
Using Student Performance Predictions in a Computer
Science Curriculum

A.T. Chamillard
Computer Science Department

University of Colorado at Colorado Springs
Colorado Springs, CO 80933-7150

719-262-3150

chamillard@cs.uccs.edu

ABSTRACT
Professors often develop anecdotal guidelines about how each
student’s past performance in their academic major relates to their
performance in later courses. While these guidelines can be
useful, a more formal statistical analysis of these relationships can
provide valuable insight into predicted student performance,
which can help professors guide their students to focus on
potential areas of difficulty. In addition, such analyses can
identify which courses are key indicators of later performance in
the major. This additional insight into the relationships between
the courses in the curriculum can help professors implement
curriculum changes and measure the effects of those changes. In
this paper, we present the results of such an analysis for computer
science majors at the U.S. Air Force Academy.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education – computer science education, curriculum.

General Terms
Measurement, Performance, Experimentation.

Keywords
Student performance, performance prediction, predictive
modeling, computer science curriculum.

1. INTRODUCTION
Predicting student performance in a particular course, or even on
assessments within a course, is a difficult but useful undertaking.
Given such predictions, a professor can help focus student effort
on potential problem areas for particular students given their
performance in previous courses. In addition, curriculum
committees can use prediction results to guide changes to the
curriculum and evaluation of the effects of those changes.
Typically, student performance predictions and identification of
the key courses in an academic major are based on anecdotal
evidence (if they are developed at all). While anecdotal evidence

is certainly useful for some purposes, it is also reasonable to use
more formal statistical analysis techniques to develop models to
help predict student performance and to identify key courses.
Prior efforts to predict student performance in various majors and
institutions are documented in the literature. Thomas examined
performance prediction in an introductory physics course [11],
indicating that prior performance is more effective for predicting
student performance in that course than a diagnostic test. Felder et
al [7] predicted performance in an introductory chemical
engineering course using a variety of factors, including
performance in previous courses. Other researchers have built and
validated models predicting introductory computing aptitude [8]
and used high school performance data and other demographic
factors to predict introductory programming performance [2, 3,
10] and retention in the computer science major [4]. The results
presented here differ from previous performance prediction
efforts because they include formal predictive models for each
required class in the computer science curriculum and provide
insights that span the entire computer science curriculum rather
than focusing on a selected course or class year.
In addition to offering some predictive capabilities, the results of
a formal statistical analysis can also provide educators with
insight into the relationships between the courses in the
curriculum. This insight can facilitate curriculum modification
efforts in a number of ways. For example, given limited resources
to accomplish curriculum changes, educators can focus their
efforts on those courses that have or should have the strongest
effect on student performance in later courses. As curriculum
changes are implemented, changes in the statistical relationships
between student performance in different courses can be
monitored to ensure the desired effects are achieved.
In this paper, we present the results of a formal statistical analysis
using data for 285 computer science majors spanning 7 class
years at the U.S. Air Force Academy, called USAFA hereafter.
While some of the specific insights resulting from this analysis
may only be applicable to the computer science major at USAFA,
the analysis approach, use of the results, and implementation
issues are more generally applicable to both other academic
disciplines and other educational institutions.
The following sections briefly discuss the required courses
included in the computer science major at USAFA, present our
analysis approach, provide the results of our statistical analysis,
discuss how the results can be used in practice, and present our
conclusions.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ITiCSE’06, June 26–28, 2006, Bologna, Italy.
Copyright 2006 ACM 1-59593-055-8/06/0006...$5.00.

2. REQUIRED COURSES
In this section we present the required major’s courses taken by
computer science majors at USAFA. Students also take optional
courses to complete the major, but we only consider required
computer science courses in our analysis here. The computer
science program at USAFA was CSAB-accredited during the
period under analysis (it is now accredited by ABET), and topic
coverage closely follows ACM curriculum guidelines [1].
We note that the content and sequence of major’s courses at
USAFA is continually examined and modified as necessary. The
courses listed here were taken by the students included in the
dataset, but the course contents, the semester, and even the year in
which they are taken are subject to change as the major evolves.
A summary of the required courses is provided in Table 1.
In general, all students in the dataset were required to take all of
the above courses. There is one exception to this rule, however:
CS 463, the Introduction to Database Management course, which
was only a required course for 4 out of the 7 class years included
in the dataset.

3. ANALYSIS APPROACH
In this section we describe the statistical analysis techniques we
used to analyze performance data and to generate our predictive
models. We present our technique for using linear regression to
generate the predictive models, discuss our analysis of the
resulting models and their associated parameters, and describe the
correlations we generated for further analysis.
For the purposes of this paper, course assessments are defined as
graded activities in the course, such as programming assignments
and exams. Student performance on the course assessments is
defined as the student’s overall percentage on those assessments.
Overall student performance in a particular course is captured by
both the student’s overall course percentage and the letter grade
the student earned in the course.
The primary goal of our statistical analysis was to develop
predictive models for each of the course assessments and the
overall student performance in each course using student
performance in prior courses as predictor variables. We can then
use those predictive models to predict student performance in a
particular course so we can guide students to focus their studies
on specific potential problem areas. Additional goals included

gaining further insight into the relationships between computer
science courses and providing a mechanism for monitoring the
impact of curriculum changes.

3.1 Building the Models
Linear regression models can be used as approximations of the
functional relationship between a predicted value and a set of
predictor variables [9]. We used linear regression to build our
predictive models for each assessment and overall performance in
each course.
In linear regression, the predictive model is of the form

i
x

i
xy βββ +++= K
110

, where y is the predicted value,

each ix is a predictor variable, and each iβ is a coefficient
calculated using linear regression. The regression coefficients are
calculated using a linear least squares fit to the data. We note that,
in general, larger coefficients (positive or negative) indicate a
stronger predictive effect from the associated predictor variable.

3.2 Analyzing the Models
To determine how well a predictive model fits the data used, we
need some measure of how well the model captures the variance
in the data. For linear regression, the standard measure of fit is the

Multiple Correlation Coefficient Squared, 2R , which measures
how much of the variance in the predicted value is captured by

the predictive model. 2R ranges from 0.0 to 1.0, with a
magnitude near 1.0 indicating that the model explains most of the
variance in the data, which in turn implies that the model provides
good predictive power.
The linear regression technique we used assumes that the errors
(e.g., residuals) in the model are independent, have zero mean,
constant variance, and follow a normal distribution [6]. These
assumptions can be checked using plots of the standardized
residuals against the predicted response variables.
The structure we would expect to find in these plots, given our
assumptions about the errors in the model, is essentially a
horizontal line with residual values scattered randomly above and
below zero. If we find that the “spread” of the residuals increases
or decreases as the value of the response or predictor variable
increases, we should suspect that the variance is not constant.
While more formal statistical techniques have been proposed for

Table 1. Required Computer Science Courses

Course Course Title Semester Year
CS 225 Fundamentals of Computer Science (CS1) Fall Sophomore
CS 359 Programming Paradigms Spring Sophomore
CS 326 Foundations of Computer Science Fall Junior
CS 351 Computer Organization and Architecture I Fall Junior
CS 356 Computer Organization and Architecture II Spring Junior
CS 380 Algorithms and Data Structures Spring Junior
CS 453 Software Engineering I Fall Senior
CS 463 Introduction to Database Management Fall Senior
CS 483 Operating Systems Fall Senior
CS 454 Software Engineering II Spring Senior
CS 467 Computer Networks Spring Senior

checking these assumptions, visual inspection of the residual plots
is generally sufficient for recognizing serious violations of the
assumptions [6].

3.3 Generating Correlations
Although the predictive models can yield valuable insight into the
relationships between courses in the major, it may also be
enlightening to measure these relationships directly. We can use
the Pearson correlation coefficient (r) to examine the linear
relationship between two variables. The coefficient ranges from
–1.0 to 1.0, with a coefficient magnitude close to 1.0 indicating a
strong linear relationship and a magnitude close to 0.0 indicating
a weak linear relationship.
To gain additional insight into the relationships between the
courses in the major, we calculated correlation coefficients for
pairings of the course grades for each course. Analysis of those
correlation coefficients is provided in the following section.

4. ANALYSIS RESULTS

4.1 Dataset Description
The dataset used for the statistical analysis presented in this paper
consists of 285 computer science majors from the Class of 1995
through the Class of 2001. Of these 285 students, 175 students
graduated with a computer science degree; the other 110 students
either changed to a different major or left USAFA without
graduating. When building the predictive models for a particular
course, we included all students who took that course, whether or
not they ultimately graduated with a computer science degree.
The dataset contains 117 measurements, including percentages for
the assessments in each course, the overall percentage in each
course, and the course letter grade in each course. We encoded
the course grade using standard GPA (Grade Point Average)
values for letter grades (A = 4.0, A- = 3.7, B+ = 3.3, etc.).

4.2 Predicting Performance
For the predictive models we built, we only considered predictive

models with an 2R greater than or equal to 0.500 as sufficiently
powerful to be potentially useful and, therefore, to merit further
discussion. None of the residual plots for any of the models
discussed below contained patterns indicating violation of the
linear regression assumptions.
We did not develop any models for our CS1 course because there
are no previous courses to provide performance data. For the
remaining 10 courses, we built 99 models, using the percentages
for the course assessments (assignments, exams, etc.), overall
course percentages, and course grades as the predicted values. For
the predictor variables, we used only course grades from courses
completed prior to the course for which we were building
predictive models. Our initial goal was to use all assessments for
prior courses in the models as well, but incomplete data precluded
that approach. Our linear regression approach requires that the
data for a particular student contain all predictor variables from
previous courses for that student to be included in the modeling,
which would lead to significant data losses in the modeling. In
fact, we only had complete data for one student (out of 285) for
all the courses being analyzed. We were able to gather course

grade data from transcripts provided by the registrar, but those
transcripts do not contain detailed course data.
To summarize, when predicting performance in each course we
used previous course grades as the predictor variables. We did,
however, attempt to predict performance on all assessments in
that course despite the fact that we typically did not have
complete course assessment data for all students in the dataset.
There were a number of courses for which none of the models
built for the assessments, overall percentage, or course grade had
reasonable predictive power. Those courses included
Programming Paradigms (CS 359), Computer Organization and
Architecture II (CS 356), Introduction to Database Management
(CS 463), and Software Engineering I (CS 453) and II (CS 454).
We were able to build one or more predictive models with
reasonable predictive power for the following courses:
Foundations of Computer Science (CS 326), Computer
Organization and Architecture I (CS 351), Algorithms and Data
Structures (CS 380), Operating Systems (CS 483), and Computer
Networks (CS 467). While space limitations preclude presentation
of the actual models, we note that we developed 7 models with
reasonable predictive power. Six of those models predicted course
percentage or course grade, while the seventh model predicted
performance on the Operating Systems programming
assignments.

4.3 Correlation Results
While the predictive models discussed above provide some
insight into the relationships between the courses in the major,
directly calculating correlation coefficients between the course
grades can also be enlightening. The resulting coefficients ranged
from 0.29 to 0.73, providing interesting insights into several pair-
wise course relationships. We also note that if the relatively
common anecdotal argument that "stronger students generally do
well across the curriculum and weaker students generally do
poorly" were true, these coefficients would likely be higher;
another argument for using statistical analysis rather than
anecdotal observation to evaluate student performance.
It is interesting to note that the strongest three correlations occur
between courses that students take in the same semester. Students
take CS 351 and CS 326 (r=0.73) in the fall semester of their
junior year, CS 356 and CS 380 (r=0.72) in the spring semester of
their junior year, and CS 463 and CS 483 (r=0.72) in the fall
semester of their senior year. We believe the correct interpretation
of this result is that students having a “good” semester do well in
most or all of their computer science classes in that semester,
while students having a “bad” semester do poorly in most or all of
their computer science classes in that semester. We note that,
given the structured environment at USAFA, the semesters in
which particular courses are taken is a requirement, not a
suggestion.
One of the weaker correlations (r=0.47) involves the two courses
in the software engineering capstone sequence (CS 453 and CS
454). This could be due, at least in part, to the fact that 50% of a
student’s grade in both CS 453 and CS 454 is based on a group
project rather than on individual work. This grading policy
reduces the effect that a particular student’s past performance
would have on that student’s grade in these courses. It is
interesting to note that CS 453 and CS 454 are essentially treated
as a year long course in terms of material coverage and project

work [5], but there is only a weak correlation between the course
grades for these courses. Students are moved into different groups
between CS 453 and CS 454, however, so this weak correlation
may also be indicative of the significant effect that group
performance has on individual course grades in these courses.

5. USING THE RESULTS

5.1 Student Focus
Most of the models with reasonable predictive power can be used
to predict a student’s overall performance in a particular course
given their performance in previous courses. For example, the
predictive model for the Overall Percentage in CS 483 (Operating

Systems) had the strongest predictive power, with 2R = 0.579
(see Figure 1). A student with a C- (1.7) in CS 380 (Algorithms
and Data Structures), CS 356 (Computer Organization and
Architecture II), and CS 326 (Foundations of Computer Science)
would have a predicted CS 483 percentage of 64%. This is almost
certainly a failing grade (D) in the course, so the student could be
warned that, based on their past performance, additional effort
may be required to successfully complete the course. We note that
using only the information that the student earned C- grades in the
3 previous courses, both the student and the instructor might
believe that this student could expect a C- from this course as
well. The predictive model, however, shows that the student is at
higher risk for failure in the course than anecdotal examination of
the previous course grade information indicates; although the
difference between C- and D is small, it is significant because it is
also the difference between passing and failing the course.
This information should not be used as a threat, of course;
instead, it should be used to help motivate the student toward
expending additional effort to try to succeed in the course. This
same technique can be used for the other predictive models
discussed above.
Predictive models can be used even more effectively to help
guide student efforts when the predicted variable is a course
assessment rather than an overall course grade. For example, the
predictive model for the CS 483 programming percentage (see
Figure 1) indicates that CS 356 (Computer Organization and
Architecture II), CS 380 (Algorithms and Data Structures), and
CS 359 (Programming Paradigms) grades are significant
predictors of performance in this course assessment. A CS 483
student who did poorly in one or more of those classes could
therefore be encouraged to expend additional effort on the
programming assignments.
Continuing our CS 483 programming percentage example, it can
certainly be argued that effective instructors will notice through
course assessment mechanisms which students are having trouble
with the programming assignments in the course and can offer
suggestions to focus the efforts of those students as necessary.
The key distinction between that approach and using predictive
models is that the predictive models can be used to provide this
focus to the students at the beginning of the course, while the
latter approach requires that one or more programming

assignments be completed before the students who are having
trouble can be identified. Using the predictive models lets us
provide early focus to those students predicted to have problems
in this area rather than waiting until those students have
performed poorly on one or more assessments before providing
that focus.
It is clear that there is some danger associated with using
predictive models to predict student performance in a course. One
such danger is that an instructor who tells a student their precise
expectations of that student's performance may negatively
influence the student's performance, particularly if those
expectations are for poor performance in the course or on
particular course assessments. Rather than providing a predicted
grade to each student at the beginning of the course – such a
prediction could even be viewed by students as a "contract" for a
particular grade – it would be more prudent for instructors to use
the predicted grades to identify the students who may need to
expend extra effort on the course or particular assignments in the
course. Those students can then be approached for a general
discussion about their predicted performance in the course
("Based on your grades in CS 356, CS 380, and CS 359, you'll
probably have to spend some extra time on this course") rather
than with a specific grade prediction ("Based on your grades in
CS 356, CS 380, and CS 359, you'll probably get a D in this
course"). While this approach doesn't completely alleviate
concerns about students living up (or down) to instructor
expectations, it does provide a way to provide early focus to those
students who may need it the most.

5.2 Curriculum Changes
The statistical results from this dataset and, more generally, from
the overall analysis approach can also be used to help identify
potential curriculum changes and to measure the effects of those
changes.
The predictive models we generated identified several “key
courses” in the major; specifically, those that seem to provide the
strongest predictive effect in the predictive models for later
courses. In the 7 models discussed above, the CS 359
(Programming Paradigms) course grade appears as a statistically
significant predictor variable in 6 of those models: twice as
providing the most predictive effect, 3 times as providing the
second-strongest effect, and once providing the third-strongest
effect. The CS 225 (CS1) course grade appears as a statistically
significant predictor variable in 3 of the models: twice as
providing the most predictive effect and once as providing the
second-strongest effect. All other course grades appeared in three
or fewer of the models, with smaller predictive effects. While the
fact that CS 359 and CS 225 are sophomore classes indicates that
they were included in the modeling efforts for all junior and
senior courses, thereby giving us some expectation that they
would appear in more predictive models, we note that their
predictive power in those models indicates that they are key
courses in the computer science major. This is consistent with our
intuition about those courses; because they are the first two
courses taken by all computer science majors, these courses are

684.44326*530.2356*982.3380*900.4%483 +++= GradeCSGradeCSGradeCSCS

431.9359*836.7380*077.8356*395.8%483 +++= GradeCSGradeCSGradeCSgProgramminCS

Figure 1. CS 483 (Operating Systems) Predictive Models

structured to cover foundational computer science topics that we
expect the students to need and use throughout the major.
Our correlation results also yielded valuable information about
the relationships between the courses in the curriculum. For
example, we were surprised to find that the correlation between
the Computer Organization and Architecture I and II grades was
relatively weak. This result is somewhat counterintuitive because
these courses represent a two-course sequence on computer
organization and architecture. We can use these results as one
indication that the two courses may not be as tightly integrated as
we originally intended. We can therefore make curricular changes
to tie these two courses more tightly together, re-accomplish our
statistical analysis after the changes have been implemented, and
examine the resulting relationship to gain insight into the
effectiveness of our changes (a higher correlation between the
grades implies a stronger connection between the courses).
As indicated above, the predictive models and the correlation
coefficients are expected to change as curriculum changes are
implemented (and as the dataset grows over time as well). Given
the dynamic nature of the computer science curriculum, it would
be unreasonable to expect a static set of predictive models and
other statistical relationships using the approach described above.
Instead, we envision an evolution of these relationships as
curriculum changes occur and the size of the dataset increases.
After the initial analyses are completed, the predictive models and
correlation coefficients can easily be updated on an annual basis.

6. CONCLUSIONS
Using student performance data from previous courses and
predictive models that predict student performance in a particular
course, professors can help focus student effort on potential
problem areas in that course. Educators can also use this
information to guide their implementation and evaluation of
curriculum changes.
In this paper, we reported the use of statistical analysis techniques
to build such predictive models. While many of the generated
models did not have sufficient predictive power to be useful, the
stronger models and other observations from the analysis provide
useful insight into the relationships between the various courses.
There are still numerous analyses that can also provide valuable
information. While most of the models presented here use only
previous course grades as predictor variables, it is possible that
more robust models and additional insights could be provided if
complete assessment data for each course were also available. To
gain these additional benefits, we suggest an ongoing data
collection strategy where course assessment data for each course
is collected and archived every semester. This approach would
ensure that complete data is available for each student, providing
the opportunity to include assessment predictor variables in the
predictive models rather than limiting the predictor variables to
previous course grades. As a separate but related extension, we
could include elective courses in our analysis to evaluate the
relationships between student performance in required and
elective courses and the assessments in those courses.
It would also be interesting to determine whether or not it is
possible to predict probable success or failure in the major based
on performance in the early courses in the major. These
predictions could simply predict “Yes” or “No” for graduation
with a computer science degree, or they could be used to predict

Major’s GPA or final standing among the majors in the same
class year. It may also be useful to include other predictor
variables (SAT or ACT scores, high school GPA, and so on) as
predictor variables in these models. Given predictions based on
such models, we could provide students with sound feedback
early in the major.
The analysis approach and observations presented here are not
limited to either the computer science major or to USAFA; in
fact, the author is now implementing this approach at a different
university. The approach is sufficiently general that it can be
applied to any major at any institution, and other researchers
could conduct similar analyses to provide additional observations
and recommendations.

7. REFERENCES
[1] ACM/IEEE-CS Joint Curriculum Task Force. Computing

Curricula 1991. ACM Press, New York, NY, 1991.
[2] Butcher, D.F., and Muth, W.A. Predicting performance in an

introductory computer science course. Communications of
the ACM, 28, 3 (Mar. 1985), 263-268.

[3] Byrne, P., and Lyons, G. The effect of student attributes on
success in programming. In Proceedings of the 6th Annual
Conference on Innovation and Technology in Computer
Science Education (ITiCSE 2001), Canterbury, UK, 49-52.

[4] Campbell, P.F., and McCabe, G.P. Predicting the success of
freshmen in the computer science major. Communications of
the ACM, 27, 11 (Nov. 1984), 1108-1113.

[5] Chamillard, A.T., and Braun, K.A. The software engineering
capstone: Structure and tradeoffs. In Proceedings of the 33rd
SIGCSE Technical Symposium on Computer Science
Education, Northern Kentucky, KY, February 27-March 3,
2002, 227-231.

[6] Draper, N.R., and Smith, H. Applied Regression Analysis.
John Wiley & Sons, New York, NY, 1966.

[7] Felder, R.M., Forrest, K.D., Baker-Ward, L., Dietz, E.J., and
Mohr, P.H. A longitudinal study of engineering student
performance and retention: I. Success and failure in the
introductory course. Journal of Engineering Education, 82,
(1993), 15-21.

[8] Glorfeld, L.W., and Fowler, G.C. Validation of a model for
predicting aptitude for introductory computing. In The
Papers of the Thirteenth SIGCSE Technical Symposium on
Computer Science Education, Indianapolis, IN, 1982, 140-
143.

[9] Montgomery, D.C., and Peck, E.A. Introduction to Linear
Regression Analysis. John Wiley & Sons, New York, NY,
1982.

[10] Taylor, H.G., and Mounfield, L.C. The effect of high school
computer science, gender, and work on success in college
computer science. In Proceedings of the Twentieth SIGCSE
Technical Symposium on Computer Science Education,
Louisville, KY, 1989, 195-198.

[11] Thomas, E.W. Performance prediction and enhancement in
an introductory physics course for engineers. Journal of
Engineering Education, 82, (1993), 152-156.

