
Introductory Game Creation: No Programming Required
A.T. Chamillard

Computer Science Department
University of Colorado at Colorado Springs

Colorado Springs, CO 80933-7150
719-262-3150

chamillard@cs.uccs.edu
ABSTRACT
Many incoming college freshmen have accumulated a significant
number of hours of experience playing computer games.
Extending that experience to actual game creation activities can
be highly motivational for these students. Most of these activities
require some level of programming expertise, however, making
them activities too advanced for the majority of incoming
students.

In this paper, we describe a freshman-level course called Problem
Solving through Game Creation. Students learn to use a number
of drag-and-drop game creation tools to develop both 2D and 3D
games, with no programming required in the course. We also
cover a variety of other topics and tools related to game
development.

Our experience has been that students enjoy the course, but we
have more formal course goals as well. Specifically, we hope to
motivate students to declare and complete the computer science
major and to better prepare students for the initial required
computer science courses. We describe these goals in detail and
discuss the process we have initiated to continually evaluate
achievement of those goals.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education – computer science education, curriculum.

General Terms
Design, Human Factors.

Keywords
Computer game development, Introductory courses, Student
motivation.

1. INTRODUCTION
Many incoming freshman have extensive computer gaming
experience, and some of them view themselves as potential
independent game developers as well. Given the affinity these and
other students feel toward computer gaming, using this highly

motivational domain may encourage incoming college students to
pursue computer science as a major. Incorporating computer
game development in introductory computer science courses
could also help retain students struggling with the low-level
language issues faced by beginning programmers, especially if the
game development content is integrated to provide incremental
success for those students. We also believe that integrating such
motivational content into introductory courses will contribute to
more effective student learning.
Unfortunately, most game development activities require some
level of programming expertise, making those activities too
advanced for many incoming college students. For the Fall 2003
semester, we developed a new freshman-level course – CS 101:
Problem Solving through Game Creation – for developing 2D and
3D computer games using drag-and-drop tools (e.g., no
programming is required). Students learn to use a variety of game
development tools, but also learn many of the underlying
computing concepts associated with game implementation. The
high-level goals of the course are to motivate students to declare
and complete the computer science major and to better prepare
the students for the initial courses in the computer science major.
We are currently teaching the course for the third time.
Education researchers have identified the positive motivational
effects of incorporating computer game development into
introductory computer science courses [2, 3]. Educators have
integrated game development activities in courses ranging from
introductory computer science courses [9] through upper-level
courses [4, 6, 11] and even senior-level capstone courses [8].
Although the majority of computer science educators appear to
believe that computer games represent a valuable educational
tool, contrary opinions exist as well [12].
Researchers have proposed that one of the key reasons that males
predominate in computer science is that most games are marketed
toward males [10], though it has also been argued that computer
games can be used to interest more girls in computing [5]. We
believe that both genders can benefit from the integration of game
development activities into computer science education. For
example, women appear (in general) to prefer creative games
rather than the destructive games preferred by men; providing
flexibility in the game assignments included in a course can
effectively engage both genders in those assignments. In the Fall
2004 offering of the course described below, the average for the
(5) female students was 21% higher than the average for the (27)
male students, and the top two students in the class were women.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGCSE'06, March 1–5, 2006, Houston, Texas, USA.
Copyright 2006 ACM 1-59593-259-3/06/0003...$5.00.

Although there is strong anecdotal evidence that integrating
computer games into computer science courses leads to increased
student motivation and improved student learning, the literature
does not reflect the results of careful, quantitative evaluation of
such integration. We view the course described in this paper, and

515

the evaluation of the course effectiveness, as our first steps in a
long-term, quantitative study of these issues.
This paper makes two contributions to the body of knowledge
related to the use of game development in freshman-level courses.
The first – and primary – contribution is the description of a
freshman-level course that is designed to let students create a
variety of 2D and 3D games without requiring any programming.
This course appears to be a unique approach to having freshman
students create interesting games, and as such could be of interest
to others interested in introducing these topics early in a computer
science (or more general) curriculum. The second contribution is
the clear specification of our course goals and, perhaps more
importantly, a detailed evaluation plan to evaluate our fulfillment
of those goals. Although preliminary results from the first two
course offerings are also provided, we believe the general course
description and, to a lesser degree, the goal/evaluation plan
discussion to be more significant contributions.
The following section provides a brief overview of the course
topics and their presentation sequence. Section 3 provides some
examples of student course work, and Section 4 describes our two
high-level course goals and how we plan to evaluate our
achievement of those goals. Section 5 describes some of the ways
in which we evolved the course from the first offering to the
current offering. Section 6 concludes the paper.

2. COURSE STRUCTURE
The course covers a variety of material, including general game
development topics, four drag-and-drop tools for developing 2D
and 3D games, and other tools and techniques that support game
development. The course is worth 2 credit hours, meeting for a
total of 20 lessons (75 minutes each). A condensed course
syllabus is provided in Table 1.
As shown in the condensed syllabus, half of the lessons are
dedicated to using the four different drag-and-drop tools, although

this coverage is spread out over the duration of the course. We
designed the course to cover some required introductory material,
then quickly have the students develop their first game.
Throughout the course, we want students to complete their game
using a particular tool before moving on to the next tool, so we
interleave the material for the drag-and-drop tools with other
game-related topics and course assessments.
Although half of the course lessons address the use of these tools,
it is important to note that student proficiency with these specific
tools is not a significant goal for us. As we discuss and work with
each tool in class, we find many opportunities to discuss core
computer science ideas in the context of that work.
For example, the Game Maker tool uses “objects” as the active
entities in the games developed by the tool. We can set basic
behavior characteristics for these objects (making an object
bounce off the walls, for example) as well as providing more
complicated behaviors within the objects. These game objects
also have state (speed, location, etc.), providing us an opportunity
to introduce the students to some basic object-oriented concepts.
In fact, because we can place numerous instances of the object –
which all exhibit the same behavior but have unique state
information – we can even introduce the idea of instantiation to
create objects from a base definition.
Game Maker also provides explicit use of a standard selection
construct, letting students specify conditional execution of
particular actions using “if” and “else.” In addition, the tool
implicitly executes a continuous game loop during game
execution and students can explicitly identify actions to occur on
each step of the loop. We therefore have an opportunity to discuss
both selection and iteration control structures as we use the tool.
The Games Factory provides a different model for game
development and execution, where some behavior is captured
within the objects but most of the game actions are defined
separately in an “Event Editor.” The Event Editor is used to
specify particular events, such as a collision between two objects,
and the resulting actions to execute if that event occurs, such as
destroying both objects. This lets us discuss the idea of event-
driven programming and how it works, as well as providing an
opportunity to discuss the differences between the Game Maker
and The Games Factory approaches.
It seems to be a very natural progression starting the course with
the 2D development tools then moving on to the 3D tools.
Unfortunately, the 3D tools we use in the course are much less
robust than the 2D tools. It seems that we should then change the
presentation order to cover the 3D tools first. This is problematic,
however, because we want the students to develop some comfort
developing games before moving on to more complicated tools. It
also seems to be the case that the students are more impressed
with 3D games even if the tools they use to develop those games
are more brittle or less flexible.

3. EXAMPLE STUDENT WORK
Game creation assignments comprise 50% of the course grade,
with the remaining 50% allocated to a Learning Style Survey and
the Mid-Term and Final Exams. Students complete four separate
game creation assignments, building games with Game Maker,
The Games Factory, Pie 3D Game Creation System, and 3D
Gamemaker.

Introdu

Game H

Game M

Graphic

Sound a

The Ga

Mid-Te

Pie 3D
tool)

Milksha

3D Gam

Game I
Program

Final Ex
Table 1. Condensed Course Syllabus

Topic Number of
Lessons

ction 1

istory and Game Design 1

aker (2D game tool) 3

s and Paint Shop Pro 1

nd Music 1

mes Factory (2D game tool) 3

rm Exam 1

Game Creation System (3D game 3

pe 3D (3D modeler) 2

emaker (3D game tool) 1

mplementation through
ming (Java)

2

am 1
516

In general, assignment points are allocated in the following way:

• Design Document: 10%

• Game Capabilities: 70%

• Additional Features/Tool Analysis: 20%
The intent of the Design Document is for the students to think
about their game design before actually creating the game using
the specified tool. Unfortunately, an informal poll of the Fall 2004
students indicated that almost every student created the Design
Document after completing their game. Although this is
consistent with our experiences with beginning programmers and
their use of algorithms in program design, we still believe there
should be a way to convince students to design before
implementing, even in an introductory games course. We have not
yet identified an effective way to accomplish that, however.
The game capabilities points are allocated to the specific
requirements for a particular assignment. For the additional
features points, we expect students to explore the game creation
tools to take advantage of additional tool features not discussed in
class. In some cases, we ask that students evaluate strengths and
weaknesses of the tool rather than exploring additional features.
Despite the fact that the students use drag-and-drop tools to create
the games in this course, some of the resulting games have been
quite impressive. For example, a student used Game Maker to
create the game shown in Figure 1 in the first few weeks of the
semester.

Figure 1. Student Game Maker Game

The background slowly scrolls downward, giving the impression
of falling leaves. The balloon is controlled using the arrow keys,
with acceleration and gravity affecting the behavior of the balloon
in reasonable ways. If the balloon strikes a spike, the game plays
an interesting sound, deducts a life, and returns the balloon to its
starting position. Finally, “collecting” a ball of a particular color
removes the block(s) of that color from the portal at the top left of
the screen. When all the blocks have been removed, the balloon
can pass through the portal and enter the next level of the game.
Figure 2 shows a game created by a student using The Games
Factory. In this game, the player controls the plane shown in the
upper center of the screen using the arrow keys. The terrain
scrolls with the plane as it flies around, yielding a play area much

larger than that shown in the figure. The silver planes chase the
player's plane trying to shoot it down, and the player's plane can
of course shoot back as well.
Finally, Figure 3 shows a game created by a student using Pie 3D
Game Creation System. In this First Person Shooter game, the
player walks through an environment trying to escape the guards
and reach the goal area. In addition to guards and walls, the
environment also contains weapons that can be picked up and
used by the player, as well as doors that require the player to
locate and pick up a key before the door will open.

Figure 2. Student The Games Factory Game

Figure 3. Student Pie 3D Game Creation System Game

The fourth tool – 3D Gamemaker – is very constraining in terms
of game creation capability. In fact, we include this tool (while
only dedicating a single lesson to its use) so that students can
critically analyze the tool in comparison to the other 3 tools in the
course. We discuss their analysis from the perspective of both a
game developer and a user of a game created by the tool. In
addition, we also show how to import a 3D model generated using
Milkshape 3D into the game, giving us an opportunity to
demonstrate how different game assets are typically generated
using a variety of tools.

517

Students clearly view the game creation assignments as very
motivational opportunities to exercise their creativity. During the
Fall 2004 and Fall 2005 offerings of the course, we have also
included a class demonstration of the top 5 games for each
assignment. Students seem to find that demonstration very
motivational, and often applaud the games as they see the
creativity that their fellow students have demonstrated.

4. COURSE GOALS
This section describes the two main goals we have identified for
the course and discusses how we will continually determine
whether or not we are achieving those goals.

4.1 To motivate students to declare and
complete the computer science major
Computer gaming is an inherently motivational topic, particularly
for those students who are comfortable with computers and are
thinking about majoring in computer science. To supplement this
inherent motivation, the course is structured to provide additional
motivation through each assignment, where students exercise their
creativity in developing numerous complete games during the
course.
Note that this goal is concerned both with selection of the
computer science major and completion of that major. Although
having students select the computer science major certainly
provides the department with short-term benefits, we are also
interested in having students successfully complete the major
once they have selected it. The course described in this paper will
clearly have a stronger effect on selection of the major, however,
because many factors affect completion of the major, including
student motivation and performance in the many required and
optional computer science courses that follow this one.
To determine whether or not we are meeting this goal, we need to
quantify how much this course has motivated students to declare
the computer science major and how many of the students who
take this course complete the major. Data about motivation is
collected through exit surveys for the course, while data about
completion of the major will be available from the Registrar (in
several years).

Although we will collect this data on a continuing basis, we do
have student motivation results from the Fall 2003 and Fall 2004
exit surveys. One of the exit survey questions asks the students to
rate, on a scale from 1 to 5, whether they are much less motivated
to major in computer science (1) to much more motivated to
major in computer science (5). The mean of these ratings in Fall
2003 was 3.27 (N=15), indicating a slight growth in motivation to
declare computer science as a major. The mean of these ratings in
Fall 2004 was 3.78 (N=27), indicating stronger growth. We
believe that the more positive results in the second offering were a
result of the course changes discussed below.

4.2 To better prepare students for the initial
required courses in computer science
Students entering the initial required computer science courses in
the computer science major do not always have the minimal set of
problem-solving and other skills expected of them by the
instructors of those courses. This course includes materials and
activities to try to improve the skill set of the students entering

those courses. In many cases, students are taking both this course
and our introductory programming course concurrently, so our
ability to affect their incoming skills for that course is certainly
limited.
In any case, we plan to determine whether or not we are meeting
this goal through evaluations in the two required freshman
computer science courses. We plan to administer a skills test
during the first week of the semester in those courses, and we will
also analyze student performance on the course assessments in
those courses. By comparing the incoming skills and course
performance in those courses for students who have and have not
taken the course described in this paper, we hope to determine
whether or not taking this course helps prepare them for those
other courses. We are currently working to develop that skills test
and administer it in the freshman computer science courses.

5. COURSE EVOLUTION
We are just beginning the third offering of this course, and we are
committed to a continual process of course evolution and
improvement. We expect a large portion of our course evolution
efforts to be guided by the results of our analysis of the data we
collect to evaluate course goal achievement. Because it will take
some time for that data to be useful – particularly in terms of
completion of the computer science major and preparation for
later courses – we are also using student exit surveys and
instructor observations to effect changes in the course.
One of the changes we made in the course was removing the
Personal Software Process (PSP) [7] from the course content. We
included the time management aspects of the PSP in the initial
course offering, reasoning that incoming freshmen could benefit
from learning these skills. Instructor observations indicated,
however, that many students disliked this component of the
course. These observations were supported by exit survey data, in
which 7 of the 15 respondents identified the PSP as one of the
worst parts of the course. Even more importantly, we note that
following computer science courses do not require the use of PSP.
It seems futile to force incoming freshman students to use the PSP
and argue for its value when these students will no longer use it
after this course. Given these observations, we removed this topic
from the course content.
We held the first offering of this course in a computer lab so that
students could follow along with the tool demonstrations. This
environment caused a number of problems, however. The worst
of these problems was exhibited by regular interruptions to the
class discussions requesting that we back up and reiterate
sequences of actions so that particular students could "catch back
up" to the class. We found this to be particularly disruptive to the
flow of the class, and many students also appeared to find these
interruptions irritating. A lesser problem was that a number of the
students simply used the computers in the lab to surf the web or
play games. This did not affect the class as a whole, but we
believe those students would have been better served by paying
attention to and participating in the class lecture. The Fall 2004
offering of the course was held in a traditional classroom, largely
because the 32 students enrolled in the class exceed the size of
any of our labs. It is interesting to note that 15% of the Fall 2004
students said they would prefer that the class be taught in a lab
rather than a classroom, but we will continue delivering the
lectures in a traditional classroom environment.

518

A significant surprise in the Fall 2004 course offering was that
48% of the students indicated that they had problems either
installing or using one or more of the game creation tools on their
personal computers. We did not experience these problems in the
initial course offering, nor have we had any similar problems on
the computers in our computer lab. Given this feedback, we are
investigating other 2D and 3D drag-and-drop tools to use in the
course. The current tools are bundled with the course textbook
[1], however, so any replacement tools we identify will need to be
free. This limitation may, of course, lead us to continue using the
current tools. In that case, we will take the approach we took in
the Fall 2004 semester; if students are unable to get particular
tools to work on their own computers, we send them to the
computer lab to develop their games.

6. CONCLUSIONS AND FUTURE WORK
This paper describes a freshman-level course in which students
create 2D and 3D games using drag-and-drop tools. Our intent
was to make game development activities available to incoming
freshmen without programming skills; most students do very well
on the game assignments using the game development tools. We
have also taught the majority of the course content to a group of
homeschooled students ranging in age from 12 to 16; those
students were also able to successfully complete the game
development activities with no programming experience.
One interesting side effect of this course is that it drove a change
to our standard computer lab policies. Specifically, those policies
prohibit students from playing games on the lab computers. This
was clearly an inappropriate policy for students in this course,
since they would essentially be required to create their games
without being allowed to test them!
Reactions to the course from our fellow faculty have been
generally positive. We have carefully made the point that this is
not a “content free” course in which students simply play games;
that the course does in fact provide educational value to both
computer science majors and non-majors.
True support for the course will be evident soon, as we have
recently been discussing whether the course should be required as
part of our computer science curriculum. Initial reactions to this
idea have ranged from generally strong support for the idea to an
argument that we shouldn’t even recommend that our incoming
students take this course over other freshman free electives. In
addition to providing guidance for continual course improvement,
we hope the data collected to evaluate our course goal
achievement will also help us quantify and support the value of
the course to computer science majors.
The course described in this paper represents our first step in a
long-term, quantitative study of the effectiveness of integrating
computer games into the computer science curriculum. We plan to
continue this work both through continued evaluation of the
course described here, through integration of computer game

development activities into other early courses in the computer
science major, and through evaluation of the new courses we have
developed to support our new Game Design and Development
Minor.

7. REFERENCES
[1] Ahearn, L. and Crooks, C.E. III. Awesome Game Creation:

No Programming Required, 2nd ed, Charles River Media,
2002.

[2] Becker, K. Teaching with games: the Minesweeper and
Asteroids experience. Journal of Computing Sciences in
Colleges, 17(2):23-33, 2001.

[3] Chamillard, A.T. and Braun, K. Evaluating programming
ability in an introductory computer science course. In
Proceedings of the Thirty-First SIGCSE Technical
Symposium on Computer Science Education, Austin, Texas,
March 2000, pp. 212-215.

[4] Claypool, K. and Claypool, M. Teaching software
engineering through game design. In Proceedings of the 10th
Annual SIGCSE Conference on Innovation and Technology
in Computer Science Education, Monte de Caparica,
Portugal, June 2005, pp. 123-127.

[5] Gorriz, C.M. and Medina, C. Engaging girls with computers
through software games. Communications of the ACM,
43(1):42-49, 2000.

[6] Huang, T. Strategy game programming projects. Journal of
Computing Sciences in Colleges, 16(4):205-213, 2001.

[7] Humphrey, W.S. Introduction to the Personal Software
Process, Addison Wesley Longman, 1997.

[8] Jones, R.M. Design and implementation of computer games:
A capstone course for undergraduate computer science
education. In Proceedings of the Thirty-First SIGCSE
Technical Symposium on Computer Science Education,
Austin, Texas, March 2000, pp. 260-264.

[9] Lorenzen, T. and Heilman, W. CS1 and CS2: write computer
games in Java! ACM SIGCSE Bulletin, 34(4):99-100, 2002.

[10] Natale, M.J. The effect of a male-oriented computer gaming
culture on careers in the computing industry. ACM SIGCAS
Computers and Society, 32(2):24-31, 2002.

[11] Sweedyk, E. and Keller, Robert M. (2005). Fun and games:
A new software engineering course. In Proceedings of the
10th Annual SIGCSE Conference on Innovation and
Technology in Computer Science Education (pp. 138-142),
Monte de Caparica, Portugal.

[12] Walker, H.M. Do computer games have a role in the
computing classroom? ACM SIGCSE Bulletin, 35(4):18-20,
2003.

519

	INTRODUCTION
	COURSE STRUCTURE
	EXAMPLE STUDENT WORK
	COURSE GOALS
	To motivate students to declare and complete the computer sc
	To better prepare students for the initial required courses

	COURSE EVOLUTION
	CONCLUSIONS AND FUTURE WORK
	REFERENCES

