
Evaluating Programming Ability in an 
Introductory Computer Science Course 

A.T. Chamillard 
Department of Computer Science 

U.S. Air Force Academy, CO 80840 
719-333-7101 

Tim.Chamillard @ usafa.af.mil 

Abstract 
There are numerous ways to evaluate student programming 
ability, all of which have benefits and drawbacks. In this 
paper we discuss how we have combined a number of those 
evaluation techniques to assess student programming ability 
in an introductory computer science course and statistically 
analyze the relationships of student performance using the 
different evaluation techniques. 
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1 Introduction 
Professors teaching a course containing a non-trivial 
amount of programming are faced with a difficult decision - 
how do we evaluate the programming ability of the students 
in the class? The problem is not so much that we have no 
evaluation techniques; rather, the problem is that we can 
evaluate programming ability in so many ways it is difficult 
to determine the "right" way in a particular course. The 
problem is exacerbated by the fact that certain techniques 
may help a student's learning while hindering our ability to 
assess that individual's programming ability. 

For example, researchers have found that collaborative 
learning can be an effective learning technique for many 
students [2]. The ability to discuss concepts and 
implementation details with other students during the 
course of a project helps certain students learn the material 
more effectively. The benefits of this approach seem clear, 
but how do we then evaluate an individual's ability from a 
project they created in collaboration with others? 

If we require students to complete programming 
assignments totally on their own, we can easily evaluate 
each individual's programming ability. However, some 
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students may struggle far longer than they need to with 
certain concepts or program constructs, when simply asking 
a fellow student could clarify the topics quickly. Does the 
benefit of easy evaluation outweigh the drawback of 
potential wasted time and frustration on the part of the 
students? 

Because all the evaluation techniques have both benefits 
and drawbacks, it seems reasonable to develop a 
combination of those techniques. In this way, we can 
incorporate techniques that support learning (but hinder 
individual evaluations), techniques that allow easy 
individual evaluations (but may hinder learning), and 
techniques in between. This paper describes how we have 
combined a number of evaluation techniques in an 
introductory computer science course and demonstrates, 
through statistical analysis, the differences and relationships 
between those evaluation techniques. 

All students attending the U.S. Air Force Academy (called 
USAFA hereafter) are required to take an introductory 
course in computer science (CompSci 110). Because the 
course is taken by all students in either their freshman or 
sophomore year, it assumes no prior knowledge about 
computers. The key topic in this course is problem solving 
with computers. Since students need to know how to solve 
problems before they can solve them using computers, we 
start by helping the students develop their problem solving 
skills. They then learn how to use these skills to solve 
problems using computers and the Ada programming 
language. 

Students are evaluated in a variety of ways in the course, 
for a total of 1,000 points. The points are allocated to 
collaborative labs (180 points), a group case study (75 
points), lab practica (160 points), tests (300 points), a final 
examination (250 points), and other miscellaneous activities 
(35 points). All but the miscellaneous activities measure 
student programming ability to some degree, whether 
individually or as part of a larger group effort. 

The next section discusses the use of collaborative labs, 
while Section 3 presents our use of a group case study. 
Section 4 describes the lab practica we have incorporated. 
Section 5 provides statistical analysis of student 
performance on the various evaluation methodologies and 
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the relationships between them, and the final section 
provides our conclusions. 

2 Collaborative Labs 
One method we use to evaluate programming ability is 
through the use of collaboration on programming labs. 
Students are given a total of  6 such labs over the course of 
the semester, with 2 hours of class time devoted to each of 
4 labs. The labs range in difficulty from the first lab, which 
requires numerous variable declarations and simple textual 
and numeric input and output, to the last lab, which requires 
the use of arrays and file input/output. 

In Lab 1, students learn to declare variables of various data 
types, accomplish input and output of those variables, and 
perform calculations. The key concept in the second lab is 
the use of procedures as a way to decompose a problem. 
The third lab introduces the students to selection statements 
to control execution paths in their program. Lab 4 requires 
that students use condition-controlled iteration to validate 
user input and count-controlled iteration to print a set 
number of calculated values. In Lab 5, students declare and 
use arrays as well as using count-controlled iteration to 
access elements of those arrays. The final lab requires that 
students combine arrays with file input and output. Testing 
considerations are included in each of the 6 labs. 

Students are allowed to collaborate with each other when 
completing these labs, but only to a certain extent. For 
example, one student can ask another about a concept, a 
particular Ada construct, or a syntax error, but two students 
are not allowed to sit down at a single computer to 
complete the lab together. Each student must submit their 
own lab for a grade. 

The rationale behind this approach is to make learning the 
programming concepts as easy as possible for the students. 
While USAFA instructors tend to hold extensive office 
hours, it is also reasonable to let students seek help on these 
assignments from their classmates. In this way, we try to 
avoid some of the frustration students feel when faced with 
a programming problem that they have to solve without 
help. Additionally, some students have learning styles that 
indicate that they learn better by studying with others [1]; 
collaborative work on the labs helps provide those students 
with an effective study environment. Conversely, allowing 
extensive collaboration on these labs makes it difficult to 
evaluate each individual's skill level. 

3 Group Case Study 
To expose students to the dynamics of group work, and to 
let them approach a problem that is larger than would be 
reasonable for a single student to complete in an 
introductory course, we divide the students into teams (of 2 
to 4 students) to complete a group case study at the end of 
the semester. 

Historically, this case study has been a game of some sort; 
in the recent past, students have implemented a portion of 

Connect-4, Battleship, Othello, and billiards games. On the 
last day of the class, we play the student programs against 
each other in a tournament, and allocate extra credit points 
based on group platings in the tournamem. 

The case study appears to be a very motivational experience 
for the students, with even the less gifted students 
developing strategies to help them in the tournament. Since 
the case study does not present any new programming 
concepts, it is not clear whether they gain additional 
programming skill while completing the case study. 
Anecdotal evidence suggests that the students are motivated 
by the case study, and they also gain experience developing 
portions of a program in a small group, which we believe to 
be beneficial. This again leads to difficulty, however, when 
we try to assess each individual's programming ability. 

4 Individual Lab Practica 
While we recognize the benefits of  the collaboration on the 
lab assignments and the group case study, that same 
collaboration makes it difficult for us to evaluate individual 
programming skill for each student. To help us with this 
individual evaluation, we have students complete 2 lab 
practica over the course of  the semester. 

A lab practicum is an in-class lab that the students are 
required to complete within a set period of time (85 
minutes). Students must develop and test a program 
solving a problem that they are presented with at the 
beginning of the time period. They are allowed to use a 
handout containing syntax for all the programming 
constructs covered in the course and a sheet listing common 
programming errors (and their solutions). They are not 
allowed to use any other materials, and the instructors will 
only answer questions about the problem (rather than 
helping students correct syntax errors, for example). In 
essence, these practica serve as programming exams that 
test the students' individual programming skill. 

In the first practicum, held in the middle of the semester, 
students use procedures, selection statements, and both 
condition-controlled and count-controlled iteration. The 
second practicum, held approximately three weeks before 
the end of the semester, requires that students also use 
arrays and implement file input and output. 

Not surprisingly, these practica are a source o f  stress for the 
students. In addition to the normal stress associated with 
taking an exam, they are also faced with the pressure of 
completing a program in a set period of time. We ensure 
that the lab practica are similar to the collaborative lab 
assignments they have already completed, but we have 
found that scores on the practica are significantly lower 
than on the collaborative labs (see following section). We 
have also found, however, that the students seem to be more 
inclined to seek extra help on programming concepts they 
don't  understand as the time to take a practicum 
approaches. This evaluation instrument may therefore both 
support student learning (as they try to understand 
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programming concepts) and evaluation of each individual's 
programming skill. 

5 Statistical Analysis 
In previous sections, we have described each of the 
evaluation techniques we use to evaluate student 
programming ability, and we have noted strengths and 
weaknesses of each technique in an informal manner. 
Because all of the techniques have the same general goal, it 
is also interesting to compare student performance on each 
of the evaluation techniques. Specifically, we would like to 
examine the differences between the distributions of scores 
on each evaluation technique, as well as the relationships 
between student performance on each of the evaluation 
techniques. 

Our dataset includes scores for 1,822 students from 4 
semesters: Fall I997, Spring I998, Fall 1998, and Spring 
1999. We begin by examining the standard summary 
statistics for each of the techniques; means and standard 
deviations are provided in Figure 1. All values in the figure 
are given in percentages. For the final examination, we 
include only the portion of the exam that specifically 
addresses programrning, and the test percentages reflect 
student scores on the complete tests, including non- 
programming questions (because data at a finer resolution is 
not available). We also note that only 1,712 students are 
included in the final exam statistics, since the other 110 
students were excused from the final exam. 

The summary statistics provide us the opportunity to make 
some informal observations. For example, we note that the 
percentages on the collaborative work (labs, case study) are 
much higher than the scores for the work that students 
accomplish individually (practica, tests, and final exam). 
Part of this difference is surely due to the fact that the 
individual work is conducted in a controlled, timed 
environment, while for the collaborative work the students 
can use as much time as they need to accomplish the 
assignments. Some of the difference may also be accounted 
for by the collaborative versus individual nature of the 
evaluations, but it is unclear how we can quantify the extent 
of this effect. 

One of the challenges faced by the administrators of this 
course is responding to pressures to reduce the number of 
evaluations performed over the course of the semester. 
Although the evaluation techniques in the course have 
different benefits and drawbacks for both the students and 
the instructors, we would also like to formally demonstrate 

that each of the evaluation techniques provides a unique 
evaluation opportunity within the course. More 
specifically, we would like to demonstrate that each of the 
evaluation techniques evaluates different student skills, o r  
at least evaluates the same skills in slightly different ways. 
In other words, we would like to compare the means for the 
different evaluation techniques to show that the evaluation 
techniques yield different distributions. 

The paired samples t-test is a very common method for 
comparing the means of two distributions. The t-test uses 
the means and standard deviations for the two distributions 
to try to reject a null hypothesis that the two distributions 
could have been drawn from populations with equal means. 
One of the underlying assumptions of the t-test, however, is 
that the distributions being compared are normal 
distributions. We can check normality in a number of 
different ways. Informally, we can examine the 
distributions to see if they "look" like normal distributions. 
More formally, we can conduct the Kolmogorov-Smirnov 
Test for normality on each distribution. The Kolmogorov- 
Smirnov Test tries to reject a null hypothesis that a 
particular distribution is normal (thereby strongly implying 
that it is non-normal). In Figure 2. we provide the "most 
normal" (labs) and "least normal" (case study) distributions 
for the evaluation techniques. Informal inspection of the 
distributions indicates that they are not normal. When we 
apply the Kolmogorov-Smirnov Test to the distributions, 
we are able to reject the null hypothesis, again implying that 
each of the distributions is non-normal. In other words, we 
do not have good informal or statistical support for the 
assertion that the distributions are normal, so the paired 
samples t-test does not apply. 

There are other, non-parametric tests that we can apply 
instead of the t-test. For example, the Wilcoxon Signed 
Ranks Test does not assume normality of the distributions 
being compared [3]. It does, however, assume that the 
distributions are symmetrical (they are not, by inspection). 
Instead, we can use the weaker Sign Test to compare the 
means. When we do so, we find that we have statistically 
significant evidence that each of the evaluation results are 
drawn from populations with different means. We therefore 
have firm evidence that each of the evaluation techniques is 
different from the others, lending support to  our position 
that all of  the techniques should be retained in the course. 

It is also interesting to consider how each student's 
performance on the evaluation techniques are related. For 
example, does a student who does well on the collaborative 

Practica Final 
Exam 

77.90 74.99 

14.85 16.84 

Figure 1. Summary Statistics 
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labs tend to do well (relatively speaking, since the mean is 
lower) on the lab practica? To examine these relationships, 
we correlated each pair of evaluation technique results. For 
each such correlation we calculated Pearson's Correlation 
Coefficient and a measure of statistical significance (p). 
The coefficient ranges from -1.0 to 1.0, with a coefficient 
magnitude close to 1.0 indicating a strong linear 
relationship and a magnitude close to 0.0 indicating no 
linear relationship. All of the correlations were found to be 
statistically significant using the common guideline 
(p=0.05); the correlations are given in Figure 3. We point 
out before continuing that correlation is not a measure of 
causality; it simply measures the linear relationship between 
two variables. Additionally, we note that a low correlation 
only indicates that the variables are not linearly associated; 
they could still be related in some non-linear way. 

While all of  the correlations were statistically significant, 
we limit our discussion to those correlations that are also 
relatively strong (for our data, above 0.4). The strongest 
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Case Study/Final Exam 
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Practica/Final Exam 

Tests/Final Exam 

Correlat ion ] 

0.249 

0.569 

0.603 

0.484 

0.155 

0.193 

0.145 

0.618 

0.593 

0.679 

Figure 3. Correlation Results 

correlation we find is between the Tests and the Final 
Exam. This is not particularly surprising, since they are 
very similar evaluation techniques in terms of both format 
and intent, though we do note that the tests also evaluate 
non-programming knowledge. 

The next 2 strongest correlations are for the collaborative 
lab/test pair and the practica/test pair. The strength of these 
correlations indicates that students who do well on the 
programming assignments, whether they are collaborative 
or individual, also tend to do well on the tests. This 
assertion is further supported by the fact that the 
correlations for the collaborative lab/final exam and 
practica/final exam pairs are also relatively strong, again 
implying that students who do well on the programming 
assignments also tend to do well on more traditional tests 
(in this case, the final exam). We also note that the 
correlations between the practica and the tests and final 
exam are slightly higher than those between the labs and the 
tests and final exam. We explain this by pointing out that 
the practica are more like exams than the collaborative labs 
are, particularly given the controlled and timed environment 
for the practica. 

The final correlation to discuss is between the collaborative 
labs and the practica. The strength of this correlation is 
certainly not surprising, since both evaluation techniques 
focus on the development and testing of programs. We 
might even expect the correlation coefficient to be higher 
than it is, but we believe this is not the case because the labs 
are collaborative while the practica are accomplished 
individually. This argument is particularly compelling 
given the fact that students with a propensity for 
collaborative work would tend to do better on the labs than 
the practica. 

It is important to note that all of  the weak correlations 
involve the group case study. Performance on the case 
study does not appear to be strongly connected to either the 
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programming assignments or the tests or final exam. We 
suspect that this is caused by a number of factors, including 
the fact that this is a pure group project (in contrast to the 
collaborative labs or individual practica), that group 
dynamics in the groups of 2 to 4 students play a part in each 
group's performance, and that multiple programmers are 
working on the project, so each student's grade is based on 
the work of others as well as their own work. We therefore 
do not view the group case study as a crucial evaluation 
technique, especially given the distribution provided in Fig. 
2. Instead, we view it as an opportunity to let our students 
experience the benefits and drawbacks of working in a 
group environment. 

6 Conclusions 
Instructors teaching beginning programming skills are faced 
with difficult decisions when selecting which evaluation 
tools to use to evaluate those skills. Some techniques seem 
to lend themselves to cooperative learning while making 
assessment of individual skills difficult, other techniques 
lead to straightforward assessment but may not support 
student learning as well as they could, and yet other 
techniques seem to fall somewhere in the middle. 

In this paper, we described how we have incorporated a 
number of evaluation techniques in an introductory 
computer science course. We also showed through a 
statistical comparison of means that each of the evaluation 
techniques evaluates a different set of skills (or the same set 
in different ways). Finally, we examined and discussed the 
correlations in student performance on the evaluation 
techniques. 

There are still open questions remaining, of course. For 
instance, it would be instructive to measure the effects of 
collaborative learning compared to individual learning on 
an identical set of tasks (such as the labs described in 
Section 2). We could certainly design such an experiment, 
but we would of course have to ensure that neither group 
would be "punished" for participating in the experiment 
(e.g., receive lower grades). 
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