
Evaluating Programming Ability in an
Introductory Computer Science Course

A.T. Chamillard
Department of Computer Science

U.S. Air Force Academy, CO 80840
719-333-7101

Tim.Chamillard @ usafa.af.mil

Abstract
There are numerous ways to evaluate student programming
ability, all of which have benefits and drawbacks. In this
paper we discuss how we have combined a number of those
evaluation techniques to assess student programming ability
in an introductory computer science course and statistically
analyze the relationships of student performance using the
different evaluation techniques.

Keywords
Programming ability, programming evaluation, introductory
computer science, collaborative learning.

1 Introduction
Professors teaching a course containing a non-trivial
amount of programming are faced with a difficult decision -
how do we evaluate the programming ability of the students
in the class? The problem is not so much that we have no
evaluation techniques; rather, the problem is that we can
evaluate programming ability in so many ways it is difficult
to determine the "right" way in a particular course. The
problem is exacerbated by the fact that certain techniques
may help a student's learning while hindering our ability to
assess that individual's programming ability.

For example, researchers have found that collaborative
learning can be an effective learning technique for many
students [2]. The ability to discuss concepts and
implementation details with other students during the
course of a project helps certain students learn the material
more effectively. The benefits of this approach seem clear,
but how do we then evaluate an individual's ability from a
project they created in collaboration with others?

If we require students to complete programming
assignments totally on their own, we can easily evaluate
each individual's programming ability. However, some

SIGCSE 2000 3•00 Austin, TX, USA
1-58113-213-1/00/0003...

Kim A. Braun
Department of Computer Science

U.S. Air Force Academy, CO 80840
719-333-4126

Kim.Brau n @ usafa.af.mil

students may struggle far longer than they need to with
certain concepts or program constructs, when simply asking
a fellow student could clarify the topics quickly. Does the
benefit of easy evaluation outweigh the drawback of
potential wasted time and frustration on the part of the
students?

Because all the evaluation techniques have both benefits
and drawbacks, it seems reasonable to develop a
combination of those techniques. In this way, we can
incorporate techniques that support learning (but hinder
individual evaluations), techniques that allow easy
individual evaluations (but may hinder learning), and
techniques in between. This paper describes how we have
combined a number of evaluation techniques in an
introductory computer science course and demonstrates,
through statistical analysis, the differences and relationships
between those evaluation techniques.

All students attending the U.S. Air Force Academy (called
USAFA hereafter) are required to take an introductory
course in computer science (CompSci 110). Because the
course is taken by all students in either their freshman or
sophomore year, it assumes no prior knowledge about
computers. The key topic in this course is problem solving
with computers. Since students need to know how to solve
problems before they can solve them using computers, we
start by helping the students develop their problem solving
skills. They then learn how to use these skills to solve
problems using computers and the Ada programming
language.

Students are evaluated in a variety of ways in the course,
for a total of 1,000 points. The points are allocated to
collaborative labs (180 points), a group case study (75
points), lab practica (160 points), tests (300 points), a final
examination (250 points), and other miscellaneous activities
(35 points). All but the miscellaneous activities measure
student programming ability to some degree, whether
individually or as part of a larger group effort.

The next section discusses the use of collaborative labs,
while Section 3 presents our use of a group case study.
Section 4 describes the lab practica we have incorporated.
Section 5 provides statistical analysis of student
performance on the various evaluation methodologies and

212

the relationships between them, and the final section
provides our conclusions.

2 Collaborative Labs
One method we use to evaluate programming ability is
through the use of collaboration on programming labs.
Students are given a total of 6 such labs over the course of
the semester, with 2 hours of class time devoted to each of
4 labs. The labs range in difficulty from the first lab, which
requires numerous variable declarations and simple textual
and numeric input and output, to the last lab, which requires
the use of arrays and file input/output.

In Lab 1, students learn to declare variables of various data
types, accomplish input and output of those variables, and
perform calculations. The key concept in the second lab is
the use of procedures as a way to decompose a problem.
The third lab introduces the students to selection statements
to control execution paths in their program. Lab 4 requires
that students use condition-controlled iteration to validate
user input and count-controlled iteration to print a set
number of calculated values. In Lab 5, students declare and
use arrays as well as using count-controlled iteration to
access elements of those arrays. The final lab requires that
students combine arrays with file input and output. Testing
considerations are included in each of the 6 labs.

Students are allowed to collaborate with each other when
completing these labs, but only to a certain extent. For
example, one student can ask another about a concept, a
particular Ada construct, or a syntax error, but two students
are not allowed to sit down at a single computer to
complete the lab together. Each student must submit their
own lab for a grade.

The rationale behind this approach is to make learning the
programming concepts as easy as possible for the students.
While USAFA instructors tend to hold extensive office
hours, it is also reasonable to let students seek help on these
assignments from their classmates. In this way, we try to
avoid some of the frustration students feel when faced with
a programming problem that they have to solve without
help. Additionally, some students have learning styles that
indicate that they learn better by studying with others [1];
collaborative work on the labs helps provide those students
with an effective study environment. Conversely, allowing
extensive collaboration on these labs makes it difficult to
evaluate each individual's skill level.

3 Group Case Study
To expose students to the dynamics of group work, and to
let them approach a problem that is larger than would be
reasonable for a single student to complete in an
introductory course, we divide the students into teams (of 2
to 4 students) to complete a group case study at the end of
the semester.

Historically, this case study has been a game of some sort;
in the recent past, students have implemented a portion of

Connect-4, Battleship, Othello, and billiards games. On the
last day of the class, we play the student programs against
each other in a tournament, and allocate extra credit points
based on group platings in the tournamem.

The case study appears to be a very motivational experience
for the students, with even the less gifted students
developing strategies to help them in the tournament. Since
the case study does not present any new programming
concepts, it is not clear whether they gain additional
programming skill while completing the case study.
Anecdotal evidence suggests that the students are motivated
by the case study, and they also gain experience developing
portions of a program in a small group, which we believe to
be beneficial. This again leads to difficulty, however, when
we try to assess each individual's programming ability.

4 Individual Lab Practica
While we recognize the benefits of the collaboration on the
lab assignments and the group case study, that same
collaboration makes it difficult for us to evaluate individual
programming skill for each student. To help us with this
individual evaluation, we have students complete 2 lab
practica over the course of the semester.

A lab practicum is an in-class lab that the students are
required to complete within a set period of time (85
minutes). Students must develop and test a program
solving a problem that they are presented with at the
beginning of the time period. They are allowed to use a
handout containing syntax for all the programming
constructs covered in the course and a sheet listing common
programming errors (and their solutions). They are not
allowed to use any other materials, and the instructors will
only answer questions about the problem (rather than
helping students correct syntax errors, for example). In
essence, these practica serve as programming exams that
test the students' individual programming skill.

In the first practicum, held in the middle of the semester,
students use procedures, selection statements, and both
condition-controlled and count-controlled iteration. The
second practicum, held approximately three weeks before
the end of the semester, requires that students also use
arrays and implement file input and output.

Not surprisingly, these practica are a source o f stress for the
students. In addition to the normal stress associated with
taking an exam, they are also faced with the pressure of
completing a program in a set period of time. We ensure
that the lab practica are similar to the collaborative lab
assignments they have already completed, but we have
found that scores on the practica are significantly lower
than on the collaborative labs (see following section). We
have also found, however, that the students seem to be more
inclined to seek extra help on programming concepts they
don't understand as the time to take a practicum
approaches. This evaluation instrument may therefore both
support student learning (as they try to understand

213

programming concepts) and evaluation of each individual's
programming skill.

5 Statistical Analysis
In previous sections, we have described each of the
evaluation techniques we use to evaluate student
programming ability, and we have noted strengths and
weaknesses of each technique in an informal manner.
Because all of the techniques have the same general goal, it
is also interesting to compare student performance on each
of the evaluation techniques. Specifically, we would like to
examine the differences between the distributions of scores
on each evaluation technique, as well as the relationships
between student performance on each of the evaluation
techniques.

Our dataset includes scores for 1,822 students from 4
semesters: Fall I997, Spring I998, Fall 1998, and Spring
1999. We begin by examining the standard summary
statistics for each of the techniques; means and standard
deviations are provided in Figure 1. All values in the figure
are given in percentages. For the final examination, we
include only the portion of the exam that specifically
addresses programrning, and the test percentages reflect
student scores on the complete tests, including non-
programming questions (because data at a finer resolution is
not available). We also note that only 1,712 students are
included in the final exam statistics, since the other 110
students were excused from the final exam.

The summary statistics provide us the opportunity to make
some informal observations. For example, we note that the
percentages on the collaborative work (labs, case study) are
much higher than the scores for the work that students
accomplish individually (practica, tests, and final exam).
Part of this difference is surely due to the fact that the
individual work is conducted in a controlled, timed
environment, while for the collaborative work the students
can use as much time as they need to accomplish the
assignments. Some of the difference may also be accounted
for by the collaborative versus individual nature of the
evaluations, but it is unclear how we can quantify the extent
of this effect.

One of the challenges faced by the administrators of this
course is responding to pressures to reduce the number of
evaluations performed over the course of the semester.
Although the evaluation techniques in the course have
different benefits and drawbacks for both the students and
the instructors, we would also like to formally demonstrate

that each of the evaluation techniques provides a unique
evaluation opportunity within the course. More
specifically, we would like to demonstrate that each of the
evaluation techniques evaluates different student skills, o r
at least evaluates the same skills in slightly different ways.
In other words, we would like to compare the means for the
different evaluation techniques to show that the evaluation
techniques yield different distributions.

The paired samples t-test is a very common method for
comparing the means of two distributions. The t-test uses
the means and standard deviations for the two distributions
to try to reject a null hypothesis that the two distributions
could have been drawn from populations with equal means.
One of the underlying assumptions of the t-test, however, is
that the distributions being compared are normal
distributions. We can check normality in a number of
different ways. Informally, we can examine the
distributions to see if they "look" like normal distributions.
More formally, we can conduct the Kolmogorov-Smirnov
Test for normality on each distribution. The Kolmogorov-
Smirnov Test tries to reject a null hypothesis that a
particular distribution is normal (thereby strongly implying
that it is non-normal). In Figure 2. we provide the "most
normal" (labs) and "least normal" (case study) distributions
for the evaluation techniques. Informal inspection of the
distributions indicates that they are not normal. When we
apply the Kolmogorov-Smirnov Test to the distributions,
we are able to reject the null hypothesis, again implying that
each of the distributions is non-normal. In other words, we
do not have good informal or statistical support for the
assertion that the distributions are normal, so the paired
samples t-test does not apply.

There are other, non-parametric tests that we can apply
instead of the t-test. For example, the Wilcoxon Signed
Ranks Test does not assume normality of the distributions
being compared [3]. It does, however, assume that the
distributions are symmetrical (they are not, by inspection).
Instead, we can use the weaker Sign Test to compare the
means. When we do so, we find that we have statistically
significant evidence that each of the evaluation results are
drawn from populations with different means. We therefore
have firm evidence that each of the evaluation techniques is
different from the others, lending support to our position
that all of the techniques should be retained in the course.

It is also interesting to consider how each student's
performance on the evaluation techniques are related. For
example, does a student who does well on the collaborative

Practica Final
Exam

77.90 74.99

14.85 16.84

Figure 1. Summary Statistics

214

2 0 0 7 0 0

1 0 0

800

500

400

3OO

2OO

100

0
0.0

. z / Z ~ ~ % % % % % % % % % % e o % % % ,o.o

Labs

Figure 2. Example Distributions

20.0 40.0 60.0 80.0 1 00.0

30.0 50.0 70.0 90.0

Case Study

labs tend to do well (relatively speaking, since the mean is
lower) on the lab practica? To examine these relationships,
we correlated each pair of evaluation technique results. For
each such correlation we calculated Pearson's Correlation
Coefficient and a measure of statistical significance (p).
The coefficient ranges from -1.0 to 1.0, with a coefficient
magnitude close to 1.0 indicating a strong linear
relationship and a magnitude close to 0.0 indicating no
linear relationship. All of the correlations were found to be
statistically significant using the common guideline
(p=0.05); the correlations are given in Figure 3. We point
out before continuing that correlation is not a measure of
causality; it simply measures the linear relationship between
two variables. Additionally, we note that a low correlation
only indicates that the variables are not linearly associated;
they could still be related in some non-linear way.

While all of the correlations were statistically significant,
we limit our discussion to those correlations that are also
relatively strong (for our data, above 0.4). The strongest

. : .::: " :Pai r

Labs/Case"Study "

Labs/Practica

Labs/Tests

Labs/Final Exam

Case Study/Practica

Case Study/Tests

Case Study/Final Exam

Practicafrests

Practica/Final Exam

Tests/Final Exam

Correlat ion]

0.249

0.569

0.603

0.484

0.155

0.193

0.145

0.618

0.593

0.679

Figure 3. Correlation Results

correlation we find is between the Tests and the Final
Exam. This is not particularly surprising, since they are
very similar evaluation techniques in terms of both format
and intent, though we do note that the tests also evaluate
non-programming knowledge.

The next 2 strongest correlations are for the collaborative
lab/test pair and the practica/test pair. The strength of these
correlations indicates that students who do well on the
programming assignments, whether they are collaborative
or individual, also tend to do well on the tests. This
assertion is further supported by the fact that the
correlations for the collaborative lab/final exam and
practica/final exam pairs are also relatively strong, again
implying that students who do well on the programming
assignments also tend to do well on more traditional tests
(in this case, the final exam). We also note that the
correlations between the practica and the tests and final
exam are slightly higher than those between the labs and the
tests and final exam. We explain this by pointing out that
the practica are more like exams than the collaborative labs
are, particularly given the controlled and timed environment
for the practica.

The final correlation to discuss is between the collaborative
labs and the practica. The strength of this correlation is
certainly not surprising, since both evaluation techniques
focus on the development and testing of programs. We
might even expect the correlation coefficient to be higher
than it is, but we believe this is not the case because the labs
are collaborative while the practica are accomplished
individually. This argument is particularly compelling
given the fact that students with a propensity for
collaborative work would tend to do better on the labs than
the practica.

It is important to note that all of the weak correlations
involve the group case study. Performance on the case
study does not appear to be strongly connected to either the

215

programming assignments or the tests or final exam. We
suspect that this is caused by a number of factors, including
the fact that this is a pure group project (in contrast to the
collaborative labs or individual practica), that group
dynamics in the groups of 2 to 4 students play a part in each
group's performance, and that multiple programmers are
working on the project, so each student's grade is based on
the work of others as well as their own work. We therefore
do not view the group case study as a crucial evaluation
technique, especially given the distribution provided in Fig.
2. Instead, we view it as an opportunity to let our students
experience the benefits and drawbacks of working in a
group environment.

6 Conclusions
Instructors teaching beginning programming skills are faced
with difficult decisions when selecting which evaluation
tools to use to evaluate those skills. Some techniques seem
to lend themselves to cooperative learning while making
assessment of individual skills difficult, other techniques
lead to straightforward assessment but may not support
student learning as well as they could, and yet other
techniques seem to fall somewhere in the middle.

In this paper, we described how we have incorporated a
number of evaluation techniques in an introductory
computer science course. We also showed through a
statistical comparison of means that each of the evaluation
techniques evaluates a different set of skills (or the same set
in different ways). Finally, we examined and discussed the
correlations in student performance on the evaluation
techniques.

There are still open questions remaining, of course. For
instance, it would be instructive to measure the effects of
collaborative learning compared to individual learning on
an identical set of tasks (such as the labs described in
Section 2). We could certainly design such an experiment,
but we would of course have to ensure that neither group
would be "punished" for participating in the experiment
(e.g., receive lower grades).

References
[1] Chamillard, A.T. and Karolick, D., Using Learning

Style Data in an Introductory Computer Science
Course, In Proceedings of the Thirtieth SIGCSE
Technical Symposium on Computer Science Education,
New Orleans, Louisiana, March 1999.

[2] Davis, B.G., Tools for Teaching, Jossey-Bass
Publishers, San Francisco, CA, 1993.

[3] Neter, J., Wasserman, W., and Whitmore, G.A.,
Applied Statistics, Allyn and Bacon, Inc., Boston, MA,
1978.

216

