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ABSTRACT
The performance of many scientific applications depends on
a small number of key computational kernels which require
a level of efficiency rarely satisfied by existing native com-
pilers. We present a new approach to high performance ker-
nel optimization, where a general-purpose transformation
engine automates the production of highly efficient library
routines. The library routines are then empirically tested
until an implementation with a satisfactory performance
level is found. Our framework requires an annotated ker-
nel specification and can automatically produce optimized
implementations based on tuning parameters controlled by
a search driver. The transformation engine includes an ex-
tensive suite of optimizations which can be easily expanded
using a custom transformation language. We have applied
our framework to generate code for key linear algebra ker-
nels and have achieved similar performance as that achieved
by ATLAS’s highly tuned kernels. In several cases, our ker-
nels were faster than ATLAS’s native kernels; we have made
these kernels available to ATLAS, which results in speedups
for the ATLAS library, as we show.

1. INTRODUCTION
There are more than a few application areas where perfor-
mance needs are not fully addressed by current compila-
tion techniques, either because the compiler lacks domain-
specific knowledge about the application, or because the
compiler cannot fully address the extreme complexity of
modern computer architectures. To overcome this prob-
lem, many applications rely on performance-critical libraries
which have been hand-tuned (often directly in assembly) for
each architecture of interest. For a few computational li-
braries, there exist empirical tuning frameworks that can
automate this tuning process, as in ATLAS [27, 25] and
FFTW [10, 20], among others. The demand for such well-
tuned library routines has led to several application-specific
empirical tuning frameworks where both domain-specific knowl-

Figure 1: Our empirical tuning approach

edge and direct timings are used to guide the optimization
of important kernel implementations [7, 11, 17, 22, 24, 2, 4].

Despite the success of many domain-specific empirical tun-
ing systems, there are limits to the generality and portability
of this approach. Since these frameworks require significant
investment to create, and are typically not as effective when
the problem at hand deviates from their main domain, many
computational kernels beyond their domain are not well sup-
ported and thus do not achieve adequate performance.

This paper presents a new approach, where a general-purpose
framework is proposed to automate the production of highly-
optimized library kernels. As shown in Figure 1, our frame-
work includes three components: an analyzer, a transfor-
mation engine, and an empirical search driver. The ana-
lyzer role could be performed manually by a programmer or
automatically with a source-to-source compiler. Since the
analyzer understands the computational kernel and knows
what transformations should be investigated to improve per-
formance, such information is expressed in a kernel specifi-
cation file. On each platform that the library routine needs
to be tuned for, the kernel specification is used as input to
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a transformation engine, which works together with a cus-
tomized search driver to automatically search the transfor-
mation space in finding a highly optimized kernel implemen-
tation. This paper focuses on presenting our POET trans-
formation engine which we have used for optimizing floating
point kernels.

A key feature of our approach is the portability and exten-
sibility of our transformation engine (TE). Additionally, the
TE is language neutral and can be easily specialized to pro-
duce optimized kernels in an arbitrary source language, in-
cluding C, C++, FORTRAN, or assembly. Compared to the
conventional domain-specific empirical tuning frameworks,
our approach has the following advantages:

• First, our approach is targeted at producing high per-
formance implementations for general-purpose library
routines. The transformation engine includes an exten-
sive library of code optimizations that can significantly
improve application performance. The analyzer needs
to only specify where to apply these transformations
in order to extract high performance for an arbitrary
computational routine. The kernel specification can
then be empirically tuned on different machines with-
out re-applying any of the required program analysis.

• Second, our transformation engine supports the pa-
rameterization and re-configuration of all the relevant
code optimizations, so that a single version of ker-
nel specification can be used to generate different im-
plementations and empirically tuned to find the best
implementation. In contrast, although most domain-
specific empirical tuning frameworks parameterize their
kernel implementations to ensure portability, their pa-
rameterization is often limited to variations specific to
a single or small set of kernels, and thus are not as
comprehensive or as easy to extend.

• Finally, our transformation engine is based on an em-
bedded scripting language, POET, which can be used
by library developers to easily define their own cus-
tomized algorithm-specific optimizations. A kernel spec-
ification file can then be similarly written to invoke
these optimizations. Therefore, using our approach,
both the transformation engine and the kernel speci-
fication file are readily extendible to incorporate new
architecture features and domain-specific knowledge.
As a common case, a source-to-source compiler can be
first employed to automatically produce a kernel spec-
ification file based on results of program analysis, the
generated POET scripts can then be manually modi-
fied or extended by library developers to incorporate
domain-specific optimizations.

Our work is related to the research of empirical tuning com-
pilers, which iteratively re-configure architecture-sensitive
optimizations according to the performance feedback of their
optimized code. This body of research has demonstrated
that empirical tuning of application performance can sig-
nificantly improve the effectiveness of compiler optimiza-
tions [28, 19, 15, 16, 21, 12, 32, 5]. Our approach can sig-

nificantly improve the flexibility, efficiency, and extendibil-
ity of existing iterative compilers. Specifically, by provid-
ing POET kernel specifications as the output of optimizing
compilers, applications need to be analyzed only once for
optimization, and the resulting code transformations can be
empirically tuned many times on arbitrary computing plat-
forms. Optimizing compilers do not need to reside on the
machines where the applications will be ported, and both
library developers and independent search drivers can work
directly on the POET output from compilers to modify the
optimization configurations as well as to add their own cus-
tomized transformations.

To demonstrate that our transformation engine can pro-
duce kernel implementations as efficient as those produced
by domain-specific libraries, we have applied our framework
to generate highly optimized code for several of the most
important and representative linear algebra kernels used in
the ATLAS library [27, 25]. In this work, we have manu-
ally written the kernel specification (the library routine to
optimize plus markup indicating what transformations to
investigate, see Figure 5 for an example). Our future work
will extend an optimizing compiler [29] to automate this pro-
cess. Section 4 presents a comparison of our POET kernels
with those produced by the ATLAS framework. Our POET-
tuned kernels achieve similar levels of performance as those
tuned by ATLAS, winning in some cases and losing in oth-
ers, but competitive across the spectrum. We also present
data showing that even with such a highly tuned library,
POET can provide further speedup. Therefore these results
provide strong evidence that that our POET code trans-
formation engine can achieve portable high performance for
general-purpose kernels, while requiring significant less time
and effort than hand-tuning the routines.

2. THE TRANSFORMATION ENGINE
Our transformation engine (TE) is based on a small special-
purpose language named POET (Parameterized Optimiza-
tions for Empirical Tuning) [30]. The POET language is
designed to specifically support parameterized code genera-
tion for empirical tuning and includes sophisticated features
to support easy definition of arbitrary customizable code
transformations. Our TE has used POET to support an
extensive code transformation library, an annotation inter-
face for parsing and representing arbitrary computational
routines, and a programming interface for applying different
code optimizations to the kernel computation. POET can
also be used to implement customized search drivers for the
empirical tuning of arbitrary kernel implementations. This
paper focuses on how to use the POET TE to automatically
produce high-performance kernel implementations.

As shown in Figure 2, our transformation engine includes
three components: a POET language interpreter, a trans-
formation library, and a collection of front-end definitions
which specialize the transformation library for different pro-
gramming languages such as C, C++, FORTRAN, or As-
sembly. In the center of the TE is the POET language in-
terpreter, which takes as input a kernel specification from
an analyzer and a collection of parameter values from a sep-
arate search driver, invokes a specialized language frontend
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Figure 2: POET transformation engine

to help parse the input computation, and then invokes the
transformation library to optimize the kernel implementa-
tion. An optimized kernel implementation is output as the
result, which is then empirically tested and measured by the
search driver until a satisfactory implementation is found.

In order to build an optimized kernel implementation, the
analyzer needs to only provide a kernel specification, which
invokes a specialized language frontend to parse the input
computation and then invokes transformation routines from
the TE library to optimize the computation. Both the TE
library and the language frontend can be used without de-
tailed knowledge about their implementation. Additionally,
developers can easily expand the TE library with domain-
specific customized transformations. In the following, Sec-
tions 2.1 and 2.2 first briefly introduce our existing frontend
and transformation library. Section 2.3 then focuses on how
to use the POET TE to build optimized kernels for empirical
tuning.

2.1 Frontend Specialization
Our transformation engine is language neutral in that both
POET and the TE library are independent of what language
that the input computation is coded in. POET is a script-
ing language which can be embedded in an arbitrary source
language and treats code fragments in the source language
as strings wrapped inside a collection of customized abstract
syntax tree (AST) definitions called “code templates”. Fig-
ure 3 shows some examples of code templates defined for
optimizing kernels written in C. Each POET code template
conveys a special meaning and serves to present an abstract
view of the input computation to the TE library, which ap-
plies transformations to the code templates without knowing
how the code templates are defined.

POET code templates are compound data structures which
are used by the transformation engine to provide an inter-
nal representation of the input computation. As shown in

<code Exp pars=(str)>
@str@
</code>

<code Stmt pars=(str) >
@str@;
</code>

<code ArrayRef pars=(arr,sub) >
@arr@[@sub@]
</code>

<code PtrRef pars=(ptr)>
*(@ptr@)
</code>

<code Assign pars=(lhs, rhs)>
@lhs@ = @rhs@
</code>

<code Function pars=(head,body)>
@head@
{

@body@
}
</code>

<code Loop pars=(i,start,stop,step) attr=(maxiternum)>
@for (@i@=@start@; @i@<@stop@; @i@+=@step@)
</code>

<code Nest pars=(loop, body)>
@loop@ {

@body@
}
</code>

<code Sequence pars=(s1,s2) >
@s1@
@s2@
</code>

Figure 3: C frontend specialization

Figure 3, each code template can have two attributes, pars

and attr, which define the parameters and additional prop-
erties of the source code. The concrete syntax of each code
template is then defined in a programming language such
as C and is parameterized by variables declared in pars

(in Figure 3, the reserved token, ‘@’, is used for context
switching between POET parameters and source strings of
the underlying language). As an example, Figure 3 includes
several code templates defined for the C language. These
code templates are used in the definition of the loop block-
ing transformation in Figure 4 and are used to parse the
matrix multiplication kernel given in Figure 5.

Code template specializations like those shown in Figure 3
are used both for parsing the input source and for emitting
the transformed output. The POET TE library uses these
templates as internal representations of the input computa-
tion without knowing how these representations are defined
in the input code. When an input program is defined in
terms of code templates, generic routines predefined in our
TE library can recognize the structure of the input program
and apply optimizations accordingly. The definition of code
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<xform Stripmine
pars=(inner,bsize,outer)
tune=(unroll=0,split=0)
output=(_nvars, _bloop, _tloop,_cloop,_body)>

switch outer {
case inner : ("","","","",inner)
case Loop#(i,start,stop,step): ......
default: ......

}
</xform>

<xform BlockHelp
pars=(bloop,tloop,rloop,bbody,cbody,cloop)>

if (bloop=="") ... <*base case*>...
else { ...<*recursively call BlockHelp*>... }

</xform>

<xform BlockLoops
pars=(inner,outer,decl,input)
tune=(bsize=16,split=0,unroll=0)>

...=Stripmine[unroll=::unroll,split=::split]
(inner,bsize,outer);

... call BlockHelp ...

... modify input ...
</xform>

Figure 4: Skeleton of Loop blocking as defined in
the transformation library

templates therefore serves to specialize the TE library to a
specific programming language. To process kernels imple-
mented in a language other than C, the programmer only
needs to switch to another predefined code template header
file. The POET transformation engine can therefore be used
to optimize kernels in different languages without significant
adaptation.

2.2 The Transformation Library
Our TE library includes an extensive collection of code op-
timizations that have proven to be able to significantly im-
prove application performance, including loop transforma-
tions such as loop blocking, interchange, fission, fusion, unroll-
and-jam, unrolling, splitting; memory optimizations such as
array copying and scalar replacement; as well as low-level
optimizations such as strength reduction and SSE vectoriza-
tion. All transformations are implemented using POET, a
high-level scripting languages with an xml-like syntax. Fig-
ure 4 shows a few skeletons of POET routines relevant to
applying a loop blocking transformation. Table 1 lists a
subset of the POET operations used in the examples.

As shown in Figure 4, POET uses the keyword xform to
define routines that can be invoked to transform input code
fragments. Each xform routine uses the pars attribute to
define a sequence of function parameters, uses the tune at-
tribute to define tuning parameters which can be used to
reconfigure the transformation (each tuning parameter has
a default value which defines the default configuration), and
uses the output attribute to define return values of the xform

routine. The body of each xform routine examines the input
parameters and returns a new code fragment which replaces
the original one. Additional information may be returned
when the output attribute is defined.

The entire TE library comprises xform routines as shown
in Figure 4. These routines can apply pattern matching
to the input code fragment (e.g., the switch statement in
the Stripmine routine tries to match the outer parameter
against different code templates), use complex control-flow
support such as conditionals and loops, and make recursive
function calls. Each routine can build new fragments using
compound data structures such as lists, tuples, hash tables,
and predefined code templates. The full programming sup-
port for defining customized transformations distinguishes
POET from most other existing special-purpose transfor-
mation languages, which rely on template- or pattern-based
rewrite rules to support definition of new transformations.

POET xform routines can be separated into two categories:
internal routines such as Stripmine and BlockHelp, which are
helper routines used by other facilities within the library;
and interface routines such as BlockLoops, which can be in-
voked directly from a kernel specification file. Programmers
need only be aware of the syntax and semantics of interface
routines when defining the kernel specification for an input
application.

We choose to use POET to implement our TE library be-
cause using a scripting language is orders of magnitude eas-
ier than using general-purpose languages such as C/C++ in
writing dynamic code transformation routines. In addition
to supporting common language features such as loops and
recursive functions, POET has a special focus on program
transformation by supporting easy construction and manip-
ulation of code fragments in a customized internal represen-
tation. The extensive support for building code transforma-
tions in POET allows programmers to easily extend the TE
library with their own xform routines.

Most of the code transformations in our TE library are also
typically included in optimizing compilers, where the rou-
tines would be part of the compiler implementation and
written in C/C++ (or whatever language the compiler is
implemented in). In essence, we have implemented many of
the conventional compiler transformations using the POET
language and have provided these transformations as a li-
brary as a part of a comprehensive programming support
for building extremely optimized kernel implementations. A
source-to-source optimizing compiler can then be employed
to automatically produce invocations to the library routines
to optimize an input code. Through the POET language,
our transformation engine provides a flexible interface for
programmers both to extend the TE library with additional
customized optimizations and to extend the kernel specifica-
tion with additional optimizations based on domain-specific
knowledge. The additional empirical tuning support by the
transformation engine also makes POET-optimized kernels
much more portable than hand-written assembly.

2.3 Kernel Specifications
The main input of POET transformation engine is a ker-
nel specification file which includes two components: an in-
put specification, which defines the input computation to be
tuned as a kernel; and a transformation specification, which
defines where and how to apply various parameterized trans-
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<input gemm>
//@; BEGIN(gemm)
void ATL_USERMM(const int M, const int N, const int K,

const double alpha, const double *A, const int lda,
const double *B, const int ldb, const double beta,
double *C, const int ldc) //@=>_:Exp

{ //@; BEGIN(_)
int i, j, l; //@=>gemmDecl:Stmt; BEGIN(gemmBody)
for (j = 0; j < N; j += 1) //@ =>loopJ:Loop BEGIN(nest3)
{ //@; BEGIN(body3)

for (i = 0; i < M; i += 1) //@=>loopI:Loop BEGIN(nest2)
{ //@;BEGIN(body2) BEGIN(parse)

C[j*ldc+i] = beta * C[j*ldc+i]; //@END(parse) =>_:Stmt
for (l = 0; l < K; l +=1) //@=>loopL:Loop BEGIN(nest1)
{ //@;BEGIN(parse)

C[j*ldc+i] += alpha * A[i*lda+l] * B[j*ldb+l]; //@END(parse) =>stmt1:Stmt
} //@END(nest1:Nest) END(body2:Sequence)

} //@END(nest2:Nest) END(body3:Nest)
} //@END(nest3:Nest) END(gemmBody:Nest) END(_:Sequence)

} //@END(gemm:Function)
</input>

Figure 5: Input specification for kernel dgemm

formations to the input code. For example, Figure 5 shows
the POET input specification for dgemm, the matrix mul-
tiplication kernel from the ATLAS library [27, 25], and Fig-
ure 6 shows the transformation specification for the kernel.

Input Specification.In order to optimize a computational
kernel, the POET transformation engine needs to parse the
input code and translate it into an internal code template
representation which can be understood by the TE library.
Figure 5 illustrates an input specification for the ATLAS
dgemm routine, where fragments of the the input code are
annotated with information to help parse the matrix com-
putation into a code template representation. Each POET
annotation either starts with “//@” and lasts until the line
break, or starts with “/*@” and ends with “@*/”. Program-
mers can embed these annotations as comments in their
C/C++ code, where the source code of the computational
routine is readily accessible for both readability and easy
maintenance of the kernel implementation.

POET supports both single and nested template annota-
tions. A single template annotation starts from the end
of the last annotation and ends with an annotation in the
format “=> x : T”, where x is the name of a global vari-
able that will be used to store the result of parsing the
code fragment, and T is the code template that should be
used to parse the annotated code. For example, in Fig-
ure 5, the annotation “void ATL USERMM(...const int ldc)
//@=> :Exp” indicates that the entire source string “void
ATL USERMM(...const int ldc)” should be treated as the
content of a single expression as defined by the Exp code
template, and the variable name “ ” indicates that the code
fragment does not need to be stored in any global variable.
Similarly, the annotation“ int i, j, l; //@=>gemmDecl:Stmt”
indicates that “int i, j, l;” is a statement that should be
parsed using the Stmt template, and the result should be
stored in the global variable gemmDecl. The definitions for
both Exp and Stmt can be found in Figure 3.

In contrast to single template annotations, nested annota-
tions in POET are used to help parse compound language
constructs such as functions and loop nests, which include
other code fragments as components. Each nested POET
annotation starts with “BEGIN(x)”, where x is the variable
that should be used to store the compound code template,
and ends with “END(x:T)”, where T is the name of the
code template that should be used to parse the annotated
code. In Figure 5, the annotation “for (l = 0; l < K; l +=
1) //@ =>loopL:Loop BEGIN(nest1) ... END(nest1)” is a
nested annotation which starts with the for loop (a singly
annotated fragment stored in loopL) and ends after parsing
the loop body stmt1. Other nested annotations in Figure 5
include code fragments stored in gemmBody,nest3, nest2,
body2,etc. The special nested annotation “BEGIN(PARSE)
... END(PARSE)” indicates that the built-in POET expres-
sion parser should be used to parse the enclosed code frag-
ment, where appropriate code templates for parsing have
been pre-defined in the frontend specialization of the POET
TE.

The input specification as illustrated in Figure 5 is neces-
sary so that the POET language interpreter can parse the
input computation correctly without being source language
specific (note that much of this could be handled automat-
ically by a source-to-source analyzing compiler). Because
each code template used in parsing the input code can alter-
natively be defined using a different programming language,
the POET TE can be easily specialized to optimize code
written in different source languages such as C or FOR-
TRAN without requiring a parser for each language. We
have designed the annotation syntax to minimize intrusion
to the source code, so that if written in C, POET annota-
tions can be treated merely as comments, and the source
code can be compiled with a regular C compiler without
requiring any additional bookkeeping.
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<parameter SSELEN=16, SSENO=16 />
<parameter mu=6, nu=1, ku=36, NB=36, MB=36, KB = 36, PF=1 />
<trace nest3,loopJ,body3,nest2,loopI,body2,

nest1,loopL,stmt1,gemm,gemmDecl,gemmBody/>
<define Specialize DELAY { if (SP) {

REPLACE("N",NB,loopJ); REPLACE("M",MB,loopI); REPLACE("K",KB,loopL);
REPLACE("lda",MB, gemmBody); REPLACE("ldb",NB, gemmBody);
if (alpha == 0) { REBUILD(REPLACE("alpha",1, gemmBody)) }

} } />
<define nest3_UnrollJam DELAY { if (mu > 1 || nu > 1) {

UnrollJam[factor=(nu mu)](nest1,nest3,gemmBody);
} } />
<define nest1_Unroll DELAY { if (ku > 1) {

UnrollLoops[factor=ku](stmt1,nest1,body2);
} }/>
......

(a) transformation definitions

<output dgemm_kernel.c (
TRACE gemm;
APPLY Specialize;
APPLY A_ScalarRepl;
APPLY nest3_UnrollJam;
APPLY B_ScalarRepl;
APPLY C_ScalarRepl;
APPLY array_ToPtrRef;
APPLY Abuf_SplitStmt;
APPLY body2_Vectorize;
APPLY array_FiniteDiff;
APPLY body2_Prefetch;
APPLY nest1_Unroll;
gemm

) />

(b) output definition

Figure 6: Defining transformations for kernel dgemm

f [tuneArgs](inputArgs) invoke the xform routine f with arguments for both the input and tuning paramters
DELAY exp delay the evaluation of a POET block exp until later
APPLY exp force the evaluation of a delayed POET block exp

REPLACE(c1,c2,input) replace the code fragment c1 in input with c2
REBUILD exp rebuild a code fragment exp after modifications to it
TRACE exp start tracing all the pre-declared trace variables in the code fragment exp

Table 1: A subset of built-in operations in POET

Transformation specifications.After the input specifica-
tion is processed by a POET language interpreter, an inter-
nal representation of the given kernel computation is con-
structed and stored in a collection of global variables. The
programmer can then invoke the POET TE library to opti-
mize the input code. Figure 6 illustrates some of the trans-
formation specifications for optimizing the dgemm kernel in
Figure 5. These transformation specifications include four
different kinds of POET declarations: parameter, trace,
define, and output, for defining and manipulating the global
variables used to store the input computation. The set of
the operations used in Figure 6 is defined in Table 1.

In POET, each keyword parameter declares a number of
global variables that can be used to re-configure transforma-
tions applied to the input code. The values of these parame-
ters can be set from command line by an independent search
driver when the transformation engine is invoked, which al-
lows the search driver to generate different kernel implemen-
tations for empirical tuning. The parameter declarations
therefore serve as the communication interface between the
transformation engine and the search driver.

Similar to the parameter declaration, each keyword trace

serves to declare global variables which can be embedded
inside the input computation to keep track of selected code
fragments as they go through a sequence of transformations.
In Figure 6(b), the TRACE operation inserts several trace

variables, gemmDecl,gemmBody,nest3, nest2,and nest1, into
gemm, the global variable which stores the internal repre-
sentation of the input code. As various transformations are
applied to optimize the input code, the values of these trace
variables are replaced with equivalent code fragments which
may display better performance. In Figure 6, the input

code is optimized by applying 11 different transformations,
each transformation can operate on the trace variables with-
out worrying about what transformations have already been
applied. The tracing capability therefore makes the order-
ing of different code transformations extremely flexible, and
the programmer can easily adjust transformation orders and
even determine the best ordering through empirical tuning
if desired.

Each keyword define in POET serves to assign new val-
ues for global variables. At each assignment, the target
code fragment is first evaluated and the result is then as-
signed as the new value of the variable. If the value of a
global variable is a code transformation, the evaluation of
the transformation can be delayed using the DELAY oper-
ation, which packages the code fragment until an APPLY
command is invoked, which forces the evaluation of delayed
transformations. Figure 6 illustrates the definition of three
code transformations, Specialize, which specializes the input
code by substituting constant values as bounds for loops;
nest3 UnrollJam, applies unroll-and-jam transformation to
nest3; and nest1 Unroll applies loop unrolling to nest1. Pre-
defined transformation routines are invoked within these def-
initions, where REPLACE and REBUILD are built-in func-
tions within the POET language, and UnrollAndJam and
UnrollLoops are routines defined in the TE library. The in-
vocations to both UnrollAndJam and UnrollLoops have re-
defined their tuning parameters based on the reconfigurable
parameters of the kernel specification.

Finally, the output declaration in POET defines what code
should be output to external files. The output declaration
in Figure 6 first applies a sequence of transformations to the
input code and then outputs the optimized code. A trans-
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formation specification can define multiple code fragments
to output to different files so that multiple implementations
can be simultaneously produced by the transformation en-
gine.

2.4 Optimizing Kernel Implementations
The goal of our transformation engine is to support com-
pact description of both parameterized code optimizations
and how these optimizations can be applied differently to
improve the performance of input applications. We have
carefully designed our framework to offer strong support for
the following capabilities:

• Generic transformations can be easily defined and ap-
plied to optimize arbitrary application codes. In ad-
dition to an extensive library of predefined code op-
timizations commonly adopted by compilers, library
developers can use POET to readily define their own
customized code transformations.

• Important properties and special semantics of code
fragments can be conveniently expressed in the de-
scription of input code. This information can then
be utilized in the definition and application of generic
code transformations. POET provides language sup-
port for specially tagged code templates, through which
library developers can encode their domain-specific knowl-
edge and can make the results of their program analysis
available both to the transformation engine and to the
external world for better readability and maintenance.

• Each transformation specification allows a collection of
tuning parameters as the interface of re-configuration.
An optimization space is therefore explicitly available
to external search drivers in the empirical exploita-
tion of best application performance. Generic search
drivers can consequently be developed without being
tied to any specific compiler or library optimization.

As shown in Figure 1, our transformation engine can collab-
orate with a source-to-source compiler (the analyzer) and
a search driver to empirically find efficient implementations
for a library routine. This paper focuses on using our trans-
formation engine as a generic tool box for library developers
who would like to manually build highly optimized kernel
implementations. Our future work includes developing a
source-to-source compiler which can perform program anal-
ysis, identify profitable transformations, and then produce
a POET kernel specification file as result of parameteriza-
tion for subsequent empirical tuning. Either manually pro-
duced by library developers or automatically by an optimiz-
ing compiler, the POET kernel specification can serve as the
distribution form of a kernel implementation which can then
be empirically tuned whenever the application needs to be
ported to a different machine.

3. THE OVERALL APPROACH
The key technical contribution of this paper is the empiri-
cal tuning approach shown in Figure 1 for automatic gen-
eration of efficient implementations for performance-critical

library routines. The core of this approach is the POET
language and transformation engine, which offer the flexi-
ble empirical tuning of application performance by provid-
ing a modular communication interface among independent
optimizing compilers, application developers, and empirical
search drivers. The transformation engine offers a generic
tool box to library developers for building customized code
optimizations and allows such optimizations to be general-
ized for other applications. Additionally, it offers a portable
output language for source-to-source compilers to generate
parameterized code transformations and to explicitly for-
mulate program analysis results to the external world. Pro-
grammers can modify and extend the output of optimizing
compilers to additionally incorporate their domain-specific
knowledge. Using our POET TE can greatly improve the
efficiency of tuning since the compiler or library developer
needs to perform the analysis only once when creating the
kernel specification. This original analysis result may then
be used without change for an arbitrary number of tuning
sessions across the architectures of interest.

Correctness of transformations.The POET language pro-
vides a means for library developers and optimizing compil-
ers to express parameterized optimizations to an arbitrary
input computation. The correctness of the optimized code
depends on two factors: whether the transformation rou-
tines are defined correctly in the POET TE library, and
whether the transformation routines are invoked correctly
in the kernel specification script. If either the TE library
or the kernel specification is incorrect, the optimized code
may have different semantics than those of the original input
computation, and flawed algorithm implementations may be
produced.

Since both the TE library and kernel specifications may be
modified by library developers for the purpose of apply-
ing domain-specific optimizations, the POET transforma-
tion engine provides debugging support for tracing the re-
sults of different code transformations to an input code. Our
existing work assumes that each input library kernel has an
external mechanism for testing correctness of its implemen-
tation (we have used the ATLAS testing and timing mech-
anism in our experimental evaluation in Section 4). Each
algorithm implementation generated by our transformation
engine is first tested for correctness before the performance
of the implementation is measured and used in the empirical
tuning of code optimizations.

Searching for best performance.As shown in Figure 1,
the POET transformation engine relies on a separate empir-
ical search driver to determine the configuration of transfor-
mation parameters that lead to the best performance. The
transformation engine can collaborate with arbitrary search
drivers so that different search strategies can be used to find
a satisfiable algorithm implementation. For the purpose of
our experimental evaluation, which does not yet focus on
search, we have produced straightforward shell scripts to
provide the search driver for each library routine. Our search
drivers iteratively experiment with different configurations
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for the transformation parameters based on domain-specific
information about each library routine being tuned.

Language Independence.POET aims to serve as the ba-
sis for building general transformation engines independent
of what programming language that the input computation
is coded in. As illustrated in Figure 3, POET uses a col-
lection of code templates to specialize the transformation
engine to an arbitrary programming language. The code
templates serve as templates not only for code generation
but also for parsing the input computation into an inter-
nal structured representation (a specialized abstract syntax
tree). Specifically, the collection of code templates serves as
the grammar description of a programming language, and
the POET parser will interpret the grammar description
when attempting to decompose the input computation into
a structured representation.

The POET parser first reads the input computation as a list
of strings. It then decompose the string list into structured
code templates like a top-down recursive descent parser.
The process is different from a conventional recursive de-
scent parser in that it allows the grammar description to be
provided dynamically as input data together with the input
computation. As a result it can be used to parse computa-
tions coded in an arbitrary programming language as long
as a valid grammar description for the language is also pro-
vided as input. Since all recursive descent parsers require the
grammar description to satisfy certain constraints, POET
require the code template definitions to satisfy similar prop-
erties. When such properties are violated, input annotations
such as those in Figure 5 are required to ensure the success
of evaluation. The input annotations also serve to improve
both the efficiency and flexibility of parsing. Specifically,
the input annotations allow the POET parser to quickly dis-
cover the computation structure without exploring multiple
parsing alternatives. Additionally, code fragments that are
not targets of optimization can be saved as a list of strings
without being parsed into structured code templates.

Expressing Transformations.POET provides full program-
ming support, including compound data structures (lists, tu-
ples and code templates), arbitrary control flow (condition-
als, loops and recursive function calls), pattern matching,
as well as built-in transformation operations (e.g. replace,
permute, duplication code fragments) for conveniently build-
ing arbitrary customized optimizations. Consequently, any
transformation that can be expressed in a general-purpose
programming language such as C/C++ can also be easily
expressed in POET. Additionally, POET provide special-
ized support, such as automatic tracing of code fragments
going through transformations, to ease the programming of
parameterized transformations for empirical tuning.

Programming in POET.POET is designed to be a script-
ing language that can be easily understood and used by de-
velopers to build their own customized optimizations. Al-
though we expect that kernel specifications for library rou-

tines will be eventually automatically produced by an opti-
mizing compiler, library developers are expected to inspect
the transformation script and modify the kernel specifica-
tions when necessary. As mentioned earlier, in this present
work we have manually written the kernel specifications for
the ATLAS routines surveyed in Section 4.

Since POET is a high-level scripting language which includes
support for both general-purpose control flow and special-
ized operations for program transformation, writing trans-
formations in POET is expected to be much easier than
writing specialized code generators in C/C++ or any other
general purpose programming language. The challenge of
POET programming lies in that instead of writing a concrete
algorithm implementation for a library routine, developers
are required to formulate parameterized transformations to
an input code. Since the majority of code transformations
can be automated by optimizing compilers and the POET
TE library, the difficulty level of extending a POET kernel
specification is expected to be significantly less than hand-
tuning variations of algorithm implementations in low-level
C or assembly.

4. RESULTS
We have used our POET transformation engine to tune
several linear algebra kernels from the popular ATLAS li-
brary [27]. By comparing our performance results with the
best kernel performance of both ATLAS and the native com-
pilers, we have verified that (1) Even highly aggressive com-
pilers used in isolation rarely achieve the level of perfor-
mance required by HPC applications; (2) this level of effi-
ciency can be satisfied by our POET approach, which we
show produces kernels with performance comparable to AT-
LAS’s highly tuned implementations; (3) the POET TE can
achieve better performance than hand-tuned kernels when
those kernels are not updated frequently enough in the face
of ongoing architectural evolution; (4) by integrating our
POET TE with empirically tuned libraries such as ATLAS,
we can improve the performance of existing HPC libraries
by providing a complementary kernel optimization approach
which is highly portable across different computer architec-
tures.

Our work in tuning ATLAS kernels includes implement-
ing relevant optimizations in the POET TE library and
then hand-writing a kernel specification file for each AT-
LAS kernel being tuned. Because none of the transforma-
tion routines in the POET TE library utilizes any domain-
specific information about the ATLAS kernels, we expect
that the POET transformation engine can similarly achieve
high-performance levels for other computational kernels and
performance-critical library routines in general.

4.1 Methodology
ATLAS first tunes some simplified performance kernels, and
then uses these kernels to implement fast BLAS and LA-
PACK routines [26]. To evaluate the overall performance
impact when using POET TE to generate important AT-
LAS library kernels, we performed two sets of experiments.
First, we used ATLAS’s timing routines to measure the
performance of PTE produced kernels and compared them
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directly against the best ATLAS implementations. Sec-
tions 4.2 and 4.3 present relevant results for Level 3 and 2
BLAS kernels respectively. Second, we integrated the POET-
produced kernels within ATLAS as user-contributed rou-
tines, and evaluated the overall performance impact when
this extended ATLAS is used to implement higher-level LA-
PACK routines such as the QR-solve (Section 4.4).

Platform Cmp Flags

2.66Ghz C2D icc -xP -msse3 -O3 -mp1
9.1 -fomit-frame-pointer

(Core2Duo) gcc -mfpmath=sse -msse3 -O2
4.0.1 -m64 -fomit-frame-pointer

2.2Ghz ATH gcc -mfpmath=387 -falign-loops=4
(Athlon 64 X2) 4.2.0 -fomit-frame-pointer -O2

(a) Compiler and flag information by platform

Core2Duo Athlon-64 X2
Prec scal vec scal vec
single 5,320 21,280 4,400 8,800
double 5,320 10,640 4,400 4,400

(b) Theoretical peak by platform (MFLOPS) (Prec:
precision of floating-point operations; scal: using scalar
op; vec: using vectorized op.)

Table 2: Platform Summary

We concentrate on the ubiquitous x86 platform, and re-
port performance for the newest machines from both AMD
(2.2 Ghz Athlon-64 X2) and Intel (2.66 Ghz Core2Duo) that
we have access to (abbreviated as ATH and C2D, respec-
tively). The ATH runs Linux, and the C2D OS X. The
theoretical peak of the platforms are summarized in Ta-
ble 2(b). These architectures have different peak perfor-
mance depending on the precision of the floating-point op-
erations used, and whether vectorized vs. scalar operations
are used.

All timings were done with ATLAS version 3.7.30, using the
best available compiler version and flags, as shown in Ta-
ble 2(a). We used the Intel compiler icc solely on the C2D
platform, as icc was not specialized for the AMD architec-
ture. Since profiling runs of icc using the actual data never
produced speedup on our machine, and occasionally caused
slowdown, we report the best performance achieved by icc

without profiling. All timers used ATLAS’s cycle-accurate
walltimer, and since walltime is prone to outside interfer-
ence, we repeated each timing six times (on an unloaded
machine) and took the minimum time. All results were ob-
tained using the ATLAS timers, which flush the cache (this
means that our numbers will be lower, but more accurate for
usage, than those often reported elsewhere). We report per-
formance in MFLOPS, rounded to the nearest whole num-
ber.

4.2 Level 3 BLAS Kernels
ATLAS uses a simplified GEMM kernel to support the entire
Level 3 BLAS [26] (we will refer to this simplified kernel as
gemmK to distinguish it from the full BLAS routine GEMM).
The POET input specification for this kernel is shown in
Figure 5. This kernel is specialized into three cases in order
to handle varying β in Figure 5; in this section we report
on the performance for ATLAS’s most commonly-used β

variant, β = 1; typically the β = 0 case is slightly faster,
and the β = X case is slightly slower.

Since the cost of Level 3 BLAS kernels tends to dominate
in the majority of algorithms, ATLAS tunes Level 3 BLAS
much more aggressively than the Level 1 or 2. In partic-
ular, gemmK, like all of ATLAS’s kernels, is tuned by the
multiple implementation [26, 27] method, where a series of
hand-tuned and generic implementations are searched, and
the best performing is selected. ATLAS additionally tunes
gemmK by a second and orthogonal tuning strategy, where a
completely automated ANSI C source generator is used to
find the best implementation for a given architecture and C
compiler combination. Since the source generator search is
ATLAS’s most general strategy, we track the performance it
achieves separately as ATLAS-gen; the full search, which
includes both multiple implementation and source generator
search, is labeled ATLAS-full.

Table 4.1 shows the performance of gemmK for each archi-
tecture and precision (kernel names are prefixed by ‘s’ for
single precision, and ‘d’ for double precision). The perfor-
mance results of three different methodologies are presented:
The performance of using gcc (gcc+ref) and icc (icc+ref)
to compile a reference implementation of gemm similar to
the code shown in Figure 5; the performance of ATLAS ker-
nels achieved using code generator search only (ATLAS-
gen) and achieved using both the code generator search
and multiple implementation search (ATLAS-full); and the
performance results achieved by our POET kernel specifica-
tion when empirically tuned using our transformation engine
(PTE+spec).

The first thing to notice is that our PTE-tuned implementa-
tions handily outperforms ATLAS-gen for all problems except
double precision on the Athlon-64. This is primarily because
SIMD vectorization is required to get good performance for
all other surveyed precision/architectures, but ATLAS-gen

uses the scalar FPUs only (as shown in Table 2(b), ATH
has the same scalar and vector peak for double precision,
thus the code generator is competitive for this case). This
is because ATLAS uses gcc as its default compiler, and gcc
cannot yet successfully autovectorize these kernels. Addi-
tionally, we see that the PTE numbers are substantially bet-
ter in all cases when compared against reference compilation
using gcc/icc (in our worst case, we are still more than twice
as fast as the fastest compiler). Therefore, we succeed in
our first goal of outperforming or matching the most gen-
eral part of ATLAS.

When we compare PTE and ATLAS-full, we get mixed re-
sults. For three of the four cases we see that our numbers are
competitive with those of ATLAS’s best hand-tuned codes,
but that we lose by a modest amount. For sgemmK/C2D, how-
ever, we win by a reasonable margin. The reason for this is
clear: for the three cases where we lose, ATLAS has kernels
which have been hand-optimized by the ATLAS developers
for both the architecture and kernel in question. However,
ATLAS’s multiple implementation shows the Achilles’ heal
of hand-tuning: the last case has not yet been hand-tuned
specifically for the C2D, and thus our automated process
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2.66Ghz Core2Duo 2.2Ghz Athlon-64 X2
Kernel gcc icc ATLAS PTE+ gcc ATLAS PTE+
name +ref +ref gen full spec +ref gen full spec

sgemmK 571 6226 4730 13972 15048 1009 4093 7651 6918
dgemmK 649 3808 4418 8216 7758 939 3737 4009 3754

Table 3: Performance in MFLOPS of Various gemmK Implementations (gcc+ref/icc+ref: reference im-
plementation compiled with gcc/icc; ATLAS gen/full: ATLAS implementation using source-generator/full
search; PTE+spec: implementation produced by POET transformation engine.)

2.66Ghz Core2Duo 2.2Ghz Athlon-64 X2
Kernel gcc icc ATLAS TE+ gcc ATLAS TE+
name +ref +ref full spec +ref full spec

sgerK 1230 2927 3751 3400 639 1005 962
dgerK 439 438 462 519 411 518 500
dgemvNK 382 574 939 1069 408 799 902
dgemvTK 556 574 835 1079 579 739 1049
sgemvNK 438 859 1838 2097 528 1185 1986
sgemvTK 556 1826 1752 2171 835 1389 2056

Table 4: Performance in MFLOPS of various Level 2 BLAS Kernels (gcc+ref/icc+ref: reference implemen-
tation compiled with gcc/icc; ATLAS full: ATLAS implementation using full search; PTE+spec: implemen-
tation produced by POET transformation engine.)

is able to outperform the best available hand-tuned ker-
nel (which in this case is a kernel originally tuned for the
Pentium 4). We have not yet implemented all the relevant
optimization techniques in our TE, so we expect to further
narrow the performance gap with the hand-tuned codes as
the work progresses. However, these numbers are already
impressive enough to convincingly demonstrate the promise
of this more automatic (and thus more persistent in the face
of architecture change) tuning process.

4.3 Level 2 BLAS Kernels
ATLAS uses three simplified kernels to optimize the entire
Level 2 BLAS, and we will call these kernels gemvNK, gemvTK,
and gerK. Because they are less critical for application per-
formance and require more kernels to cover the required
functionality, ATLAS tunes the Level 2 BLAS only through
multiple implementation (i.e. there are no Level 2 code gen-
erators). Therefore, the category of atlas-gen is meaning-
less here, and not tracked. In looking at the Level 2 kernel
performance (summarized in Table 4.1), we see that this re-
liance on only an empirical search of hand-tuned kernels,
coupled with their relative neglect by the developers when
compared to the Level 3, results in less well-optimized imple-
mentations of these kernels. Therefore, our PTE-optimized
kernels exceed the performance obtained by ATLAS in the
majority of the Level 2 BLAS kernels. As before, both ATLAS

and PTE substantially exceed the performance obtained by
simple compilation. We have several optimizations known
to be beneficial for these types of kernels still to be added
to our PTE, and so we expect our performance advantage in
these kernels to widen yet further.

4.4 Improvements for LAPACK
So far, we have reported speedups in ATLAS’s kernel rou-
tines, which are used to optimize the entire Level 2 and 3

BLAS, which are in turn the performance engine of a host of
Linear Algebra applications. A question arise as to whether
speeding up such kernels indeed speeds up the higher-level
codes as expected. A survey of Linear Algebra applications
is beyond the scope of this paper, but to give some indica-
tion, Figure 7 shows the performance of LAPACK’s widely
used least squared solve ([D,S]GELS) driver routine (solved
using one right hand side), which performs the solve us-
ing the QR factorization. Here we report the performance
achieved by ATLAS alone (xGELS-ATL) versus that achieved
when we allow ATLAS’s multiple implementation search to
use our PTE-tuned kernels (xGELS-ATL+PTE). For the Athlon-
64 (Figure 7(b)), we sped up the Level 2 BLAS, with much
greater advantage achieved in single precision. Thus we see
that ATL+PTE is noticeably faster for single precision results
than pure ATLAS. ATL+PTE is slightly faster for double pre-
cision, but only barely.

The results are largely the same on the Core2Duo (Fig-
ure 7(a)), but since we sped up both the Level 2 and 3
BLAS for single precision on this platform, the results are
even more impressive. Therefore, these tunings are indeed
more widely useful, and we can additionally observe a key
feature of our approach: we can use it to improve existing
tuning frameworks. In the short term, we plan to submit
our PTE-tuned kernels to the ATLAS group. Longer term, it
should be possible for packages such as ATLAS to directly
leverage our PTE just as they presently do the native com-
pilers.

5. RELATED WORK
There are more than a few highly successful empirical tuning
frameworks which provide efficient kernel implementations
for important scientific domains, such as those for dense and
sparse linear algebra [7], signal processing [11, 17], among
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(a) On OS X/2.66Ghz Core2Duo (b) On Linux/2.2Ghz Athlon-64 X2

Figure 7: Performance vs. Problem size of LAPACK QR Factor and Solve

others [22, 24]. Additionally, some systems permit users to
specify the desired kernel operation in a high-level mathe-
matical notation [17, 2, 4]. Our approach can be applied
to general purpose applications beyond those targeted by
domain-specific research. Further, it complements existing
domain-specific research by providing an efficient transfor-
mation engine to help existing libraries more readily port to
different computer architectures.

Recent research has produced some general-purpose empiri-
cal tuning frameworks where compilers are employed to sup-
port performance tuning of arbitrary applications. These
empirical tuning compilers iteratively re-configure well-known
optimizations according to performance feedback of the op-
timized code and have demonstrated that empirical tuning
of application performance can significantly improve the ef-
fectiveness of compiler optimizations [28, 19, 15, 16, 21, 12,
32, 5]. These compiler-based frameworks apply to all appli-
cations that have access to the optimizing compiler. How-
ever, they restrict applications to optimizations available
only within the compiler, which typically does not provides
much information to the outside world, e.g., why partic-
ular transformations were or were not applied. Addition-
ally, each empirical compiler is by itself a significant infras-
tructure which typically includes a large and growing col-
lection of routines for program analysis, code optimization,
and language processing capabilities. Our own infrastruc-
ture is significantly lighter weight, and therefore should be
more suitable for inline use by applications or other tuning
frameworks.

POET supports existing iterative compilation frameworks [15,
16, 19, 21, 12] by providing an output language for parame-
terizing code optimizations for empirical tuning. In particu-
lar, POET’s explicit parameterization is designed to clearly
separate analysis and code generation phases from the search
phase. This permits the arbitrary use of search and model-
ing techniques [24, 18, 31, 5].

A key purpose served by the POET language is parameteri-
zation of generic code transformations for empirical tuning.
This distinguishes POET from the large, existing body of
work on powerful languages and tools for expressing static
code transformations [23, 1]. We intend to use POET in the
context of an empirical search process; we do not specifically
address run-time code generation as performed by more gen-
eral multistage languages and systems [3, 9, 13, 14].

Similar to POET, the X language [8] also aims at sup-
porting compact representation of multiple program ver-
sions for empirical tuning. The X language is an annota-
tion language which uses C/C++ pragma and macro sub-
stitution to guide the application of a pre-defined collec-
tion of loop- and statement-level optimizations by a com-
piler. The X language parameterizes the behavior of an
optimizing compiler instead of explicitly expressing applica-
ble code optimizations. As a result, it provides limited sup-
port for defining new transformations, besides using pattern-
matching rewrite rules. In contrast, POET is a extensible
language that allows programmers to build arbitrary cus-
tomized optimizations and allows more flexible parameteri-
zation and control of both predefined and customized opti-
mizations.

Both the POET and X languages reply on compiler tech-
nologies that effectively parameterize code optimizations.
For example, Cohen, et al. [6] uses the polyhedral model to
parameterize the composition of loop transformations appli-
cable to a code fragment. Developing compiler techniques
to effectively parameterize complex code optimizations is a
focus of our future research.

5.1 Conclusion
We have presented a new cost-effective approach to high per-
formance optimization, where we use a transformation en-
gine to automatically generate efficient library kernel imple-
mentations for empirical tuning. The transformation engine
offers both flexible and efficient empirical tuning of appli-
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cation performance by providing a modular communication
interface among independent optimizing compilers, applica-
tion developers, and empirical search drivers. Additionally,
it can be used as a generic tool box for library developers
to build customized code optimizations and allows such op-
timizations to be generalized for other applications. Our
approach produces kernels with essentially the same level of
performance as those achieved by the popular ATLAS em-
pirical tuning framework. We have shown that our POET
TE can improve overall ATLAS performance, and thus forms
a valuable addition to existing empirical tuning frameworks.
Further, since the POET TE can process kernel specifica-
tions from arbitrary problem domains, it can be used in the
empirical optimization of kernels beyond those supported by
application-specific tuning frameworks such as ATLAS.
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