined recursively to compute the starting ad-
dress of the ith row of a lower-triangular matrix and is subsequently used to define the
access function of the corresponding matrix type at line (2).

Type Definitions. Shown at line (2) of Figure 4, type definitions are used by our anno-
tation language to define a special matrix form and specify how to locate each matrix
element at an arbitrary (row, col) coordinate in its packed storage layout. The syntax
Q@Qmatriz is a keyword, (row[l1..ul], col[l2..u2]) specifies the coordinate parameters of an
abstract matrix, where /1/ul and [2/u2 represent the lower/upper bounds of the row
and column dimensions, and e specifies the location (parameterized in terms of row
and col) of the matrix coordinate in the packed layout. The matrix type could be pa-
rameterized, e.g., by the sizes of its dimensions. In Figure 5, lower _tri(n) defines a nxn
lower triangular matrix type, and its access function is defined to map each abstract
matrix coordinate (row,col) to the offset Ipack_func(row) + col of the packed array.

Variable Annotations. Shown at line (3) of Figure 4, variable annotations in our lan-
guage serve to declare additional type information for matrix variables, especially
those that use special storage forms, inside a given input code. These matrix anno-
tations can be embedded inside the input code by enclosing them in C language com-
ments if desired, so that they can be ignored by other compilers. For example, the
annotation at line (3) of Figure 5 declares the array ap to be a lower triangular matrix
of size n. This annotation can be recognized by our matrix normalization algorithm,
presented in Section 5, so that the complex array references of ap in the original input
code can be converted to abstract matrix operations, shown in Figure 2(c), which are
much easier to analyze and optimize by compilers.

5. MATRIX NORMALIZATION & DE-NORMALIZATION

Based on the matrix annotations supplied by the users, our framework aims to extract
the higher level semantics of the input code through a matrix normalization step which
converts complex array references within the input code to simple accesses of abstract
matrices using abstract matrix coordinates. The normalized code can then be fed into a
source-to-source compiler for optimization. Finally, a de-normalization step is applied
to convert the compiler optimized code, which continues to reference all matrices in
their abstract forms, back to referencing all matrices in their original storage formats.
The following explains both the normalization and de-normalization steps in detail.

5.1. Matrix Normalization

As shown in Algorithm 1, our matrix normalization algorithm takes two parameters:
the input code (input) and the associated matrix annotations (matrixz_annot). It aims
to convert each array reference A[r|, where A is declared as a special matrix in the
annotations, to an abstract matrix access in the form of A(row, col) in the input code.

5.1.1. Algorithm Overview. To normalize the matrix accesses, our algorithm first in-
vokes symbolic evaluation (line 1 of Algorithm 1) to perform symbolic evaluation of
the input code so that for each integer expression contained inside loops, a symbolic
value is derived in terms of the index variables of its surrounding loops and other vari-
ables that are invariant across the surrounding loops. The computed symbolic values
are then stored inside a hash table named prog_table. More details about the symbolic
evaluation will be discussed in Section 5.1.2.
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Algorithm 1 Normalizing matrix accesses.

procedure Normalize Matrix(input, matrix_annot)
1: prog_table = symbolic_evaluation(input,empty_table);
2: for each A:matrix in matrix_annot do
3:  access = lookup_access_map(matrix_annot,matrix),
4: for each array access Alr] in input do
5: r_val = Lookup_symbolic_value(prog_table, r);
6: coord = match_pattern(r_val, access);
7 if coord # empty then
8 add (A[r] => A(coord) to repl_A;

9; else
10: repl_A = empty; break out of loop;
11: end if

12: end for
13:  if repl_A # empty then

14: apply all replacements in repl_A to input;
15:  end if
16: end for

After the symbolic evaluation for the input program is completed, the algorithm
traverses the whole program to normalize each annotated matrix variable (A). For
each array reference A[r| that needs to to be converted to abstract matrix coordinates,
the symbolic value of r (line 5) is matched against the matrix access function provided
by user annotations (line 6). In particular, line 6 invokes match_pattern to determine
whether the current array reference subscript » shares the designated access pattern of
the annotated matrix type of A (more details discussed in Section 5.1.3). If the pattern
matching is successful, an instantiated matrix coordinate coord = (row, col) is returned
and then used by the algorithm to replace A[r] with A(coord) (lines 7-8).

5.1.2. The Symbolic Evaluation Algorithm. Symbolic evaluation refers to the process of
tracking the symbolic values of variables within a program by symbolically evalu-
ating expressions along all reachable program paths. The analysis has been widely
used in programming tools for debugging, validation, verification, and optimiza-
tion [Cheatham et al. 1979]. We leverage symbolic evaluation to track the symbolic
values of integer expressions while summarizing all the program paths leading to the
evaluation of the expression [Cheatham et al. 1979]. The algorithm is shown in Algo-
rithm 2 and takes two parameters, the input code to analyze, and a symbol table which
stores the existing result of analysis. It modifies the input symbol table to remember
analysis results for all the integer expressions contained in the input code and then
returns the modified table as result.

A key idea of Algorithm 2 is to enforce that each variable and each expression in the
input code has a unique symbolic value in the current hash table when evaluating an
arbitrary expression of the input code. Each symbolic value can be expressed in one of
the following forms.

— ¢, a constant value or the name of a global variable that is never modified within the
current scope;

—op(vl,...vn, ), the result of applying a built-in operation (e.g., +,-,%) to a list of sym-
bolic values v1,...vn;

—if(vl,v2,0v3), the result of evaluating if (v1) then v2 else v3, where v1,v2, v3 are
symbolic values;
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/*$ap: lower_pack(n);*/
int packed_mm(float *ap, int n)

ji=0
for (j=0;j<n; j++)

kk =0;
H+=i _
for (k =0; k <j; k++)
kk +=k;
for (i=0;i<k;i++)
ap[ij+k] = ap[jj+k] - ap[jj+i] * ap[kk+i];

RBPBOONoORwWNEMA

o

-

(a) source code

i 0

j idx;(0,n,1)*

Kk 0

i Reduction(+,0, idx;) #

tablel Kk

(for idx,(0,idx;,1)
PackImm)| ples i i (0.l 1)

for | . .
(rcn)erstojc))p table3 | kk Reduction(+,0,idxy))

(for loop
nestk) | bled | ri: «q|  ap[Reduction(+0,idx;)+idx] -
(for loop ap[ij+K] ap[Reduction(+,0,idx;)+idx;] *

nest i) ap[Reduction(+,0,idx)+idx;]

(b) symbolic evaluation results

* This idx; expression represents the value of a loop variable ranging from 0 to n,
with increment 1 at each iteration;

8 A new table is created when entering a new scope.

# The Reduction expression represents the value of a variable initialized with 0 and
then applied with the operation of + at each iteration by a loop variable idx;

Fig. 6: Example of symbolic evaluation
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Algorithm 2 Symbolic Evaluation

procedure symbolic_evaluation(input, table)

1: case input is a function definition f(params, body):
table2 = symbolic_evaluation(body, empty_table);
table[input] = FunctionDef(params, table2));

: case input is a sequence of statements:
for each stmt in input do

table = symbolic_evaluation(stmt, table);
end for
: case input is an assignment (lhs = rhs):
9:  table = symbolic_evaluation(rhs, table);
10:  table[lhs] = table[rhs];
11:  if (lhs is a reference to variable z) then
12: table[x] = table[lhs];
13:  end if
14: case input is a loop ((¢ = ({,u, s)), body):
15:  table2 = symbolic_evaluation(body, (i = idx;(l,u, s)));
16:  table[input] = summarize_loop(table2);
17: case input is a conditional if (c1) then b1l else b2:
18:  table = symbolic_evaluation(cl,table);
19:  tablel = symbolic_evaluation(b1,table);
20:  table2 = symbolic_evaluation(b2,table);
21:  table[input] = summarize_if(cl,tablel,table2);
22: case input is a built-in operation op(opdl, ..., opdn):
23:  table = symbolic_evaluation(opdl,table); ....
24:  table[input] = op(table[opdl], ...table[opdn));
25: case input is a function call f(args):
26:  summarize_function_call(f,args,table);
27: case input is a variable reference of x:
28:  table[input] = table[z];

return table;

N

PTGk

—idz;(l, u, s), the value of a loop variable ranging from [ to u, with increment s at each
iteration;

— Reduction(op, init,idz), the value of a variable initialized with init and then com-
bined with a loop variable idx using a reduction operation op (e.g., +,*) at each iter-
ation of the loop.

As shown in Algorithm 2, our algorithm recursively evaluates each expression, state-
ment, and control flow structure, by summarizing the new values that they have com-
puted for each memory location. Whenever a new control flow block, e.g., a if-else con-
ditional or a loop, is encountered, a new empty table is created so that all variables not
modified by the block can be treated as constants. Values computed by different control
flow branches are then summarized into a unique value using the i f and Reduction op-
erators. We use the classical reduction recognition algorithm by Pottenger [Pottenger
1995] to recognize special assignment patterns such as a = a+ B(3(3, j, k, ...)) and omit
the details of their algorithm in this paper.

Figure 6 uses an example to demonstrate the process, where (a) shows the input
source code, and (b) shows the symbolic evaluation results. In particular, Figure 6(b)
shows that the symbolic value for ap[jj + | is ap[Reduction(+,0, idz;) + idx;]), which
matches the access function, Reduction(+,0, row) + col, where row and col are param-
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I
lower_pack > | ap[jj+]=>
Reduction(+,0,row)+col : Reduction(+,0,idx;)+Hidx;
I
! | Pattern matching
; »>
| Y
ower pack(n) = i [Mapping relation:
@matrix(row,col) =>/) | idx; €21
| idx; €2
I
I
T
I
I
I
I
I
I

Coordinates

success
v binding

Code rewriting rule:
ap[jj+i]=>ap(idx;, idx;)

Fig. 7: Pattern matching example

eters representing the coordinate of an abstract matrix, of the lower_packed matrix in
the user-supplied matrix annotations shown in Figure 7.

5.1.3. Pattern Matching. Figure 7 uses an example to illustrate the key steps in-
volved in mapping the array reference ap[jj + i¢] = Reduction(+,0,idz;) + idz; in Fig-
ure 6 to the corresponding abstract matrix access ap(j,¢). First, the symbolic value
of ap[jj + t] is computed as Reduction(+,0,idx;) + idz;, which is matched against
Reduction(+, 0, row) + col, the access function of the lower_tri matrix, the matrix type
of ap declared in the user annotations. Since both expressions contain the same Re-
duction operation, their pattern matching succeeds after matching the two coordinate
parameters, row and col, with idz; and idz; respectively. Then, we can bind the coor-
dinate parameters (row,col) with (j,7) and generate the normalized abstract matrix
references, shown in Figure 2(c).

5.2. Matrix De-normalization

After matrix normalization, the normalized input code is converted into a valid C code
by changing the type declarations of all the normalized matrices and then referencing
all the converted abstract matrices using two-dimensional array accesses. The con-
verted C code can be fed into an arbitrary C/C++ source-to-source compiler for op-
timization. Then, the optimized code, still in C syntax, needs to go through another
de-normalization process so that all the abstract matrix variables are translated back
to their original storage formats.

While de-normalization is the inverse of matrix normalization, it can be imple-
mented much more easily than its counter part. The process mostly involves trans-
lating a set of higher level notations, specifically abstract matrix references, to their
lower level implementations based on the access functions specified for each matrix
type used in the input code. Since each access function is parameterized by a pair of
coordinate variables of the abstract matrix, the process merely involves substituting
the coordinate variables with their actual parameters within the access function def-
inition and then using the instantiated expression to substitute the original abstract
matrix access in the input code. To translate the Reduction operation, which needs a
loop to evaluate the desired symbolic value, we generate the required loop nest on the
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fly and then save the desired symbolic value into a temporary scalar variable. The
scalar variable is then used to substitute the corresponding Reduction operation inside
the instantiated matrix access functions.

While converting higher level abstract matrix notations to concrete lower-level array
references, our de-normalization step is aware of the runtime cost of varying array sub-
script calculations and takes care to minimize such cost. For example, for packed tri-
angular matrices, the subscript calculation includes a recursive function which needs
to be computed using a loop. Our algorithm generates such loops by evaluating all the
loop invariant expressions outside of the generated loops to eliminate redundancy.

5.3. Putting it Together

We have implemented both the matrix normalization and de-normalization algorithms
using POET [Yi 2012], a scripting language designed to support the program trans-
formation needs of source-to-source optimizing compilers. The normalization process
generates syntactically correct C code as output, where each abstract matrix is imple-
mented using a two-dimensional array. The normalized C code can then be optimized
by an arbitrary source-to-source C compiler, which generates optimized code while
maintaining all the abstract matrix references. Finally, the optimized C code is used
as input to our matrix de-normalizer, which converts all the abstract matrices back to
using their original packed storage forms.

Our algorithms are conservative in that the optimized code is guaranteed to be cor-
rect if the user-supplied annotations can be assumed to be correct. Although our sym-
bolic evaluation algorithm is not guaranteed to successfully recognize all forms of ref-
erencing a packed matrix, the matrix normalization algorithm will modify a matrix
to its abstract form only if all the relevant references can be successfully recognized
and converted; otherwise, the original packed storage form will remain, and none of
the original matrix references will be modified. Since only matrices annotated by the
user will be converted to abstract forms, and all the matrix conversions are strictly
based on the user-supplied access functions, the normalized code is guaranteed to have
identical semantics as those of the original input code. The correctness of the matrix
de-normalization step can be argued in a similar fashion.

Our approach is effective in optimizing packed matrix computations where the ma-
trix layout can be easily expressed with our annotation interface. To handle more com-
plex data structures that cannot be easily annotated using our existing interface, our
infrastructure may need to be extended significantly. The generality of the approach
is limited by two critical pieces within our infrastructure: symbolic evaluation and
pattern matching. In our current implementation, these two components are built to
specifically target matrix computations. However, symbolic evaluation has been widely
used in the area of software engineering and thus proven to be extensible to more gen-
eral cases. Pattern matching is known to be customizable based on varying needs.
Therefore both components can be extended to handle broader application domains,
although how to design a more general algorithm is still an open question.

While Section 6 will demonstrate the effectiveness of our approach in optimizing
packed matrix computations, it remains a challenge to apply the layout-oblivious opti-
mization scheme to other data structures such as sparse matrices, lists and trees. We
consider the tackling of these issues a subject of our future research.

6. EVALUATION

We have connected our matrix normalization and de-normalization implementations
with two source-to-source parallel optimizing compilers, Pluto [Bondhugula et al.
2008] and EPOD [Cui et al. 2011], both of which include automatic loop parallelization
and memory locality optimizations for multicores, and have applied them to optimize
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Computation MatrixType Routine Layout
triangular mm.tri abstract
packed
matrix matrix multiply mm.band abstract
C=AxB banded packed
banded mm.bandtri | abstract
triangular packed
triangular mv.tri abstract
packed
matrix vector multipl mv.band abstract
Y=AxX Py banded packed
banded mv.bandtri abstract
triangular packed
triangular sm.tri abstract
matrix matrix solver packed
AxX =B banded sm.bandtri abstract
triangular packed
triangular sv.tri abstract
matrix vector solver g packed
AxX =Y banded sv.bandtri abstract
triangular packed

Table I: Benchmarks.

10 matrix computation kernels shown in Table I. Both Pluto and EPOD support loop
parallelization by automatically generating OpenMP pragmas. For the mm and mv ker-
nels, we studied three non-rectangular matrix types, triangular, banded, and banded
triangular, each using two different matrix storage formats: abstract and packed lay-
outs (see Figure 1). For the sm and sv kernels, banded matrices are not used as both
solvers require that their input matrices must be triangular.

Our evaluation aims to verify that our approach is indeed effective in optimizing ma-
trix computations where non-rectangular matrices are stored in complex packed stor-
age forms. The following first introduces our experimental design and then presents
our results of using both the Pluto and EPOD optimizing compilers to optimize the 10
benchmarks in Table I. Finally, Section 6.4 summarizes our experimental results.

6.1. Experiment Design

We have used the Pluto [Bondhugula et al. 2008] and the EPOD [Cui et al. 2011]
source-to-source C compilers to optimize all the 10 benchmarks in Table I, with each
benchmark implemented alternatively using two different matrix layouts: abstract
and packed, and each benchmark optimized with or without first invoking the matrix
normalization component. The Pluto compiler uses the polyhedral model to analyze
the loop iteration space of its input code and then applies three loop optimizations:
parallelization, two-level loop tiling, and unroll-and-jam. EPOD is a pattern-based
optimizer, where we have written a EPOD script to define the desired optimization
sequence for each computation pattern. In particular, the 10 benchmarks have been
grouped into four EPOD patterns: mm, mv, sm, sv. The EPOD script for mm includes
loop parallelization, 2-level loop tiling, array copying, unroll and jam, loop unrolling,
and SSE vectorization.

We used the icc compiler version 11.0 to compile all of our benchmarks to machine
code with the -openmp and -fast command-line options, which instruct the icc com-
piler to apply processor specific optimizations (e.g., SSE3 vectorization) based on -03.
We evaluated the mm and sm benchmarks using randomly initialized 2048%2048 matri-
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M icc (abstract layout)
W PLUTO+icc (abstract layout)
B LO+PLUTO+icc (abstract layout)

W icc (packed layout)
B PLUTO+icc (packed layout)
B LO+PLUTO+icc (packed layout)

20
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Fig. 8: Performance of the mm and sm benchmarks using our framework + PLUTO

ces, and evaluated the mv and sv benchmarks using a 10240 x 10240 matrix and a vector
of size 10240. We have run all of our experiments on an 8-core Intel platform with
two 2.33GHz quad-core Xeon 5410 processors. Each processor has 32KB L1 data cache
per core, 32KB L1 instruction cache per core, and 6MB L2 unified data/instruction
cache shared by all cores. All the experiments are repeated 5 times, and the average
GFLOPS rates attained across the 5 runs are reported as the final results. Variations
among different runs are minor, as the underlying machine was otherwise idle when
running our experiments.

6.2. Optimizing Results Using Pluto

Figure 8 shows the performance (GFLOPS) attained when using Pluto and icc com-
bined with our layout-oblivious framework to optimize the mm and sm benchmarks, and
Figure 9 shows the performance (GFLOPS) attained when optimizing the mv and sv
benchmarks. For each benchmark, icc(abstract layout)/(packed layout) stand for
performance attained when using icc alone to compile the original source code with
the respective matrix layouts; PLUTO+icc(abstract layout)/(packed layout) stand
for the performance attained when using both Pluto and icc to optimize the bench-
marks without invoking our matrix normalizer; LO+PLUTO+icc (abstract)/(packed)
stand for the performance attained when using P1luto and icc combined with our ma-
trix normalizer and de-normalizer for both matrix layouts.

From Figure 8, for the mm and sm matrix kernels, the performance attained by
icc(abstract) icc(packed) and PLUTO+icc(packed) is extremely poor (lower than
0.1GFLOPS) compared to that achieved by PLUTO+icc (abstract). A key observation
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m icc (abstract layout) m icc (packed layout)
m PLUTO+icc (abstract layout) m PLUTO+icc (packed layout)
B LO+PLUTO+icc (abstract layout) B LO+PLUTO+icc (packed layout)

2.5

Performance (GFLOPS)

mv.tri mv.band mv.triband sv.tri sv.triband

Fig. 9: Performance of the mv and sv benchmarks using our framework + PLUTO

for the poor performance is that the packed layout prevents PLUTO from applying
loop tiling. However, after applying matrix normalization to the packed matrices, the
LO+PLUTO+icc versions have attained a similar level of performance not only for ab-
stract matrix layouts, but also for packed matrices, due to the effective application of
loop tiling and other optimizations. The icc compiler did not attain a reasonable per-
formance for the mm and sm kernels even when using abstract matrix layout, as it fails
to apply loop tiling to the non-triangular loop nest. A similar pattern can be observed
for the mv and sv kernels, although the performance difference is less dramatic, as
shown in Figure 9.

From Figure 8 and Figure 9, our layout oblivious approach was able to significantly
enhance the effectiveness of the Pluto compiler when optimizing computations that use
packed matrix layouts. Also note that when using the packed matrix layouts, the op-
timized computations have comparable performance to that of the same kernel when
using abstract layout, with under 3% slowdown in all cases. This indicates that the
optimizations applied by Pluto are not sensitive to the underlying layouts of the ma-
trices, and a common set of optimizations should be applied to the same computation
irrespective of what layout forms are used to implement the matrices.

6.3. Optimizing Results Using EPOD

Figure 10 and Figure 11 show the performance results when using our approach to-
gether with EPOD to optimize the benchmarks. Here for each benchmark, the nota-
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m icc (abstract layout) = icc (packed layout)
B EPOD+icc (abstract layout) ® EPOD+icc (packed layout)
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Fig. 10: Performance of the mm and sm benchmarks using our framework + EPOD.

tions of different optimization configurations have the same meaning as Figure 8 and
Figure 9, except that EPOD is used in place of PLuto.

From Figure 10 and Figure 11, almost identical patterns can be observed as in Fig-
ure 8 and Figure 9, although EPOD has attained a higher performance level for the
mm and sm kernels when effective but attained slightly lower performance for the mv
and sv kernels. Again the complex subscripted references within loops when using the
packed matrix layout have overwhelmed the EPOD pattern recognition algorithm and
thus disabled its optimizations. Our approach solves this problem and enables alter-
native implementations of the same matrix computation to benefit from a common set
of optimizations.

The EPOD script for mm includes loop parallelization, 2-level loop tiling, array copy-
ing, unroll and jam, loop unrolling, and SSE vectorization. Note that this pattern-
oriented optimization sequence includes a special step “array copying”, which copies
small data blocks from the normalized abstract matrix to a pre-allocated space so that
data within these blocks are stored contiguously in memory, as illustrated in Figure 12.
This step essentially reorganizes the matrices in a block-major format [Whaley et al.
2001], thus allowing SSE vectorization to be applied to the matrix computations even
for packed form matrices and turning SSE vectorization from a layout-sensitive opti-
mization into layout-oblivious. As a result, in Figure 10 and Figure 11, we are able
to achieve similar performance for both packed and abstract matrices when using the
“LO+EPOD+icc” optimization configuration.
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Fig. 11: Performance of the mv and sv benchmarks using our framework + EPOD.
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Fig. 12: Applying the array copying optimization to the mm kernel using EPOD
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6.4. Summary Of Results

From our performance study, we make the following observations about our optimiza-
tion framework.

— Computational kernels that cannot be effectively analyzed by existing optimizing
compilers due to complex memory access patterns can benefit from our framework
by having their data accesses normalized to a standard form and thus become opti-
mizable.

— When a single algorithm is implemented using different data structures, the alter-
native implementations can often benefit from a common set of optimizations on the
operations, irrespective of the different data layout schemes being used.

— Our framework is not specific to any optimizing compiler. Although the impact of
optimization may vary when using different optimizing compilers, our framework
can be used to enhance the effectiveness of their optimizations by allowing them to
be oblivious of the varying data structure implementations.

7. RELATED WORK

Dense matrix kernels belong to an important domain of scientific computing, where
the BLAS and LINPACK libraries [Dongarra et al. 1990] provide standard implemen-
tations of basic vector and matrix operations. The performance of matrix computation
kernels has been aggressively tuned both manually [Hu et al. 2006; Volkov and Dem-
mel 2008] and automatically via frameworks such as PHiPAC [Bilmes et al. 1997] and
ATLAS [Whaley et al. 2001].

Recursive algorithms have been used to exploit special optimization opportunities
for triangular matrices stored in a packed layout [Anderson et al. 2001; Gustavson
et al. 2008; Elmroth et al. 2004]. Agarwal et. al developed a parallel blocking algorithm
for banded matrix stored in packed layout [Agarwal et al. 1995]. However, this body
of work mostly focuses on manual algorithm optimizations for special matrix layouts,
and the techniques have not been effectively integrated into optimizing compilers.

Compiler researchers have developed effective techniques to automatically optimize
dense matrix computations [Chen et al. 2005; Cui et al. 2011; Ding et al. 2011; Yi 2011,
Xue 2000; Xue et al. 2005], which are well known to benefit from a large number of loop
optimizations commonly integrated within optimizing compilers either through a pure
dependence-based approach [Allen and Kennedy 2001; Wolfe 1989] or through more
general integer programming models such as the Polyhedral framework [Bondhugula
et al. 2008]. All of these frameworks, however, will fail when analyzing subscripted
array references that are non-linear to the index variables of the surrounding loops, as
demonstrated by Figure 2. Our layout oblivious approach aims to complement these
existing compiler optimizations by rendering them insensitive to the complex internal
implementations of data structures used in their input applications.

Pingali et al [Pingali et al. 2011] introduced a data-centric formulation of algo-
rithms, called the operator formulation, to express an algorithm in terms of action
and data structures. With the data-centric abstraction, they introduced Tao-analysis
which can unify seemingly unrelated parallelization techniques. From the perspective
of programming, it is natural to support the separation of concerns in the design and
development of data structures and algorithms [Sitaraman et al. 2000]. However, such
separation of concerns has not been leveraged by compiler optimization techniques,
which our approach aims to accomplish.

A number of compilers, e.g., Broadway[Guyer and Lin 2005] and DyC[Grant et al.
2000], used annotation languages to guide dynamic compilation and domain-specific
optimizations of scientific codes [Wu et al. 1999; Guo et al. 2011]. Our use of developer-
supplied annotations to summarize the semantics of different matrix storage formats
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serve to provide compilers additional domain-specific knowledge about user applica-
tions.

Symbolic evaluation, also called symbolic execution, is a case of abstract interpreta-
tion and has been widely used in programming tools for debugging, validation, veri-
fication, and optimization [Cheatham et al. 1979; Clarke 1976; Pasareanu and Visser
2009]. It analyzes programs by tracking symbolic rather than actual values and repre-
senting values of variables as symbolic expressions, thus allowing the output values to
be expressed as functions of the input symbolic values. Our symbolic evaluation algo-
rithm is an application of the existing algorithms and can similarly be used for other
purposes as well.

8. CONCLUSION AND FUTURE WORK

This paper presents a data layout oblivious optimization methodology to significantly
enhance the effectiveness of compiler optimizations when encountering complex data
access patterns that cannot be deciphered by state-of-the-art dependence analysis
techniques. By isolating the implementation details of data structures and document-
ing their semantics through user-supplied annotations, we present a normalization
algorithm which can automatically extract a higher level representation of the com-
putations, which can then be readily understood and optimized by compilers. Our
methodology can be used to significantly enhance the effectiveness of arbitrary source-
to-source optimizing compilers, as long as the optimized source code maintains the
relevant abstract data references generated by our normalization algorithm, where
a de-normalization process can be applied to automatically convert the abstract data
structures back to using their original implementations.

We have applied our methodology to optimize 10 matrix computation kernels using
two source-to-source optimizing compilers. Our results show that separately optimiz-
ing the operations and the data layout of a computation could significantly enhance
the effectiveness of compiler optimizations when compared with the conventional ap-
proaches of using a unified representation.

Our future work will seek to extend our methodology to optimize matrix computa-
tions within large-scale scientific applications and to extend its applicability to other
application domains beyond dense matrix computations. For example, we will seek
to support sparse matrices using our annotation language and will seek to apply the
layout-oblivious optimization methodology to other general-purpose data structures,
e.g., lists, trees, etc.
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