
The Software Engineering Capstone:
Structure and Tradeoffs

A.T. Chamillard
Department of Computer Science

U.S. Air Force Academy, CO 80840
703-428-0528

achamillard @ hq.dcma.mil

Abstract
One of the largest challenges facing educators teaching
undergraduate software engineering courses is providing
the students with meaningful experiences they will find
useful when they complete their undergraduate education.
Those experiences should include all phases of the software
development process, and to be as realistic as possible they
should also include the uncertainty and continual change
present in any real project. In addition, those experiences
need to include working with others in a team, which can
affect the morale of some students and also poses
challenges to the professor when the time to assign grades
arrives. In this paper we discuss how we have tailored the
software engineering capstone sequence at the U.S. Air
Force Academy to address these issues.

Keywords
Software engineering, software development, individual
evaluation, group work, student management teams.

1 Introduction
All students majoring in computer science at the U.S. Air
Force Academy (called USAFA hereafter) are required to
take a two-semester capstone sequence in software
engineering -- Comp Sci 453 and Comp Sci 454. While we
have incorporated some software engineering concepts

throughout the computer science curriculum, the 453/454
sequence provides the majority of student experience with
software engineering issues.

Although we believe it is important to ensure our students
are familiar with the technical issues associated with
software engineering (e.g., requirements analysis, design,
testing, formal methods, and software metrics), we are
confinced that it is just as important to expose them to the
management issues associated with software development.

This paper is authored by an employee(s) of the United States
Government and is in the public domain.
SIGCSE'02, February 27- March 3, 2002, Covington, Kentucky, USA.
ACM 1-58113 -473-8/02/0002.

Kim A. Braun
Department of Computer Science

U.S. Air Force Academy, CO 80840
719-333-3590

ksbraunco @ bigfoot.com

Because graduates from USAFA often enter project
management positions immediately upon graduation, it is
critical that our students also understand the management
challenges they will face as project managers. We therefore
cover and require the students to use numerous
management concepts in the sequence; these include
general project management, configuration management,
and quality assurance concepts, in addition to more detailed
management tasks like cost estimation and project
scheduling. We view a balance between technical and
management issues as a high priority, so our capstone
sequence addresses both issues.

We also want our graduates to have some experience
dealing with real probldms rather than simple, or even
complicated, academic exercises. Because some academic
departments at USAFA provide support to active military
organizations, we have been able to assign our students real
problems to solve. Using real projects helps students accept
the importance of developing a working solution to the
selected problem and also gives them experience dealing
with a real customer.

The next section describes the projects we have included in
the sequence over the last three years, and Section 3
presents details about our course structure and the required
student activities. Section 4 discusses numerous tradeoffs
we have made in the sequence in terms of the level of
guidance we provide to the students, our techniques for
evaluating individual contributions in the group project, and
the implications of other aspects of our approach. The final
section presents our conclusions.

2 Project Descriptions
The most critical aspect of the 453/454 sequence is the use
of real projects, with real customers. Others have already
pointed out the benefits of using such projects in software
engineering courses [1, 7-10], so in this section we simply
describe the projects we have used in the past several years.
While some of our customers turn out to be other academic
departments at USAFA, the projects are always developed
to support real users accomplishing real tasks.

The project for the 1998 Academic Year (AY) was the
development of the ground station software required to fly a
satellite (called FalconSa0 being launched by the
Department of Astronautics. The FalconSat Ground Station

227

(FGS) needed to provide commanding and telemetry
processing capability for the satellite, as well as providing a
Graphical User Interface for the ground station. All
commands were sent and all telemetry was received on a
serial port. The FGS software was hosted on a standard PC.
Students interacted with representatives f rom the
Department of Astronautics to gather the requirements for
the software.

In the 1999 Academic Year the Aeronautics department
was developing an Unmanned Aerial Vehicle (UAV) in
conjunction with a senior-level engineenng course at
USAFA. They contracted to purchase a ground control
station for the UAV, but to fully test that ground station,
and to help them with development of the UAV software,
they needed a UAV Simulator. The UAV Simulator
(UAVS) needed to provide the processing capability to
respond to commands (both joystick and autonomous
operation), to update UAV state (position, velocity, etc.)
appropriately, and to transmit telemetry back to the ground
station. All commands were received and all telemetry was
sent on a serial port. The UAVS software was hosted on a
standard PC. For this project, students interacted with a
representative f rom the Department of Astronautics to
gather detailed requirements for the simulator.

The project for the 2000 Academic Year was the
development of a Computer Enhanced Air Traffic Control
Management System (CEATMS). This was a touchscreen
system developed to track the location of aircraft taxiing
and flying at USAFA. The system involved multiple
screens and multiple users, and was designed to replace the
strips of paper commonly used in most towers at small
airfields. Students worked with air traffic controllers at the
USAFA airfield to gather the requirements for the system.

3 Course Structure
In this section, we discuss some of the important structural
decisions we have made for the course. Although the
453/454 sequence actually consists o f two c o m e s , we
structure the sequence and approach the material as though
the sequence is a single, integrated two-semester course. In
this and the following section, our references to "the
course" therefore are actually references to the 453]454
sequence. While there are of course tradeoffs associated
with our structural decisions, we defer discussing the major
course tradeoffs until the following section.

One key component of the course structure, especially f rom
the students' perspective, is the distribution of graded work
between individual work and group work. The development
of the systems required in the course is inherently a group
activity, but it is difficult to assess each individual 's
contribution to the product generated by the group (this
problem is discussed further in the following section). As
instructors, we would like to ensure that the course grade
for each individual represents an evaluation of both their
individual work and their contribution to the group project.
We have therefore distributed the grading percentages in

the course evenly: 50% of the grade is based on individual
work and 50% of the grade is based on group work. The
individual work is comprised of quizzes, tests, and
exercises, while the group work is comprised of the project
activities associated with developing the required system.

We also need to address the organizational structure for the
project; how large are the teams, and how are they
composed? The number of students in the course (for the
three years addressed in this paper) has ranged f rom 20 to
31 students in one or two sections. To build a team for the
project, we break the students in a particular section into
smaller groups, where each group is responsible for the
development of a particular subsystem for the project.
Based on enrollment in the section and the size of the
subsystem, these groups range in size f rom two to four
students. Separate f rom the subsystem groups, we also
assign several "management staff" for the section: a project
manager, a system engineer, a configuration and quality
assurance manager, and an independent system tester.

Given the organizational structure described above, it falls
on the instructor to determine how to place the student into
the management positions and the subsystem groups. W e
have approached this problem in two different ways, both
of which seemed to be effective.

In the 1998 and 1999 Academic Years, we asked each of
the students in a section to provide a list of their top three
choices for the management positions and the subsystems
on which they 'd like to work. We then made the
assignments into the positions and groups based on student
preferences. We note, however, that we used some
anecdotal information when placing students into key
positions, particular as project manager and system
engineer. To fill these positions, we discussed the
capabilities of the volunteers for those positions with
instructors who had taught them in previous courses to
assess whether or not we could reasonably expect them to
effectively fulfill their responsibilities in those key
positions.

In the 2000 Academic Year we had a single section that we
separated into two teams. As in prior semesters, we selected
the management staff for each team based on their
preferences and discussions with other instructors in the
department. W e also interviewed the project manager for
each team before finalizing their assignment to that position
to ensure they understood the effort involved in that
position. After we selected the management staff for each
team, the project manager placed the rest of the team
members into the subsystem groups (though we did approve
the organizational structure each project manager
developed).

One of the most unique characteristics of our course is our
use of a Student Management Team (SMT) as a course
feedback and improvement mechanism. We began using
SMTs in the 2000 Academic Year. The SMT consists of

228

four students from the class: a lead, a recorder, and two
members. The purpose of the SMT is to consolidate student
feedback about the course and to meet regularly with the
instructor in an ongoing process of course review and
improvement. The instructor also treated the SMT as a
resource to help solve real or perceived problems in the
course (like the individual contribution evaluation
discussed in the following section). The students benefit
from the SMT because the course can be improved as a
result of their efforts. Additionally, students feel more like
active participants in their learning when they can actively
work with their classmates and the instructor to implement
positive change in the course. The instructor benefits both
as a result of improvements in the course and from
improved student motivation. Because the SMT met once a
week and met with the instructor every other week, the
SMT did not represent a large time drain for either students
or the instructor, and the benefits of using the SMT were
well worth the time required.

The use of SMTs needs to be approached with some care,
however. The instructor needs to be open and candid about
why particular SMT suggestions will or will not be
implemented, and also needs to be appropriately firm so
that students do not believe they have "taken over" the
course. It is also important that the SMT solicit inputs from
the other students in the course; otherwise, the SMT will be
viewed as an elite group of teacher favorites, and much of
the potential benefit of the SMT will be lost.

Another unique course feedback technique we incorporated
was our use of a focus group, consisting of all the students
in the course. In AY 2000 our course was the first course in
the Basic Sciences division at our school to use a focus
group. The instructor met with members of our Center for
Educational Excellence (CEE) prior to the focus group
meeting to develop a set of questions for the group. These
questions were designed to give the instructor meaningful
feedback about the course. The CEE members then met
with the focus group to discuss those questions without the
instructor present. Because the CEE then provided a written
report containing anonymous comments for the instructor,
the focus group gave the students an oppomanity to provide
anonymous, meaningful feedback to the instructor without
being concerned about retribution.

4 Course Tradeoffs
There are numerous tradeoffs to be made when developing
any software engineering course, or any course in general.
In this section, we discuss some of the tradeoffs we have
identified and the approach we use to address them. While
we believe we have identified the tradeoffs with the most
potential impact on the course, there may be other issues
that we have overlooked.

One of our tradeoffs addresses the level of guidance we
give to the students in the course. We believe there is
extensive value in letting tile students experience both the
successes and failures associated with a real development

project, and in many cases we do not provide as much
guidance as the students would like. Students become upset
when they discover they made a mistake that leads to
rework later on, and they typically believe that the
instructor should have prevented them from making any
such mistakes. To address these issues, we tend to provide
more guidance early in the project then leave the students
"on their own" more in the latter part of the course. With
this approach, we can work on developing good student
understanding of the concepts early in the course, but also
gain the benefits of having the students make and learn
from real mistakes.

A related tradeoff addresses documentation format and
content. Based on the probability that our students will be
involved in government projects after graduation, we have
them develop their documentation using standardized
formats (Mil-Std 498 DIDs for the 1998 and 1999 AYs and
IEEE 12207 formats in AY 2000). The standards describe
each paragraph in the documentation in terms of content
and format, but do not provide an example for each
paragraph. Our students have consistently requested
examples of the documentation in addition to the standards.
This is a difficult tradeoff to address; in some sense, the
standards give the students sufficient in.formation to
generate the required documentation. It is also difficult to
find examples that use the required standards and
incorporate tailoring decisions that are appropriate for the
course project. In the 2000 AY we began providing
examples whether or not they matched the required
standards and expected tailoring; unfortunately, student
response was that they needed more examples! We revisit
this tradeoff every semester, and continually evaluate the
alternatives we could use.

One of our most significant tradeoffs in the course is
deciding how to balance emphasis on the process of
software development and emphasis on the product the
students create. On one hand, the software development
students have accomplished before this course includes
very little, if any, emphasis on process. Given the
importance of process in real software development
activities, we want to ensure that our students get
appropriate exposure to process issues. On the other hand,
we also do not want our students to believe that if they
follow an appropriate process, it does not matter if they
generate a working product! We must therefore also
provide the appropriate emphasis on the product the
students are developing to ensure it meets the project
requirements.

We have not yet perfected our response to this tradeoff. In
the 1998 AY, we combined the teams in the middle of the
second semester, and the combined team generated a
product that met many but not all of the requirements. We
planned to have a student complete the product the
following semester in an independent study, but satellite
problems obviated the need to complete the ground station.

229

Neither team generated a working product in the 1999 AY.
In the 2000 AY, one of the two teams generated a product
that met the requirements. The control tower personnel are
using the working system as a proof of concept to gain
funding for a full-scale system to be used in the USAFA
tower as well as other Air Force and FAA sites.

Another tradeoff we face in the course is developing the
interactions between the students and the customer.
Interacting with real customers is invaluable experience for
the students in the c o m e , and other software engineering
courses have incorporated extensive procedures to provide
these interactions [5]. As in real life, however, the students
in the course find that they need to deal with a wide range
of customer capabilities.

In many cases, dealing with a knowledgeable customer can
be very beneficial for the students (see [10], for example).
This can be taken too far, however; one o f the customers
for the satellite ground station was actually the developer of
other ground stations. Discussions of the requirements with
this customer often were of the form "This is how I did it,
so you should do it this way" rather than "This is what the
system needs to do." These interactions were realistic, but
frustrating for the students. On the other end of the
spectrum, the students working on the UAV simulator ran
into some mathematical problems with the formulae used to
model the aircraft. The students worked with the customer
in this case to try to identify the problem through a step-by-
step example, but were unable to identify and correct the
problem. This is one o f the causes for the student lack of
success on that particular project. The air traffic controllers
for the CEATMS project were probably the most realistic
customers; they were knowledgeable without directing
implementation details to the students. Another aspect of
realism the controllers provided was their changing
requirements; a source of frustration for the students that in
fact helped them see how real project requirements evolve.

Another tradeoff to be addressed is the development model
to be used in the course. For many years, the waterfall
model was the accepted model for software development.
There are numerous other models that can be used,
however, including the spiral model, incremental
development, and 'others [6]. For the 1998 and 1999 AYs
we used an incremental approach similar to that presented
in [4]. One of the problems with using this approach f rom
the beginning, though, is that students complete
requirements analysis and design activities before they have
been covered in sufficient depth in the course. In the 2000
Academic Year, we used the requirements analysis and
design portions of the waterfall model in the first semester,
then had the students complete multiple iterations of the
system in the second semester. The latter combination
seemed to be particularly effective, since it lets the
instructor cover important requirements analysis and design
concepts in sufficient depth before the students actually
apply those concepts.

We also recognize that a significant portion of real-world
software development consists of modifying existing
systems rather than creating new systems f rom scratch. We
have therefore tried numerous approaches for providing the
students in the course with some "maintenance" experience.
For several years prior to the 1998 AY, we incorporated a
maintenance exercise in which the students would modify
an existing system to provide additional functional
capabilities (similar ideas are presented in [2]). We found,
however, that to make this a non-trivial task for the
students, the system being modified had to be fairly
complex, which in turn led the students to spend an
inordinate amount of t ime trying to understand the system
before adding the required capabilities. W e therefore
considered other options for providing this kind of
experience.

The option we selected was to have students change teams
between the first and second semester and start f rom a new
project baseline. By having students change teams between
semesters, we gave the students the experience of working
with code developed by someone else as they continued the
development in the second semester. By starting both teams
from the same baseline at the beginning of the semester, we
facilitated class discussions about the project in the second
semester; by the end of the first semester, the two designs
for the system were significantly different. When selecting
which project baseline to carry forward f rom the first
semester, the instructor tended to select the system with the
worst documentation. This also enhanced the realism of the
student experience! In the 2000 AY, we did not require
students to change teams (based on input f rom the SMT),
but we did require that they change management position
and subsystem group, so the students still worked with a
design that was developed by a different group of students.

One of the most difficult issues we have faced in the course
is evaluating individual contributions to the group project.
Evaluating individuals in a team project is clearly not
unique to our course, as it must be addressed in any course
containing a component of group work, and there are many
techniques that can be used to address this issue (see [11],
for example). Our technique for assigning individual grades
for the project is described below.

The management staff for the project are evaluated based
on their performance and the documentation they provide,
so assigning individual grades for them is straightforward.
The issue arises when we assign individual grades to the
members of each subsystem group. We start by evaluating
the group's performance and documentation, giving us a
"group grade" on which to base the individual grades of the
group members. We then ask all the students in the class to
rate (with written justification) the other members of their
subsystem group on a scale of 0.8 to 1.2. The ratings are
evaluated by the instructor and are then used as a multiplier.
For example, a group member rated with a 0.8 by all the
other group members would receive a grade of 0.8 times the

230

group grade. In this way, the group grade is adjusted based
on individual contributions to that grade, both (slightly)
punishing those who don' t contribute and (slightly)
rewarding those who contribute more to the group.

One of the issues we are trying to address with the
multiplier is the "freerider syndrome" [3]. Within a group,
some students will work harder than others while some will
act as "freeriders" and depend on the other group members
to do the work for a grade they will then share. By
including the multiplier, we attempt to offset a student's
ability to get a free fide.

There are still problems with this approach, however. For
example, a student who does NO work for the group would
still receive at worst 80% of the group grade. While these
situations are extremely rare, they have happened in the
course. In the 2000 AY, we asked the SMT for feedback on
this issue. After soliciting ideas and comments from the
other students in the class, they proposed that we retain the
current approach of using a 0.8 to 1.2 multiplier.

We have also grappled with the issue of the programming
language for the project - should we dictate a particular
programming language or let the students select one? In the
government it is very common to select the programming
language as one of the project requirements, but the
students seem to resent being told which language to use.
Our response to this tradeoff has been evolving over time;
in the 1998 and 1999 Academic Years, we dictated the use
of Ada (our "core" language at USAFA) for the project, but
in the 2000 AY we let the students select the programming
language. We required a Programming Language Selection
Study to support their decision to ensure careful thought
went into their selection. One of the teams selected Ada,
while the other selected Java; an interesting result was that,
despite the use of Ada throughout the computer science
curriculum, the team using Java was the team that
developed a working system.

5 Conclusions
Developing a software engineering course or capstone
sequence that provides students with realistic software
development experience and strikes a balance between
technical and management issues can be difficult. In
addition, equitably assessing each student and addressing
the other tradeoffs in the course is a complex challenge.

In this paper, we have described the projects used at
USAFA over the past three years, the course structure we
use in the capstone sequence, and the tradeoffs we have
identified and addressed. Our approach continues to evolve,
of course; we continually evaluate our responses to
important issues and determine whether or not changing
selected aspects of the course could address those issues
more effectively. We believe a key component of this
course evolution is student involvement, and using a
Student Management Team to help gather student feedback
appears to be a unique and effective methodology.

References
[1] Bruegge, Bernd, Cheng, John, and Shaw, Mary. A

software engineering project course with a real client.
Technical Report CMU/SEI-91-EM-4, Carnegie-
Mellon University Software Engineering Institute,
1991.

[2] Churcher, Neville and Cockburn, Andy. An immersion
model for software engineering projects. In
Proceedings of the Second Australasian Conference
Computer Science Education, Sydney, Australia, July
1996.

[3] Daft, Richard and Marcic, Dorothy, Understanding
Management. Second Edition, Harcourt Brace &
Company, Orlando, FL, 1998.

[4] Hutchens, David H. and Katz, Elizabeth E. Using
iterative enhancement in undergraduate software
engineering courses. In Proceedings of the Twenty-
Seventh SIGCSE Technical Symposium on Computer
Science Education, Philadelphia, Pennsylvania,
February 1996.

[5] Polack-Wahl, Jennifer A. Incorporating the client's
role in a software engineering course. In Proceedings
of the Thirtieth SIGCSE Technical Symposium on
Computer Science Education, New Orleans, Louisiana,
February 1999.

[6] Pressman, Roger, Software Engineering: A
Practitioner's Approach. Fourth Edition, McGraw-
Hill, New York, NY, 1997.

[7] Robillard, Pierre N. Teaching software engineering
through a project-ofiented course. In Proceedings of
the Ninth Conference on Software Engineering
Education, pages 29-39, Daytona Beach FL, April
1996.

[8] Song, Ki-sang. Teaching software engineering through
real-life projects to bridge school and industry.
SIGCSE Bulletin, 28(4):59-64, December 1996.

[9] Tomayko, James E. Teaching a project-intensive
introduction to software engineering. Technical Report
CMU/SEI-87-TR-20, Carnegie-Mellon University
Software Engineering Institute, 1987.

[10]Villarreal, E.E. and Butler, Dennis. Giving computer
science students a real-word experience. In
Proceedings of the Twenty-Ninth SIGCSE Technical
Symposium on Computer Science Education, Atlanta,
Georgia, February 1998.

[11] Wilkins, Dawn E. and Lawhead, Pamela B. Evaluating
individuals in team projects. In Proceedings of the
Thirty-First SIGCSE Technical Symposium on
Computer Science Education, Austin, Texas, February
2000.

231

