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ABSTRACT

Automatic empirical tuning of compiler optimizations has
been widely used to achieve portable high performance for
scientific applications. However, as power dissipation be-
comes increasingly important in modern architecture design,
few have attempted to empirically tune optimization config-
urations to reduce the power consumption of applications.
We provide an automated empirical tuning framework that
can be configured to optimize for both performance and en-
ergy efficiency. In particular, we extensively parameterize
the configuration of a large number of compiler optimiza-
tions, including loop parallelization, blocking, unroll-and-
jam, array copying, scalar replacement, strength reduction,
and loop unrolling. We then use hardware counters com-
bined with elapsed time to estimate both the performance
and the power consumption of differently optimized code
to automatically discover desirable configurations for these
optimizations. We use a power meter to verify our tuning
results on two multi-core computers and show that our ap-
proach can effectively achieve a balanced performance and
energy efficiency on modern CMP machines.
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1. INTRODUCTION

In recent years, empirical tuning [4,8,11,13,17,23] has be-
come a de facto approach adopted by both developers and
optimizing compilers to achieve portable high performance
for scientific applications on a wide variety of modern com-
puting platforms. However, in spite of the immense success
of the tuning approach, existing research has rarely inves-
tigated how to effectively reduce the power consumption of
software based on empirical feedbacks. As a result, soft-
ware, especially scientific applications, are rarely made to
be energy efficient. While the performance of applications is
critically important, their power consumption can often be
reduced without sacrificing performance.

Heat accumulation and dissipation are important concerns
in the design of modern architectures, from extreme-scale
supercomputers, to multi-core desktops, to energy efficient
laptops, and to embedded chips in cell phones and MP3s.
As heat accumulation is closely related to the power con-
sumption of key architectural components, software should
be energy-aware and use the full power of computers only
when necessary. Most Operating Systems can be configured
to automatically scale down the voltage or frequency of mi-
croprocessors when a computer has been idle for a while.
However, relatively little support has been made available
for developers to empirically optimize the energy efficiency
of their applications.

The main challenge in empirically tuning user applica-
tions for better energy efficiency is the difficulty in estimat-
ing the power consumption of user applications during their
evaluation. Previous research has estimated the power con-
sumption of various architectural components using simula-
tion [3,5,14], offline profiling [7], and real time monitoring
of hardware counters [19]. In particular, architectural sim-
ulation has been used to study various compiler/Operating
System algorithms to improve power efficiency of user ap-
plications [3,20]. However, simulation cannot be effectively
used in empirical tuning because the long simulation time,
which imposes a prohibitive extra overhead on top of tuning
applications for performance.

This paper presents an empirical tuning framework that
can be configured to automatically achieve a balanced per-
formance and power efficiency for user applications. Fol-
lowing the work by Singh, Bhadauria and McKee [19], we
use real time feedbacks from hardware counters to estimate
the energy efficiency of applications and then use the power
consumption feedbacks to tune application performance and
energy efficiency collectively. We have used POET [25], an
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Figure 1: The work flow of our tuning infrastructure

interpreted program transformation language, to extensively
parameterize a large collection of compiler optimizations, in-
cluding OpenMP parallelization, loop blocking, unroll-and-
jam, array copying, scalar replacement, strength reduction,
and loop unrolling, and have applied these transformations
to optimize three matrix computation kernels. We then use
our empirical tuning system to automatically discover desir-
able optimization configurations for these codes, based on
both their performance and energy efficiency feedbacks. We
use a power meter to verify our tuning results and show that
our approach can effectively achieve a balanced performance
and energy efficiency on modern CMP machines.
Our research contributions include the following.

e We use hardware counters to effectively guide the au-
tomatic empirical tuning of scientific applications to
achieve a balanced performance and energy efficiency.

e We demonstrate the impact of a large number of com-
piler optimizations on both application performance
and energy efficiency.

e We present a transformation-aware search algorithm
that effectively explores a large optimization space to
find desirable optimization configurations.

The rest of the paper is organized as follows. Section 2
introduces our tuning infrastructure. Section 3 presents our
search algorithm for exploring the optimization space. Sec-
tion 4 presents our formulation of application efficiency from
empirical feedbacks. Section 5 presents our experimental re-
sults. Section 6 presents related work. Section 7 presents
our conclusions.

2. TUNING INFRASTRUCTURE

The workflow of our tuning framework is shown in Fig-
ure 1 and includes three main components: the POET trans-
formation engine, the transformation-aware search engine,
and the feedback processing engine. We use an optimiza-
tion script, written in an interpreted program transforma-
tion language, POET [25], to support the parameterization
and empirical tuning of compiler optimizations. The POET
optimization script can be automatically generated by an op-
timizing compiler or manually written by a computational
specialist. For this paper, we have used an optimizing com-
piler to fully automate this process. The script is interpreted
by the POET transformation engine to optimize the input
code based on different parameter configurations supplied

void dgemvT(const int M,const int N,const double alpha,
const double *A,const int lda,const double *X,const int
incX, const double beta,double *Y,const int incY)
{
int i,j;
/*@; BEGIN(nestl=Nest) @x/
for (i =0; i < M; i +=1) {
Y[i] = beta * Y[il;
/*@; BEGIN(nest2=Nest) @*/
for (j =0; j <N; j+=1){
Y[i] += A[i * 1lda + j1 * X[jl;
}
}
}

Figure 2: Annotated input code for gemv

by the transformation-aware search engine, which invokes
the feedback processing engine internally to evaluate the ef-
ficiency of the optimized code based on empirical feedbacks.

To use our framework, a developer needs to provide two
inputs: the source code to be optimized and the priority of
application performance vs. energy efficiency. An optimiz-
ing compiler or a computational specialist can analyze the
source code and output the optimization decisions by pro-
ducing an annotated input code together with a parameter-
ized POET optimization script. An example input code with
POET annotations is shown in Figure 2, and a skeleton of
the POET script to optimize this code is shown in Figure 3.
The TA-aware search engine automatically explores differ-
ent optimization configurations of the POET script based on
efficiency scores returned by the feedback processing engine
after invoking the POET transformation engine to optimize
the annotated input code with each chosen configuration.
Eventually, a final optimization configuration with the best
performance/energy efficiency discovered, together with the
POET optimization script and the annotated input code, is
returned as result to the developer.

The POET language and transformation engine.
POET is an interpreted program transformation language
designed for parameterizing general-purpose compiler opti-
mizations for auto-tuning [25]. The POET transformation
engine in Figure 1 is essentially a POET language inter-
preter coupled with a set of transformation libraries and in-
put/output language syntax descriptions. In particular, the
POET opt library (included at line 1 of Figure 3) contains a
large collection of predefined routines which can be invoked
to apply a wide variety of source-to-source performance op-
timizations. To optimize an input program, a POET script
needs to be given which specifies exactly which input files



1: include opt.pi
2: <trace target/>
3: <input to=target syntax="Cfront.code" from=("rose_dgemvT.C")/>
4: <parameter pthread_nestl type=1.._ default=1
message="number of threads to parallelize loop nesti"/>
5: <parameter psize_nestl type=1.._ default=256
message="number of iterations to run by each thread for nest1"/>
6: <parameter bsize_nestl type=(INT INT) default=(1 16)
message="Blocking factor for loop nest nestl"/>

7: <eval par_nestl = DELAY{ <*OMP parallelization*>

if (pthread_nesti!=1) { ...... />
8: <eval block_nestl = DELAY{ <*cache blocking *>
if (bsize_nestl '= (1 1) { ...... }}/>

9: <eval APPLY{par_nestl};
APPLY{block_nest1};
APPLY{copyl_nest1};
APPLY{copy2_nest1};
APPLY{unrolljam_nest1};
APPLY{scalarl_nestil};
APPLY{scalar2_nest1};
APPLY{unroll_nest2};
APPLY{cleanup_nest1}/>
10: <output from=(target) syntax=("Cfront.code")/>

Figure 3: POET script to optimize Figure 2

to parse using which language syntax descriptions (lines 2-
3 of Figure 3), what transformations to apply to the in-
put code after parsing (line 9 of Figure 3), and details of
how to apply each transformation (lines 7-9 of Figure 3).
Each POET script can be extensively parameterized, where
values for the parameters can be flexibly reconfigured via
command-line options when invoking the POET transfor-
mation engine. In Figure 3, these parameters are declared
at lines 4-6 and used to control configurations of optimiza-
tions at lines 7-9. The optimized code is then unparsed to
standard output at line 10.

The transformation-aware search engine.

The goal of the search engine is to automatically deter-
mine values of the optimization parameters for each POET
script. It takes a single input, the POET script to tune, and
orchestrates the whole tuning process by iteratively deter-
mining what parameter values to use to properly configure
each POET optimization, invoking the POET transforma-
tion engine with the parameter values, compiling the POET
optimized source code using a vendor compiler (e.g., gcc),
running the compiled code on the hardware machine, and
invoking the feedback processing engine to evaluate the em-
pirical feedbacks. In contrast to other generic search engines
that look to find the maximal/minimal points in a multi-

dimensional generic space, our search engine is domain-specific

in that it can read the parameter declarations of each POET
script, understand the meaning and context of each opti-
mization parameter, and use built-in heuristics to efficiently
explore the configuration space of relevant POET parame-
ters. Details of the search algorithm are presented in Sec-
tion 3.

The feedback processing engine.

The goal of the feedback engine is to evaluate the efficiency
of each POET optimized code. It takes two inputs: the pri-
ority preference from the user in terms of how much weight
should be put on performance and power consumption re-
spectively, and the hardware counter values and elapsed time
statistics collected while evaluating the optimized code. It
uses an internal model to estimate the power consumption

Input:
tuneParams: tuning parameters declared in POET script;

Output:
config-res: a set of configurations found for tuneParams;

Algorithm:

Stepl: /* Initialization. */

Set cur_con fig = new_configuration(tuneParams);
For each parameter p € tuneParams;
set cur_config(p) = default_value(p);
Group tuneParams by the loop nests they optimize;
Set opts = {loop_blocking, unroll&jam, scalar_repl,
array_copy, inner_unroll, parallelization};
Set cur_opt = first_entry(opts);
Set con fig-res = {cur_config};
Step2: /* Set up the current tuning space. */
Set cur_tune = 0;
For each config € config_res:
For each loop nest L being optimized:
cur_tune = cur_tune U
{gen_tune_space(tuneParams(L), cur_opt, config)};
Set cur_config = gen_first_config(cur_tune);

Step3: /*Apply and evaluate optimization configuration®/
Invoke POET transformation engine with cur_config;
Verify the correctness of optimized code;

Evaluate the optimized code on hardware machine;
cur_score = efficiency score returned by feedback engine;

Step4: /*Modify config-res if necessary */

If cur_score is better or close to those in con fig_res:
config-res = config_res U {(cur_config, cur_score)};

If cur_score is better than those in config-res:
Eliminate weak configurations from con fig_res;

Step5: /* try the next configuration of cur_tune */

Set cur_con fig =
gen_next_config(cur_con fig, cur_score, cur_tune);
If cur_config # null: go to Step3.
Step6: /* try to tune the next optimization*/
Set cur_opt = next_entry(cur_opt, opts);
If cur_opt # null: go to Sep 2;

Step7: /* return result */

return config_res;

Figure 4: The search algorithm

of the input code based on hardware counter values, com-
bines the estimated energy efficiency with the measured ex-
ecution time of the optimized code, and then determines
an overall efficiency score for the optimized code (for more
details, see Section 4). The score is then returned to the
transformation-ware search engine and used to determine
what other optimization configurations to try next. The
whole process repeats until the search algorithm, discussed
in Section 3, terminates and returns a final set of desirable
optimization configurations.

3. EXPLORING THE OPTIMIZATION SPACE

Our POET transformation scripts currently support the
following optimizations, each extensively parameterized so
that their configurations can be empirically tuned for better
performance or energy efficiency.

e Loop parallelization via OpenMP, where blocks of iter-
ations of an outermost loop are allocated to different
threads to evaluate. The optimization is parameter-
ized by the number of threads to run in parallel and
the size of each iteration block;

e Loop blocking for cache locality, where iterations of a
loop nest are partitioned into smaller blocks so that
data can be reused within each block. The blocking
factor for each loop dimension is parameterized by the
POET script.

e Loop unroll-and-jam, where selected outer loops are
unrolled by a small number of iterations, and the un-
rolled iterations are jammed inside the innermost loop



to promote register reuse. It is parameterized by the
number of loop iterations unrolled for each outer loop.

e Array copying and strength reduction, where selected
arrays accessed within a blocked loop nest are copied
into a separate buffer to avoid cache conflict misses,
and strength reduction is applied to reduce the cost
of the array address calculations. For each array that
can be copied, the optimization is parameterized with
a three-way switch which can be used to turn off array
copying, strength reduction, or both.

e Scalar replacement combined with strength reduction,
where array references are replaced with scalar vari-
ables when possible to promote register reuse. The
configuration of scalar replacement is similar to array
copying.

e Loop unrolling, where an innermost loop is unrolled
by a number of iterations to create a larger loop body.
The optimization is parameterized by the loop un-
rolling factor.

The Overall Optimization Space.

For each loop nest in the input code, the overall opti-
mization space is a 7-15 dimensional space (depending on
the number of loops and arrays being optimized) where
each dimension interacts with others in unpredictable ways.
Some optimizations have an inherently large parameteriza-
tion space, e.g., each loop blocking factor could go from 1 to
512 (depending on the cache size).

It is impractical to exhaustively enumerate the whole op-
timization space, which may take weeks for a single small
kernel. Instead, we use a transformation-aware search al-
gorithm, shown in Figure 4, to effectively explore a sub-
space of optimization configurations that are likely to pro-
duce the best performance or energy efficiency. We adopted
the algorithm in Figure 4 because it systematically exam-
ines different configurations for each optimization one after
another and thus allows us to separately study the impacts
of each optimization on the performance and energy effi-
ciency of applications. Our search algorithm also uses sys-
tematic space exploration to avoid being stuck at any local
minima/maxima, which is a know problem for other generic
search algorithms such as hill climbing [17].

The Search Algorithm.

Figure 4 shows the algorithm (implemented using Perl)
used by our transformation-aware search engine. The al-
gorithm takes a POET script that has been written to op-
timize an input code, extracts the tuning parameters from
the POET script, and then proceeds to empirically deter-
mine the desirable configurations for these parameters. The
algorithm output is a collection of tuning parameter config-
urations that have shown the best efficiency.

Our search algorithm in Figure 4 assumes full knowledge
of how each POET parameter is used to control optimiza-
tions of the input code and tunes their configuration param-
eters in a deliberate fashion. In particular, step 1 initializes
each optimization parameter with a default value given by
the POET script. All the parameters are then grouped by
the loop nests that they optimize, and optimizations for the
same loop nest are tuned one after another in a predeter-
mined order. In Figure 4, variable opts contains the order-
ing of tuning different optimizations. The ordering is based

on the following strategies, and its effectiveness is evaluated
in Section 5.5.

e Since parallelization determines the overall size of data
operated by each thread, OpenMP parallelization is
tuned before all the other sequential optimizations.

e Architectural sensitive optimizations are tuned before
predictable optimizations. For example, scalar replace-
ment and loop unrolling are almost always beneficial,
while array copying (due to its high overhead) is rarely
beneficial. These optimizations are tuned later than
other optimizations that have uncertain impacts, e.g.,
loop blocking and unroll&jam.

e Optimizations that have the most impact are tuned
early. For example, loop blocking critically determines
whether data can be reused in the cache. Since opti-
mization configurations for out-of-cache computations
tend to be significantly different from those for in-cache
computations, loop blocking is tuned immediately af-
ter tuning parallelization.

Following the predetermined tuning order, the algorithm
in Figure 4 tunes each optimization one after another (iterat-
ing steps 2-6), keeping a number of best configurations after
each tuning phase. In particular, after each optimization is
tuned, the algorithm dynamically adjusts the collection of
best configurations so far and use the new collection of con-
figurations (config_res) to tune later optimizations. In Fig-
ure 4, variable cur_opt keeps track of the current optimiza-
tion being tuned, and config_res keeps track of the group
of best optimization configurations found so far. Step 2 of
the algorithm generates a new tuning space (cur_tune) by
expanding each item in config_res with a set of new con-
figurations to tune for cur_opt. Step 3 invokes the POET
transformation engine with each new optimization config-
uration in cur_tune and then collects empirical feedbacks
from running the POET optimized code. Step 4 modifies
config_res, the set of desirable optimization configurations,
based on efficiency feedbacks of running each configuration
in cur_tune. Step 5 ensures all necessary configurations in
cur_tune are experimented. Step 6 ensures that all optimiza-
tions have been tuned. Finally, Step 7 returns con fig_res as
the output of the algorithm. Note that both steps 5 and 6
can skip optimization configurations that are known to have
a negative impact based on previous experiments.

Since only a small constant number of best configurations
are selected after tuning each optimization, the overall tun-
ing time is proportional to the sum of tuning each optimiza-
tion independently. The algorithm is therefore fairly efficient
and requires only a small number of iterations to terminate.
Our algorithm is not optimal as it does not fully capture the
complex interactions between different optimizations. How-
ever, it is sufficient to capture competitive configurations
in most cases, as confirmed by our experimental results in
Section 5.5.

4. ESTIMATING RUNTIME EFFICIENCY

Figure 5 shows the formula that our feedback processing
engine uses to rank the overall efficiency of each optimized
code. In particular, it has the user specify how much pri-
ority to give execution time and power consumption respec-
tively. After collecting the runtime statistics, the execution
time and power consumption rate are then compared against



User input:
perf_wt: Importance of execution time;
power_wt: Importance of power consumption;

Runtime statistics of differently optimized code:
base_time: execution time of the baseline code;
cur_time: execution time of the current code;
base_power: power consumed/second by the baseline code;
cur_power: power consumed/second by the current code;

Efficiency Ranking Formula:
perf = base_time/cur_time
energy = base_power /cur_power
overall_score = perf * per f_wt + energy * power_wt

Figure 5: Ranking the overall efficiency

Machine-specific statistics:
base_power: idle state power consumption of the machine;
a; (j=1..4): linear weights of different hardware counters;

Runtime statistics of differently optimized code:
C(i,j): hardware counter j on core i/collecting duration;

Power Estimation Formula:

Power(i) = a0 + Xj=1,4(a; * f(C(,7)))

total_power = base_power + X;—1,4(5 — 1) /4 * Power(z)
Figure 6: Estimating power consumption for a quad-
core AMD Opteron

those of a base line execution (the first optimization config-
uration evaluated by our search algorithm). The relative
execution speedup and energy reduction are then weighted
accordingly to compute the final efficiency score.

Following the work by Singh, Bhadauria and McKee [19],
we use hardware counter values collected in real time to es-
timate the power consumed by each processing core of a
chip-multiprocessor machine. We used a Watts Up PRO
power meter to measure the actual power consumption of the
whole system while collecting hardware counter values dur-
ing the execution of a number of different benchmarks. The
whole machine is free of other tasks while running the bench-
marks, so the power meter measurement equals to the power
required to run each benchmark plus the additional power
consumed by the machine to stay idle, which we measured
separately using the power meter. We do not distinguish
the power consumed by different hardware components and
instead correlate hardware counter values with the overall
power consumption of the whole system using Spearman’s
rank correlation algorithm [12].

Figure 6 shows the formula we use to estimate the power
consumption rate of a quad-core AMD Opteron machine,
where total_power is the estimated power consumed by the
entire machine, Power(i) (1 < ¢ < 4) is the per-core power
consumption estimated for the ith core, and f(C(3,7)) is a
function (to be determined via regression analysis) of the
value of hardware counter j on core i. Our construction
of the power consumption model for the quad-core AMD
Opteron includes the following three steps.

Step 1: Selection of hardware events to monitor.

On the AMD Opteron, users can select 4 out of 36 differ-
ent hardware events to monitor simultaneously during the
evaluation of user applications. To select which events to
monitor, we divide all the events into 4 categories: mem-
ory activities, instructions retired, pipeline stalls, and FP
(floating point) operations. We then use Spearman’s rank
correlation algorithm [12] to find a relation between each
hardware event and the actual power consumption of the
whole system. We then select a leading hardware event from

Selected events to monitor:
Memory : L1_CACHE_MISS // L1 cache miss

FP : FP_OPS // Floating point operations
Instr. : BR.TAKEN // Branches taken
Stall : RES_.STALL // Cycles stalled

Idle state power consumption: 118 W
Power estimation formula:
if LILCACHE_MISS/second < 10% then
Power(i) = -64.41391051 - 7.28e-09 * (FP_OPS/second)
+ 5.97 * log(BR_TAKEN /second)
+ 1.13e-08 * (RES_STL/second)
+ 2.015e-06 * (L1_.CACHE_MISS/second)
else
Power(i) = -21.35126692 - 4.481e-10 * (FP_OPS/second)
+ 0.28 * log(BR_TAKEN /second)
+ 3.3e-09 * (RES_STL/second)
+ 4.117372621 * log(L1_CACHE_MISS /second)
total_power = 118 + 3;—1 4 Power(i) * (5 — i) /4
Figure 7: Power consumption model for a quad-core
AMD Opteron

each grouped category based on the correlation value.
Step 2: Estimation of correlation coefficients.

After selecting which hardware events to monitor, we need
to determine how to compute the per-core power consump-
tion from combining the hardware counter values. As shown
in Figure 6, we divide the value of each hardware counter by
the time duration of the collection and then use a piecewise
linear function to combine their values into a power con-
sumption rate. We use multivariate Ordinary Least Square
(OLS) regression to determine the linear coefficient and the
base function for each hardware event based on the empiri-
cal results collected from different benchmarks.

Step 3: Putting things together.

To accommodate sharing of resources by different cores,
we multiply each Power(i) (power consumed by core i) with
a predetermined weight, (5-i)/4, before adding them to-
gether with the idle-state power consumption of the ma-
chine, so that as more cores are used, the impact of each
additional core is decreased.

Figure 7 shows the resulting power model for our AMD
Opteron machine. From this model, we see that the power
consumption rate increases when user applications incur fre-
quent L1 cache misses, take a large number of branches,
or when the CPU is stalled for many cycles. Further, the
power consumption rate decreases when the CPU is busy
with floating point operations. Our result is consistent with
those by Singh et al. [19] and Contreras et al [7].

S. EXPERIMENTAL RESULTS

The goal of our research is to provide automatic empiri-
cal tuning support to achieve a balanced performance and
energy efficiency on Chip Multi-Processor machines. The
following subsections first discuss our experimental design
and then present results to confirm each of the following
hypotheses.

e Different configurations of compiler optimizations can
significantly change the power consumption rate of user
applications.

e Hardware counters can be used to accurately estimate
the power consumption of applications and thus effec-
tively guide empirical tuning of their energy efficiency;

e Empirical tuning can be used to effectively achieve a
balanced performance and energy efficiency for scien-
tific codes.



e Our TA-search algorithm in Section 3 can effectively
find desirable optimization configurations in practice.

5.1 Experimental Design

We have evaluated our framework using three matrix com-
putation kernels: gemm (matrix-matrix multiplication), gemv
(matrix-vector multiplication), and ger (vector-vector multi-
plication). Figure 2 shows the original input code for gemwv.
The input code for gemm and ger are written similarly. We
have selected these benchmarks for two reasons.

e All of them are computationally intensive and are known
to benefit from the large collection of source-to-source
compiler optimizations supported by our framework.

e The three benchmarks vary widely in their computa-
tion/data access ratios. In particular, gemm is compute-
bound as it reuses every data item a large number
of times during evaluation; gemv is memory bound
as only a small fraction of data are reused; ger is
severely memory-bound as no data item is reused in
the computation. Consequently, these benchmarks are
expected to be representative of different behaviors
demonstrated by scientific codes.

Our tuning framework is presented in Section 2, and the op-
timizations applied to each benchmark are discussed in Sec-
tion 3. We tuned each benchmark using 10001000 matrices.
To reduce tuning time, when multiple loops are blocked in
a loop nest, we assign the same blocking factor to all loop
dimensions. Our search engine selects the top 10 configura-
tions after tuning each optimization, a decision confirmed to
be effective for our selection of benchmarks in Section 5.5.

We tuned all benchmarks on two multi-core machines: a
quad-core machine running Linux with two dual-core 3 GHz
AMD Opteron Processors (128KB L1 cache/core), and an
eight-core machine running MacOS with two quad-core 2.66
GHz Intel processors (32KB L1 cache/core). We used PAPI
to collect values of hardware counters on the AMD Opteron.
Because PAPI does not support MacOS, we were not able to
collect hardware counter values on the Intel Mac. Therefore,
we used the Mac machine to tune for performance only, and
used only the AMD Opteron to tune benchmarks for both
performance and energy efficiency. We used a Watts Up
PRO Power Meter to collect the actual power consumption
of both machines while running the benchmarks. Since the
power meter can log the power consumption of the whole
system once every second, we repetitively invoke each opti-
mized routine for 4-5 seconds to accurately record its power
consumption rate.

All benchmarks are compiled with -O2 option using gcc
4.2.4 on the AMD machine and gcc 4.0.1 on the Intel ma-
chine. We did not use the -O3 option to prevent gcc from
applying aggressive loop optimizations to our already heav-
ily optimized code. Each optimized code is first tested for
correctness and then linked with its timing driver, which sets
up the execution environment, repetitively invokes the op-
timized routine a pre-configured number of times (typically
3-5 times), and then reports the minimum elapsed time of
executing each routine and the median of hardware counter
values across multiple runs.

5.2 Impact of Optimizations on Power Con-
sumption

Figure 8 shows the variation of both performance (MFLOPS)
and energy efficiency (actual power consumed per second,
measured by the Watts up Pro power meter) when the three
matrix benchmarks are tuned with different optimization
configurations on the two machines. To highlight the de-
gree of variation, both performance and power consumption
are normalized to a base line execution which achieves the
median performance. All optimization configurations are
sorted by the number of threads they use.

From the figures, we see that high performance generally
corresponds a high power consumption rate, but the corre-
sponding variation of power consumption is far smaller than
that of the performance. Further, many optimization config-
urations have a low performance level but a high power con-
sumption rate, while some others achieve high performance
combined with low power consumption. It is therefore both
possible and desirable to find the optimization configura-
tions that are both performance and energy efficient.

From examining the collected data, we found that loop
parallelization has the most impact on power consumption,
which steadily increases as more threads are used for most
cases except for gemv and ger on the Intel Mac, where the
power consumption rate has stayed mostly constant, shown
in Figure 8(b). Loop blocking has the second most impact on
power consumption. In particular, most of the spikes in the
power consumption curve are results of experimenting with
different blocking factors. However, there does not seem to
be any clear relation between individual loop blocking fac-
tors and their power consumption. This is as expected since
the relations between loop blocking factors and cache/TLB
misses are known to be complex and unpredictable.

Besides loop parallelization and blocking, loop unrolling
is the third optimization that clearly impacts the power con-
sumption rate. Most of the small variations on the power
consumption curves are caused by different loop unrolling
or blocking factors. In general, as the loop unrolling factor
increases, the power consumption goes down. The difference
is about 1-2% of the total power consumption. The impact
of other optimizations is less significant compared to loop
parallelization, blocking, and unrolling.

In summary, to significantly reduce power consumption,
a scientific application can use fewer number of threads and
then fine-tune the cache blocking and loop unrolling factors
to ensure that both the CPUs and the memory hierarchy are
being used in an efficient manner. The other optimizations
can be tuned for performance only without significantly im-
pacting the power consumption of the hardware.

5.3 Modeling Power Consumption

The model we built to estimate the power consumption
rate of the quad-core AMD Opteron machine from hardware
counter values is shown in Figure 7. To verify the accuracy
of this model, we ran the three matrix benchmarks with dif-
ferent optimization configurations, estimate the power con-
sumption of each optimized code based on the model in Fig-
ure 7, and then compare the estimated power with the actual
power consumption of the machine measured using a Watts
Up Pro Power Meter while runing each optimized code.

Figure 9 shows the result of comparing our estimated
power consumption rate with the actual system power con-
sumed by the AMD Opteron machine. All graphs show that
the estimated power consumption rate closely matches that
actually consumed, except for some occasional big spikes.
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Figure 8: Correlation between performance and power consumption

Most of these spikes are the result of experimenting with
different loop blocking factors. It is well-known that differ-
ent loop blocking factors can have hard-to-predict impact
on cache/TLB misses. Since our model can use at most four
hardware counters simultaneously to estimate power in real
time, it likely failed to capture these spikes due to lack of
information on L2 cache and TLB misses. Increasing the
number of hardware events to monitor will likely increase
the accuracy of our power model, as done by Contreras and
Martonosi [7] through offline profiling.

5.4 Tuning For Both Power and Performance

Figure 10 shows the best performance, estimated power

consumption rate, and actual power consumption rate achieved

when using our power estimation model to tune the three
matrix benchmarks using different priorities for performance
and power. In particular, each benchmark is tuned by al-
locating 100%, 60%, 30%, and 0% priority to performance

(and thus 0%, 40%, 70%, and 100% priority to power) re-
spectively. Note that when 0% priority is assigned to perfor-
mance, the benchmarks are tuned solely for reducing power
consumption. Both the measured performance and the power
consumption rates are normalized to those of the default
configuration chosen by the POET script (note that the
baseline here is different from the ones used in Figure 8).
The goal is to demonstrate that by integrating power con-
sumption as a criteria in auto-tuning, we can find optimiza-
tions that achieve a balanced performance/energy efficiency.

From the figures, we see that the power consumption rates
of scientific codes can clearly be reduced without sacrific-
ing performance. For both gemwv and ger, when allocating
30% to performance and 70% priority to power, the power
consumption rate is reduced by 20-30% with minimal per-
formance degradation. Note that since the variation of per-
formance is significantly larger than that of power consump-
tion, a high priority must be allocated to power consumption
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Figure 9: Accuracy of power estimation on the AMD
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in order for it to make a significant impact on the tuning re-
sult. For gemm, T0% priority on power has not resulted in
any power reduction in spite of the performance degradation
caused by random factors in the search algorithm.

Our search algorithm in Section 3 tunes each optimization
separately from the others and thus allows us to more eas-
ily study the impact of each optimization. However, it does
not sufficiently consider interactions between different opti-
mizations and can lead to suboptimal solutions due to early
undesirable decisions. The flaws in the search algorithm can
limit the effectiveness of collectively tuning for both per-
formance and power consumption, as demonstrated by the
less-than-ideal tuning result for gemm in Figure 10. Our
tuning approach, however, is independent of specific search
algorithms and can easily collaborate other existing alterna-
tive generic search algorithms [6,13,21].

5.5 Exploring The Search Space

To further evaluate the effectiveness of our search algo-
rithm in Section 3, we experiment with tuning optimizations
in different orders to determine its sensitivity to the search
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Figure 10: Tuning for both power and performance
with different priorities on the AMD Opteron

starting point. Further, we vary the number of top optimiza-
tion configurations dynamically selected after tuning each
optimization to determine whether significant performance
improvement can be achieved by increasing the number of
different configurations being experimented.

Figure 11 shows the best performance achieved at differ-
ent iterations of the search algorithm when tuning the three
matrix benchmarks on the eight-core Intel Mac. For each
benchmark, the performance (MFLOPS) is normalized to
that of a baseline execution of the default optimization con-
figuration given by each POET script. Three different tun-
ing orders, block_5 (tune loop blocking first), scalar_5 (tune
scalar replacement first), and parallel.5 (tune loop paral-
lelization first), are experimented while selecting the top 5
configurations after tuning each optimization. Further, par-
allel_10 tunes parallelization first while selecting 10 best con-
figurations after tuning each optimization, and parallel_15
selecting the top 15 configurations.

From Figure 11, the search algorithm is relatively insen-
sitive to the different ordering of optimizations except for
gemm, where tuning loop parallelization first has resulted
in a 50% performance improvement over tuning other opti-
mizations first. The dramatic performance difference is due
to the large number of processing cores available on the In-
tel machine and the relatively small data size being tuned.
When operating on 1000 * 1000 matrices on a single thread,
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Figure 11: Tuning on the Intel Mac using different
optimization ordering

the gemm routine is memory-bound and loop blocking is nec-
essary to enable data reuse within caches. However, when
using 8 threads, each thread only needs to operate on a
128 * 128 sub-matrice which can fit in cache without any
blocking. Therefore the loop blocking factors chosen before
parallelization has resulted in suboptimal performance. The
performance difference for gemv and ger is not as signifi-
cant as neither can significantly benefit from loop blocking
due to limited data reuses. When tuning scalar replacement
first, the best performance achieved is very similar to that
achieved by tuning blocking first, and the performance dif-
ference is within 2%.

When the number of top configurations selected increases
from 5 to 10 after tuning each optimization, the best per-
formance found for gemm remained similar, while the best
performance found for gemv and ger increased significantly.
This indicates that selecting top 5 configurations is not suf-
ficient for the algorithm to remain stable. Therefore, we

choose 10 as the default number of top configurations to
keep after tuning each optimization. When the number
of top configurations increase to 15, the best performance
found has remained stable, indicating that selecting 10 top
configurations is good enough for most cases.

Since our search algorithm tunes different optimizations
relatively independently of each other, and it assigns the
same blocking factor to all dimensions of a loop blocking
optimization, the search terminates fairly quickly. For ex-
ample, when the top 5, 10, and 15 configurations are selected
for gemm, the search terminates after about 250, 360, and
500 iterations respectively. Most of our tuning sessions finish
in less than 2 hours when selecting 10 top configurations.

6. RELATED WORK

Empirical tuning has been used in the development of

many successful scientific libraries, such as ATLAS [23], PHiPAC

[4], OSKI [22], FFTW (8], SPIRAL [16], among others, to
achieve portable high performance. Recent research has au-
tomated empirical tuning with iterative compilation, where
configurations of compiler optimizations are empirically mod-
ified based on performance feedbacks of the optimized code
[1,9,13,15,17]. Existing auto-tuning research has mostly
focused on achieving portable high performance in terms of
execution time. In contrast, this research focuses on collec-
tively modeling both the performance and the power effi-
ciency of applications.

The POET transformation engine was initially developed
by Yi et al [25] to parameterize both domain-specific and
general-purpose compiler optimizations for empirical tun-
ing. The language has been used to successfully optimize a
number of linear algebra routines and have achieved com-
parable performance as those achieved by ATLAS [26]. The
focus of this paper is to explore the configuration space of a
large number of POET-implemented compiler optimizations
for both performance and energy efficiency. Instead of us-
ing an existing generic search technique [6,13,21], we have
developed a transformation-aware search engine to explore
the optimization space.

Previous work on optimizing the energy efficiency of soft-
ware applications has mostly focused on different instruction
scheduling algorithms in compilers [10,14,18,24] and thread-
allocation algorithms in Operating Systems for CMP [2, 3,
19]. Power consumption of software applications has been
estimated using architectural simulation [3,5,14], offline ap-
plication profiling [7], and real time monitoring of hardware
counters [19]. Our modeling of software power consumption
uses real-time monitoring of hardware counters, following
the work by Singh, Bhadauria, and McKee [19]. In contrast
to previous work, this paper investigates power consumption
as a concern in the empirical tuning of scientific applications
and models the impact of a much larger collection of com-
plier optimizations on the energy efficiency of applications.

7. CONCLUSIONS

We present an empirical tuning framework that automat-
ically achieves a balanced performance and energy efficiency
for scientific codes on modern multi-core architectures. Our
framework has accurately estimated the power consumption
of chip multiprocessors in real time and used the informa-
tion to guide the configuration of a large number of compiler
optimizations. We show that a number of compiler opti-



mizations can significantly impact the energy efficiency of

applications and that the energy consumption of scientific
codes can be reduced without sacrificing their performance.
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