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ABSTRACT 
Professors often develop anecdotal guidelines about how each 
student’s past performance in their academic major relates to their 
performance in later courses. While these guidelines can be 
useful, a more formal statistical analysis of these relationships can 
provide valuable insight into predicted student performance, 
which can help professors guide their students to focus on 
potential areas of difficulty. In addition, such analyses can 
identify which courses are key indicators of later performance in 
the major. This additional insight into the relationships between 
the courses in the curriculum can help professors implement 
curriculum changes and measure the effects of those changes. In 
this paper, we present the results of such an analysis for computer 
science majors at the U.S. Air Force Academy. 

Categories and Subject Descriptors 
K.3.2 [Computers and Education]: Computer and Information 
Science Education – computer science education, curriculum. 

General Terms 
Measurement, Performance, Experimentation. 

Keywords 
Student performance, performance prediction, predictive 
modeling, computer science curriculum. 

1. INTRODUCTION 
Predicting student performance in a particular course, or even on 
assessments within a course, is a difficult but useful undertaking. 
Given such predictions, a professor can help focus student effort 
on potential problem areas for particular students given their 
performance in previous courses. In addition, curriculum 
committees can use prediction results to guide changes to the 
curriculum and evaluation of the effects of those changes. 
Typically, student performance predictions and identification of 
the key courses in an academic major are based on anecdotal 
evidence (if they are developed at all). While anecdotal evidence 

is certainly useful for some purposes, it is also reasonable to use 
more formal statistical analysis techniques to develop models to 
help predict student performance and to identify key courses. 
Prior efforts to predict student performance in various majors and 
institutions are documented in the literature. Thomas examined 
performance prediction in an introductory physics course [11], 
indicating that prior performance is more effective for predicting 
student performance in that course than a diagnostic test. Felder et 
al [7] predicted performance in an introductory chemical 
engineering course using a variety of factors, including 
performance in previous courses. Other researchers have built and 
validated models predicting introductory computing aptitude [8] 
and used high school performance data and other demographic 
factors to predict introductory programming performance [2, 3, 
10] and retention in the computer science major [4]. The results 
presented here differ from previous performance prediction 
efforts because they include formal predictive models for each 
required class in the computer science curriculum and provide 
insights that span the entire computer science curriculum rather 
than focusing on a selected course or class year. 
In addition to offering some predictive capabilities, the results of 
a formal statistical analysis can also provide educators with 
insight into the relationships between the courses in the 
curriculum. This insight can facilitate curriculum modification 
efforts in a number of ways. For example, given limited resources 
to accomplish curriculum changes, educators can focus their 
efforts on those courses that have or should have the strongest 
effect on student performance in later courses. As curriculum 
changes are implemented, changes in the statistical relationships 
between student performance in different courses can be 
monitored to ensure the desired effects are achieved. 
In this paper, we present the results of a formal statistical analysis 
using data for 285 computer science majors spanning 7 class 
years at the U.S. Air Force Academy, called USAFA hereafter. 
While some of the specific insights resulting from this analysis 
may only be applicable to the computer science major at USAFA, 
the analysis approach, use of the results, and implementation 
issues are more generally applicable to both other academic 
disciplines and other educational institutions. 
The following sections briefly discuss the required courses 
included in the computer science major at USAFA, present our 
analysis approach, provide the results of our statistical analysis, 
discuss how the results can be used in practice, and present our 
conclusions. 
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2. REQUIRED COURSES 
In this section we present the required major’s courses taken by 
computer science majors at USAFA. Students also take optional 
courses to complete the major, but we only consider required 
computer science courses in our analysis here. The computer 
science program at USAFA was CSAB-accredited during the 
period under analysis (it is now accredited by ABET), and topic 
coverage closely follows ACM curriculum guidelines [1]. 
We note that the content and sequence of major’s courses at 
USAFA is continually examined and modified as necessary. The 
courses listed here were taken by the students included in the 
dataset, but the course contents, the semester, and even the year in 
which they are taken are subject to change as the major evolves. 
A summary of the required courses is provided in Table 1. 
In general, all students in the dataset were required to take all of 
the above courses. There is one exception to this rule, however: 
CS 463, the Introduction to Database Management course, which 
was only a required course for 4 out of the 7 class years included 
in the dataset. 

3. ANALYSIS APPROACH 
In this section we describe the statistical analysis techniques we 
used to analyze performance data and to generate our predictive 
models. We present our technique for using linear regression to 
generate the predictive models, discuss our analysis of the 
resulting models and their associated parameters, and describe the 
correlations we generated for further analysis. 
For the purposes of this paper, course assessments are defined as 
graded activities in the course, such as programming assignments 
and exams. Student performance on the course assessments is 
defined as the student’s overall percentage on those assessments. 
Overall student performance in a particular course is captured by 
both the student’s overall course percentage and the letter grade 
the student earned in the course. 
The primary goal of our statistical analysis was to develop 
predictive models for each of the course assessments and the 
overall student performance in each course using student 
performance in prior courses as predictor variables. We can then 
use those predictive models to predict student performance in a 
particular course so we can guide students to focus their studies 
on specific potential problem areas. Additional goals included 

gaining further insight into the relationships between computer 
science courses and providing a mechanism for monitoring the 
impact of curriculum changes. 

3.1 Building the Models 
Linear regression models can be used as approximations of the 
functional relationship between a predicted value and a set of 
predictor variables [9]. We used linear regression to build our 
predictive models for each assessment and overall performance in 
each course. 
In linear regression, the predictive model is of the form 

i
x

i
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, where y is the predicted value, 

each ix  is a predictor variable, and each iβ  is a coefficient 
calculated using linear regression. The regression coefficients are 
calculated using a linear least squares fit to the data. We note that, 
in general, larger coefficients (positive or negative) indicate a 
stronger predictive effect from the associated predictor variable. 

3.2 Analyzing the Models 
To determine how well a predictive model fits the data used, we 
need some measure of how well the model captures the variance 
in the data. For linear regression, the standard measure of fit is the 

Multiple Correlation Coefficient Squared, 2R , which measures 
how much of the variance in the predicted value is captured by 

the predictive model. 2R  ranges from 0.0 to 1.0, with a 
magnitude near 1.0 indicating that the model explains most of the 
variance in the data, which in turn implies that the model provides 
good predictive power. 
The linear regression technique we used assumes that the errors 
(e.g., residuals) in the model are independent, have zero mean, 
constant variance, and follow a normal distribution [6]. These 
assumptions can be checked using plots of the standardized 
residuals against the predicted response variables. 
The structure we would expect to find in these plots, given our 
assumptions about the errors in the model, is essentially a 
horizontal line with residual values scattered randomly above and 
below zero. If we find that the “spread” of the residuals increases 
or decreases as the value of the response or predictor variable 
increases, we should suspect that the variance is not constant. 
While more formal statistical techniques have been proposed for 

Table 1. Required Computer Science Courses 

Course Course Title Semester Year 
CS 225 Fundamentals of Computer Science (CS1) Fall Sophomore 
CS 359 Programming Paradigms Spring Sophomore 
CS 326 Foundations of Computer Science Fall Junior 
CS 351 Computer Organization and Architecture I Fall Junior 
CS 356 Computer Organization and Architecture II Spring Junior 
CS 380 Algorithms and Data Structures Spring Junior 
CS 453 Software Engineering I Fall Senior 
CS 463 Introduction to Database Management Fall Senior 
CS 483 Operating Systems Fall Senior 
CS 454 Software Engineering II Spring Senior 
CS 467 Computer Networks Spring Senior 



checking these assumptions, visual inspection of the residual plots 
is generally sufficient for recognizing serious violations of the 
assumptions [6]. 

3.3 Generating Correlations 
Although the predictive models can yield valuable insight into the 
relationships between courses in the major, it may also be 
enlightening to measure these relationships directly. We can use 
the Pearson correlation coefficient (r) to examine the linear 
relationship between two variables. The coefficient ranges from   
–1.0 to 1.0, with a coefficient magnitude close to 1.0 indicating a 
strong linear relationship and a magnitude close to 0.0 indicating 
a weak linear relationship. 
To gain additional insight into the relationships between the 
courses in the major, we calculated correlation coefficients for 
pairings of the course grades for each course. Analysis of those 
correlation coefficients is provided in the following section. 

4. ANALYSIS RESULTS 

4.1 Dataset Description 
The dataset used for the statistical analysis presented in this paper 
consists of 285 computer science majors from the Class of 1995 
through the Class of 2001. Of these 285 students, 175 students 
graduated with a computer science degree; the other 110 students 
either changed to a different major or left USAFA without 
graduating. When building the predictive models for a particular 
course, we included all students who took that course, whether or 
not they ultimately graduated with a computer science degree. 
The dataset contains 117 measurements, including percentages for 
the assessments in each course, the overall percentage in each 
course, and the course letter grade in each course. We encoded 
the course grade using standard GPA (Grade Point Average) 
values for letter grades (A = 4.0, A- = 3.7, B+ = 3.3, etc.). 

4.2 Predicting Performance 
For the predictive models we built, we only considered predictive 

models with an 2R  greater than or equal to 0.500 as sufficiently 
powerful to be potentially useful and, therefore, to merit further 
discussion. None of the residual plots for any of the models 
discussed below contained patterns indicating violation of the 
linear regression assumptions. 
We did not develop any models for our CS1 course because there 
are no previous courses to provide performance data. For the 
remaining 10 courses, we built 99 models, using the percentages 
for the course assessments (assignments, exams, etc.), overall 
course percentages, and course grades as the predicted values. For 
the predictor variables, we used only course grades from courses 
completed prior to the course for which we were building 
predictive models. Our initial goal was to use all assessments for 
prior courses in the models as well, but incomplete data precluded 
that approach. Our linear regression approach requires that the 
data for a particular student contain all predictor variables from 
previous courses for that student to be included in the modeling, 
which would lead to significant data losses in the modeling. In 
fact, we only had complete data for one student (out of 285) for 
all the courses being analyzed. We were able to gather course 

grade data from transcripts provided by the registrar, but those 
transcripts do not contain detailed course data. 
To summarize, when predicting performance in each course we 
used previous course grades as the predictor variables. We did, 
however, attempt to predict performance on all assessments in 
that course despite the fact that we typically did not have 
complete course assessment data for all students in the dataset. 
There were a number of courses for which none of the models 
built for the assessments, overall percentage, or course grade had 
reasonable predictive power. Those courses included 
Programming Paradigms (CS 359), Computer Organization and 
Architecture II (CS 356), Introduction to Database Management 
(CS 463), and Software Engineering I (CS 453) and II (CS 454). 
We were able to build one or more predictive models with 
reasonable predictive power for the following courses: 
Foundations of Computer Science (CS 326), Computer 
Organization and Architecture I (CS 351), Algorithms and Data 
Structures (CS 380), Operating Systems (CS 483), and Computer 
Networks (CS 467). While space limitations preclude presentation 
of the actual models, we note that we developed 7 models with 
reasonable predictive power. Six of those models predicted course 
percentage or course grade, while the seventh model predicted 
performance on the Operating Systems programming 
assignments. 

4.3 Correlation Results 
While the predictive models discussed above provide some 
insight into the relationships between the courses in the major, 
directly calculating correlation coefficients between the course 
grades can also be enlightening. The resulting coefficients ranged 
from 0.29 to 0.73, providing interesting insights into several pair-
wise course relationships. We also note that if the relatively 
common anecdotal argument that "stronger students generally do 
well across the curriculum and weaker students generally do 
poorly" were true, these coefficients would likely be higher; 
another argument for using statistical analysis rather than 
anecdotal observation to evaluate student performance. 
It is interesting to note that the strongest three correlations occur 
between courses that students take in the same semester. Students 
take CS 351 and CS 326 (r=0.73) in the fall semester of their 
junior year, CS 356 and CS 380 (r=0.72) in the spring semester of 
their junior year, and CS 463 and CS 483 (r=0.72) in the fall 
semester of their senior year. We believe the correct interpretation 
of this result is that students having a “good” semester do well in 
most or all of their computer science classes in that semester, 
while students having a “bad” semester do poorly in most or all of 
their computer science classes in that semester. We note that, 
given the structured environment at USAFA, the semesters in 
which particular courses are taken is a requirement, not a 
suggestion. 
One of the weaker correlations (r=0.47) involves the two courses 
in the software engineering capstone sequence (CS 453 and CS 
454). This could be due, at least in part, to the fact that 50% of a 
student’s grade in both CS 453 and CS 454 is based on a group 
project rather than on individual work. This grading policy 
reduces the effect that a particular student’s past performance 
would have on that student’s grade in these courses. It is 
interesting to note that CS 453 and CS 454 are essentially treated 
as a year long course in terms of material coverage and project 



work [5], but there is only a weak correlation between the course 
grades for these courses. Students are moved into different groups 
between CS 453 and CS 454, however, so this weak correlation 
may also be indicative of the significant effect that group 
performance has on individual course grades in these courses. 

5. USING THE RESULTS 

5.1 Student Focus 
Most of the models with reasonable predictive power can be used 
to predict a student’s overall performance in a particular course 
given their performance in previous courses. For example, the 
predictive model for the Overall Percentage in CS 483 (Operating 

Systems) had the strongest predictive power, with 2R   = 0.579 
(see Figure 1). A student with a C- (1.7) in CS 380 (Algorithms 
and Data Structures), CS 356 (Computer Organization and 
Architecture II), and CS 326 (Foundations of Computer Science) 
would have a predicted CS 483 percentage of 64%. This is almost 
certainly a failing grade (D) in the course, so the student could be 
warned that, based on their past performance, additional effort 
may be required to successfully complete the course. We note that 
using only the information that the student earned C- grades in the 
3 previous courses, both the student and the instructor might 
believe that this student could expect a C- from this course as 
well. The predictive model, however, shows that the student is at 
higher risk for failure in the course than anecdotal examination of 
the previous course grade information indicates; although the 
difference between C- and D is small, it is significant because it is 
also the difference between passing and failing the course. 
This information should not be used as a threat, of course; 
instead, it should be used to help motivate the student toward 
expending additional effort to try to succeed in the course. This 
same technique can be used for the other predictive models 
discussed above.  
Predictive models can be used even more effectively to help 
guide student efforts when the predicted variable is a course 
assessment rather than an overall course grade. For example, the 
predictive model for the CS 483 programming percentage (see 
Figure 1) indicates that CS 356 (Computer Organization and 
Architecture II), CS 380 (Algorithms and Data Structures), and 
CS 359 (Programming Paradigms) grades are significant 
predictors of performance in this course assessment. A CS 483 
student who did poorly in one or more of those classes could 
therefore be encouraged to expend additional effort on the 
programming assignments. 
Continuing our CS 483 programming percentage example, it can 
certainly be argued that effective instructors will notice through 
course assessment mechanisms which students are having trouble 
with the programming assignments in the course and can offer 
suggestions to focus the efforts of those students as necessary. 
The key distinction between that approach and using predictive 
models is that the predictive models can be used to provide this 
focus to the students at the beginning of the course, while the 
latter approach requires that one or more programming 

assignments be completed before the students who are having 
trouble can be identified. Using the predictive models lets us 
provide early focus to those students predicted to have problems 
in this area rather than waiting until those students have 
performed poorly on one or more assessments before providing 
that focus. 
It is clear that there is some danger associated with using 
predictive models to predict student performance in a course. One 
such danger is that an instructor who tells a student their precise 
expectations of that student's performance may negatively 
influence the student's performance, particularly if those 
expectations are for poor performance in the course or on 
particular course assessments. Rather than providing a predicted 
grade to each student at the beginning of the course – such a 
prediction could even be viewed by students as a "contract" for a 
particular grade – it would be more prudent for instructors to use 
the predicted grades to identify the students who may need to 
expend extra effort on the course or particular assignments in the 
course. Those students can then be approached for a general 
discussion about their predicted performance in the course 
("Based on your grades in CS 356, CS 380, and CS 359, you'll 
probably have to spend some extra time on this course") rather 
than with a specific grade prediction ("Based on your grades in 
CS 356, CS 380, and CS 359, you'll probably get a D in this 
course"). While this approach doesn't completely alleviate 
concerns about students living up (or down) to instructor 
expectations, it does provide a way to provide early focus to those 
students who may need it the most. 

5.2 Curriculum Changes 
The statistical results from this dataset and, more generally, from 
the overall analysis approach can also be used to help identify 
potential curriculum changes and to measure the effects of those 
changes.  
The predictive models we generated identified several “key 
courses” in the major; specifically, those that seem to provide the 
strongest predictive effect in the predictive models for later 
courses. In the 7 models discussed above, the CS 359 
(Programming Paradigms) course grade appears as a statistically 
significant predictor variable in 6 of those models: twice as 
providing the most predictive effect, 3 times as providing the 
second-strongest effect, and once providing the third-strongest 
effect. The CS 225 (CS1) course grade appears as a statistically 
significant predictor variable in 3 of the models: twice as 
providing the most predictive effect and once as providing the 
second-strongest effect. All other course grades appeared in three 
or fewer of the models, with smaller predictive effects. While the 
fact that CS 359 and CS 225 are sophomore classes indicates that 
they were included in the modeling efforts for all junior and 
senior courses, thereby giving us some expectation that they 
would appear in more predictive models, we note that their 
predictive power in those models indicates that they are key 
courses in the computer science major. This is consistent with our 
intuition about those courses; because they are the first two 
courses taken by all computer science majors, these courses are  

684.44326*530.2356*982.3380*900.4%483 +++= GradeCSGradeCSGradeCSCS  

431.9359*836.7380*077.8356*395.8%483 +++= GradeCSGradeCSGradeCSgProgramminCS  

Figure 1. CS 483 (Operating Systems) Predictive Models 



structured to cover foundational computer science topics that we 
expect the students to need and use throughout the major. 
Our correlation results also yielded valuable information about 
the relationships between the courses in the curriculum. For 
example, we were surprised to find that the correlation between 
the  Computer Organization and Architecture I and II grades was 
relatively weak. This result is somewhat counterintuitive because 
these courses represent a two-course sequence on computer 
organization and architecture. We can use these results as one 
indication that the two courses may not be as tightly integrated as 
we originally intended. We can therefore make curricular changes 
to tie these two courses more tightly together, re-accomplish our 
statistical analysis after the changes have been implemented, and 
examine the resulting relationship to gain insight into the 
effectiveness of our changes (a higher correlation between the 
grades implies a stronger connection between the courses). 
As indicated above, the predictive models and the correlation 
coefficients are expected to change as curriculum changes are 
implemented (and as the dataset grows over time as well). Given 
the dynamic nature of the computer science curriculum, it would 
be unreasonable to expect a static set of predictive models and 
other statistical relationships using the approach described above. 
Instead, we envision an evolution of these relationships as 
curriculum changes occur and the size of the dataset increases. 
After the initial analyses are completed, the predictive models and 
correlation coefficients can easily be updated on an annual basis. 

6. CONCLUSIONS 
Using student performance data from previous courses and 
predictive models that predict student performance in a particular 
course, professors can help focus student effort on potential 
problem areas in that course. Educators can also use this 
information to guide their implementation and evaluation of 
curriculum changes. 
In this paper, we reported the use of statistical analysis techniques 
to build such predictive models. While many of the generated 
models did not have sufficient predictive power to be useful, the 
stronger models and other observations from the analysis provide 
useful insight into the relationships between the various courses. 
There are still numerous analyses that can also provide valuable 
information. While most of the models presented here use only 
previous course grades as predictor variables, it is possible that 
more robust models and additional insights could be provided if 
complete assessment data for each course were also available. To 
gain these additional benefits, we suggest an ongoing data 
collection strategy where course assessment data for each course 
is collected and archived every semester. This approach would 
ensure that complete data is available for each student, providing 
the opportunity to include assessment predictor variables in the 
predictive models rather than limiting the predictor variables to 
previous course grades. As a separate but related extension, we 
could include elective courses in our analysis to evaluate the 
relationships between student performance in required and 
elective courses and the assessments in those courses. 
It would also be interesting to determine whether or not it is 
possible to predict probable success or failure in the major based 
on performance in the early courses in the major. These 
predictions could simply predict “Yes” or “No” for graduation 
with a computer science degree, or they could be used to predict 

Major’s GPA or final standing among the majors in the same 
class year. It may also be useful to include other predictor 
variables (SAT or ACT scores, high school GPA, and so on) as 
predictor variables in these models. Given predictions based on 
such models, we could provide students with sound feedback 
early in the major. 
The analysis approach and observations presented here are not 
limited to either the computer science major or to USAFA; in 
fact, the author is now implementing this approach at a different 
university. The approach is sufficiently general that it can be 
applied to any major at any institution, and other researchers 
could conduct similar analyses to provide additional observations 
and recommendations.  
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