
Retrospective on High-Level Language Computer Architecture

David R. Ditzel

Bell Laboratories
Computing Science Research Center

Murray Hill, New Jersey

David A. Patterson

Computer Science Division
Department of Electrical Engineering and Computer Sciences

University of California
Berkeley, California

Introduction

High-level language computers (HLLC) have attracted interest in

the architectural and programming community during the last 15 years;

proposals have been made for machines directed towards the execution

of various languages such as A L G O L , 1,2 APL, 3,4,5 BASIC, 6.7

COBOL,8, 9 FORTRAN,lO. ll LISp,12, t3 PASCAL,I 4 PL/I,15.16.17

SNOBOL,18,19 and a host of specialized languages. Though numerous

designs have been proposed, only a handful of high-level language

computers have actually been implemented.4,7,9,2 °,21 In examining the

goals and successes of high-level language computers, the authors have

found that most designs suffer from fundamental problems stemming

from a misunderstanding of the issues involved in the design, use, and

implementation of cost-effective computer systems. It is the intent of

this paper to identify and discuss several issues applicable to high-level

language computer architecture, to provide a more concrete definition

of high-level language computers, and to suggest a direction for high-

level language computer architectures of the future.

Review of Architectural Justifications

All too often the raison d'&re for high-level language computer

architecture is taken to be obvious, as shown by numerous proposals

without justifications. We feel that the justifications are in no way

obvious, and that a review of existing justifications reveals many

shortcomings. An analysis of proposed HLLCs found that the most

commonly cited justifications were as follows:

• Reduce the difficulty of writing compilers.

• Reduce the total system costs.

• Reduce software development costs.

• Eliminate or drastically reduce system software.

• Reduce the semantic gap between programming and

machine languages.

• Make programs written in a HLL run more efficiently.

• Improve code compaction.

• Ease debugging.

• Investigate new architectures.

• Esoteric: Aesthetics or no stated advantages.

An almost universal justification for high-level language comput-

ers is the view that

"the prime motivation for developing such a machine is to reduce

system costs, for while hardware logic is becoming much

cheaper, software is consuming a greater proportion of total sys-

tem costs. A tremendous savings can be obtained by designing

computer hardware that is oriented to aiding the programmer

rather than to simplifying the computer designer's job..._*2

The solution to the software problem has appeared to be an increased

use of "inexpensive" hardware. According to this viewpoint, the way

to use this extra hardware is to raise the level of the machine language,

so that in most cases there exists a one-to-one mapping between the

source language and the internal machine language. One high-level

instruction is intended to perform the task of several lower level

instructions, potentially allowing faster execution. Higher-level instruc-

tions are believed to imply that a compiler should be smaller, simpler

to implement, and should run faster than a compiler for a lower-level

language machine. In many cases, mapping from the source to the

internal form is a simple enough task to be done by software or

hardware with the complexity of a preprocessor. High-level instruc-

tions are predicted to lower overall system development costs due to

simpler compiler development and an improvement in debugging time,

since the machine instructions reflect the operations in the user's

source program.

Though not always stated as such, the above arguments for

HLLCs are properly focused on the goal of achieving a more cost-

effective computing system than is available from existing architec-

tures. The primary means used to achieve a more cost-effective system

are: (1) Faster computing through a new architecture and (2) Lower

cost computing through reduced software costs. The desirability of

these goals is not disputed, but many claims as to how these goals

might be reached appear questionable.

CH1494-4/80/0000-0097 $00.75 © 1980 IEEE
97

Examination of Some "Axioms"

If paper designs of new computers are to be seriously discussed as

advances, then the justifications must be valid. Implementations lend

evidence for judging the success of the justifications, but often fall

short of being able to prove them. There exists a number of "axioms"

used to justify high-level language computers which we feel are either

misdirected or not cost effective; several of these are now discussed.

Axiom !: High-level language computers are needed because efficient

compilers are too complex and difficult to implement on conventional

machines.

Response: Part of the initial impetus for high-level language machines

was the poor state of the art of compiler technology. Implementing

compilers on conventional register oriented machines was often a brute

force task. In 1967, McKeeman observed that "...compilers and operat-

ing systems are getting less reliable, consuming more memory, taking

more time and systems programmers to develop..." and that attempts

to use high-level languages for implementing systems programs had

often failed because too much memory was required. 23 Because there

often exists a one-to-one translation between the tokens of a HLL and

a HLLC, and the algorithm for generating postfix instructions from an

infix expression is simple, HLLCs are aesthetically appealing to those

not familiar with modern compiler writing technology. It is ack-

nowledged that code generation may be simpler for a high-level

language computer. What needs to be made more fully understood is

that a high-level language instruction set does not eliminate the need

for compilers, nor does it greatly simplify them. The need and com-

plexity of compilers extends far beyond code generation. The amount

of code necessary for preprocessing, lexical analysis, syntax analysis,

assembly, optimization, loading, error detection, error recovery and

diagnostics often dwarfs the part of the compiler concerned with code

generation. The level of the target computer does not seem to have

enough of an effect on the size of a compiler to warrant a totally new

architecture.

When we look at the state of the art of computers today, we find

that the architectures have not changed substantially since 1967; there

are no commercial direct or indirect execution high-level language

machines. Yet in spite of this, the situation described by McKeeman

has noticeably improved. The technology for writing compilers has

improved to the point where compilers are typically written in high-

level languages and use tools such as compiler-compilers, 24 automatic

lexical analyzer generators 25 and parser generators 26 which greatly sim-

plify the programmer's job. Techniques for efficient code generation

are available in the literature. 27,28 What is not clear, however, is the

optimality of code producible for HLLCs. Machines which have

catered to high-level language instruction sets have had problems in

generating and optimizing code for languages for which the machine

was not specifically designed. For example, machines designed for

ALGOL such as the Burroughs B670029 and the Manchester Univer-

sity MU5 30 are good for ALGOL but have difficulty achieving

comparable performance for FORTRAN programs.

Axiom 2: A high-level language machine reduces s~oCtware costs because

programming is easier.

Response: This would appear to be true only if programming were not

done in a high-level language. There are no intrinsic reasons why

compiling a program on a low-level computer should appear differently

to the user than on a high-level language computer. There may, how-

ever, be implications resulting from the level of sophistication of the

implementations on the respective computers. For example, the syntax

diagnostics from the SYMBOL hardwired translator 31.32 were

extremely crude compared to those of common compilers for lower

level computers. On the other hand, the execution time diagnos-

tics 33,34 provided through software on SYMBOL were far superior to

those found on most computer systems. The differences which exist

are due more to the efforts (or lack of efforts) to solve specific prob-

lems on a particular system than to the level of the hardware itself.

There is nothing inherent in implementing a compiler in hardware

which would prohibit excellent compile time diagnostics, nor anything

in a low-level language machine which prohibits excellent execution

time diagnostics.

Differences in ease of programming are explained by the effi-

ciency and cost to implement a given language and given level of

debugging tools. To the designer of a computer system, software costs

may be less with a high-level language computer, but this does not

necessarily lower total system costs. The goal should be to provide

machines that allow the creation of efficient systems with excellent

diagnostics. As the current issue is the difficulty of programming seen

by the user of a system, not the implementation of the system, the

conclusion is that there is no difference inherent in the machine organ-

ization itself.

Axiom 3: High-level language computers are justified by the rising cost

of software and falling cost of hardware which mandates the use of

hardware in previous software domains.

Response: There is no disagreement that over the past decade software

costs have risen tremendously, while at the same time advances in

VLSI technology have made the fabrication of large numbers of gates

on a substrate very inexpensive. There are, however, several subtle

inferences from this rather common axiom. The first inference is that

HLLCs require more logic for their implementation than their contem-

porary counterparts. Since the primary goal is a cost-effective system,

it is necessary to somehow justify this extra hardware; the cliche of the

falling cost of hardware is most often used. A second inference is that

by moving the implementation of algorithms from software into

hardware that costs will be reduced. Assumptions are also made that

the complexity of software algorithms are suitable for implementation

in hardware.

The problem is that these inferences do not strike effectively

against the problems which exist. While hardware fabrication costs are

98

smaller with integrated circuit technology, the development costs are

still very large. There seems to be some confusion with regard to

replication versus development costs. Development costs are not

reduced by implementing traditional software functions in hardware;

replication costs for software are inevitably less than those for

hardware. The mere fact that the fabrication cost of gates is inexpen-

sive has to be weighed very carefully against the technological barriers

of implementing complex systems in hardware. There is an important

distinction to be made between the J~asibility vs. reasonability of

implementing complex algorithms in hardware. Complex systems are

rarely implemented without bugs in their initial implementation; this

means that any performance gains of a technology have to be weighed

very carefully against implementation flexibility. The hardware imple-

mented language and operating system of the SYMBOL system took

several years to debug, illustrating some of the dangers of implement-

ing complex algorithms in hardware. Though better documentation

and hardware debugging tools might have lessened debugging time, we

feel that one of the lessons learned from SYMBOL is that the arbitrary

migration of software to hardware will simply result in the exchange of

software releases for engineering change orders.

Axiom 4: A computer system shouM be oriented towards executing

high-level languages more effectively.

Response: There is very little argument with the basic tenet of this

axiom. There is concern, however, that many proposed architectural

directions do not serve to create a more efficacious computer system.

Support for high-level languages is too often attacked by designing a

computer to execute a particular language, with a tailored instruction

set which has a high-level one-to-one mapping between the external

source language and the internal machine language, This practice is

seen as dangerous for two reasons. First, it imposes a global view

which must conform to one particular language, and second, it

emphasizes language support more than the efficiency of the entire sys-

tem.

For most programming environments, a system must be able to

effectively support multiple languages, if the primary language for the

machine is not a good systems programming language, then the imple-

mentation of the systems language may turn out to be inefficient.

Even if not seen by the end user, a systems language is required for

implementing the operating system, compilers and other machine

dependent software. It is not uncommon for an operating system to

consume a third of the processing resources of a machine. Severe per-

formance degradation is likely if the tailored instructions for the user

language do not lend themselves to the efficient implementation of the

systems language. A single instruction set tailored to one particular

language is constrictive, as it can make implementation of other

languages difficult and inefficient.

While the implementation of programming languages is impor-

tant, this is only a partial step to achieving an efficient system. The

architecture must make provisions for efficiently supporting operating

systems issues such as process handling, memory management, file

storage, peripheral interfacing, text processing and program compila-

tion. Paying attention to the execution of the task at hand is more

important than the implementation of the language in which the task

will be programmed.

Axiom 5: High-level language machines are desirable because they have

very compact code.

Response: Code compactness is often used as a measure of the quality

of a computer; this seems a reasonable measure from an information

theoretic point of view. Yet it is highly questionable whether code

compaction actually achieves cost or speed goals. Also in question is

whether code compaction is due primarily to the highqevel nature of

the instruction set.

Code compaction is said to help achieve a lower cost computer

because less memory is required to run the same algorithm and thus

less memory will have to be purchased. There are several weaknesses

to this argument. To be significant, memory savings need to be sub-

stantial, particularly where a large hardware investment is needed to

achieve code compaction. Secondly, very few systems are purchased

with the knowledge that only one particular algorithm of a fixed size

will be run. Memory savings are directly related to the amount of

interpretation inherent in the instruction set. The memory savings on

an APL machine is likely to be much greater than on an ALGOL

machine, if we take the principle that a HLLC should be able to

implement a variety of languages, then it is unlikely that one instruc-

tion set could achieve such a large savings. Finally, considering the

rapidly falling cost of memory, program size reduction will become less

important in total system cost.

Compact programs are also assumed to be desirable because they

enhance execution. A common argument is that if a machine has to

fetch fewer total bits, then it can fetch them faster, causing an

improvement in execution times. This has two fundamental fallacies.

The speed of the machine is not entirely limited by the data transfer

rate, and the total number of bits fetched is not as important as the

number of words fetched. A vivid example of the effect of code com-

paction was discovered in an informal experiment where the size of

programs was reduced 20-30% on an Interdata 8/32 by using a loader

which substituted short addresses for long addresses. Though the size

of the programs was noticeably different, the execution speed when

both versions were run differed by less than one per cent. 35 The para-

dox is explained by the fact that the computer uses an instruction pre-

fetch which negates any difference in program fetch times. Again, in

order to be effective, memory savings must be significant.

It should be noted that many comparisons of code density were

made with respect to machines which are known to have inefficient

encodings. A serious question which must be confronted is whether a

similar or better improvement can be obtained by improving the

instruction set of a low-level language machine. Recent studies would

appear to make this very likely. 36,37,38 For machines not proposing

9 9

significant run time interpretation, the degree of code compaction

appears to be comparable to what can be achieved in a traditional

architecture•

Axiom 6: Direct execution machines offer a cost-effective architecture

for executing high-level languages.

Response: Direct execution machines are defined to execute a source

program without any form of translation to an intermediate language.

Perhaps proposals for such machines stem from the feeling by users

that

"the compilation run of the machine, during which the

language translation is accomplished, is a waste of time and

money to the user since he must pay for this time, though he

gets no problem answers for it. ''1°

It is our feeling that direct execution machines, though perhaps techni-

cally feasible, will not become viable architectures for executing high-

level languages. One of the principle reasons for this is the realization

that it is not reasonable to begin executing programs without first

checking for syntax or detectable semantic errors. In order to perform

syntax analysis the program must be run through a preprocessor, lexi-

cal analyzer, parser, and error detection routines; these steps account

for most of the phases of a compiler. Once a program has been

parsed, it would seem foolish to not generate a more efficiently inter-

preted internal form for the machine to execute. In generating an

internal instruction form, many decisions about how the program can

be most efficiently executed can be "bound". With direct execution,

every time a source statement is executed, this binding must be done

again, causing a loss of execution time.

Though several aspects of direct execution have been examined

in existing proposals, many problems still exist which even very com-

plex hardware does not seem to be able to solve. For example, how

would a direct execution machine know where to jump for a procedure

call? Solutions to such problems are attacked by retaining intermediate

information to lessen scanning and retranslation. Retaining intermedi-

ate information, however, is tantamount to compiling, thereby

transforming an optimized direct execution machine'into a more con-

ventional architecture which uses a compiler. There appear to be no

convincing reasons for using direct execution as an implementation

technique which can not be solved cheaper and faster using indirect

execution machines. If anything, direct execution machines are likely

to have an exorbitant cost and very poor performance.

A New Look at High-Level Language Architecture

Though many justifications for HLLCs seem to have been mis-

directed, we do not mean to imply that there are not good reasons for

additional research, merely that the motivations must be credible. In

fact, we feel that there exists great promise for more cost-effective

computer systems by taking a new look at the actual issues. '~he pri-

mary focus however must be on the word system. The architecture of

the future would appear to be the High-Level Language Computer

System (HLLCS). There is no doubt that there exists the need for sys-

tems directed exclusively for high-level language use. The research

issue is to define and build the most cost-effective architecture for this

task.

Definition of a High-Level Language Computer System

One of the difficulties with this subject is the lack of a useful

definition of a HLLCS. A definition proposed by Chu is: 39

"A high-level language computer system is one that can accept

and execute a high-level language program."

This definition is almost useless in distinguishing which computers are

and which are not HLLCs, as every computer that has a HLL com-

piler is considered to be a high-level language computer system. We

cannot think of a single commercial computer or microcomputer that

does not satisfy this definition. One could even build the software that

would classify a Turing Machine as a HLLCS. This definition does,

however, serve the useful purpose of focusing on the function rather

than the implementation of a HLLCS.

The following description of a High-Level Language Computer

System, as it appears to a user of that system, is proposed as a more

discriminatory definition.

A High-Level Language Computer System is one that:

(1) Uses high-level languages for all programming, debugging and

other user~system interactions.

(2) Discovers and reports syntax and execution time errors in terms of

the high-level language source program.

(3) Does not have any outward appearance of transformations from

the user programming language to any internal languages.

Any system that claims it is a HLLCS must meet these three require-

ments. The first simply requires that all programming be done in a

high-level language. The second requirement can not be met by omis-

sion. Debugging tools for a HLLCS 'must exist which allow the user to

query the system about the status of his program with the same degree

of detail which might be expected using a machine language

debugger, t In order to meet the third requirement, the transformation

between the high-level programming language and any internal

machine language must be transparently reversible. Errors will occur

at the machine level, not at the user program level, but error diagnos-

tics must be mapped back to the user's high-level source program.

This definition does not restrict the implementation to hardware

or software. It does, however, require that any HLLCS be able to

detect errors and report these errors in terms that do not rely upon an

understanding of the implementation. A user of the system who is

' f Such a debugger exists on a commercial computer. The NCR Criterion 85004o has a
symbolic debugger for COBOL. The COBOL programmer is able to trace or dump any
COBOL variables or statements by setting flags which tell the microcode to invoke the
debugger when appropriate events o c c u r . 9

100

ignorant of the implementation is therefore at no disadvantage.

A Measure of Architectures for High-Level Language Computer Sys-

tems

Given our definition of a HLLCS, we could define a high-level

language computer architecture as one which allows an efficient imple-

mentation of a HLLCS. Perhaps it would be more useful to define

some measures of evaluation of architectures in terms of HLLCS.

Three architectural measures that indicate efficiency of a HLLCS

implementation are proposed. Briefly, for a given machine, a set of

programs are compiled and executed under two cases; the first case

meets all the requirements of a HLLCS and the second ignores the

requirements in an attempt to gain efficiency. The three measures are

simply the ratios of the execution time, program sizes and compile

times for the two cases. The range of all measures should then be

between 0 and 1, with the larger numbers indicating greater efficiency.

The next two paragraphs describe the terms more precisely.

Let P be a representative set of syntactically and semantically

valid programs for some high-level language. For a given HLLCS, H,

on a machine M, let T H be the total execution time for this set of pro-

grams. Let L be a fast execution time system on M that is not con-

strained to meet the HLLCS requirements of checking and reporting

errors; and T L be the execution time for this same set of programs P.

Then the High-Level Language Execution Support Faetor(HLLESF) is

defined as the ratio of T L to T H. The HLLESF is then an indication

of how well the architecture supports a HLLCS. If a system has a

HLLESF close to one, it clearly has an architecture that lends itself to

efficient implementation of HLLCSs. SYMBOL is an example of a

machine with a HLLESF of one and if the B6700 meets our definition

of HLLCS, it also does not gain performance by turning off error

checking. C?nversely, a machine whose HLLESF is close to zero

clearly does not have an architecture amenable to a HLLCS. Since the

classic execution ratio of interpreters to compilers is an order of magni-

tude, we would expect these machines to have a HLLESF of about

0.1.

The HLLESF may alsO. be an indirect measure of the quality of

the software that is developed on a computer. A very small HLLESF

would encourage programmers to remove all error checking once the

program is "debugged". As there is some doubt whether a large pro-

gram is ever debugged, disregarding error checking during production

runs is certainly an undesirable practice.

Conversely, one would expect systems with a HLLESF close to

one to encourage programmers to leave the error checking in their pro-

grams, thereby enhancing reliability. Given the same caliber of pro-

grammers and computers of the same performance, one would expect

that the higher the HLLESF, the greater the reliability of the software

produced.

This approach to a measure of execution support can also be gen-

eralized to measures for program size and preparation time. The HLL

Size Support Factor (HLLSSF) is defined to be the ratio of the size of

the complete set of programs required to write and execute (i.e.,

source, object) P using L to the size of the programs of P using H.

The HLL Preparation time Support Factor (HLLPSF) is defined to be

the ratio of the preparation time (i.e.,compilation, linking, loading)

for the of the complete set of programs P using L to the program

prepartion time of P using H. HLLSSF and HLLPSF are less impor-

tant than HLLESF, but they are interesting measures.

Designing High-Level Language Computer Systems

High-level language computer systems will be built; it is just a

matter of when and how cost effective they will be. In an attempt to

push designs along a successful path, we would like to speculate on

several attributes which we feel will be part of a high-performance

cost-effective HLLCS of the mid 1980's.

Attribute 1. The system will efficiently support a systems program-

ming languages such as BCPL, 41 BLISS, 42 or C, 43 for writing the

operating system, compilers, debuggers, editors, and other software

which must deal with the low level details of the machine and its peri-

pherals.

Attribute 2. The architecture will be oriented towards the support of

operating systems. For example, process handling and context switch-

ing must be extremely efficient. It is not uncommon for a third of the

CPU resources of current computing systems to be used for the operat-

ing system and other utilities not directly concerned with the execution

of a user's application program.

Attribute 3. There will be one or more instruction sets which will be

output from high-level language compilers. The number of specifically

tailored instructions sets will be related to the differences in the level

of interpretation inherent in the languages supported by the system.

For example, BCPL, BLISS, and C compilers are likely to generate

code using the same instruction set, though different instruction sets

will be used for highly interpretive languages such as LISP and SNO-

BOL.

Attribute 4. The instruction set(s) will be optimized for the way pro-

gramming languages are used. Special purpose hardware will be dedi-

cated only for those functions which are known to occur frequently.

There will generally not exist a one-to-one correspondence between the

source and object code. The "level" of the instruction set will be raised

only when there are specific advantages to be gained.

Attribute 5. The instruction set will be designed to be generated by a

compiler. This requires attention to details of orthogonality, and the

elimination of complex instructions which compilers are not reasonably

able to generate. One of the reasons why high-level languages have

been considered inefficient, compared to hand generated code, is that

the compilers could not efficiently cope with awkward instruction

sets. 44

Attribute 6. The instruction set will not inhibit well known

implementation techniques such as pipelining and instruction prefetch-

ing. Complex instructions will be avoided if they tend to block a pipe-

line or create difficulties with interrupting and restarting instructions.

Besides the instruction set architecture, attention will be paid to optim-

izing the underlying hardware architecture which will execute the

instruction set.

Attribute 7. Details of how the transparent re-mapping of object code

back into source will be dealt with from the beginning. This, of neces-

sity, impacts the instruction set and the details of compiler code gen-

eration. The architecture may be affected; for example, descriptor-

based and tagged architectures 45'46'34 are effective in retaining type

information needed for full source level debugging.

Attribute 8. A HLLCS is independent from its implementation;

whether the implementation is achieved mainly by hardware or mainly

by software has no bearing on meeting the definition of a HLLCS.

The relative amounts of hardware and software will not be an issue

except in regard to how it relates to execution speed and cost. Experi-

ence with the SYMBOL system showed that there is no reason to think

that merely increasing the amount of hardware in a system will make it

run proportionally faster. 47 A large computer with a great variety of

"high-level" instructions and hardware is no more desirable than a very

simple but fast computer which can interpret the same higher-level

instruction set with the same performance.

Attribute 9. Good compiler technology will have an important role in

the overall efficiency of the system. Code generation will not be done

in the easiest fashion possible, but rather in the manner that produces

the most efficient code. The compilers will use traditional code gen-

eration optimization techniques such as constant folding, expression

re-ordering, and moving invariant computations out of loops. 48,49

Very high performance machines may use advanced compiler tech-

niques such as common subexpression elimination, replacement of pro-

cedure calls by in-line code, removal of statements whose outcome can

be determined at compile time by global data-flow analysis, and gen-

erating instructions with execution hints to the hardware (such as

which way a conditional branch is most likely to jump), provided that

these advanced techniques do not impair the achievement of a

HLLCS.

Attribute 10, The system will be a refinement of several previous, less

ambitious systems. It is not reasonable to expect that a complex sys-

tem can be designed successfully without actual use and iterative

improvement. As the specification of a programming language or

operating system is often a moving target, the system will avoid

obsolescence by being flexible, allowing for incremental change without

total system redesign.

A Scheme for the Transparent Reversibility of the Compilation Pro-

cess

The one major obstacle preventing the realization of HLLCSs

seems to be the difficulty of relating execution errors and debugging

information to the source program. Current debugging tools often fail

to inform the user of anything more than the line number of the state-

ment in execution. Execution time penalties discourage providing

even this crude piece of information; Shustek reports that for a particu-

lar PL/I program on an IBM 370/168, 16% of the instructions exe-

cuted, representing 23% of the execution time, were moves used to

record the current statement number from the source program. 5° Such

execution time penalties are not required to provide sophisticated

debugging. Indeed, to achieve a HLLESF of 1, there should be no

execution time penalties. A method is now suggested to allow the

implementation.of efficient high-level language diagnostics and debug-

ging tools which meet the criteria of a HLLCS.

First, it must be possible to identify the statement containing the

execution error. Giving the line number is sufficient only if the source

statement can also be printed. This presents many problems in itself,

for example, with separate compilation there may more than one set of

line numbers to consider, and there is generally no restriction that the

user cannot modify the source program after compiling it (in this case

obtaining the line number from the object program would not neces-

sarily lead to the correct source statement). The ideal approach would

be to "decompile" the object program to reproduce the offending

source statement. This approach has been studied 51 and was used sac-

cessfully on the SYMBOL system. 34 This approach is not recom-

mended for many reasons, the most important of which is that it is not

possible to recreate the original source line exactly.

Three data structures are used to obtain the original source state-

ments from the object code. The first is an address map which

uniquely identifies a range of addresses in a load module with the

corresponding source statement number. The second is a copy of the

source program which created the object module. A pointer to the

user's source is sufficient until this original source is somehow modi-

fied, at which time a separate copy of the source which created the

load module must be saved. A third data structure, the symbol table,

is needed to print the name and values of operands with each load

module. The symbol table contains the external ASCII name and all

type information for operands. All of these data structures are per-

manently stored with every load module and as they are needed infre-

quently, they can be stored on high latency devices.

More detailed information is required to meet the definition of a

HLLCS. It is necessary to identify the particular operator or operand

in the source statement which caused the error to occur. To achieve

this granularity, pattern matching is used -- a decompiled version of

the statement is compared with the original source statement. The

decompiled version obtains the operator or operand in question from

the state of the machine, which in turn is matched to the original-

'102

source statement. An undesirable consequence is that no compile time

optimizations, such as the elimination of common subexpressions or

program restructuring, can be done if they interfere with the decompi-

lation process. The" equivalent of the "imprecise interrupt '62 at the

source program level can not be allowed to happen. The instruction

set can affect the ease and success of decompilation, it is felt that stack

machines offer instruction sets which are easiest to decompile. Though

certainly not the only solution, the above scenario is one approach

which can be used to relate machine errors to the high-level source

program.

Conclusion

Much of the prior work has not carefully examined the reasons

for proposing new architectures. Possibly as a result, few of these pro-

posals went beyond paper designs. One of the faults of HLL Comput-

ers is that they ignored the view of the total system; a bare architecture

without the surrounding system can no longer be considered as a viable

solution to software problems. Hopefully, the realization that almost

any computer can be transformed into a HLLCS through the appropri-

ate software will allow incremental growth of present systems into

HLLCSs. Adherence to the more demanding definition and architec-

tural evaluation in terms of the given measures should lead to more

cost-effective systems for high-level languages. Achieving total high-

level language support while increasing performance and lowering costs

is the job for designers of High-Level Language Computer Systems.

Acknowledgements

The authors would like to thank R. Carpenter, E. T. Cohen, A.

M. Despain, L. 1. Dickman, A. G. Fraser, S. C. Johnson, K. Lew, D.

L. Presotto, C. H. S6quin, M. Turner, and W. Uejio for their helpful

comments and criticisms during the preparation of this paper. This

research was sponsored in part by Bell Laboratories and in part by the

Defense Advance Research Projects Agency (DoD), ARPA Order No.

3~803, and Monitored by Naval Electronic System Command under

Contract No. N00039-78:G-0013-004. Support for the preparation of

this paper at the University of California at Berkeley was provided in

part by the National Science Foundation under grant MCS 7807291.

References

1. H . J . Lane, "An Algol 68 Machine and Translator," Computer

Languages Group Report UCLA-ENG-7369, Computer Science
Department, University of California (1973). Ph.D. Dissertation

2. A .S . Tanenbaum, Design and Implementation of an Algol 68 Vir-
tual Machine, AFDELING INFORMATICA, Amsterdam (June
1973).

P. S. Abrams, An APL Machine, Stanford University (1970).
Ph.D. Dissertation

A. Hassitt, J. W. Lageschulte, and L. E. Lyon,

3.

4.

"Implementation of a High Level Language Machine," Commun-
ications of the ACM 16(4). pp. 199-212 (April 1973).

5. S . C . Schroeder and L. E. Vaughn, "A High Order Language

Optimal Execution Processor (FIRST)," Proceedings qf the
ACM-IEEE Symposium on High-Level-Language Computer Archi-
tecture, pp. 109-116 (November 1973).

6. J . J . Burkle, A. Frick, and C. Schlier, "Hardware Structures for
the Interpretation of High Level Languages," Proceedings of a
Conference on Struktur und Betrieb von Rechensystemen , Munich
(1978).

7. H . J . Burkle, A. Frick, and C. Schlier, "High Level Language
Oriented Hardware and the Post-von Neumann Era," Proceed-
ings of the Fifth Annual Symposium on Computer Architecture,
pp. 60-65 (April 1978).

8. R. J. Chevance, "A Cobol Machine," ACM
SIGPLAN/SIGMICRO Interface Meeting, New York, pp. 139-144
(1973).

9. M . D . Shapiro, "The Criterion COBOL System," Proceedings of

the 1978 AFIPS Conference, pp. 1049-1054, AFIPS Press (1978).

10. T . R . Bashkow, A. Sasson, and A. Kronfeld, "System Design of
a FORTRAN Machine," IEEE Transactions on Computers EC-
16(4), pp. 485-499 (August 1967).

11. A . J . Melbourne and J. M. Pugmire, "A Small Computer for the
Direct Processing of FORTRAN Statements," Computer Journal,
pp. 24-27 (April 1965).

12. R. Greenblatt, T. Knight, J. Holloway, and D. Moon, The LISP
Machine, In preparation.

13. L . P . Deutsch, Experience with a Microprogrammed lnterlisp Sys-
tem, In preparation.

14. Western Digital Corporation, PASCAL Microengine Reference
Manual, March 1979.

15. M. Sugimoto, "PL/I Reducer and Direct Processor," Proceedings
of the 24th ACM National Conference, New York, pp. 519-538,
ACM (1969).

16. D .B . Wortman, A Study of Language Directed Computer Design.
Stanford University (1972). Ph.D. Dissertation

17. G . J . Myers, Advances in Computer Architecture, John Wiley &
Sons (1978).

18. M. D. Shapiro, "A SNOBOL Machine: A Higher-Level
Language Processor in a Conventional Hardware Framework,"
Digest of the Sixth Annual IEEE Computer Society International
Conference, pp. 41-44 (1972).

19. M. D. Shapiro, A SNOBOL Machine: Functional Architectural
Concepts of a String Processor, Purdue University (June 1972).
Ph.D. Dissertation

20. R. Rice and W. R. Smith, "SYMBOL -- A Major Departure
from Classic Software Dominated von Neumann Computing Sys-

tems," Proceedings of the AFFIPS 1971 Spring Joint Computer

Conference, Montvale, N.J., pp. 575-587, AFIPS Press (1971).

21. H. Weber, "A Microprogrammed Implementation of EULER on
IBM System/360 Model 30," Communications of the ACM 10(9),
pp. 549-558 (September 1967).

22. W . C . Nielsen, "Design of an Aerospace Computer for Direct
HOL Execution," Proceedings of the ACM-IEEE Symposium on
High-Level-Language Computer Architecture, pp. 34-42
(November 1973).

t03

23. W. M. McKeeman, "Language Directed Computer Design,"
AFIPS 1967 Fall Joint Computer Conference, pp. 413-417 (1967).

24. B.W. Leverett, R. D. G. Cattell, S. O. Hobbs, J. M. Newco-
mer, A. H. Reiner, B. R. Schatz, and W. A. Wulf, "An Over-
view of the Production Quality Compiler-Compiler Project,"
Report CMU-CS-79-105, Carnegie-Mellon University (February
1979).

25. M. E. Lesk, "Lex - - A Lexical Analyzer Generator," Comp,
Sci. Tech. Rep. No. 39, Bell Laboratories, Murray Hill, New
Jersey (October 1975).

26. S. C. Johnson, Yaee: Yet Another Compiler-Compiler, Bell
Laboratories internal memorandum (1978).

27. A . V . Aho and S. C. Johnson, "Optimal Code Generation for
Expression Trees," J. Assoc. Comp. Math. 23(3), pp. 488-501
(1975). Also in Proc. ACM Symp. on Theory of Computing, pp.
207-217, 1975.

28. J .L. Bruno and T. Lassagne, "The Generation of Optimal Code
for Stack Machines," Journal of the ACM 22(3), pp. 382-396
(July 1975).

29. E . I . Organick, Computer System Organization:The B5700/B6700
Series, Academic Press (1973).

30. R.N. Ibbett and P. C. Capon, "The Development of the MU5
Computer System," Communications of the ACM 21(1), pp. 13-24
(January 1978).

3l. T. A. Laliotis, "Implementation Aspects of the SYMBOL
Hardware Compiler," Proceedings of the First Annual Symposium
on Computer Architecture, pp. 111-115 (1973).

32. J .W. Anderberg, "Source Program Analysis and Object String
Generation Algorithms and their Implementation in the SYM-
BOL 2R Translator," Report "NSF-OCA-GJ33097-CL7410,
Cyclone Computer Laboratory, Iowa State University, Ames,
Iowa (1974). NTIS number PB-230 614/AS

33. D. R. Ditzel, "Interactive Debugging Tools for a Block Struc-
tured Programming Language," Report MCS72-03642-CL7802,
Cyclone Computer Laboratory, Iowa State University, Ames,
Iowa (1978).

34. D. R, Ditzel, "High Level Language Debugging Tools on the
SYMBOL Computer System," Submitted to the 1980 Workshop
on High-Level Language Computer Architecture (January 1980).

35. D .M. Ritchie and S.C. Johnson, .Private Communication, Bell
Laboratories (1979).

36. A.S . Tanenbaum, "Implications of Structured Programming on
Machine Architecture," Communications of the ACM, pp. 237-
246 (March 1978).

37. E . C . R . Hehner, "Matching Program and Data Representations
to a Computing Environment," Technical Report CSRG-44,
Computer Systems Research Group, University of Toronto,
Toronto, Canada (November 1974). Ph.D. Dissertation

38. E. C. R. Hehner, "Computer Design to Minimize Memory
Requirements," Computer 9(8), pp. 65-70 (1976).

39. Y. Chu, "Concepts of High-Level Language Computer Architec-
ture," in High Level Language Computer Architecture, ed. Y.
Chu, Academic Press, New York (1975).

40. T. Tang and K. O'Flaugherty, "Virtual Machines and the NCR
Criterion," Datamation , pp. 129-134 (April 1978).

41. M, Richards, "BCPL: A Tool for Compiler Writing and

Structured Programming," Proceedings of the AFIPS 1969 SJCC

(1969).

42. W.A. Wulf, D. B. Russell, and A. N. Haberman, "BLISS: A
Language for Systems Programming," Communications of the
ACM 14(12), pp. 780-790 (December 1971).

43, B. W. Kernighan and D. M. Ritchie, The C Programming
Language, Prentice-Hall, Englewood Cliffs, New Jersey (1978).

44. N. Wirth, "On "PASCAL", Code Generation, and the CDC
6000 Computer," Technical Report TR-257, Stanford Univer-
sity, Stanford, California.

45. E. A. Feustal, "On the Advantages of Tagged Architecture,"
IEEE Transactions on Computers C-22(7), pp. 644-656 (July
1973).

46. R. J. Zingg and H. Richards, Jr., "SYMBOL: A System
Tailored to the Structure of Data," Proceedings of the National
Electronics Conference, Oak Brook, Illinois 27, pp. 306-311,
National Electronics Conference, Inc. (1972).

47. D .R. Ditzel and W. A. Kwinn, "Reflections on a High Level
Language Computer System or Parting Thoughts on the SYM-
BOL Project," Submitted to the 1980 Workshop on High-Level
Language Computer Architecture (January 1980).

48. W. Wulf, R. K. Johnsson, C. B, Weinstock. S. O. Hobbs, and
C. M. Geschke, The Design of an Optimizing Compiler. Ameri-
can Elsevier, New York, N. Y. (1975).

49. A. V. Aho and J. D. Ullman, Principles of Compiler Design.
Addison-Wesley, Reading, Mass. (1977).

50. L.J . Shustek, "Analysis and Performance of Computer Instruc-
tion Sets," STAN-CS-78-658, Stanford University (May 1978).

51. C .R. Hollander, "Decompilation of Object Programs," Techni-
cal Report No. 54, Stanford University (January 1973). Ph.D.
Dissertation

52. D .W. Anderson, F. J. Sparacio, and R. M. Tomasulo, "The
IBM System/360 Model 91: Machine Philosophy and Instruction
Handling," IBM Journal of ResercB and Development 11(1),
pp. 8-24 (January 1967).

,104

