

AN EMPIRICAL COMPARISON OF STATIC CONCURRENCY

ANALYSIS TECHNIQUES

A Dissertation Presented

by

ALBERT T. CHAMILLARD

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

September 1996

Department of Computer Science

 Copyright by Albert T. Chamillard 1996

All Rights Reserved

AN EMPIRICAL COMPARISON OF STATIC CONCURRENCY

ANALYSIS TECHNIQUES

A Dissertation Presented

by

ALBERT T. CHAMILLARD

Approved as to style and content by:

Lori A. Clarke, Chair

W. Richards Adrion, Member

George S. Avrunin, Member

Leon J. Osterweil, Member

David W. Stemple, Department Head
Computer Science

DEDICATION

To my parents, for loving and supporting me, and for always showing me I could do

anything I set my mind to.

To Chris, Timothy, Nicholas, and Emily, for loving me, believing in me, giving me

perspective, helping me find my keys, and making more sacrifices than I did so I could

complete this dissertation.

v

ACKNOWLEDGMENTS

I would like to thank Lori Clarke, my advisor, for all her help during the course of this

work. Without her many contributions of both time and lessons about being a good

researcher, this dissertation would not have been possible. She also made sure I always

remembered her most important lesson - to always be proud of my work.

I would like to thank Lee Osterweil for our many interesting discussions about my work,

research, teaching, and life in general.

I would like to thank George Avrunin for his careful review of this dissertation, for the

time he took to help me, and for our sometimes loud but always productive discussions

about my work.

I would like to thank Rick Adrion for our discussions about my work and teaching.

vi

ABSTRACT

AN EMPIRICAL COMPARISON OF STATIC CONCURRENCY
ANALYSIS TECHNIQUES

SEPTEMBER 1996

ALBERT T. CHAMILLARD

B.E.E., GEORGIA INSTITUTE OF TECHNOLOGY

M.Sc., UNIVERSITY OF SOUTHERN CALIFORNIA

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Lori A. Clarke

 Developers of concurrent software need cost-effective analysis techniques to acquire

confidence in the reliability of that software. Analysis of concurrent programs is difficult

because, in many cases, the patterns of communication among the various parts of the

program are complicated and the number of possible communications is large.

 One class of techniques that can be used for analysis of concurrent programs is static

analysis, which uses compile-time information to prove properties about a program.

Given the variety of concurrency analysis tools available, analysts need assistance when

selecting tools to use to check a specific program and property. Despite exponential

worst-case bounds for most of the techniques, average case analysis times may help

differentiate between the techniques in practice. The techniques provide a range of

analysis accuracies, but these accuracies have not been formally or empirically quantified.

Empirical tool comparisons can therefore provide useful insight into which tool would be

most suitable for a given program and property.

 The main contribution of the work presented here is the development of a sound

methodology for comparing concurrency analysis tools, with a thorough description of the

experimental design and constraints, discussion of the issues and tradeoffs involved in

developing such a methodology, and valid application of statistical analysis. We apply

vii

this methodology to conduct an experiment to compare a number of concurrency analysis

tools. Comparisons are accomplished for analysis time, analysis failures, and analysis

accuracy of the tools.

 Secondary contributions of the work presented here include development of

predictive models and preliminary examination of several "real" programs. We develop,

with varying degrees of success, predictive models that may help an analyst estimate the

analysis time, analysis failure, and analysis accuracy of each tool given a program and a

property to be checked. We also provide a preliminary examination of several "real"

programs, including a discussion of the program constructs used in the programs and

observations about program characteristics that are likely to affect the applicability of

static concurrency analysis tools to these programs.

viii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS...v

ABSTRACT...vi

LIST OF TABLES...xiv

LIST OF FIGURES..xvi

Chapter

1. INTRODUCTION...1

2. RELATED WORK ...4

2.1 Static Concurrency Analysis Techniques...4

2.1.1 Reachability Analysis...4

2.1.1.1 Reachability Analysis Approaches...5
2.1.1.2 State Space Reduction Approaches..6

2.1.2 Symbolic Model Checking...11
2.1.3 Inequality Necessary Condition Analysis...11
2.1.4 Dataflow Analysis..12
2.1.5 Compositional Analysis ...17
2.1.6 Combinations of Techniques..19

2.2 Empirical Work in Software Engineering..21

2.2.1 Flowcharting Experiments ...23
2.2.2 Metrics Experiments ..23
2.2.3 Reliability Experiments..24
2.2.4 Inspection Experiments..25
2.2.5 Test Data Selection Experiments...26
2.2.6 Static Concurrency Analysis Experiments...27

3. EXPERIMENTAL METHODOLOGY ..30

3.1 Concurrent Programs and Program Representations ...30

3.1.1 Example Program...31
3.1.2 Program Representations..33

3.1.2.1 Control Flow Graphs..34
3.1.2.2 Finite State Automata...36

ix

3.2 Concurrency Analysis Tools..39

3.2.1 Reachability Analysis...40

3.2.1.1 SPIN..40
3.2.1.2 SPIN + Partial Orders...48
3.2.1.3 TRACC...48

3.2.2 Symbolic Model Checking...50
3.2.3 Inequality Necessary Condition Analysis...54
3.2.4 Data Flow Analysis..56

3.3 Comparison Methodology..58

3.3.1 Program Representations..59
3.3.2 Property Representations..61
3.3.3 Checking for Bias...62
3.3.4 Input Domain..63
3.3.5 Data Comparison..64

4. PROGRAMS AND PROPERTIES FOR THE EXPERIMENT.................................68

4.1 Cyclic ...69
4.2 Divide and Conquer (DAC) ...76
4.3 Dining Philosophers...82

4.3.1 Standard Problem (dp)..82
4.3.2 Dining Philosophers with Dictionary (dpd) ...85
4.3.3 Dining Philosophers with Fork Manager (dpfm) ...89
4.3.4 Dining Philosophers with Host (dph)...89

4.4 Elevator ..90
4.5 Gas Station...96
4.6 Hartstone..103
4.7 Memory Management ..106
4.8 Ring..113

5. METRICS AND MEASUREMENTS..117

5.1 Metrics..117

5.1.1 Program Metrics...118
5.1.2 Internal Representation Metrics ...120
5.1.3 Property Metrics...122

5.2 Measurements ..123

6. STATISTICAL ANALYSIS TECHNIQUES...124

x

6.1 Data Collection Strategy ..124
6.2 Checking for Bias Statistically...125
6.3 Preprocessing the Data...127
6.4 Building the Models...128

6.4.1 Linear Regression...129
6.4.2 Logistic Regression..130

6.5 Analyzing the Models..131

6.5.1 Goodness of Fit ..131
6.5.2 Residual Analysis...132
6.5.3 Identifying Outliers...133

6.6 Summary of Statistical Analysis..134

7. EMPIRICAL RESULTS...135

7.1 Experimental Environment ..135
7.2 Checking for Bias Statistically...136
7.3 Experimental Data..140
7.4 Analysis Time Comparisons..142

7.4.1 Native Input Analysis Times..142
7.4.2 Total Analysis Times..144

7.5 Failure Comparisons..146
7.6 Spurious Result Comparisons..147
7.7 Successful Analysis Case Comparisons...148
7.8 Preprocessing the Data...149
7.9 Predictive Models for Analysis Time...151

7.9.1 SPIN, Never Claims...151

7.9.1.1 Predictive Model for Deadlock...152
7.9.1.2 Predictive Model for Other Properties..155

7.9.2 SPIN, Assertions ..156
7.9.3 SPIN+PO..157

7.9.3.1 Predictive Model for Deadlock...157
7.9.3.2 Predictive Model for Other Properties..158

7.9.4 TRACC...159

7.9.4.1 Predictive Model for Deadlock...159
7.9.4.2 Predictive Model for Other Properties..159

7.9.5 SMV ...160

xi

7.9.5.1 Predictive Model for Deadlock...160
7.9.5.2 Predictive Model for Other Properties..161

7.9.6 INCA ..162

7.9.6.1 Predictive Model for Deadlock...162
7.9.6.2 Predictive Model for Other Properties..163

7.9.7 FLAVERS..164

7.10 Predictive Models for Failures...164

7.10.1 SPIN, Never Claims...166

7.10.1.1 Predictive Model for Deadlock...166
7.10.1.2 Predictive Model for Other Properties..168

7.10.2 SPIN, Assertions ..169
7.10.3 SPIN+PO..170

7.10.3.1 Predictive Model for Deadlock...170
7.10.3.2 Predictive Model for Other Properties..171

7.10.4 TRACC...172

7.10.4.1 Predictive Model for Deadlock...172
7.10.4.2 Predictive Model for Other Properties..173

7.10.5 SMV ...173

7.10.5.1 Predictive Model for Deadlock...174
7.10.5.2 Predictive Model for Other Properties..175

7.10.6 INCA ..176

7.10.6.1 Predictive Model for Deadlock...176
7.10.6.2 Predictive Model for Other Properties..177

7.10.7 FLAVERS..177

7.11 Predictive Models for Spurious Results...178

7.11.1 SPIN, Never Claims...178

7.11.1.1 Predictive Model for Deadlock...178
7.11.1.2 Predictive Model for Other Properties..180

7.11.2 SPIN, Assertions ..181
7.11.3 SPIN+PO..182

7.11.3.1 Predictive Model for Deadlock...182

xii

7.11.3.2 Predictive Model for Other Properties..183

7.11.4 TRACC...184

7.11.4.1 Predictive Model for Deadlock...184
7.11.4.2 Predictive Model for Other Properties..185

7.11.5 SMV ...186

7.11.5.1 Predictive Model for Deadlock...186
7.11.5.2 Predictive Model for Other Properties..186

7.11.6 INCA ..187

7.11.6.1 Predictive Model for Deadlock...188
7.11.6.2 Predictive Model for Other Properties..188

7.11.7 FLAVERS..189

7.12 Validating the Models..190
7.13 Summary ..195

8. CASE STUDIES...197

8.1 Programs Considered ...197

8.1.1 Border Defense System (BDS)...198
8.1.2 Train Control Program ...198
8.1.3 ALSP Common Module (ACM) ..199

8.2 Conversion to Control Flow Graphs..199

8.2.1 Task Interactions in Called Procedures..199
8.2.2 Separate Packages..201
8.2.3 Generics..202
8.2.4 Use of Attributes..202
8.2.5 Use of Pragmas...202
8.2.6 Use of Compiler-Dependent Packages...202
8.2.7 Use of Discriminated Types...203
8.2.8 Use of Exception Handlers for Control Flow...203

8.3 Characteristics Affecting Analysis...204

8.3.1 Dynamic Task Allocation...204
8.3.2 Task Interactions Within Exception Handlers..205
8.3.3 Complexity of Individual Tasks...205
8.3.4 Task Types in Complicated Data Structures..206

8.4 Discussion..206

xiii

9. IMPROVING PETRI NET-BASED STATIC ANALYSIS ACCURACY208

9.1 Program Representations ...210

9.1.1 Petri Nets..211
9.1.2 Reachability Graphs...213

9.2 Improving Accuracy...214

9.2.1 Enforcing Impossible Pairs...215
9.2.2 Representing Variable Values..220
9.2.3 Choosing Between the Two Techniques..225

9.3 Empirical Results...226
9.4 Conclusions..231

10. CONCLUSION...235

APPENDIX: PREDICTIVE MODELS...243

A.1 Analysis Time Predictive Models...243
A.2 Failure Predictive Models...245
A.3 Spurious Result Predictive Models...246

BIBLIOGRAPHY ..248

xiv

LIST OF TABLES

Table Page

7.1 Program Metric Data for Experiment ...141

7.2 Property Metric Data for Experiment ...141

7.3 Mean Native Input Analysis Times...142

7.4 Fastest Case Counts, Native Input Analysis Time..143

7.5 Average Rankings, Native Input Analysis Time...144

7.6 Mean Total Analysis Times..145

7.7 Average Rankings, Total Analysis Time..146

7.8 Counts for Failures..147

7.9 Counts for Spurious Results ...148

7.10 Successful Analysis Percentages...149

7.11 Collinear Sets of Metrics ..150

7.12 R2 Values for Analysis Time Models...152

7.13 Deviances and Percents Correct for Failure Models...165

7.14 SPIN Failure Classification Table for Deadlock...167

7.15 SPIN, Never Claims, Failure Classification Table ...168

7.16 SPIN, Assertions, Failure Classification Table...169

7.17 SPIN+PO Failure Classification Table for Deadlock ...171

7.18 SPIN+PO Failure Classification Table for Other Properties..................................172

7.19 TRACC Failure Classification Table for Deadlock..173

7.20 SMV Failure Classification Table for Deadlock...174

7.21 SMV Failure Classification Table for Other Properties..175

7.22 INCA Failure Classification Table for Deadlock..176

7.23 Deviances and Percents Correct for Spurious Result Models.................................179

7.24 SPIN Spurious Results Classification Table for Deadlock.....................................180

7.25 SPIN, Never Claims, Spurious Results Classification Table..................................181

xv

7.26 SPIN, Assertions, Spurious Results Classification Table.......................................182

7.27 SPIN+PO Spurious Results Classification Table for Deadlock..............................183

7.28 SPIN+PO Spurious Results Classification Table for Other Properties...................184

7.29 TRACC Spurious Results Classification Table for Deadlock185

7.30 SMV Spurious Results Classification Table for Deadlock.....................................186

7.31 SMV Spurious Results Classification Table for Other Properties..........................187

7.32 INCA Spurious Results Classification Table for Deadlock....................................188

7.33 INCA Spurious Results Classification Table for Other Properties.........................189

7.34 FLAVERS Spurious Results Classification Table for Other Properties.................190

7.35 Counts of Fastest Analysis Times...192

7.36 Specific Case Predictions..193

7.37 Effect of Using Predictive Models..194

9.1 Effects of Approach on Petri Nets and Reachability Graphs....................................228

9.2 Program Properties..231

xvi

LIST OF FIGURES

Figure Page

3.1 Ada Program for 1 Reader/1 Writer..32

3.2 Example Control Flow Graph...36

3.3 FSA for Control Task, No Variables Modeled...37

3.4 FSA for Control Task, Writer Variable Modeled...39

3.5 PROMELA Program for Readers/Writers Example...42

3.6 Never Claims for no_r1w and no_w1w2..45

3.7 Assertions for no_r1w...46

3.8 Assertions for no_w1w2...47

3.9 Example SMV Input ...51

3.10 SMV Specification for no_r1w...53

3.11 Alternate SMV Specification for no_r1w ...53

3.12 SMV Specification for no_w1w2 ...54

3.13 INCA Query for Deadlock ..55

3.14 INCA Queries for no_r1w and no_w1w2...56

3.15 QREs for no_r1w and no_w1w2...58

4.1 Never Claim for no_c3c2..70

4.2 Assertions for no_c3c2 ...71

4.3 SMV Specification for no_c3c2..71

4.4 Alternate SMV Specification for no_c3c2..71

4.5 INCA Query for no_c3c2..72

4.6 Alternate INCA Query for no_c3c2..72

4.7 QRE for no_c3c2 ..73

4.8 Never Claim for no_c2ss ..73

4.9 Assertions for no_c2ss..74

4.10 SMV Specification for no_c2ss..74

xvii

4.11 Alternate SMV Specification for no_c2ss..74

4.12 INCA Query for no_c2ss ..75

4.13 Alternate INCA Query for no_c2ss...75

4.14 QRE for no_c2ss...76

4.15 Never Claim for no_s1js3j ..77

4.16 Assertions for no_s1js3j..78

4.17 SMV Specification for no_s1js3j ..78

4.18 Alternate SMV Specification for no_s1js3j ..79

4.19 INCA Query for no_s1js3j ..79

4.20 QRE for no_s1js3j...79

4.21 Never Claim for no_s3f ..80

4.22 Assertions for no_s3f ..80

4.23 SMV Specification for no_s3f ..81

4.24 Alternate SMV Specification for no_s3f ..81

4.25 INCA Query for no_s3f ..81

4.26 QRE for no_s3f ...81

4.27 Never Claim for no_p1p2 ...83

4.28 Assertions for no_p1p2...83

4.29 SMV Specification for no_p1p2...84

4.30 INCA Query for no_p1p2 ...84

4.31 QRE for no_p1p2..84

4.32 Never Claim for no_p2d ...86

4.33 Assertions for no_p2d...86

4.34 SMV Specification for no_p2d...87

4.35 Alternate SMV Specification for no_p2d ...87

4.36 INCA Query for no_p2d ...88

4.37 Alternate INCA Query for no_p2d..88

xviii

4.38 QRE for no_p2d..89

4.39 Never Claim for no_omc ..91

4.40 Assertions for no_omc..92

4.41 SMV Specification for no_omc..92

4.42 INCA Query for no_omc ..93

4.43 Alternate INCA Query for no_omc...93

4.44 QRE for no_omc...93

4.45 Never Claim for no_sdni...94

4.46 Assertions for no_sdni ..95

4.47 SMV Specification for no_sdni ..95

4.48 INCA Query for no_sdni...95

4.49 QRE for no_sdni ...96

4.50 Never Claim for no_c1c2..97

4.51 Assertions for no_c1c2 ...97

4.52 SMV Specification for no_c1c2..98

4.53 INCA Query for no_c1c2..98

4.54 QRE for no_c1c2 ..99

4.55 Never Claim for no_c1p2..100

4.56 Assertions for no_c1p2...100

4.57 SMV Specification for no_c1p2 ...101

4.58 Alternate SMV Specification for no_c1p2..101

4.59 INCA Query for no_c1p2..102

4.60 Alternate INCA Query for no_c1p2..102

4.61 QRE for no_c1p2..102

4.62 Never Claim for no_t3t2...104

4.63 Assertions for no_t3t2...104

4.64 SMV Specification for no_t3t2...105

xix

4.65 Alternate SMV Specification for no_t3t2...105

4.66 INCA Query for no_t3t2...105

4.67 Alternate INCA Query for no_t3t2 ...106

4.68 QRE for no_t3t2..106

4.69 Never Claim for no_u1u2 ...108

4.70 Assertions for no_u1u2...108

4.71 SMV Specification for no_u1u2...109

4.72 INCA Query for no_u1u2 ...109

4.73 QRE for no_u1u2..110

4.74 Never Claim for no_sdu1a..110

4.75 Assertions for no_sdu1a..111

4.76 SMV Specification for no_sdu1a..111

4.77 Alternate SMV Specification for no_sdu1a..111

4.78 INCA Query for no_sdu1a..112

4.79 Alternate INCA Query for no_sdu1a..112

4.80 QRE for no_sdu1a...113

4.81 Never Claim for no_m1m2...114

4.82 Assertions for no_m1m2...115

4.83 SMV Specification for no_m1m2...115

4.84 INCA Query for no_m1m2...115

4.85 QRE for no_m1m2..116

7.1 Plot of Standardized Cnd' Residuals vs Predicted Time...153

7.2 Plot of Standardized MaxTRANS Residuals vs Predicted Time..............................154

7.3 Plot of Standardized Residuals vs Failures...167

9.1 Example Program..208

9.2 Petri Net ..212

9.3 Reachability Graph ...214

xx

9.4 Petri Net With Impossible Pairs Represented...217

9.5 Reachability Graph With Impossible Pairs Represented ..220

9.6 Boolean Variable Subnet ..222

9.7 Petri Net With Variable Subnet Added...224

9.8 Reachability Graph Using Variable Subnet ..225

1

CHAPTER 1

INTRODUCTION

 Developers of concurrent software need cost-effective analysis methods to acquire

confidence in the reliability of that software. Analysis of concurrent programs is difficult

because, in many cases, the patterns of communication among the various parts of the

program are complicated and the number of possible communications is large. One class

of methods that can be used for analysis of concurrent programs is static analysis, which

uses compile-time information to prove properties about a program.

 A number of techniques have been proposed for static concurrency analysis (i.e.,

static analysis of concurrent programs). These techniques include: reachability analysis,

which generates the state space of the concurrent program and checks the property of

interest on that state space; symbolic model checking, which checks the property on a

symbolic representation of the state space; inequality necessary condition analysis, which

specifies the program and property as a system of integer inequalities and looks for a

solution to that system; and dataflow analysis, which checks the property by solving a

dataflow problem on a graphical representation of the program. For each of the

techniques, one or more tools have been developed to implement the technique.

 Unfortunately, there is little information available to help analysts choose between

the analysis tools. Most of the static concurrency analysis techniques are NP-complete,

leading to exponential analysis times in the worst case. Despite these exponential worst-

case bounds, average case analysis times may help differentiate between the techniques in

practice. All static analysis tools may produce spurious results -- that is, report that a

property fails when in fact the cases in which it fails do not correspond to actual program

behaviors. Usually, a tool produces a spurious result as a consequence of considering

paths that can never be executed in the program (commonly called infeasible paths) or of

considering aliasing that can never occur in the program. The tools provide a range of

2

analysis accuracies, but these accuracies have not been formally or empirically quantified.

Empirical tool comparisons can therefore provide useful insight into which tool would be

most suitable for a given program and property.

 The main contribution of the work presented here is the development of a sound

methodology for comparing concurrency analysis tools, with a thorough description of the

experimental design and constraints, discussion of the issues and tradeoffs involved in

developing such a methodology, and valid application of statistical analysis. Fair

concurrency analysis tool comparisons are difficult to accomplish given the diverse

program semantics and property specification formalisms of the tools. Our methodology

includes a process to try to ensure each tool examines the same programs and properties.

We also need to guard against introducing bias against one or more of the tools. Our

methodology includes recognition of a number of biases our methodology could

introduce and statistical testing for these biases. We apply our methodology to conduct

an experiment to compare a number of concurrency analysis tools. Comparisons are

accomplished for analysis time, analysis failures, and analysis accuracy of the tools.

 Secondary contributions of the work presented here include development of

predictive models and preliminary examination of several "real" programs. We

hypothesize that the behavior of the tools, both in terms of performance and accuracy, is

affected by characteristics of the program being analyzed and the property being checked

for that program. These characteristics are measured using existing and newly-developed

metrics. We develop, with varying degrees of success, predictive models that may help

an analyst estimate the analysis time, analysis failure, and analysis accuracy of each tool

given a program and a property to be checked. These predictive models are in the form of

mathematical equations. We conjecture a scenario in which an analyst calculates the

program and property metrics, solves the predictive equations, and selects the tool whose

predicted behavior meets their accuracy and time requirements.

3

 To be most useful, the analysis tools need to be applicable to programs of realistic

size, containing realistic communication structures. In almost all cases, static

concurrency analysis tools have been demonstrated using programs from the concurrency

analysis literature. It is unlikely that these academic programs are representative of

concurrent programs in general. Most tasks in these programs are relatively small, for

instance, and the program constructs used in these programs are relatively simple. We

provide a preliminary examination of several "real" programs, including a discussion of

the program constructs used in the programs and observations about program

characteristics that are likely to affect the applicability of static concurrency analysis tools

to these programs.

 The remainder of the thesis is organized as follows. Chapter 2 contains a review of

the related work in static concurrency analysis and experimental software engineering.

Chapter 3 presents the experimental methodology we use for the experiment, illustrating

the methodology with analysis of a concurrent program and several properties of interest

for that program. Chapter 4 describes the other concurrent programs and properties

included in the experiment. Chapter 5 introduces the program and property metrics we

use as the variables in the predictive models and the measurements we predict with those

models. Chapter 6 describes the statistical analysis techniques we use to check for bias in

the experiment and to build the predictive models. Chapter 7 presents our empirical

results. Chapter 8 provides the results of our examination of several "real" programs. A

method for improving the accuracy of certain kinds of static concurrency analysis is

provided in chapter 9. Chapter 10 provides our conclusions and directions for future

research.

4

CHAPTER 2

RELATED WORK

 Work related to this dissertation can be separated into two categories. Because we

conduct experiments using a number of static concurrency analysis techniques, we survey

the static concurrency analysis literature in the first section. Because our work is

empirical, the second section contains a discussion of the difficulties that must be

addressed in software engineering experiments and a review of prior work in

experimental software engineering.

2.1 Static Concurrency Analysis Techniques

Static analysis can be used to check whether a selected property, often called the property

of interest, holds for a specific program. Numerous techniques for static analysis of

concurrent programs have been proposed. The major approaches include reachability

analysis, symbolic model checking, integer programming, dataflow analysis,

compositional analysis, and combinations of these. In this section we survey these major

approaches.

2.1.1 Reachability Analysis

 Reachability analysis checks whether a property of interest holds on all executions

(or no executions) of a concurrent program by considering all reachable states of the

program being analyzed. Theoretical results [Tay83b] have shown that using reachability

analysis to answer various analysis questions is NP-complete. Because the best known

solutions to NP-complete problems are exponential, Taylor's results imply that, in

general, the time and space requirements for this technique are exponential.

 Taylor presents complexity results for various analysis questions about

synchronization events in concurrent programs [Tay83b]. These analysis questions

include determining points of possible synchronization, determining actions that can

occur in parallel, and determining errors inherent in the synchronization structure

5

(deadlock, for instance). Taylor shows that most analysis tasks are NP-complete, even

under severe restrictions on program structure. The restrictions include prohibiting

branches, loops, and select statements in all tasks, or prohibiting branches and loops in

the tasks and only allowing one task to have entry calls on a given entry. It is clear that a

variety of important questions in static analysis of concurrent programs are intractable;

indeed, Taylor points out that, even when feasibility of program paths is ignored, the

problems only become tractable when enough restrictions are applied to make a system

fully deterministic.

2.1.1.1 Reachability Analysis Approaches

 The set of reachable program states used in reachability analysis can be generated

using a variety of program representations, including flow graphs [Tay83a, YTF+89] and

Petri nets [Pet77, SC88, DCN95].

 Taylor's algorithm [Tay83a] implements a graph-based approach for reachability

analysis. The algorithm provides a means for checking properties of interest using a flow

graph model of the program to generate the set of reachable states. Using a program call

graph to mark units (tasks) that can directly or indirectly perform a tasking activity,

Taylor defines a concurrency state as an ordered tuple of task state nodes. To generate

the set of reachable states, a successor function is used to generate the successor states

from each concurrency state. The resulting graph is called the Concurrency History

Graph (CHG). A complete concurrency history of a program is defined as all non-loop

paths through the concurrency states of the program. Properties of interest are checked on

the CHG.

 Because the size of the CHG often grows exponentially in the number of tasks in the

program (commonly called state-space explosion), Taylor suggests parceling the analysis

by connected components. Analysis can be performed on each connected component,

with the results of these analyses combined in the global reachability analysis. Taylor

also discusses several problems associated with static concurrency analysis techniques;

6

these problems include imprecision caused by aliasing and delay statements, as well as

difficulties analyzing programs containing dynamic task creation.

 Shatz and Cheng [SC88] implement a Petri net-based approach for reachability

analysis of Ada programs. An Ada program is converted to a Petri net using a translation

table of Ada constructs to Petri net building blocks. A reachability graph is generated

from the Petri net, where each node in the graph represents a reachable marking of the net

and each arc in the graph represents the firing of a single transition. Shatz and Cheng

check properties of interest about states of the program using the generated reachability

graph.

 A variety of methods can be used to check properties of a reachability graph. For

some properties, examination of each state is sufficient to check the property. For others,

information about the path to each state is required; these properties can be checked using

dataflow analysis or model checking. Clarke et al [CES86] present a model checking

technique for checking properties on a reachability graph. Each state is assigned the set

of atomic propositions true in that state. The property of interest is expressed in

Computation Tree Logic (CTL), a propositional, branching-time temporal logic. The

technique works through the reachability graph in stages, processing all subformulas of

length 1, then length 2, and so on up to the length of the property formula. In each stage,

each state in the reachability graph is marked with the subformulas that are true at that

state. After all stages have been completed, the property holds if and only if for each state

the property formula is true in that state. Proving properties using this technique requires

O(length of formula * (# states + # state transitions)) time.

2.1.1.2 State Space Reduction Approaches

 To combat the state-space explosion problem in reachability analysis, various

approaches have been suggested to reduce the size of the reachable state space. The

approaches discussed below attempt these reduction in two different ways - by reducing

the program model from which the reachability graph is generated or by reducing the

7

reachable state space as it is generated. We note that, for all the state space reduction

techniques, in the worst case the size of the reachable state space remains exponential in

the number of tasks.

 Long and Clarke [LC89] suggest using Task Interaction Graphs (TIGs) as a reduced

program representation that retains task interaction information. The TIG consists of a

finite set of nodes, N = { ni} , and a finite set of directed edges, E = { ei} . Each node ni

represents a maximal region of sequential code, and each directed edge represents a task

interaction (either the start or end of an entry call or an accept). The set of nodes includes

a single start node and a set of terminal nodes for the TIG. There is an edge from ni to nj

if and only if the task can potentially participate in the task interaction represented by the

edge, causing the task to exit the sequential region represented by ni and enter the

sequential region represented by nj. Use of TIGs as the program model results in reduced

representations of the reachable state space, thereby increasing the size of the programs

that can be analyzed.

 A few analysis techniques have used TIGs as the underlying program model. The

Concurrency Analysis Tool Suite (CATS) [YTF+89] provides an analysis toolset for

concurrent programs. CATS uses a graph-based model of the program with tasks

modeled as TIGs. A Task Interaction Concurrency Graph (reachability graph) is

generated from the set of TIGs of the program. The toolset can be used to evaluate

assertions about sequences of task interactions by performing temporal logic assertion

checking on the reachability graph. The toolset separately checks for deadlock in the

reachability graph.

 TIGs can also be used in a Petri net-based approach to reachability analysis. Dwyer

et al [DCN95] generate a Petri net model of the program (called a TIG-based Petri Net, or

TPN) using TIGs for each task. Property predicates for properties of interest can be

defined and checked at each state in the reachability graph generated from the TPN.

Using TPNs reduces the size of the enumerated state space, sometimes at the expense of

8

increased analysis costs at each state. For the programs examined in [DCN95], the

compaction in reachability graph size is two orders of magnitude. Essentially, using a

TPN trades space for time; the reachability graph is smaller than for a control flow-based

technique, but checking the property predicate at each reachable state can be more

expensive than for a control flow-based technique. For the examples examined in

[DCN95], the total cost of analysis was less using TPNs.

 As an alternative to reducing the representation of the program model, the set of

reachable states can potentially be reduced during reachability graph generation. A

variety of techniques have been proposed for these types of reductions; the major

approaches are discussed below. We note that most of these techniques apply

independently of the choice of program model.

 One major contributor to the state space explosion is the consideration of all possible

interleavings of potentially concurrent activities in the program. For certain kinds of

properties, Valmari introduces an approach called stubborn sets [Val90], in which the

effects of interleavings are reduced through consideration of a subset of each set of

possible interleavings. A stubborn set is defined as a set of state transitions that can

affect each other. More precisely, any disabled transition in the set can only be enabled

by a transition in the set, the transitions in the set are independent of transitions outside

the set, and at least one of the transitions in the set is enabled. A linear algorithm exists

for finding "almost" optimum stubborn sets for a given state, and a quadratic algorithm

can be used to find optimum stubborn sets for that state.

 Using this technique to generate the next states from the current state, only the

enabled transitions in the stubborn sets are used; in ordinary reachability analysis, all

enabled transitions in the system are used to generate the next states. Using stubborn sets,

if the number of enabled transitions for a particular state is smaller than the number of

enabled transitions in the system, the state will have fewer next states. This can, in turn,

lead to a reduction in the size of the reachable state space. Valmari proves that the

9

stubborn set method preserves Linear Temporal Logic (LTL) properties of the state space,

as long as the LTL operators "next state" and "previous state" are not used. The LTL

formulas specifying the property of interest must be known before the state space is

generated, since they are used during state space generation. After the reduced state space

is generated using stubborn sets, the LTL formulas can be checked on the reduced state

space.

 The partial orders approach of Godefroid and Wolper attempts to reduce the effects

of interleavings on the size of the reachable state space through the use of sleep sets

[GW91]. During the generation of the reachable state space, only one instance of

equivalent interleavings are considered at each state, where equivalence depends on the

property of interest. To accomplish this, the technique considers traces through an

automaton representing the concurrent program. A dependency relation on transitions in

the system is developed and this relation is used in conjunction with the set of transitions

to explore only one interleaving for each possible trace of the system. This restriction to

one interleaving tends to reduce the size of the generated reachable state space

significantly.

 The partial orders technique can be combined with existing reachability analysis

techniques to check properties on a reduced reachable state space. Any property to be

checked must be specifiable as a finite state automaton, since the automaton for the

property is combined with the program automaton to perform the analysis. Because

interleavings that could affect the property being checked are not removed by the

technique, the reductions are property-preserving.

 Rather than explicitly trying to eliminate the effects of interleavings, McDowell tries

to reduce the size of the reachable state space by combining sets of related states into

single states [McD89]. If two tasks are executing the same sequence of statements, it

may not be necessary to distinguish between them. Similarly, if several tasks are

executing the same sequence of statements, it may not be necessary to know how many

10

tasks are at a particular statement; it may be sufficient to know that at least one task is at

that statement. McDowell uses a CHG [Tay83a] to represent the reachable state space,

noting that several equivalent CHGs are possible for a given program when his mapping

for identical tasks is used. Two CHGs are defined to be equivalent if they contain the

same synchronization and parallel access anomalies. Taylor's reachability analysis

[Tay83a] generates a CHG containing all reachable states; McDowell's technique

attempts to generate an equivalent CHG containing fewer states. This technique is only

useful for programs with sets of identical tasks; it is not clear how often this program

structure occurs in practice.

 Murata et al detect deadlock in Petri net models of Ada programs using structural

properties (invariants) of the Petri nets [MSS89]. In some cases deadlock can be detected

without generating the reachable state space; these are called inconsistency deadlocks. In

other cases the reachable state space must be generated to detect the deadlock; these are

called circular deadlocks. T-invariants are employed to support the deadlock checking,

where a T-invariant represents the number of times each transition in the Petri net fires to

move a Petri net from a given marking back to that marking. This technique specifically

excludes deadlock caused by loop statements, and these deadlocks will go undetected.

 To detect inconsistency deadlocks, a set of linearly independent T-invariants, called

the Ada T-invariant, is calculated. If this set does not exist, or if some transition is not in

any of the T-invariants composing the set, then the transition is not on any executable

path, and the program has at least one inconsistency deadlock. To detect circular

deadlocks, circular directed paths are identified where task segments on the paths start

and end with communication transitions. Existence of at least one such path is a

necessary (but not sufficient) condition for actual deadlock in the program. To identify

these paths, T-invariants are used for comparison of transition firing counts to guide

reachability graph generation. If such a path is identified in the resulting reachability

graph, a circular deadlock is reported. Because a program can have multiple Ada T-

11

invariants, a reachability graph is generated for each Ada T-invariant. While the total

number of states in the set of resulting reachability graphs is less than the total number of

reachable states for the single example given in the paper, it is not clear whether this will

commonly be the case in practice.

2.1.2 Symbolic Model Checking

 Symbolic model checking techniques [BCM+90] represent the program state space

symbolically rather than explicitly. With this technique, the state transition relation for

the program to be analyzed is modeled using Ordered Binary Decision Diagrams

(OBDDs). An OBDD is a directed acyclic graph with a strict total order on the

occurrence of variables on any path from the root to any leaf in the OBDD. OBDDs can

be used to represent arbitrary boolean functions. The program to be analyzed is encoded

as a set of variables and operations on those variables, and this encoding is then used to

generate an OBDD model of the program. The property of interest is specified in the

temporal logic Computation Tree Logic (CTL), and a least fixed point algorithm is used

to build an OBDD that symbolically represents the set of states in which the property

holds and to check whether all reachable states in the program satisfy the property of

interest.

 Symbolic CTL model checking is known to be PSPACE-complete [McM93]. In the

worst case, the number of iterations required to reach a fixed point can be exponential in

the number of variables in the OBDDs. Burch et al [BCM+90] note that the size of the

OBDD is extremely sensitive to the variable ordering, so a poor choice for the variable

ordering can degrade the performance of the technique significantly.

2.1.3 Inequality Necessary Condition Analysis

 The Inequality Necessary Condition Analysis technique [ABC+91, CA95] avoids

representing the state space of the program altogether. The system is represented as a set

of communicating finite state automata. Transitions in a given automaton represent

internal actions of that automaton, initiation of a communication with another automaton

12

(an entry call or accept), or a communication error (such as hanging waiting for a

communication that never occurs). Flow equations are created for each state in the set of

automata to specify that the number of times a given state is entered is equal to the

number of times that state is exited. Communication equations are generated for each

communication channel (entry) in the system to specify constraints on well-formed

behavior. For example, these equations enforce the constraint that the number of times

the accepting automaton transitions on accepts of this entry is equal to the total number of

times the callers transition on entry calls for this entry. Restriction inequalities are

produced to disallow certain impossible behaviors. For example, a calling and accepting

automaton can not both hang waiting for a communication on the same entry, so

restriction inequalities are produced to prohibit this. Property inequalities are derived

from a specification of the negation of the property of interest. Integer linear

programming techniques are then used to check for an integer solution to the set of flow

equations, communication equations, restriction inequalities and property inequalities for

the system. If there is no integer solution, the necessary conditions for the negation of the

property are not met, and the property must hold.

 Integer linear programming is known to be NP-complete, and thus in the worst case

this technique can require exponential time to find a solution or determine that none

exists.

 The technique described in [ABC+91] can verify some interesting properties, such as

freedom from deadlock, but can not be used to check liveness properties or properties

involving the relative order of events in a system trace. This technique was subsequently

extended to handle both infinite traces and properties involving relative event orders

[Cor92]. Including information about certain types of infeasible synchronization events

and certain program variable values [Cor93] in the set of inequalities has been proposed

as one way to reduce the size of the set of inequalities.

2.1.4 Dataflow Analysis

13

 Dataflow analysis has been used extensively in compiler construction to recognize

opportunities for optimizations and has also been used for anomaly detection in

sequential and concurrent programs.

 Taylor and Osterweil [TO80] use dataflow analysis to determine the presence or

absence of errors specified as anomalous or illegal sequences of events in a concurrent

program. The analysis is performed on a Process Augmented Flowgraph (PAF), which is

constructed by connecting the flowgraphs of each process with special edges indicating

all synchronization constraints. Taylor and Osterweil specify algorithms for detecting a

variety of data flow and synchronization anomalies. Each algorithm is specified with a

definition of the gen and kill functions, with the algorithms using standard (or in some

cases slightly modified) AVAIL and LIVE procedures. A technique is also described for

parceling the analysis by creating summary information for each task, then substituting

this information at task schedule and wait nodes.

 Long and Clarke [LC91] refine the anomaly detection techniques of [TO80],

presenting a technique for dataflow analysis of rendezvous model concurrent programs to

detect anomalies specified as patterns of events. Tasks are broken into task fragments

and summary information is calculated on each fragment. The order of calculation is

given by a rendezvous graph, which is analogous to a call graph with task fragments

treated as procedures. Each entry call and accept is interpreted as a procedure call. For

each fragment, a pessimistic (minimal) gen and an optimistic (maximal) kill are

calculated for the input/output of the fragment, and the gen/kill information is used to

solve AVAIL and LIVE (or, more generally, forward and backward flow) problems.

Calculating the minimal gen and the maximal kill gives the "coarsest" gen/kill

information possible about the fragment, which is required because the calling context is

unknown at the time of gen/kill calculation. Called fragments are analyzed before their

callers so that summary information can be used during calculation of the summary

information for those fragments that invoke the given fragment; to improve accuracy at

14

this point, the technique accounts for formal parameters in entry calls (explicit procedure

calls) and local variables in the scope of accepts (implicit procedure calls). For the

technique described, two assumptions are made about the structure of the program being

analyzed; each entry has only one accept, and the rendezvous graph is acyclic. Entries

with multiple accept statements would require multiple versions of the summary

information, one for each accept statement. The calls each accept services could be

determined to refine the analysis, though this refinement is NP-complete. Alternatively,

as in the approach suggested by Long and Clarke, worst case analysis of the summary

information can be used, with potentially less accurate results. Assuming an acyclic

rendezvous graph seems reasonable, since a cycle in the graph (assuming no recursive

procedures) generally, though not always, indicates the potential for deadlock.

 Reif and Smolka [RS90] consider an asynchronous message passing (not

rendezvous) model of communication in concurrent programs they analyze. Initially,

static communication patterns are assumed; in other words, channel arguments to

message primitives are constants. The system state is described as the state of each

process in the program, the value of each variable, and the contents of each

communication channel. Communication channels can either be First In-First Out (FIFO)

or unordered. The technique is subsequently extended to dynamic communication, in

which channel arguments to message primitives are expressions.

 With their technique, each process in the program is modeled by a process flow

graph, which is a control flow graph in which only assignment, transmit, receive, and no-

op nodes are included. The program is modeled with an Event Spanning Graph (ESG).

An ESG is composed of the spanning tree for each process flow graph and a set of

message links, which are ordered pairs of transmit/receive statements specifying the same

communication channel. Restrictions on the ESG are that each node must be reachable in

its process flow graph and that at least one transmit node matches each receive node. The

existence of an ESG is a necessary condition for all nodes to be reachable; if an ESG does

15

not exist, at least one node in the set of process flow graph nodes is unreachable. Reif

and Smolka provide a linear algorithm for creating the ESG or recognizing that it does

not exist.

 Reif and Smolka use dataflow analysis to determine the possible values of program

expressions at each node in the ESG. To solve the dataflow problem on the ESG, input

and output predicates are computed for each node, and a message predicate for each

channel is computed to record all messages sent over that channel. Nodes in the ESG are

visited in topological order, because very often convergence is obtained quickly when

topological order is used. At convergence, an estimate of the input and output variable

values for each node in the ESG is available.

 The above dataflow analysis techniques can be applied to check a variety of

properties. In contrast, some dataflow analyses have focused on a single property of

interest, usually deadlock. Masticola and Ryder [MR91] present a polynomial time

algorithm for deadlock detection in Ada programs. The program is modeled as a sync

hypergraph, with nodes for rendezvous statements, control edges for control flow

between statements in each task, and synchronization edges for possible rendezvous

between tasks. A sync hyperedge, connecting an entry call node to the begin and end of

the accept body, is used to force the entry caller to wait until the accept body is executed.

A Can't Happen Together relation (CHT) is calculated on the sync hypergraph, and this

relation is used with the sync hypergraph to detect cycles in the graph corresponding to

potential deadlocks.

 The CHT relationship [MR93] identifies pairs of statements that cannot execute

concurrently. CHT can be calculated in polynomial time through iterative application of

a set of predefined refinements. Refinements are applied until a fixed point is reached,

meaning that no refinement can add a new node to the set of CHT nodes. The CHT set

generated by the technique is not guaranteed to be perfect (to contain all nodes that Can't

16

Happen Together). In an experiment on 127 programs, at least 95% of the CHT pairs

were found in 90 of the 115 programs that had CHT pairs.

 Rather than applying dataflow analysis for a single property, Dwyer and Clarke

[DC94] present a more general technique that uses polynomial time algorithms to check

whether or not a user-specified sequence of program events occurs on all paths or any

path in the concurrent program. The program is modeled as a Trace Flow Graph (TFG), a

conservative representation of program event traces. Nodes in a TFG represent control

states of individual tasks. There are three kinds of edges in a TFG: control flow edges,

which represent program events local to a task; communication edges, which are used to

capture the communication predecessor in the task with which a given task is engaging in

a communication; and May Immediately Precede (MIP) edges, which are used to

explicitly capture potential interleaving of asynchronously executing program events.

The property of interest is specified as a Quantified Regular Expression (QRE), which is

converted to a deterministic finite automaton called the Property Automaton (PA). To

solve the dataflow problem, states of the PA are propagated through the TFG using an

iterative worklist algorithm. The state propagation requires O(|PA|* |E|) time, where |PA|

is the number of states in the property automaton and |E| is the number of edges in the

TFG. |E| is O(|N|2), where |N| is the number of nodes in the TFG. To check whether the

property holds, the PA states that are possible at program termination are compared to

the accepting states of the PA. For an all-paths property, the possible PA states at

program termination must be a subset of the accepting states of the PA for the property to

hold. For an any-path problem, the intersection of the possible PA states at program

termination and the accepting state of the PA must be non-empty for the property to hold.

 A major strength of the approach described in [DC94] is the flexibility an analyst has

when applying accuracy-improving techniques to control the tradeoff between efficiency

of the analysis and accuracy of the analysis results. The TFG can be refined prior to

analysis, using program- and property-specific information, to improve analysis efficiency

17

with a potential gain in accuracy. Dwyer and Clarke describe two such refinements; one

refines the TFG by eliminating representation of events not contained in the PA and the

other removes certain MIP edges based on communication events in the TFG. In addition

to TFG refinements, feasibility constraints, based on the program and programming

language, can be used during the analysis to improve analysis accuracy. Feasibility

constraints encode necessary conditions for paths in the TFG to correspond to executable

paths in the program. The feasibility constraint described by Dwyer and Clarke enforces

a local event ordering constraint by including information about control flow orderings in

single tasks. Feasibility constraints are included in the analysis by forming the product

automaton of the PA and all feasibility constraints; the resulting automaton is used for the

state propagation described above.

 Empirical results are provided for three programs, where combinations of the

refinements and feasibility constraints described above are used to check a variety of

properties on the programs. For the programs and properties examined, the actual

performance is quadratic in the number of TFG nodes, rather than the cubic theoretical

upper bound.

 Naumovich et al [NCO96] conduct a case study using FLAVERS to verify protocol

behavioral requirement specifications for two communication protocols. A variety of

feasibility constraints are used to verify the specifications. Variable automata are used to

model selected variables, task automata are used to enforce the control flow in selected

processes, and customized feasibility constraints are also used. Properties are verified for

the three-way handshake connection establishment protocol and the alternating bit

transfer protocol. The case study also shows how assumptions about the operating

environment of the software can be incorporated into the analysis, using message losses

to illustrate the technique.

2.1.5 Compositional Analysis

18

 To control the exponential cost of most of the techniques described above, it may be

possible to analyze portions of the system being analyzed, then combine the results for

the global analysis [Tay83a, YY91, CA94, CK95]. Several approaches for performing

this compositional analysis are described below.

 In the compositional reachability analysis of Yeh and Young [YY91], reachability

graph representations for individual components are derived, then the representations are

hierarchically composed to generate a global reachability graph. Individual components

are described as process algebra expressions. The process algebra expressions can be

transformed into process graphs, which are essentially reachability graphs with additional

algebraic structure. The process graph for multiple components is generated using the

algebraic product operation on component process graphs. To reduce process graph sizes,

it may be possible to verify that the implementation satisfies a simpler specification (by

finding a bisimulation between them); the process graph for the implementation can then

be replaced with the process graph for the simulation. Reducing and composing process

graphs is repeated iteratively until the system process graph has been generated, at which

point the property of interest can be checked. Yeh and Young note that applicability of

these techniques depends on clean modular decomposition of the system and the ability to

describe complicated implementations with simpler specifications of their behavior.

 Noting that proving equivalence between two processes (implementation and

specification, for instance) is required for compositional analysis and may require

comparison of potentially large reachability graphs, Corbett and Avrunin [CA94] present

a method for equivalence checking of two processes without enumeration of the states of

the processes. The component processes of each process are used to generate a set of

necessary conditions for the existence of a system trace showing that the equivalence does

not hold. The necessary conditions are expressed in the form of a set of integer linear

equations. Integer linear programming techniques are then used to search for a solution

to the set of equations. If no solution exists, the necessary conditions can not be satisfied,

19

and the processes are equivalent. The analysis is conservative, so it may be unable to

prove equivalence of two equivalent processes, but will never prove equivalence of two

inequivalent processes. The technique is only applicable to deterministic, divergence-free

processes. A process is deterministic if the set of actions in which a process has engaged

completely determines the set of actions in which it can engage in the future; a process is

divergence free if it can not engage in an unbounded number of internal actions, thereby

ignoring external requests indefinitely. The technique has been successfully applied to

several large problems, though in the worst case solving the set of integer linear equations

can require exponential time.

2.1.6 Combinations of Techniques

 Since each of the techniques described above exhibits both strengths and

weaknesses, a natural step is to consider how multiple techniques can be combined to

take advantage of the strengths and avoid the weaknesses of each.

 Young and Taylor [YT88] propose combining reachability analysis and symbolic

execution to improve the accuracy of reachability analysis for less cost than full symbolic

execution. Conceptually, the reachability graph provides path selection for the symbolic

execution, while the symbolic execution provides pruning of the reachability graph

through elimination of infeasible paths. When the techniques are used in isolation, every

path in a symbolic execution of the program corresponds to a path in the reachability

graph. The reverse is not true, since the reachability graph can contain infeasible paths,

which are not included in symbolic execution paths.

 The techniques can be combined in both a serial and an interleaved manner. In a

serial application, reachability analysis is performed to mark which reachable states are

"interesting". Symbolic execution is then performed, where any "interesting" states

encountered are also marked "feasible". The analysis results only include "interesting,

feasible" states. We note that the entire reachable state space is always generated in a

serial application. In an interleaved application, reachability analysis is performed to

20

mark "promising" states until some criteria is met; for instance, until a state of interest is

discovered or a certain number of new states have been generated. Symbolic execution is

then run through the "promising" states from the reachability analysis. The two

techniques are applied in an alternating fashion until the analysis is complete. In the

interleaved application, the symbolic execution provides pruning of infeasible paths as

the reachable state space is generated; the reachable state space generated is more

accurate than in general reachability analysis, and is also potentially smaller if the

program contains one or more infeasible paths.

 Several methods are proposed to allow scaling of this combined technique. To help

control the combinatorial explosion in the size of the reachable state space, biconnected

components can be analyzed separately with the results then combined into a global

result, weak monitors can be used to parcel components of the system into modules to be

analyzed separately, and heuristic search can be used to guide partial exploration of the

state space. Use of heuristic search invalidates the guarantee that the combined technique

will detect all possible errors (i.e., the technique is no longer conservative).

 Cheung and Kramer [CK94] suggest combining reachability analysis with dataflow

analysis. These techniques are considered to be complimentary because reachability

analysis provides an exhaustive analysis of the program states but carries an exponential

complexity, while dataflow analysis provides a tractable, but more approximate, analysis

of the program. Dataflow analysis is applied in the early stages of development, when the

design is unstable and an approximate technique is sufficient. Reachability analysis is

applied in later stages, when stronger assurances of correct program behavior are

required. We note that the combination of techniques as described is not as tightly

coupled as the combined technique described in [YT88]. There is no information sharing

between the two techniques, so neither technique is used to improve the accuracy or

reduce the cost of the other. More correctly, the combined technique proposed in [CK94]

21

consists of selecting the appropriate analysis technique based on the development phase,

rather than a synergistic combination of the two techniques.

22

2.2 Empirical Work in Software Engineering

 While some empirical work has been and is being performed in software

engineering, the volume, and often the quality, of such work is lacking compared to other

scientific disciplines. To demonstrate the lack of empirical work in computer science,

Tichy et al [TLP+95] classify 400 research articles based on the amount of empirical

work contained in each. The computer science articles are extracted from refereed

journals, the 1993 SIGPLAN Conference on Programming Language Design and

Implementation (refereed conference), and a random sample of 50 articles drawn using

the INSPEC data base. The journals of Neural Computation (NC) and Optical

Engineering (OE) are used for comparison. Of the papers in software engineering

presenting new methods that would require experimental validation, over 50% contained

no experimental validation whatsoever. In contrast, of the similar papers in NC and OE,

only 15% and 12%, respectively, lacked experimental validation. Conversely, the

fraction of these papers in NC and OE that devoted 20% or more space to experimental

validation was almost 70%, while only 20% of the corresponding software engineering

papers devoted as much space to validation. These results seem to demonstrate a lack of

empirical work in software engineering, though this has been disputed. One factor that

may affect these results is that many software engineering techniques deal with human

behavior (i.e., code understanding, effectiveness of design methodologies, etc.), while the

experiments presented in NC and OE probably did not use human subjects. Osterweil

and Clarke call for more empirical work in software engineering, both in the form of

small, repeatable experiments and larger case studies on complex systems [OC92].

 Fenton et al [FPG94] note that many research findings present new methods with a

theoretical analysis of the benefits, but no empirical evaluation to quantify the benefit.

They also point out that a large number of the experiments that are performed are poorly

designed. In addition, most experiments are conducted on "toy" programs -- programs

that are so small they can not be considered to be a representative sample. For example,

23

Vessey and Weber consider 9 experiments on structured programming [VW84]; four of

the experiments consider programs of 10 to 25 lines of code, three consider programs of

26 to 57 lines of code, one considers programs of 46 to 85 lines of code, and one

considers programs of 25 to 225 lines of code. Fenton et al also indicate that many

experiments use statistical methods incorrectly.

 The problems discussed above are often caused by the difficulties facing an

experimenter in software engineering. Basili et al [BSH86] indicate the range of these

problems. There are wide variations in the environments in which software engineering

techniques are applied; desired costs, quality goals, personnel experience, the problem

domain, and other constraints can all affect the applicability of a certain technique.

Designing an experiment to account for these many variations is difficult, but is necessary

if the experimental results are to be generalized. Individual performance can also vary

widely, so the actual individuals used in an experiment are a critical factor in the

generalizability of the experimental results. Precisely stating the goals of an experiment

is a non-trivial task, particularly when addressing areas that do not have commonly

accepted definitions, like software quality. Experimental results must be carefully

quantified, based on the sample used and how well it represents the set of environments

to which the results are to be generalized.

 Basili and Weiss [BW84] point out additional difficulties with conducting software

engineering experiments. These problems include the fact that there is often a large

number of potentially confounding factors that can affect the results of the experiment

and the prohibitive expense of attempting controlled studies in an industrial environment

with medium or large scale systems. They also note that timely data collection and

validation is important. Unmeasured data cannot be accurately recaptured, and without

validation, as much as 50% of the data that is collected may be erroneous.

 Pfleeger 94 [Pfl94] also points out that exerting control over the independent

variables (i.e., those that can affect the truth of the hypothesis) to do a formal experiment

24

can be impossible or prohibitively expensive. In addition, experimenters often must

measure the factor of interest (quality, for example) indirectly; selecting the appropriate

indirect measures (number of defects, for instance) can be particularly difficult.

 Despite the pitfalls facing an experimenter in software engineering, a number of

software engineering experiments have been conducted. We briefly survey a sample of

experiments from a number of areas of software engineering and discuss the experiments

related to testing and analysis in greater detail.

2.2.1 Flowcharting Experiments

 A flowchart can be used to express a high-level definition of a solution to some

problem. A flowchart consists of boxes corresponding to operations and alternatives in

the program, with edges connecting the boxes to reflect potential flow of control from one

box to the next. Flowcharts have often been used as graphical representations of

computer programs.

 Shneiderman et al [SMM+77] conducted a series of five experiments to determine

the utility of detailed flowcharts in program composition, comprehension, debugging, and

modification. Shneiderman et al conclude from the results of these five experiments that

flowcharts do not contribute to program composition, comprehension, debugging, and

modification. Scanlan [Sca89] investigated a related set of hypotheses, namely that

structured flowcharts take less time than pseudocode to comprehend, produce fewer

errors in understanding, give students more confidence in their understanding, reduce

time spent answering questions, and reduce the number of times students look at an

algorithm. On the basis of these experiments, Scanlan concludes that flowcharts do have

a positive, statistically significant effect.

2.2.2 Metrics Experiments

 Program metrics have been proposed as a means of measuring various characteristics

of programs, such as program quality. Example metrics include Halstead's software

science metrics [Hal77] and McCabe's cylomatic complexity [McC76]. The experiments

25

surveyed in this section examine the value of a variety of metrics as predictors of certain

program characteristics or examine the relationships among metrics.

 Li and Cheung [LC87] classified 31 different metrics and examined the relationships

among them. While some metric pairs have low correlations, the more conventional

metrics are highly correlated, with Lines Of Code being as useful as other, more

complicated, metrics for measuring program complexity. Compton and Withrow

[CW90] explored how well the presence of predelivery defects predict postdelivery

defects and how well program complexity measures predict defect density. The empirical

data revealed that packages with predelivery defects detected had a postdelivery defect

density (defects/SLOC) six times as large as those with no predelivery defects detected.

Porter and Selby [PS90] conducted an experiment using metrics to classify programs in a

classification tree according to some user-specified property (fault-prone, change-prone,

etc.). The classification tree can be used to identify components (in other systems) that

share the same property. This latter work is noteworthy because of the realistic programs

used, the thorough description of experimental design and results, and the careful use of

statistical analysis on the experimental data.

2.2.3 Reliability Experiments

 Software reliability models typically use data about the past performance of a

program to estimate the future reliability of the program [Lit91]. For example, Shooman

[Sho75] developed software reliability models using data from three operating systems

and calculated the model constants using data from 17 additional programs. Iannino et al

[IMO+84] propose a set of criteria for comparing the various software reliability models

that have been developed. Musa and Okumoto [MO84] used regression analysis on 15

sets of failure data to perform a model-independent comparison of the use of execution

time and calendar time in reliability models. They discovered that models using

execution time will almost always be superior to those using calendar time. The

26

experiments surveyed in this section examine n-version programming (a reliability

improvement technique) and analyze reliability data from large operational systems.

 Avizienis and Kelly [AK84] conducted an experiment using n-version programming,

in which multiple versions of code meeting a given specification are independently

developed to improve the reliability of the system. Because the effectiveness of n-version

programming is based on the independence of the multiple versions, Knight and Leveson

[KL86] conducted an experiment to test this hypothesis. They conclude that dependent

errors do exist, and these must be considered when calculating the effects of n-version

programming. Data from another experiment [Dun86] also indicated that the

independence assumption requires further investigation. To help determine the cause of

operating system failures, Iyer and Rossetti [IR84] analyzed reliability data from a large

operational system. They discovered that the level of interactive processing on the

system had a larger effect on operating system failures than CPU execution rate.

2.2.4 Inspection Experiments

 The use of software inspections has been proposed as a cost-effective technique for

discovering errors in specifications and code. The experiments surveyed here examine

the feasibility and effectiveness of inspections.

 Porter and Votta [PV94] conducted an experiment using different defect detection

methods for inspections of software requirements. They show that a Scenario-based

method has a higher defect detection rate than other methods. Schneider et al [SMT92]

also examined defect detection methods for requirements and found that replicating the

inspection process (N-fold inspections) yielded increased fault detection. Russell

[Rus91] relates experiences conducting inspections in a large-scale, industrial setting, and

Porter et al [PST+95] provide a status report of an ongoing experiment using inspections

in a large scale software development.

27

2.2.5 Test Data Selection Experiments

 Numerous techniques have been proposed for selection of test data and various

criteria have been introduced for measuring how well the generated test data "covers" the

program. A number of experiments have been conducted to determine how the data

selection techniques and coverage criteria perform and how they compare in practice.

 Duran and Ntafos [DN84] experimentally examined the effectiveness of random test

data generation. The results of the random testing were compared to those based on a

form of partition testing called path testing. They concluded that random testing is

slightly weaker than path testing. Duran and Ntafos also determined how well randomly

generated test data covered each of five programs, using a variety of coverage criteria.

On average, random testing yielded a high level of segment and branch coverage, but less

coverage for the other criteria. Unfortunately, neither experiment quantified the statistical

significance of the results.

 Basili and Selby [BS87] examined the effectiveness of code reading, functional

testing (equivalence partitioning and boundary value analysis) and 100% statement

coverage in terms of fault detection effectiveness, fault detection cost, and classes of

faults detected. Basili and Selby found that the number of faults observed depends on the

program type, but make no statements about which techniques seem better suited for

which program types. Their data analysis uses statistically valid techniques, and Basili

and Selby provide a thorough summary of the results.

 DeMillo and Offutt [DO88] examined the effectiveness of automatic test data

generation to support mutation testing. Adequacy of automatically generated test cases

was compared to adequacy of test cases selected using a number of coverage criteria,

including statement coverage, branch coverage, and others. The adequacies were

compared for a single, 27 SLOC program. DeMillo and Offutt found that the

automatically generated test cases yielded high adequacy values, but lower precision

28

values. Overall, the experiment is not very satisfying, given the small sample size and a

number of flaws in the experimental design.

 Frankl and Weiss [FW93] compared the fault exposing capabilities of all-edges

(branch testing) and all-uses (an instance of dataflow testing) coverage criteria, using test

data selected randomly for comparison. The experiment provides an overall comparison

of the criteria, a comparison for a fixed test set size, and the relationship between

coverage and effectiveness for each criteria. Frankl and Weiss found that the all-uses

criteria was more effective than the all-edges criteria in 5 of the 9 subjects at the 0.01

level. Finally, Frankl and Weiss point out that effectiveness had a clear dependence on

percent coverage for only 3 of the 9 subjects. Their experiment design and data analysis

is noteworthy because it includes avoidance of ceiling effects, effective statistical

hypothesis testing, proper use of logistic regression, and recognition of potential bias in

the experiment.

 Hutchins et al [HFG+94] experimentally compared the effectiveness of all-edges, all-

DUs and random criteria. The data implies that there are no discernible syntactic or

semantic characteristics of the faults that correlate with high fault detection by any of the

methods. It was also determined that high coverage (even 100%) is not a good indicator

of testing adequacy (i.e., fault detection). The experiment was designed to avoid floor

and ceiling effects. Hutchins et al censored a large part of their data without justification,

however, and the effects of the censoring are not quantified or discussed. Also, a second

order curve was fitted to several plots, though Hutchins et al do not justify why a second

order curve is the appropriate choice.

2.2.6 Static Concurrency Analysis Experiments

 Several experiments have been conducted using a subset of the static concurrency

analysis techniques described in Section 2.1. Because most of the techniques are

exponential in the worst case, experimentation is needed to distinguish average costs

from worst case cost for the techniques. In addition, empirical work will support

29

performance quantification of the techniques, both in terms of optimizations within a

given technique and through comparisons among the techniques.

 Duri et al [DBD+93] experimented with various optimization techniques for Petri

net-based reachability analysis. Net reduction was used to reduce the Petri net model of

the program, while stubborn sets, partial orders (sleep sets), and net symmetry were used

to guide the reachability graph construction. Experiments were conducted on programs

of 3 to 100 dining philosophers, 3 to 10 customers for the 1-pump gas station problem, 3

to 5 customers for the 2-pump gas station problem, and readers/writers programs from 2

readers/1 writer to 10 readers/10 writers. The Border Defense System (BDS) program, an

11,000 line, 15 task program was included as well. In all, 32 programs of various sizes,

with and without deadlock, were included in the experiment. For each program, Duri et

al checked for deadlock without using any optimizations, using each optimization

separately, using net reduction with each of the remaining three optimizations, and using

net reduction with stubborn sets and net symmetry.

 Data analysis consisted of comparisons of reachability graph sizes and generation

times for the various optimization combinations. This sort of comparison can give

informal evidence of certain relationships between the optimization techniques, but no

statistical analysis is provided to quantify the significance of the results. In addition,

there was no apparent attempt to formally characterize the growth rate for each of the

optimization combinations. Because the experiment is conducted on academic programs

(with the exception of BDS), the results of the experiment may not be generalizable to

"typical" concurrent programs. This experiment provides insight into applicability of the

combinations of optimization techniques, but the experimental design and informal data

analysis prevent Duri et al from making general comments about the performance of

these techniques.

 Corbett [Cor94] provides an experimental evaluation of three static concurrency

analysis techniques: reachability analysis is performed using SPIN (general reachability)

30

and SPIN+PO (general reachability + partial orders); symbolic model checking is

performed using SMV; and INCA is used for inequality necessary condition analysis.

The property checked by all of the tools is freedom from deadlock. The experiment is

conducted on 7 scalable programs and one "real" program. Each scalable program was

analyzed with 4 different sizes in an arithmetic progression; the communication skeleton

of BDS (the "real" program) was analyzed as is. Corbett notes that conducting a fair

evaluation of these methods is extremely difficult. To help guarantee fairness, Finite

State Automata were built for the tasks in each program (using the INCA front end) and

these FSAs were automatically converted to the input language of each tool. The FSAs

provide a canonical model of the concurrent programs, ensuring all tools are solving the

same problem. Corbett also points out a potential bias against SMV because the FSAs

generated may present variables in an arbitrary order, and BDD size is sensitive to the

variable ordering. Time to check for deadlock was measured for each of the tools on the

programs in the sample.

 Analysis of the data provides insight into the applicability of each tool. Using

SPIN+PO generally allowed analysis of larger programs than SPIN, but the state space

continued to grow quickly. SPIN and SPIN+PO performed best on programs with a small

number of tasks and performed better than the other methods on the most data-intensive

program. SMV exhibited subexponential growth in most programs, worked significantly

faster than reachability on programs with many tasks, and provided comparable

performance to the other methods on the gas station examples, despite potential biases

from variable orderings. INCA excelled on programs containing many small tasks,

though adding a single large task seriously degraded performance.

31

CHAPTER 3

EXPERIMENTAL METHODOLOGY

 This chapter describes the experimental methodology we have developed to provide

a basis for valid comparisons of the performance, in terms of both analysis time and

accuracy, of various static concurrency analysis tools. We begin with a description of

concurrent programs and some useful representations of those programs, then describe

the tools used in the experiment. We close with a presentation of our comparison

methodology.

3.1 Concurrent Programs and Program Representations

 Because Ada is one of the few commonly used languages supporting concurrency,

we use Ada programs as the canonical model of concurrent programs to be analyzed. We

briefly describe here the principal concurrency constructs in Ada and several sources of

nondeterminism in concurrent Ada programs. The inputs to the tools included in the

experiment are based on program representations derived from the Ada programs. We

describe these program representations, discuss their relationship to the canonical Ada

program model, and describe how these representations can be converted to the input for

each tool.

 In Ada programs, potentially concurrent activities occur in tasks1. Ada tasks

typically communicate with each other using a rendezvous. In a rendezvous, the calling

task makes an entry call on a specific entry in the called task; the calling task then

suspends execution until the called task terminates the rendezvous. The called task

executes any statements contained in the accept for the entry, then terminates the

rendezvous and, like the calling task, continues execution. Data can also be passed

1Ada also supports concurrent procedures, but for simplicity we only consider the tasking mechanism in our
discussion.

32

between the two tasks at the start and termination of the rendezvous through parameters.

The rendezvous thus acts as a synchronization and communication point between two

tasks.

 Nondeterminism is introduced into an Ada program's execution in several ways.

When a calling task makes an entry call on a given entry, the calling task is placed on a

task queue. When the called task reaches the corresponding entry, the run-time system

selects the calling task for the rendezvous from the front of the queue. Since we cannot in

general know the order of this task queue, this is essentially equivalent to the run-time

system nondeterministically selecting a calling task for the rendezvous. Another source

of nondeterminism is the select statement, which consists of one or more alternatives,

each potentially including a guard that controls selection of that alternative. When a

select statement is executed, the guard of each alternative is evaluated, with unguarded

alternatives treated as though their guards are true. If more than one guard is true, one of

the alternatives with a true guard and a waiting entry call is nondeterministically selected

for execution. If there are no waiting entry calls on the alternatives with true guards, the

task stalls until an entry call is made on one of these alternatives. If none of the guards

are true, the task containing the select statement is terminated with a program error.

3.1.1 Example Program

 To solidify our description of the program representations and the various

concurrency analysis tools, we consider the readers/writers problem, an example that is

commonly studied in the concurrency analysis literature. The readers/writers problem

includes a set of readers and a set of writers that may be simultaneously accessing the

same document, with the restriction that when a writer is accessing the document no

readers or other writers can be accessing the document at that time. Our solution for the

readers/writers problem uses a task for each reader, a task for each writer, and a single

task to control access to the document. An example program showing one reader and one

33

writer can be found in Figure 3.1. To increase the size of the example program, we add

additional readers and writers with the same structure as reader_1 and writer_1 below.

task body reader_1 is task body control is task body writer_1 is
begin
 loop
 control.start_read;
 control.stop_read;
 end loop;
end reader_1;

begin
 loop
 control.start_write;
 control.stop_write;
 end loop;
end writer_1;

 Readers : Natural range 1 .. 1 := 0;
 Writer : Boolean := false;
begin
 loop
 select
 when (not Writer) =>
 accept start_read;
 Readers := Readers + 1;
 or
 accept stop_read;
 Readers := Readers - 1;
 or when (not Writer) and
 (Readers = 0) =>
 accept start_write;
 Writer := true;
 or
 accept stop_write;
 Writer := false;
 end select;
 end loop;
end control;

Figure 3.1. Ada Program for 1 Reader/1 Writer

 We have selected three properties to check for the readers/writers program. The first

of these is deadlock, which occurs when the program reaches a non-terminal state in

which none of the tasks can continue executing. The second property can be phrased as

"Can a reader ever read before some writer has written?" Our rationale for selecting this

property is to ensure no reader can read an empty document. Because of symmetry, we

do not need to check if each reader can read before some writer writes. All readers

behave in the same way as far as the control task is concerned, so checking a single reader

is sufficient; if the property is not possible for a specific reader, it is not possible for any

of them. In our experiment, we check this property for reader_1. For notational

convenience, we call this property no_r1w. The third property can be phrased as "Can

two writers ever be writing at the same time?" We check this property to ensure that

writers have mutually exclusive access to the document. Again by symmetry, checking

two specific writers is sufficient; if these two writers can not write concurrently, no two

writers can. In our experiment, we check this property for writer_1 and writer_2. For

notational convenience, we call this property no_w1w2. Another property one would

expect to check for this program is whether a reader and a writer can be accessing the

34

document at the same time. This property is similar to the third property above, so it is

not described further.

3.1.2 Program Representations

 All the tools in our experiment analyze the same Ada program. None of the tools

accept an Ada program directly as input, however, so we convert the canonical Ada

program to each tool's input representation. We build a set of Control Flow Graphs

(CFGs) from the Ada source code, creating a CFG for each task in the program. Several

of the tools use CFGs directly as the program description. Several other tools use

program descriptions based on Finite State Automata (FSAs). For those tools, we convert

each CFG to a corresponding FSA and then use the set of FSAs to generate a tool's input.

 Since the tools use two different program representations for the program being

analyzed, we try to ensure that each tool is analyzing the same program so that our

comparison will be valid. The use of an Ada program as the canonical representation,

with conversion to other representations as necessary, is intended to provide a common

program for analysis. We use a straight-forward algorithmic translation from the Ada

representation to each tool's required input representation. We examine the benefits and

drawbacks of this approach further in Section 3.3.

 In general, we would like any static analysis method to be conservative; for a given

property, the analysis must not overlook cases where the property fails to hold. To ensure

conservativeness, most methods use program representations that overestimate the

behavior of the program being analyzed. This overestimate can lead to inaccuracy in the

analysis results. If a tool reports that a property does not hold, when in fact the cases

when it does not hold do not correspond to actual program behaviors, then this is called a

spurious result. For example, if the program representation contains paths that can never

be executed in the program (commonly called infeasible paths), the tool may report that

the property fails to hold when it only fails on infeasible paths. The CFGs generated from

our canonical Ada program can contain infeasible paths because some information, such

35

as each variable's values, is not included in the CFG. Since the inputs to SPIN,

SPIN+PO, TRACC, SMV, and FLAVERS are based on these CFGs, the possibility exists

that each of these tools will yield spurious results. Similarly, in INCA an integer solution

to the set of inequalities could correspond to an infeasible trace (path) in the program. It

is important, therefore, that we consider the effects of our program representations on the

accuracy of the analysis.

 As part of our experiment, we will improve the accuracy of the analysis results by

improving the accuracy of the program representations. One way to do this is by

modeling the values of user-selected variables in the representations. To be conservative,

our representations initially include all possible values of the variables in the program. It

may be possible, however, to statically determine the actual values of the variables and to

include this information in the representations. When we include the actual values of a

variable in a representation, we say we have modeled that variable.

 For example, the Writer variable in the control task of the readers/writers program

ensures that only a single writer can be writing at a time. The Readers variable ensures

that there is never a situation in which the reader is reading at the same time the writer is

writing. By modeling the values of one or both of these variables, we can generate

representations that more accurately represents the control task behavior.

3.1.2.1 Control Flow Graphs

 One way to represent the behavior of a program is with a control flow graph [Hec77].

A control flow graph (CFG) is similar to a flow chart, in that it represents all paths

through a procedure or task. A control flow graph consists of a finite set of nodes, N =

{ ni | i = 1, ..., j} , where j is the total number of nodes in the CFG, and a finite set of

directed edges, E = { ei | i = 1, ..., k} , where k is the total number of edges in the CFG. In

our representation, the set of nodes includes a single start node and a single end node for

the CFG. In addition, there is a single node in the CFG for each of the following: the

declaration of the task and any local variables in the task (this node is called a

36

Decl_Region node), the begin statement, the end statement, and each executable

statement. The start node in a CFG is always the Decl_Region node. There is an edge

from ni to nj if the statement corresponding to nj is potentially executable immediately

after execution of the statement corresponding to ni. There is also an edge from the start

node to the node generated for the begin statement, an edge from the node generated for

the begin statement to the node generated for the first executable statement in the task,

and an edge from each of the exit nodes in the task to the node generated for the end

statement. Each CFG node is annotated with the statement associated with that node.

 Each entry call in the task is represented by a single node. Each accept statement in

the task is represented by an Accept node followed by zero or more nodes representing

the executable statements in the accept body, followed by an Accept_End node. Accept

statements with no executable statements in the body are the only instance in which we

add two CFG nodes for a single statement; therefore, the number of nodes in a CFG is

never greater than twice the number of statements in the corresponding task. For the

CFG for the control task in Figure 3.1, see Figure 3.2. In the figure, for the convenience

of the reader we annotate each node in the CFG with the kind of statement (i.e., loop,

assign, etc.) associated with it and each guard edge with the predicate for that guard.

Decl_Region

Begin

Accept (stop_read)

Select

Accept (stop_write)

Accept_End (stop_write)Accept_End (stop_read)

Loop

Accept (start_read)

Accept_End (start_read)

End

Accept (start_write)

Accept_End (start_write)

Assign (Writer := true)Assign (Writer := false)Assign (Readers :=Assign (Readers :=

(not Writer)
truetrue

(not Writer) and
(Readers = 0)

Readers + 1) Readers - 1)

37

Figure 3.2. Example Control Flow Graph

 The current form of the CFGs we use do not provide the capability to include

variable values within the CFG representation. While it would be possible to revise the

CFG representation to include this information, it is not necessary, since the two tools

that use CFGs as their inputs provide methods for modeling variables. We therefore do

not model variables in the CFGs; instead, we use the methods provided by these two tools

to model the variables.

3.1.2.2 Finite State Automata

 As an alternative to the CFG representation, Finite State Automata (FSAs) can be

used to represent the behavior of the program. For each task in the program, we convert

the CFG for the task into an FSA for the task. An FSA consists of a finite set of states, S

= { si | i = 1, ..., m} , where m is the total number of states in the FSA, and a finite set of

state transitions, T = { ti | i = 1, ..., n} , where n is the total number of transitions in the

FSA. The set of states includes a single start state and one or more final states. Each

state in the FSA corresponds to one or more statements in a sequential region of code in

the task and may also encode the values of variables that affect the synchronization

behavior of the task. Each state transition in the FSA corresponds to a rendezvous point

in the task or to an internal action of the task. Thus, there is a state transition ti from sj

(the source) to sk (the target) if the communication event (entry call or accept)

represented by ti causes the task represented by the automaton to transition from the

region represented by sj to the region represented by sk, or if the internal action

represented by ti occurs in the task. We note that, if multiple tasks can rendezvous with

the task at a rendezvous point, the FSA for the task contains a transition for each of those

rendezvous.

 The conversion from a set of CFGs to a set of FSAs starts with a translation of each

CFG to the S-Expression Design Language (SEDL), one of several input languages

accepted by the INCA toolset (discussed further in Section 3.3). The SEDL for a task is

38

similar to the original Ada for the task converted to Lisp syntax. We then provide the

SEDL for the set of tasks comprising the program to INCA, which generates the FSAs

described above.

 A textual form of the FSA for the control task in Figure 3.1 is given in Figure 3.3.

Because both the Writer and Readers variables are included in the guards of the select

statement in the control task in this example, they can both affect the synchronization

behavior of the task. The states in the FSA therefore include encodings of all possible

values of those variables. State 2 encodes (Readers = 1, Writer = false), State 3 encodes

(Readers = 0, Writer = false), State 4 encodes (Readers = 0, Writer = true), and State 5

encodes (Readers = 1, Writer = true).

 State 1:
 T1 : internal ---> State 2
 T2 : internal ---> State 3
 T3 : internal ---> State 4
 T4 : internal ---> State 5
 State 2:
 T5 : accept (writer_1, stop_write) ---> State 2
 T6 : accept (writer_1, stop_write) ---> State 5
 T7 : accept (reader_1, stop_read) ---> State 2
 T8 : accept (reader_1, stop_read) ---> State 3
 T9 : accept (reader_1, start_read) ---> State 2
 T10 : accept (reader_1, start_read) ---> State 3
 State 3:
 T11 : accept (writer_1, stop_write) ---> State 3
 T12 : accept (writer_1, stop_write) ---> State 4
 T13 : accept (writer_1, start_write) ---> State 3
 T14 : accept (writer_1, start_write) ---> State 4
 T15 : accept (reader_1, stop_read) ---> State 3
 T16 : accept (reader_1, stop_read) ---> State 2
 T17 : accept (reader_1, start_read) ---> State 3
 T18 : accept (reader_1, start_read) ---> State 2
 State 4:
 T19 : accept (writer_1, stop_write) ---> State 4
 T20 : accept (writer_1, stop_write) ---> State 3
 T21 : accept (reader_1, stop_read) ---> State 4
 T22 : accept (reader_1, stop_read) ---> State 5
 State 5:
 T23 : accept (writer_1, stop_write) ---> State 5
 T24 : accept (writer_1, stop_write) ---> State 2
 T25 : accept (reader_1, stop_read) ---> State 5
 T26 : accept (reader_1, stop_read) ---> State 4

Figure 3.3. FSA for Control Task, No Variables Modeled

39

 The transitions from State 1 represent a nondeterministic choice of the initial values

of the Writer and Readers variables. Since we initially do not model these variables, the

FSA must consider all possible combinations of their values. Transitions that result in

changes to a variable lead to states encoding both possible values of that variable2. For

example, transitions from State 2 (where Writer = false) on the stop_write entry lead to

State 2 (Writer = false) and State 5 (Writer = true). This is because the Writer variable

is changed as a result of the stop_write interaction, but without modeling the variable the

FSA does not reflect the actual new variable value.

 Because CFGs typically overestimate task behavior, using the FSAs generated from

those CFGs may lead to spurious results. We can improve the accuracy of the analysis

results by modeling variables in the FSAs. We do this by considering the values of user-

selected variables during the conversion from the CFG to the SEDL. Information about

variable values can be extracted from the abstract syntax tree annotation of each CFG

node. The FSA that includes modeling of the Writer variable is shown in Figure 3.4.

 By modeling the value of the Writer variable, we have pruned transitions 3, 4, 6, 12,

13, 19, and 23 from the original FSA. As an example of this pruning, consider transitions

3 and 4 in the original FSA. These transitions assume the initial value of the Writer

variable can be true; when we model the Writer variable (and its initial value of false),

these transitions are no longer possible. The other transitions are pruned in a similar

manner.

 We note that, when one or more variables are considered in the conversion from a

CFG to an FSA, the two representations are no longer equivalent. The FSA contains

additional information about task behavior and therefore represents a more accurate

representation of the task. To make a fair comparison between the analysis results of a

2In general, variables can have more than two values. In these cases, the transitions that result in changes to
the variable lead to states encoding all possible values of that variable.

40

tool using the more accurate FSA representation and those from a tool using CFGs, we

must ensure that the tool using the CFGs also accounts for the same variables included in

the FSA.

 State 1:
 T1 : internal ---> State 2
 T2 : internal ---> State 3
 State 2:
 T5 : accept (writer_1, stop_write) ---> State 2
 T7 : accept (reader_1, stop_read) ---> State 2
 T8 : accept (reader_1, stop_read) ---> State 3
 T9 : accept (reader_1, start_read) ---> State 2
 T10 : accept (reader_1, start_read) ---> State 3
 State 3:
 T11 : accept (writer_1, stop_write) ---> State 3
 T14 : accept (writer_1, start_write) ---> State 4
 T15 : accept (reader_1, stop_read) ---> State 3
 T16 : accept (reader_1, stop_read) ---> State 2
 T17 : accept (reader_1, start_read) ---> State 3
 T18 : accept (reader_1, start_read) ---> State 2
 State 4:
 T20 : accept (writer_1, stop_write) ---> State 3
 T21 : accept (reader_1, stop_read) ---> State 4
 T22 : accept (reader_1, stop_read) ---> State 5
 State 5:
 T24 : accept (writer_1, stop_write) ---> State 2
 T25 : accept (reader_1, stop_read) ---> State 5
 T26 : accept (reader_1, stop_read) ---> State 4

Figure 3.4. FSA for Control Task, Writer Variable Modeled

 In the examples that follow, our descriptions assume use of the controller FSA

shown in Figure 3.4. However, to help quantify the effect of modeling variables, in our

experiment all analyses were performed with three different versions of the controller

FSA - the version in Figure 3.3, the version in Figure 3.4, and a version that models both

the Writer and Readers variables.

3.2 Concurrency Analysis Tools

 In our experiment, we consider several concurrency analysis methods and the tools

implementing those methods. Specifically, we consider the reachability analysis tools

SPIN, SPIN plus Partial Orders (SPIN+PO), and TRACC, the symbolic model checking

41

tool SMV, the integer programming tool INCA, and the data flow analysis tool

FLAVERS.

 3.2.1 Reachability Analysis

 Reachability analysis enumerates the reachable states of the program being analyzed

and checks the property of interest on the reachable state space. State properties can be

checked by considering each state in isolation. Freedom from deadlock and writers 1 and

2 writing concurrently are examples of state properties. Path properties require

consideration of paths through the reachable state space. Reader 1 reading before some

writer writes is an example of a path property.

3.2.1.1 SPIN

 The Simple Promela INterpreter (SPIN) [Hol91] performs reachability analysis on a

program represented as a set of finite state automata. The program is described in the

PROMELA language [Hol91], a language that was developed for specification of

network protocols. SPIN automatically checks for deadlock. Other properties to be

checked must be specified using never claims or assertions. In a never claim, the

property is represented as an FSA that should never reach an accept state. An assertion is

an expression that evaluates to true or false and is specified at user-selected points in a

PROMELA program.

 Given the program and property specifications, SPIN builds a transition matrix with

an entry for each statement in the program. Each matrix entry consists of a specification

of the conditions under which the statement can be executed and a specification of the

effect of executing the statement. Starting from the initial state of the program, the tool

generates the reachable state space with a depth-first traversal algorithm, using the

transition matrix to generate next states from any given state. If at any time during the

analysis a potential deadlock state is found, the FSA for a never claim reaches an accept

state, or an assertion evaluates to false, the tool reports the error and terminates.

42

 To analyze the readers/writers problem with SPIN, we need to translate the Ada

program to a PROMELA program. A specification of a program in PROMELA consists

of a declaration of the communication channels and global variables, a specification of a

process type for each task in the program, and an initialization function that specifies the

initial state of the program. In PROMELA it is possible to simulate a simple Ada

rendezvous by declaring a communication channel with 0 message capacity. Such a

channel forces a synchronization between two processes participating in a rendezvous,

reflecting the semantics of the Ada rendezvous. For the readers/writers problem, we

specify a single channel for each entry in the corresponding Ada program. Multiple

processes can send to each channel but only a single process (in this case, the control

process) can receive from each channel. This is consistent with the Ada rules for task

entries, where multiple tasks can make entry calls on a given entry but only one task can

accept the entry call. In PROMELA, the syntax <channel-name>!<var-name> specifies a

process trying to send variable var-name on the channel channel-name and <channel-

name>?<var-name> specifies a process trying to receive variable var-name from the

channel channel-name.

 The PROMELA specification of a process is based on a finite state automaton, with

transitions between the states of the automaton specified as gotos. An if statement in

PROMELA consists of one or more alternatives with guards and an optional unguarded

else clause, and closely follows the semantics of the Ada select statement. When an if

statement is executed, the guard of each alternative is evaluated. If more than one guard

is true, one of the alternatives with a true guard is nondeterministically selected for

execution. If none of the guards are true and an else clause exists, the else clause is

executed. Unlike Ada, if none of the guards are true and there is no else clause, the

process containing the if statement hangs until one or more of the alternative guards

becomes true.

43

 To generate the PROMELA program for our readers/writers problem, we convert

each of the tasks in our canonical Ada representation into a CFG and then into an FSA as

described in Section 3.1. We then translate the set of FSAs into a PROMELA program,

where the FSA for the control task is as shown in Figure 3.4. The resulting PROMELA

program can be found in Figure 3.5.

mtype = { synch } ;

chan control_start__read = [0] of { byte } ;
chan control_stop__read = [0] of { byte } ;
chan control_start__write = [0] of { byte } ;
chan control_stop__write = [0] of { byte } ;

proctype writer__1()
{
state_1:
 if
 :: control_start__write!synch -> goto state_2
 fi;
state_2:
 if
 :: control_stop__write!synch -> goto state_1
 fi
}

proctype reader__1()
{
state_1:
 if
 :: control_start__read!synch -> goto state_2
 fi;
state_2:
 if
 :: control_stop__read!synch -> goto state_1
 fi
}

proctype control()
{
state_1:
 if
 :: skip -> goto state_3
 :: skip -> goto state_2
 fi;
state_2:
 if
 :: control_stop__write?synch -> goto state_2
 :: control_stop__read?synch -> goto state_3
 :: control_stop__read?synch -> goto state_2

44

 :: control_start__read?synch -> goto state_3
 :: control_start__read?synch -> goto state_2
 fi;

Figure 3.5. PROMELA Program for Readers/Writers Example
Continued, next page

45

Figure 3.5, continued

state_3:
 if
 :: control_stop__write?synch -> goto state_3
 :: control_start__write?synch -> goto state_4
 :: control_stop__read?synch -> goto state_3
 :: control_stop__read?synch -> goto state_2
 :: control_start__read?synch -> goto state_3
 :: control_start__read?synch -> goto state_2
 fi;
state_4:
 if
 :: control_stop__write?synch -> goto state_3
 :: control_stop__read?synch -> goto state_4
 :: control_stop__read?synch -> goto state_5
 fi;
state_5:
 if
 :: control_stop__write?synch -> goto state_2
 :: control_stop__read?synch -> goto state_4
 :: control_stop__read?synch -> goto state_5
 fi
}

init {
 atomic { run writer__1();
 run reader__1();
 run control()
 }
}

 We note that this approach for generating a PROMELA input closely follows that

described by Corbett [Cor94], with the difference that our technique uses an Ada program

rather than a set of FSAs as the canonical model of the program. In addition, we use a

separate message channel for each entry in the program, while Corbett uses a separate

message channel for each pair of communicating processes for each entry. Our approach

is conceptually closer to the semantics of the underlying Ada program. Despite these

differences, our PROMELA input is very similar to that of Corbett, and both approaches

generate essentially the same state space.

 We note that specifying each process as a distinct FSA is probably not standard

PROMELA "programming style". We recognize that this may introduce some bias, since

SPIN could potentially take advantage of multiple instantiations of process types to

46

provide more efficient state space generation. Our approach would preclude the use of

such specialized techniques. Our approach, however, greatly facilitates the process of

translating from the canonical Ada representation to PROMELA, providing the benefits

discussed in Section 3.3. In addition, Corbett [Cor94] discovered that converting Ada

programs to the standard PROMELA programming style was difficult to do correctly,

even for experienced PROMELA users, and did not result in a noticeable difference in

performance compared to specifying each process as a distinct FSA.

 After we have the specification of the program in PROMELA, we need to represent

the three properties we are interested in checking. The first property, freedom from

deadlock, is automatically checked by SPIN, so no further specification of this property is

required. The second and third properties can be checked using either never claims or

assertions.

 Example never claims for no_r1w and no_w1w2 are found in Figure 3.6. Never

claims are typically formulated in terms of the states of one or more processes, so

PROMELA provides syntax to check the state of a given process. For example, the string

reader__1[reader_1_pid]@state_2 checks whether the reader_1 process is in state 2.

PROMELA also provides a skip statement, which is simply a null statement.

 The FSA for the never claim for no_r1w stays in the initial state until either some

writer writes or reader_1 reads (and goes to s2). We keep track of whether or not a writer

has written with an additional variable, called wrote, in the PROMELA input. The wrote

variable is initialized to false, and set to true whenever a writer writes. If some writer

writes, the FSA can never exit the second do loop, and the FSA for the never claim can

never reach the accept state. If reader_1 reads, the FSA for the never claim goes to the

accept state (and never leaves it), and SPIN reports the violation of the never claim. The

FSA for the never claim for no_w1w2 stays in the initial state until both writer_1 and

writer_2 are at s2; in other words, both writers are writing. If this occurs, the FSA for the

47

never claim goes to the accept state (and never leaves it), and SPIN reports the violation

of the never claim.

no_r1w
never {
 do
 :: (wrote == true) -> break -- if any writer writes, exit loop
 :: reader__1[reader_1_pid]@state_2 -> goto accept -- if reader_1 reads, go to accept state
 :: else -> skip -- if neither of above, loop back
 od;
 do
 :: skip -- infinite loop; property is not possible
 od;
accept: -- accept state of FSA
 do
 :: skip -- infinite loop; reader_1 reading before
 od -- some writer writes has been found
}

no_w1w2
never {
 do
 :: writer__1[writer_1_pid]@state_2 & -- if writer_1 and writer_2 are both writing,
 writer__2[writer_2_pid]@state_2 -> goto accept -- go to accept state
 :: else -> skip -- otherwise, loop back
 od;
accept: -- accept state of FSA
 do
 :: skip -- infinite loop; writer_1 and writer_2 both
 od -- writing has been found
}

Figure 3.6. Never Claims for no_r1w and no_w1w2

 We have discovered several occasions on which we have found it necessary to add

additional variables to the PROMELA input to check properties of interest. In many

cases, the properties are specified in terms of events (i.e., rendezvous) rather than states

of the processes. While it is sometimes possible to infer the event occurrences from the

sequence of states one or more of the processes pass through, this can be difficult for non-

trivial programs. We have found it effective to use variables (such as the wrote variable

above) to keep track of the occurrence of events of interest. For instance, when a writer

writes, we set the wrote variable to true as the writer transitions from one state to the

next. We have also found it necessary to add additional variables when one task needs to

48

know the state of another task in the system, which often occurs when we use assertions.

Because tasks are prohibited from querying the status of other tasks in the system, we

have found it to be effective to add additional variables to keep track of this status

information.

 To use assertions to check if reader_1 reads before some writer writes, we modify the

PROMELA input as shown in Figure 3.7. Basically, we set the wrote variable when any

writer writes and assert that the variable has been set when reader_1 reads.

reader_1 control

 :: control_start_read!synch -> :: control_start__write?synch -> atomic { wrote =
true;
 atomic { assert (wrote == true); goto state_9 }
 goto state_2 } . . .
 . . .

Figure 3.7. Assertions for no_r1w

 The assertions to check for writer_1 and writer_2 concurrently writing are somewhat

more complicated. When writer_1 starts to write, the assertion that writer_2 is not

writing is checked and the flag indicating that writer_1 is writing is set. Before writer_1

stops writing, the flag indicating that writer_1 is writing is cleared. We note that the flag

can not be cleared after writer_1 stops writing, because SPIN then finds a violation of the

assertion by having writer_2 start to write before the flag is cleared. Similar assertions

are embedded in the writer_2 process. The required changes are shown in Figure 3.8.

 We specify properties using both never claims and assertions to ensure that our

choice of property specification technique does not bias our results against SPIN. Since

SPIN+PO (discussed below) requires the use of assertions, we use assertions in SPIN to

allow comparison of the results. It may be the case that using never claims yields better

performance by SPIN, however, so we specify properties using never claims as well.

 Modeling of the Writer variable is controlled by the FSAs generated for the program.

When the FSAs are built without considering the Writer variable, the generated

PROMELA code does not incorporate information about the Writer variable in the

49

analysis. When the FSAs are built taking the Writer variable into account, the generated

PROMELA code incorporates this information as well.

writer_1 writer_2
proctype writer_1() proctype writer_2()

{ {
state_1: state_1:
 if if
 :: control_start_write!synch -> :: control_start_write!synch ->
 atomic { writer_1_writing = true; atomic { writer_2_writing = true;
 assert (writer_2_writing == false); assert (writer_1_writing == false);
 goto state_2 } goto state_2 }
 fi; fi;
state_2: state_2:
 writer_1_writing = false; writer_2_writing = false;
 if if
 :: control_stop_write!synch -> goto state_1 :: control_stop_write!synch -> goto
state_1
 fi fi
} }

Figure 3.8. Assertions for the no_w1w2

 Converting the canonical Ada representation of the readers/writers problem into a

PROMELA program was straightforward, and most of this process is automated. To

provide a fair comparison, we specified the second and third properties using both never

claims and assertions. Specifying the properties as never claims was relatively straight-

forward, but required an understanding of the internal operation of the tool to achieve the

proper behavior. Specifically, we needed to realize that "execution" of the program and

never claim are interleaved during the analysis and that evaluation of a guard is distinct

from the execution of the guarded statement. This problem might be avoided by

specifying the property in Linear Temporal Logic (LTL). Specifying the property in LTL

is provided as a SPIN option, but we have yet to investigate it. Using assertions was

straightforward for the second property, but the third property required some non-intuitive

manipulations to specify the property correctly. Again, specifying this properly required

the recognition that evaluation of a guard is distinct from the execution of the guarded

statement.

50

3.2.1.2 SPIN + Partial Orders

 The partial orders approach of Godefroid and Wolper (described in Section 2.1.1.2)

has been implemented as an addition to SPIN; we refer to the resulting tool as SPIN+PO.

The SPIN+PO tool takes input in the form of PROMELA, so the SPIN+PO input for the

readers/writers program is as shown in Figure 3.5. Like SPIN, the SPIN+PO tool checks

for deadlock automatically. The current version of SPIN+PO does not support the use of

never claims for the specification of the property of interest, so the other two properties

are specified as assertions embedded in the PROMELA input as shown in Figures 3.7 and

3.8. SPIN+PO checks those assertions, just as SPIN does during state space generation,

and reports a violation and terminates if an assertion evaluates to false.

 We note that other Partial Order additions to SPIN have been implemented, and

using these additions could yield different empirical results. At the time we conducted

this experiment, these additions did not support the use of rendezvous channels, while the

SPIN+PO tool allows using these channels.

3.2.1.3 TRACC

 To combat the state space explosion, Godefroid and Wolper try to reduce the size of

the reachable state space as it is generated. An alternative approach is to reduce the size

of the model from which the reachable state space is generated. This is the approach

taken in the TPN-based Reachability Analysis for Concurrent Code (TRACC) tool.

 The TRACC tool accepts the set of CFGs generated from the canonical Ada program

as the program specification. A property of interest is not explicitly specified; rather, a

specialized program must be written to check the property. For state properties (freedom

from deadlock, no writer 1 and writer 2 writing concurrently), the property checking

program examines each state in the reachability graph. For path properties (no reader 1

before any writer), the property checking program solves a dataflow problem on the

reachability graph to check the property.

51

 The TRACC tool uses a variety of representations of a concurrent program to capture

information about the program. The CFG for each task is first converted into a Task

Interaction Graph (TIG) [LC89], where each node represents a sequential region of

control flow and each edge represents a possible interaction (entry calls/accepts) between

that task and other tasks in the program. This is basically an optimization that greatly

reduces the number of nodes in the flow graph. These TIGs are then combined into a

single Petri net, which is used to generate a reachability graph. Preliminary experimental

results [DCN94] show that using TIGs rather than CFGs as the basis for the Petri net can

greatly reduce the size of the resulting reachability graph. The algorithm to check for

deadlock on the reachability graph generated by the TRACC tool is given in [DCN94].

To check for writer 1 and writer 2 writing concurrently, each node in the reachability

graph is examined. If a node is found where both writer 1 and writer 2 are writing, the

property checking program reports the violation and terminates. To check for reader 1

reading before some writer writes, the property checking program solves a dataflow

problem on the reachability graph. Each time some writer writes, a write flag is set to

true. After the dataflow problem reaches a fixed point, each state in the reachability

graph is examined to see if reader 1 is reading when the write flag is false. If so, the

property checking program reports the violation and terminates.

 Because the TRACC tool uses a set of CFGs as input, the accuracy improvements we

make to FSAs have no affect on TRACC analysis accuracy. The TRACC tool includes

several ways to improve analysis accuracy [CC96], including the capability to model

some types of variables as variable subnets. We use a variable subnet to model the Writer

variable in our experiment.

 While the generation of the reachability graph is fully automated in the TRACC tool,

the requirement to write a special program to check each property is inconvenient. We

would not expect a typical analyst to undertake this effort. In addition, the TRACC tool

can only be applied to very small versions of the readers/writers program.

52

3.2.2 Symbolic Model Checking

 Symbolic Model Checking was described in Section 2.1.2. In our experiment, we

used an implementation of a symbolic model checker called the Symbolic Model Verifier

(SMV) [McM93]. Although SMV was originally designed as a hardware verification

tool, it can also be used for analysis of concurrent software. A program specification is

provided to the tool, which encodes the possible variable values for each variable and

generates an OBDD for the program from those variables. The property of interest is

specified in CTL and a least fixed point algorithm is used to check the property as

described above. If the property is ever false, SMV reports the violation and terminates.

 The usual method for specifying a program for SMV involves specifying a set of

processes and a next state function for each process, but a capability for explicitly

specifying the system transitions is also provided by SMV. We would have liked to

specify the SMV input with the usual specification style, but were unable to impose

rendezvous semantics with this style. This style changes a single state variable at a time

for a state transition, but we need to change two state variables concurrently to represent a

rendezvous. Using the style that explicitly specifies the transition relation also facilitates

our translation from the canonical Ada program into the SMV input. For these reasons

we use the latter specification style. Using this style, the input to SMV consists of four

parts. The VAR declaration defines a variable to represent each process, with the number

of variable values given by the number of states for the corresponding process. The INIT

declaration sets the initial values (states) for the process variables. The TRANS

declaration fully specifies the transition relation for the system, which determines which

variable values change on each state transition of the program. For example, rendezvous

semantics are explicitly incorporated in the transition relation by changing the two

variables associated with the calling and accepting tasks on each transition. The SPEC

declaration is a specification of a property in the temporal logic CTL.

53

 To generate the SMV input for our readers/writers problem, we convert each of the

tasks in our canonical Ada representation into a CFG and then convert each of the CFGs

into an FSA as described in Section 2. We then automatically translate the set of FSAs

into the SMV input, where the FSAs for the reader_1 and writer_1 tasks are as shown in

Figure 3.3 and the FSA for the control task is as shown in Figure 3.4. A variable for each

task is defined in the VAR declaration and initialized in the INIT declaration as described

above. The TRANS declaration is generated by matching entry calls and accepts on the

transitions in the set of FSAs. For each matching entry call and accept, a transition that

changes the values of the variables representing the calling and accepting tasks is added

to the transition relation. The resulting SMV input is shown in Figure 3.9. Our

specification of the SMV input closely follows that of Corbett [Cor94]. We note that this

may bias our results against SMV somewhat, since techniques that organize the OBDDs

to efficiently represent the multiple, duplicate, processes can not be used.

MODULE main
VAR
 writer__1 : { s1, s2 } ;
 reader__1 : { s1, s2 } ;
 control : { s1, s2, s3, s4, s5 } ;
INIT
 ((writer__1 = s1) & (reader__1 = s1) & (control = s1))
TRANS
 (((control = s1) & (next(control) = s3) & (next(writer__1) = writer__1) &
 (next(reader__1) = reader__1))
 |
 ((control = s1) & (next(control) = s2) & (next(writer__1) = writer__1) &
 (next(reader__1) = reader__1))
 |
 ((control = s2) & (next(control) = s2) & (writer__1 = s2) & (next(writer__1) = s1) &
 (next(reader__1) = reader__1))
 |
 ((control = s2) & (next(control) = s3) & (reader__1 = s2) & (next(reader__1) = s1) &
 (next(writer__1) = writer__1))
 |
 ((control = s2) & (next(control) = s2) & (reader__1 = s2) & (next(reader__1) = s1) &
 (next(writer__1) = writer__1))
 |

Figure 3.9. Example SMV Input
Continued, next page

54

Figure 3.9, continued

 ((control = s2) & (next(control) = s3) & (reader__1 = s1) & (next(reader__1) = s2) &
 (next(writer__1) = writer__1))
 |
 ((control = s2) & (next(control) = s2) & (reader__1 = s1) & (next(reader__1) = s2) &
 (next(writer__1) = writer__1))
 |
 ((control = s3) & (next(control) = s3) & (writer__1 = s2) & (next(writer__1) = s1) &
 (next(reader__1) = reader__1))
 |
 ((control = s3) & (next(control) = s4) & (writer__1 = s1) & (next(writer__1) = s2) &
 (next(reader__1) = reader__1))
 |
 ((control = s3) & (next(control) = s3) & (reader__1 = s2) & (next(reader__1) = s1) &
 (next(writer__1) = writer__1))
 |
 ((control = s3) & (next(control) = s2) & (reader__1 = s2) & (next(reader__1) = s1) &
 (next(writer__1) = writer__1))
 |
 ((control = s3) & (next(control) = s3) & (reader__1 = s1) & (next(reader__1) = s2) &
 (next(writer__1) = writer__1))
 |
 ((control = s3) & (next(control) = s2) & (reader__1 = s1) & (next(reader__1) = s2) &
 (next(writer__1) = writer__1))
 |
 ((control = s4) & (next(control) = s3) & (writer__1 = s2) & (next(writer__1) = s1) &
 (next(reader__1) = reader__1))
 |
 ((control = s4) & (next(control) = s4) & (reader__1 = s2) & (next(reader__1) = s1) &
 (next(writer__1) = writer__1))
 |
 ((control = s4) & (next(control) = s5) & (reader__1 = s2) & (next(reader__1) = s1) &
 (next(writer__1) = writer__1))
 |
 ((control = s5) & (next(control) = s2) & (writer__1 = s2) & (next(writer__1) = s1) &
 (next(reader__1) = reader__1))
 |
 ((control = s5) & (next(control) = s4) & (reader__1 = s2) & (next(reader__1) = s1) &
 (next(writer__1) = writer__1))
 |
 ((control = s5) & (next(control) = s5) & (reader__1 = s2) & (next(reader__1) = s1) &
 (next(writer__1) = writer__1)))
 SPEC
 AG (EX 1)

 The SPEC declaration in Figure 3.9 specifies a check for deadlock. The specification

states Always, Globally, there exists an enabled state transition; in other words, the

system does not deadlock.

55

 To check no_r1w, we need to include additional variables in the system to keep track

of when reader_1 has read and when any writer has written. Each transition in the

transition relation must also be revised to modify these variables as appropriate.

Transitions in which reader_1 moves from s1 to s2 change the reader_1_read variable to

true, and transitions in which any writer moves from s1 to s2 change the

any_writer_wrote variable to true. The SMV specification for no_r1w is shown in

Figure 3.10. The specification states Always, Globally, if reader_1 read then

any_writer_wrote. If the system can reach an execution state in which reader_1 has read

but no writers have written yet, the implication is false and SMV reports the violation and

terminates.

 While we found it intuitive to check no_r1w by including variables that keep track of

the occurrence of events of interest, it is also possible in SMV to avoid including these

additional variables by specifying the property as a more complicated CTL formula.

Because adding variables could increase the size of the state space, thereby adversely

affecting SMV's analysis times, we have also checked no_r1w using the specification

shown in Figure 3.11. The specification states that reader_1 will not enter state 2 (will

not read) until writer_1 has gone to state 2 (has written).

 SPEC
 AG (reader_1_read -> any_writer_wrote)

Figure 3.10. SMV Specification for no_r1w

 SPEC
 A [!(reader__1 = s2) U (writer__1 = s2)]

Figure 3.11. Alternate SMV Specification for no_r1w

 To check no_w1w2, we use the VAR, INIT, and TRANS declarations from Figure

3.9 to describe the program. No additional variables are needed, since the property can be

checked by examining the values of the writer_1 and writer_2 variables. The SMV

specification can be found in Figure 3.12. The specification states Always, Globally, if

writer_1 is in state 2 (i.e., is writing) then writer_2 is not in state 2 (i.e., is not writing)

56

and that if writer_2 is in state 2 then writer_1 is not in state 2. If the system can reach an

execution state in which both writer_1 and writer_2 are writing, both implications are

false and SMV reports the violation and terminates.

 As for the PROMELA input, modeling of the Writer variable is controlled by the

FSAs used to generate the SMV input.

 SPEC
 AG (((writer_1 = s2) -> !(writer_2 = s2)) &
 ((writer_2 = s2) -> !(writer_1 = s2)))

Figure 3.12. SMV Specification for no_w1w2

 Specifying the program in the VAR, INIT, and TRANS declarations was

straightforward and mostly automated. Generating the SPEC declarations for our three

properties of interest was also not difficult, but modifying the entire transition relation for

the second property was tedious, though we quickly developed a tool to automate this as

well.

3.2.3 Inequality Necessary Condition Analysis

 The Inequality Necessary Condition Analysis technique (described in Section 2.1.3)

has been implemented in a tool called INCA. The INCA tool accepts a specification of

the program in an Ada-like language or in the SEDL discussed in Section 3.1.2.2.

Properties of interest are formulated as INCA queries, which specify the properties as

sequences of event symbols.

 INCA converts the program specification into a set of communicating finite state

automata for the tasks in the program. Communication equations and restriction

inequalities are generated based on Ada rendezvous semantics. The INCA query is

converted into a set of property inequalities. A commercial integer linear programming

package (CPLEX) is then used to search for a solution to the set of flow equations,

communication equations, restriction inequalities and property inequalities for the system.

 A program specification is provided to the INCA tool in an Ada-like language or in

SEDL. We use a set of (mostly) automated tools to convert the canonical Ada program

57

into SEDL. An INCA query consists of a definition of the query name, whether or not

fairness constraints should be applied, and the query itself, which is written in terms of a

set of sequences of intervals. None of our properties require fairness constraints, so we

simply specify "nofair" in the queries below. The query is expressed as an ω-star-less

expression [CA95], which is similar to a regular expression. The query can contain

several sequences of intervals, though for our properties a single sequence of intervals is

sufficient.

 The query to check for deadlock can be found in Figure 3.13. For this query, we

consider a single interval starting at the beginning of the program (":initial t") and enforce

the constraint that progress in the program is always possible (":progress t").

 (defquery "deadlock" "nofair"
 (omega-star-less (sequence
 (interval :initial t
 :progress t
 :costs "connect-arc-unit"))))

Figure 3.13. INCA Query for Deadlock

 For more complicated properties, such as no_r1w and no_w1w2, we can specify

more complicated constraints on intervals in the program execution. We specify a set of

start (with ":initial") and end (with ":ends-with") points for each interval in the execution,

as well as the events that are forbidden within each interval (with ":forbid"). We use

"rend <caller>;<acceptor>.<entry>" to check for the occurrence of a specific rendezvous

in an interval. When a rendezvous is included in the ":ends-with" portion of the query,

the rendezvous is allowed but neither of the tasks participating in the rendezvous is

allowed to progress further. We use "call(<caller>;<acceptor>.<entry>)" if we want to

check the occurrence of a rendezvous but also need to let the accepting task progress past

the rendezvous point. Queries for no_r1w and no_w1w2 are shown in Figure 3.14.

 Recall that an INCA query specifies the negation of the property we would like to

prove. For no_r1w, to show that reader_1 can not read before some writer has written,

we specify the necessary conditions for reader_1 to read before any writer has written. To

58

do so, we specify an interval that begins at the initial state of the program and ends when

reader_1 reads. Within this interval, none of the writers are allowed to write. If such an

interval exists, it is possible for reader_1 to read before some writer has written. For

no_w1w2, we specify an interval starting at the initial state of the program, ending after

both writer_1 and writer_2 have started to write an arbitrary number of times (without the

":open t" flag, the property would be checked for the first time both writers start to write).

Because neither writer_1 nor writer_2 is allowed to progress past their last calls on

start_write, if such an interval exists, it is possible for writer_1 and writer_2 to be writing

concurrently.

no_r1w
(defquery "no_reader_1_before_some_write" "nofair"
 (omega-star-less (sequence
 (interval :initial t :ends-with '((rend "reader_1;control.start_read"))
 :forbid '((rend "writer_1;control.start_write")
 (rend "writer_2;control.start_write"))))))

no_w1w2
(defquery "no_w1w2" "nofair"
 (omega-star-less (sequence
 (interval :initial t
 :open t
 :ends-with '("call(writer_1;control.start_write)"
 "call(writer_2;control.start_write)")))))

Figure 3.14. INCA Queries for no_r1w and no_w1w2

 As discussed above, control over the variables that are modeled in the analysis is

provided in the conversion from CFGs to SEDL. The conversion from the canonical Ada

program to SEDL is almost fully automated and thus was straightforward, but proper

specification of the queries required several discussions with the INCA developers.

3.2.4 Data Flow Analysis

 The Dwyer and Clarke technique for dataflow analysis (discussed in Section 2.1.4)

has been implemented in a tool called FLow Analysis VERifier for Software

(FLAVERS). The FLAVERS tool accepts a set of CFGs as the specification of the

program to be analyzed. The property of interest is specified as a Quantified Regular

59

Expression (QRE), which contains three parts. The first part of a QRE is the alphabet of

events that are included in the property. The second part of a QRE is a quantifier, which

specifies whether the tool should check if the property holds on all paths or whether the

tool should look for the existence of a path on which the property holds. The final part of

a QRE is a specification of a sequence of events as a regular expression.

 The concurrent program is modeled as a Trace Flow Graph (TFG), which is a set of

CFGs with additional edges to capture program events that may immediately precede the

program event at each node. The QRE is then converted to a deterministic finite

automaton called the Property Automaton (PA). To solve the dataflow problem, states of

the PA are propagated through the TFG using an iterative worklist algorithm. To check

whether the property holds, the PA states that are possible at program termination are

compared to the accepting states of the PA.

 Checking for deadlock using FLAVERS is not currently supported. The QREs for

no_r1w and no_w1w2 are shown in Figure 3.15. For no_r1w, the events of interest are

when reader_1 reads and when any writer writes. The tool should check for the existence

of a path in which reader_1 reads before some writer writes, so the quantifier is "exist".

The sequence of events in the property is specified (informally) as: "Any event except the

events of interest occurs 0 or more times, then reader 1 reads, then any event, including

the events of interest, occurs 0 or more times". For no_w1w2 the events of interest are

when writer_1 and writer_2 start and stop writing. The tool should check that the

specified sequence occurs on all paths. The sequence is (informally) specified as "Any

event but writer_1 or writer_2 starting to write occurs 0 or more times, then either

writer_1 starts to write and stops writing without an intervening writer_2 start write, or

writer_2 starts to write and stops writing without an intervening writer_1 start write, then

anything but writer_1 or writer_2 starting to write occurs 0 or more times".

 Because the FLAVERS tool uses a set of CFGs as input, the accuracy improvements

we make to FSAs are not incorporated into the FLAVERS analysis. The FLAVERS tool

60

includes a variety of refinement techniques that can be used to improve analysis accuracy,

including the capability to model some types of variables as variable automata. When we

use the variable automata technique to model the Writer variable, FLAVERS uses a

representation that incorporates the same information as the FSAs used for the

PROMELA, SMV, and INCA inputs and the variable subnet for TRACC.

no_r1w
{ reader_1_read, any_writer_wrote} exist

[-any_writer_wrote, reader_1_read]*;
reader_1_read;
[any_writer_wrote, reader_1_read]*

no_w1w2
{ writer_1_start_write, writer_1_stop_write,
 writer_2_start_write, writer_2_stop_write} all

 [-writer_1_start_write, writer_2_start_write]*;
(((writer_1_start_write;
 [-writer_2_start_write,writer_1_stop_write]*;
 writer_1_stop_write)
 |
 (writer_2_start_write;
 [-writer_1_start_write,writer_2_stop_write]*;
 writer_2_stop_write));
 [-writer_1_start_write,writer_2_start_write]*)*

Figure 3.15. QREs for no_r1w and no_w1w2

 The conversion from the canonical Ada program to FLAVERS input is fully

automated. Specifying properties as QREs seemed natural, but it was sometimes difficult

to write the QRE correctly.

3.3 Comparison Methodology

 To ensure our comparisons are as unbiased as possible, we must consider many

separate issues. We must try to make sure each tool is analyzing the same program and

property of interest. We must follow a methodology that tries not to bias our results

against one or more of the tools. We must carefully select which programs and properties

to include in the experiment. Finally, we must decide what measurements to compare

after we have collected our experimental data.

61

3.3.1 Program Representations

 To try to ensure the analysis tools are evaluating the same program, we used an Ada

program as the canonical model of the program and translated that program into each

tool's input language. For all the tools, the Ada program was first converted to a set of

CFGs, which were then converted, when necessary, to the input language of each of the

tools. The FLAVERS tool uses CFGs as input directly, so no further conversion was

required for FLAVERS. For SPIN, SPIN+PO, and SMV, we converted the set of CFGs

to a set of Finite State Automata, which we then used to generate the PROMELA and

SMV inputs. For INCA, the SEDL generated when converting from CFGs to FSAs

served as the input language.

 There is some question, however, about whether it is even possible to have each of

the tools analyze the exact same program. For example, PROMELA semantics are not

exactly the same as Ada semantics, so specifying a PROMELA program to behave

exactly as the corresponding Ada program would behave may not be possible. Similarly,

standard SMV input specifications cannot represent rendezvous semantics, so we have

used an alternate SMV specification form that also does not exactly match Ada

semantics. We have applied extensive effort to try to ensure the tools are analyzing the

same program, but because of differing tool semantics we may not have been completely

successful. While we believe our approach to this problem is reasonable, there may be

other approaches that are more successful at providing equivalent programs to each of the

tools.

 We note that the CFGs that are automatically generated from the canonical Ada

program are a general abstraction of program control flow and were not explicitly

developed to support one or more of the analysis tools evaluated. Similarly, the FSAs

that are created to represent the program are a general abstraction and were not tuned to

one or more of the analysis tools. While we know that the CFGs and FSAs are valid

62

representations of the program, using these representations could introduce bias in the

experiment in some unknown manner.

 As discussed in Section 3.1.2.2, when we convert a CFG to an FSA we decide which

variables to consider during the conversion. To quantify the effect of modeling variables,

we generated the inputs for all the tools with three different variable combinations - not

modeling any variables, modeling the Writer variable only, and modeling both the Writer

and Readers variables. For SPIN, SPIN+PO, SMV, and INCA, we controlled which

variables were modeled during the conversion from CFGs to SEDL, and for FLAVERS

we included a variable automaton in the analysis.

 By modeling different combinations of the variables rather than simply modeling

both variables, we may be introducing bias against some of the tools. For example, SPIN,

SPIN+PO, SMV, and INCA all run faster when both variables are modeled. However, in

general we believe an analyst will add accuracy to the program representations

incrementally, rather than adding all variable information initially. For a program that

contains a large number of variables, trying to model all those variables might make

building the program representations or performing the analysis on those representations

intractable. We therefore believe an analyst would start without modeling variables, and

would incrementally model additional variables until the analysis results meet their

accuracy requirements. The first two properties do not require any variable modeling for

the tools to produce accurate results and, for the third property, the tools can produce

accurate results when we model only the Writer variable. Thus for these properties, we

believe an analyst would be unlikely to run the analysis modeling the Readers variable if

they were using the incremental approach described above. Of course, checking some

properties accurately, such as whether or not a reader and a writer can be accessing the

document concurrently, requires modeling both variables, in which case we would expect

an analyst to add both variables to the analysis.

63

 Other empirical work [Cor94] has assumed that all or almost all variables in the

program will be modeled. This approach seems to reflect a different analysis process, in

which an analyst would start modeling information about all variables in the program, or

at least all variables that affect inter-task communications. If the analyst discovered that

this variable modeling led to intractable analyses, they could then incrementally remove

variable modeling until the analysis was tractable. While this approach is often feasible

for the example programs from the concurrency analysis literature, it is not clear to us that

this assumption will hold for real programs that contain hundreds or thousands of

variables, particularly since determining which variables affect inter-task communication

is a non-trivial task. Since we plan to use the methodology presented here to build

predictive models for the performance of the analysis tools on larger, more realistic

programs, we work from the assumption that we believe is more likely to scale up. Of

course, only extensive practical experience applying the analysis tools to realistic

programs will indicate which assumption holds in general.

3.3.2 Property Representations

 Guaranteeing that the tools are evaluating the same property on a given program is

also difficult. Because each tool uses a different specification technique, and often a

different logic, automatic translation between the property representations is not

straightforward. FLAVERS can, however, generate an FSA from the QRE for a property

of interest. When the QRE specifies an exists property this FSA can then be used to

create a never claim for SPIN or an INCA query, and when the QRE specifies an all paths

property this FSA can be used to generate the SMV SPEC declaration. These translations

must be carefully performed, since QREs are in terms of events while SPIN never claims

and SMV SPECs are in terms of process states. The SPIN assertions and TRACC

property checking program were hand crafted for each of the three properties. In these

cases, the only assurance of comparable properties of interest is a careful, manual

64

translation from the property to the appropriate SPIN assertions and TRACC property

checker.

65

3.3.3 Checking for Bias

 We must also try to ensure that our methodology avoids bias against one or more of

the tools as much as possible.

 For example, the sizes of the OBDDs used by SMV are sensitive to the order of the

variables in the SMV input. To account for this, we checked the tool's performance using

the variable ordering that results from our automatic translation and also ran the tool with

the REORDER option, which applies a heuristic reordering algorithm before generating

the OBDDs for the system. Similarly, SMV tends to be more efficient when processes

are used rather than an explicit specification of the global transition relation. Modeling

the semantics of the Ada rendezvous using the semantics of the SMV processes is not

possible, however, and would have precluded our using the FSAs generated from our

canonical CFGs for the SMV input. We set a higher priority on the requirement that the

programs be the same for each tool, at the risk of a potential degradation in tool

efficiency. We also noted in Section 3.2.2 that we found adding additional variables to

the SMV input and embedding operations on those variables in the system transitions to

be an intuitive approach to checking properties. Since this could degrade SMV's

performance by growing the state space, we also specified the second property using an

alternate CTL specification that did not require additional variables. We note that, in

general, these alternate CTL specifications seem more complicated (i.e., contain more

terms and temporal logic operators) than those using additional variables, but this is not

always the case.

 We noted in Section 3.2.1.1 that SPIN can use either never claims or assertions to

check properties. We chose to use assertions to allow comparison with SPIN+PO, but

this could introduce a bias against SPIN if the use of never claims is more efficient. We

therefore ran SPIN with both the never claims and the assertions and compared the

execution times.

66

 In our implementation of the readers/writers problem, none of the accept statements

have bodies. This does not affect the tools using inputs based on FSAs because the

accept bodies are collapsed into single FSA states. Similarly, it does not affect

FLAVERS, since this tool optimizes the accept bodies away (for the readers/writers

problem). It is not clear, however, whether this affects the performance of INCA, since

the INCA input used in [Cor94] for the readers/writers problem used accept bodies.

Therefore, for INCA we ran the analysis cases on our version of the program with no

accept bodies and on a version of the program containing accept bodies. We also note

that most examples of INCA input that we have seen represent sets of identical tasks as

arrays of task types, while the Ada program we use as a canonical model contains each

reader and writer task specified uniquely. Since it is unclear how this affects INCA

performance, we ran the analysis cases on INCA with a conversion from the canonical

Ada program and also with arrays of reader and writer tasks. Finally, for some of the

properties described in Chapter 4, we found it intuitive to specify the INCA query using

two intervals, which can cause a significant growth in the size of the inequality system.

In these cases, we also specified the queries using single intervals and adding additional

constraints to the system. We ran the analysis cases using both types of queries.

3.3.4 Input Domain

 From an empirical point of view, we would have liked to randomly select the

programs for our experiment from the population of all concurrent Ada programs. This is

not feasible, however, since the population of concurrent Ada programs available for

public access is fairly limited in size and is certainly not complete. Unfortunately, there

is no evidence that the programs we have selected are representative of the population of

"real" Ada programs. In addition, the properties we tend to specify are relatively

straightforward and may not be representative of the properties analysts specify in

practice. Our uncertainty about the representativeness of both the programs and

properties we are likely to include in our dataset means that our ability to make general

67

inferences from our empirical results is limited. On the other hand, we can use the

relationships discovered in our experiment as a point of comparison when we do gain

access to other, more realistic, concurrent programs.

 A comparison of analysis times for a specific program and property can be useful.

Since the size of the programs included in the experiment can be increased by including

more tasks into the system, it is also interesting to consider how the analysis times for the

tools grow as the problem size is increased. Toward this end, we collected experimental

data for a range of program sizes.

 We determined this range by finding the maximum size the LEAST effective tool on

that program could accomplish in less than five hours and without exhausting memory.

We then used an arithmetic progression of six sizes, with the maximum size mentioned

above as the fifth or sixth size in the progression. While this may introduce some bias

against tools that can scale to much larger sizes for this program, our rationale is that the

comparison between the analysis tools should be made on the same input domain of

programs, properties, and sizes.

3.3.5 Data Comparison

 There are a number of measurements we can use for comparison. For example,

Corbett [Cor94] uses a calculated growth rate to compare the performance of concurrency

analysis tools. We suggest using analysis times and information about tool failures and

analysis accuracy for comparison purposes.

 In an effort to ensure a fair comparison of the tools, we propose using the time each

tool takes to generate the analysis results from its native input as the analysis time. This

time does not include the cost of translating the Ada programs into each tool's input

language as part of the analysis time for that tool. Because this translation is a cost of our

methodology rather than of each of the tools, we do not believe it would be fair to

"charge" each tool for the cost of using our translation tools. On the other hand, the

68

translation times are often much larger than the actual analysis times, so using this

measure of analysis time may not give a clear picture of the true cost of using each tool.

 In a practical sense our real interest is in how long each of the tools takes to analyze

Ada programs. To gain more insight into this practical issue, we propose an alternative

definition of analysis time that uses the total analysis time for comparison, including

timing information for all the translation steps in the analysis process and for the

compilation of the C programs generated by SPIN and SPIN+PO. This comparison

probably gives better insight into the true cost of analysis, at least for Ada programs, but

the times also include potential inefficiencies in our conversion tools.

 Once we have selected which analysis time to use and collected our data, we need to

compare the resulting analysis times. One way to do the comparison would be to

compare the mean analysis times for each tool; the tools with the lower mean times

would fare best the comparison. Unfortunately, outliers can have a significant effect on

the mean. For example, a tool with consistently small analysis times but one (or a few)

very large analysis times could easily have a larger mean analysis time than a tool that has

consistently larger analysis times but no outliers. The median can be used to give a rough

idea about the effects of the outliers, but we still do not believe the mean analysis times

are the best choice for comparison.

 Another way to do the comparison would be to count the number of cases for which

each tool has the fastest analysis time; tools with the largest numbers of "fastest cases"

would fare best in the comparison. This measure also has problems, however.

Specifically, a tool that consistently had the second or third fastest analysis times, but

seldom had the fastest, would do worse in the comparison than a tool that had the fastest

analysis times more often than the first tool, but generally had the slowest analysis times.

We would like a measure that not only captures how well a tool compares to the others

for each case, but also includes some (indirect) measure of consistency.

69

 We believe a reasonable summary statistic to use for comparison of analysis times is

the average ranking for each tool. For each case, we rank the tools (1 = fastest, 2 =

second fastest, etc.) based on analysis time. For each tool, we then average these rankings

across all cases and use this average for comparison; tools with the smallest average

ranking would fare best in the comparison. This average can still be affected by outliers,

but because the worst ranking a tool can have on a given case is given by the number of

tools in the experiment, the effect of outliers is not of much concern. Because it is an

average, this measure also (indirectly) includes consistency. The choice of what to

compare for analysis times is a difficult one, but we believe the average ranking is a

reasonable summary statistic for analysis time comparisons.

 Another useful measurement for comparison is the failure rate for each tool. In our

methodology, any analysis that takes over 5 hours is classified as a failed analysis. The

selection of 5 hours is somewhat arbitrary, but in an experimental environment we need

to choose a limit to ensure the experiments run in a reasonable period of time. The

analysis can also fail because the tool exhausts available memory, terminates with some

internal error, or can not be compiled (for SPIN and SPIN+PO).. Whether or not each

analysis fails (takes more than 5 hours or terminates because of exhausted memory or an

internal error) is therefore measured and used for comparison. One way to compare

failures would be to compare the counts of failure cases for each tool; the tools with the

lowest number of failed cases would fare best in the comparison. For this comparison to

be meaningful, all the tools would need to be run on the same number of analysis case.

While this is typically the case in an experiment using our methodology, it is not required.

We therefore propose a comparison of percentage failures. For each tool, we calculate

the percentage of analysis cases (for that tool) on which the tool failed. We can then

compare these percentages across the tools without being concerned about the number of

cases run for each tool; the tools with the lowest failure percentages would fare best in the

comparison.

70

 The utility of the tools is also determined by the accuracy of their analysis results.

Given the relative simplicity of the programs included in most experiments, we can

determine the correct answer for each of the analyses, and can therefore recognize

spurious results reported by an analysis tool. Whether or not each analysis yields

spurious results is considered to be a good indicator of accuracy, so we measure spurious

results and use them for comparison. As for failures, we could use counts of the spurious

results for comparisons. Because a spurious result would only be counted for a non-

failure case, however, and because the tools are unlikely to fail on the exact same number

of cases, comparing spurious result counts is problematic. We instead use percentages of

spurious results for comparison. For each tool, we calculate the percentage of analysis

cases (for that tool) on which the tool yielded spurious results. We can then compare

these percentages across the tools without being concerned about the number of cases on

which each tool failed; the tools with the lowest failure percentages would fare best in the

comparison.

71

CHAPTER 4

PROGRAMS AND PROPERTIES FOR THE EXPERIMENT

 This chapter describes the programs and properties that were included in the

experiment. The programs that were included provide a diverse range of program

structures and functionalities and were all readily available. Some of the programs, such

as readers/writers and dining philosophers, had already been developed by the Arcadia

consortium. For the other programs, we acquired the INCA inputs used by Corbett

[Cor94] and converted them to Ada programs. For a given program, properties were

selected to check key aspects of the functional behavior of the program. The program and

property specifications included in the experiment can be obtained from

ftp://laser.cs.umass.edu/pub/.

 In all the programs in the experiment, we checked each property without including

any variable modeling information in the FSAs. In some cases, we needed to include

some variable modeling information to accurately check certain properties. Those cases

are explicitly indicated below.

 With the small, academic programs in the experiment, we knew which properties

should be violated for each program, property, and modeled variables. If we specified a

property that we knew should not be violated and the analysis reported that the property

was violated, we iteratively modified our property specification until we achieved the

"correct" analysis result given the program, property, and modeled variables (or could no

longer see reasonable ways to modify the property specification). In some cases,

specifying the property was very difficult and reaching a correct property specification

required many iterations. We used this iterative process to try to factor out our

inexperience using the tools, since the original spurious results were caused by our

incorrect property specifications rather than by weaknesses in the tools. We believe that

the spurious results measured in the experiment therefore more accurately represent the

72

strengths and weaknesses of the tools rather than our skill (or lack of it) specifying

properties. It can be argued, of course, that our original property specifications should be

used, since they may better reflect how a "typical" user would specify the properties and

also informally include ease of use for each specification formalism in the results.

Additionally, an analyst analyzing a real concurrent program probably does not know the

"correct" analysis result, so the analyst would not know when to iteratively modify the

property specification. It would therefore also be interesting to design a different

experiment that used the original property specifications and tried to measure how easy or

difficult it was to properly specify the properties on the first attempt with each formalism.

4.1 Cyclic

 The cyclic program provides a loosely synchronized ring of processes, where the

processes start in order as the ring is traversed, but each process can complete its task at

any time [Mil80]. The program thus enforces the start order for each process, but not the

stop order. Our implementation of a size N cyclic program consists of N customer tasks

and N scheduler tasks. Each customer task executes a simple loop, first accepting a start

from its scheduler then signaling the scheduler that it is finished. Each scheduler loops

through the following actions - signaling its customer to start, signaling the next

scheduler to begin, then waiting until both its customer has finished and the previous

scheduler has signaled it to begin.

 We have selected three properties to check for the cyclic program. The first of these

is deadlock. The second property can be phrased as "On any iteration, can customer_3

start before customer_2 starts?" This checks to see if the start ordering is enforced as

required. For ease of reference, we call this property no_c3c2. The third property can be

phrased as "On any iteration, can customer_2 accept start twice without an intervening

call to finish?" This property can be checked by considering only the control flow in

customer_2, but it is interesting because it ensures that the customer task completes its

current processing before starting again. If we can prove this for an arbitrarily selected

73

customer task, we have shown it for all customer tasks. For ease of reference, we call this

property no_c2ss. The never claim for no_c3c2 is shown in Figure 4.1. The FSA for the

never claim stays in the initial state until scheduler_3 has started customer_3 and

customer_2 was not started on this iteration. If this occurs, the FSA for the never claim

goes to the accept state (and never leaves it), and SPIN reports the violation of the never

claim.

never {
 do
 :: cyclic_sched_3[sched_3_pid]@s3 & -- if scheduler 3 has just started customer 3 and
 cust_2_started == false -> goto accept -- customer 1 was not started on this iteration, accept
 :: else -> skip -- otherwise, loop back
 od;
accept: -- accept state of FSA
 do
 :: skip -- invalid sequence of customer_3 starting without
 od -- customer_1 starting was found
}

Figure 4.1. Never Claim for no_c3c2

 To check this property, we needed to add an additional variable to the PROMELA

program to keep track of whether or not customer_2 had been started on the current

iteration. This was necessary because we needed to recognize certain events that occur

during program execution, specifically customer_2 being started. Since customer_2 can

start and finish before we reach the point at which customer_3 is started, it is not possible

to check the state of the customer_2 task to determine if it was started on the current

iteration. The cust_2_started variable is set to true when customer_2 is started and set to

false when customer_3 is started (to reset it for the next iteration).

 The assertions to check no_c3c2 are shown in Figure 4.2. Whenever customer_2 is

started, the cust_2_started flag is set. Whenever customer_3 is started, the assertion that

customer_2 was started is checked and the flag is cleared. If the assertion is false,

customer_3 has started before customer_2, and SPIN reports the violation and terminates.

 The SMV specification for no_c3c2 is shown in Figure 4.3. Essentially, the

specification states that Always, Globally, if customer_3 has been started then

74

customer_2 has also been started. The transition that starts customer_2 was modified to

set the cust_2_started flag to true and the transition that starts customer_3 was modified

to set the cust_3_started flag to true. The transition on which scheduler_3 signals

scheduler_4 was modified to clear both flags. A violation of the property will thus only

be found if customer_3 is started on some iteration before customer_2 is started.

scheduler_2
 . . .
 :: cust__2_start!synch -> atomic { cust_2_started = true;
 goto state_3 }
 . . .
scheduler_3
 . . .
 :: cust__3_start!synch -> atomic {
 assert (cust_2_started == true);
 cust_2_started = false;
 goto state_3 }
 . . .

Figure 4.2. Assertions for no_c3c2

 SPEC
 AG (cust_3_started -> cust_2_started)

Figure 4.3. SMV Specification for no_c3c2

 It is also possible to check no_c3c2 with SMV without modifying the transitions in

the transition relation to model the cust_2_started and cust_3_started variables.

Alternatively, we can specify the property using the alternate CTL formula shown in

Figure 4.4. The formula states that Always, Globally, if scheduler_2 is in state 2 (just

prior to starting customer_2), then on All execution paths from this point, scheduler_3 is

not in state 3 (has not started customer_3) until scheduler_2 is in state 3 (has started

customer_2).

 SPEC
 AG ((sched__2 = s2) -> A [!(sched__3 = s3) U (sched__2 = s3)])

Figure 4.4. Alternate SMV Specification for no_c3c2

 The INCA query for no_c3c2 is shown in Figure 4.5. We specify an interval, starting

at the initial state of the program and ending with some occurrence of the rendezvous

75

between scheduler_1 and scheduler_2 on the next entry and some occurrence of the

rendezvous in which scheduler_3 starts customer_3. The rendezvous between

scheduler_1 and scheduler_2 represents the start of a cycle around the ring, and because

the interval ends with this rendezvous, scheduler_2 is not allowed to progress further (i.e.,

cannot start customer_2). If such an interval exists, it is possible for customer_3 to start

before customer_2 on some cycle around the ring of schedulers.

 (defquery "no_c3c2" "nofair"
 (omega-star-less (sequence
 (interval :initial t
 :open t
 :ends-with '((rend "sched_1;sched_2.next")
 (rend "sched_3;cust_3.start"))))))

Figure 4.5. INCA Query for no_c3c2

 Because the query above was somewhat difficult to formulate properly, we also

formulated the property by adding an additional constraint to the system of inequalities;

the resulting query is shown in Figure 4.6. The query specifies an interval, starting at the

initial state of the program, in which the number of times scheduler_3 has started

customer_3 is greater than the number of times scheduler_2 has started customer_2. If

such an interval exists, it is possible for customer_3 to start before customer_2 on some

cycle around the ring of schedulers.

 (defquery "no_c3c2_con" "nofair"
 (omega-star-less (sequence
 (interval :initial t
 :constraints '((>= (- "call(sched_3;cust_3.start)"
 "call(sched_2;cust_2.start)")
 1))))))

Figure 4.6. Alternate INCA Query for no_c3c2

 The FLAVERS QRE for no_c3c2 is shown in Figure 4.7. The events of interest are

when customer_2 and customer_3 are started. The tool should check if the specified

sequence occurs on some path in the program. The sequence is informally specified as "0

or more valid sequences of customer_2 then customer_3 starting are followed by

customer_3 starting before customer_2 starts."

76

 { cust_2_start,cust_3_start} none

 [-cust_2_start,cust_3_start]*;
 (cust_2_start;
 [-cust_3_start]*;
 cust_3_start;
 [-cust_2_start,cust_3_start]*)*;
 cust_3_start;
 [cust_2_start,cust_3_start]*

Figure 4.7. QRE for no_c3c2

 The third property we check on the cyclic program is no_c2ss. The never claim

for no_c2ss is shown in Figure 8. The FSA for the never claim stays in the initial state

until scheduler_2 has started customer_2 before customer_2 was finished. To check this

property, we added a variable to the PROMELA program to keep track of whether or not

customer_2 has finished the previous processing. We set this variable to false when

customer_2 is started and true when customer_2 is finished.

never
{
 do
 :: sched__2[sched_2_pid]@state_3 & -- if scheduler_2 has started customer_2 and
 cust_2_finished == false -> goto accept -- customer_2 has not finished, accept
 :: else -> skip -- otherwise, loop back
 od;
accept: -- accept state of FSA
 do
 :: skip -- customer_2 started before finishing previous
 od -- processing
}

Figure 4.8. Never Claim for no_c2ss

 The assertions to check no_c2ss are shown in Figure 4.9. Whenever customer_2 is

started, the assertion that customer_2 finished is checked and the flag is set to false.

When customer_2 finishes, the flag is cleared. If the assertion is violated, customer_2

can be started without finishing the previous processing.

 The SMV specification for no_c2ss is shown in Figure 4.10. The specification states

that Always, Globally, the error flag is never set to true. We use a flag for customer_2

finishing as described above, and set the error flag to true if customer_2 is started when

77

cust_2_finished is false. The specification is thus only false if customer_2 is started

before it has finished the previous processing.

scheduler_2
 . . .
 :: cust__2_start!synch -> atomic {
 assert (cust_2_finished == true);
 cust_2_finished = false;
 goto state_3 }
 . . .

Figure 4.9. Assertions for no_c2ss

 SPEC
 AG (!error)

Figure 4.10. SMV Specification for no_c2ss

 Alternatively, we can avoid modeling the additional variables in SMV by using the

alternate CTL specification shown in Figure 4.11. The specification states that Always,

Globally, if scheduler_2 is in state 3 (has just started customer_2), then scheduler_2 does

not reach state_2 again (ready to start customer_2 again) until scheduler_2 has reached

either state 5 or 8 (i.e., has received finished notification from customer_2). The

specification is thus only false if customer_2 is started before it has finished the previous

processing.

 SPEC
 AG ((sched__2 = s3) -> A [!(sched__2 = s2) U ((sched__2 = s5) |
 (sched__2 = s8))])

Figure 411. Alternate SMV Specification for no_c2ss

 The INCA query for no_c2ss is shown in Figure 4.12. We specify one interval

starting at the initial state of the program and ending when the customer_2 task is started.

The first interval thus skips an arbitrary number of cycles around the ring of schedulers

before checking the second interval. The second interval specifies that customer_2 is

started without customer_2 finishing. Since the first interval ends with customer_2

starting, the combination of the two intervals specifies the no_c2sf property.

78

 (defquery "no_c2ss" "nofair"
 (omega-star-less (sequence
 (interval :initial t
 :open t
 :ends-with '((rend "sched_2;cust_2.start")))
 (interval
 :ends-with '((rend "sched_2;cust_2.start"))
 :forbid '((rend "cust_2;sched_2.finished"))))))

Figure 4.12. INCA Query for no_c2ss

 Alternatively, because using multiple intervals can increase INCA analysis times,

rather than using two intervals to specify no_c2ss we can add an additional constraint as

shown in Figure 4.13. The query specifies an interval, starting at the initial program state,

in which the number of times that customer_2 has been started is two greater than the

number of times customer_2 has finished. Note that it is valid for the number of times

customer_2 is started to be one greater than the number of times it has finished; this

occurs on each cycle, after customer_2 has been started but before it has finished.

 (defquery "no_c2ss_con" "nofair"
 (omega-star-less (sequence
 (interval :initial t
 :constraints '((>= (- "call(sched_2;cust_2.start)"
 "call(cust_2;sched_2.finished)")
 2))))))

Figure 4.13. Alternate INCA Query for no_c2ss

 The FLAVERS QRE for no_c2ss is shown in Figure 4.14. The events of interest

are when customer_2 is started and finished. Customer_2 finishing is specified with the

scheduler_2_finished event, since FLAVERS annotates rendezvous with the name of the

accepting task and entry name. The tool should check if the specified sequence occurs on

all paths in the program. The sequence is informally specified as "Any time customer_2

is started, customer_2 finishes before it is started again."

 The inputs to the tools contained sufficient information to check the deadlock and

no_c2ss properties without modeling any variables in the program. However, our

analysis of the no_c3c2 property indicated that customer_3 could be started before

customer_2 on some iterations around the ring of processes, violating the start order

79

requirement. To prove that the no_c3c2 property holds, we needed to model two

variables in each scheduler task - a variable that indicates when the corresponding

customer has finished and a variable that indicates when the scheduler has been signaled

by the preceding scheduler in the ring.

 { customer_2_start,scheduler_2_finished} all

 [-customer_2_start]*;
 (customer_2_start;
 [-customer_2_start,scheduler_2_finished]*;
 scheduler_2_finished;
 [-customer_2_start]*)*

Figure 4.14. QRE for no_c2ss

4.2 Divide and Conquer (DAC)

 The divide and conquer program [ACD+94] provides a set of solvers that can

cooperatively solve a problem. Each solveri can be activated by a fork from solveri-1 or

simply terminate if it is not activated by solveri-1. If solveri is forked, it uses an internal

condition to either (conceptually) solve the problem and join solveri-1 (indicating that it

is done) or fork solveri+1 and wait for solveri-1 to join it before joining solveri-1. Our

implementation of a size N divide and conquer program consists of N solver tasks and a

single main task that activates (forks) solver_1.

 We have selected three properties to check for the cyclic program. The first of these

is deadlock. The second property can be phrased as "If solver_3 is forked, is it possible

for solver_1 to join the main task before solver_3 has joined solver_2?" This checks to

see if the join ordering is enforced as required. For ease of reference, we call this

property no_s1js3j. Note that we could have also checked the (more intuitive) property

no_s1js2j, but no_s1js2j could be checked by examining the control flow in a single task

(solver_1), and we preferred the more challenging no_s1js3j. The third property can be

phrased as "Is solver_3 forked on every execution of the program?" This property is

interesting because it checks to see if there are instances in which solver_1 or solver_2

decide NOT to fork additional solvers. It is "legal behavior" for the program to execute

80

without forking solver_3, but an analyst may still want to know if this is possible. For

ease of reference, we call this property no_s3f.

 The never claim for no_s1js3j is shown in Figure 4.15. The FSA for the never claim

stays in the initial state until either solver_3 is forked (when solver_2 moves to s4) or

solver_1 joins the master task. If solver_3 is forked, it must join solver_2 before solver_1

joins the master task for no_s1js3j to hold. If solver_3 joins solver_2, the FSA moves to

the ok state, and the property holds. If solver_1 joins the main task before solver_3 joins

solver_2, the FSA moves to the accept state and SPIN reports the violation of the never

claim.

never {
 do
 :: solver__2[solver_2_pid]@state_4 -> goto solver_3_forked -- solver_2 forked solver_3
 :: solver__1[solver_1_pid]@endstate_2 -> goto ok -- solver_1 joined main task
 :: else -> skip -- otherwise, loop back
 od;
ok: -- ok state, property not violated
 do
 :: skip -- infinite loop
 od;
solver_3_forked: -- solver_3 was forked
 do
 :: solver__2[solver_2_pid]@state_5 -> goto ok -- solver_3 joined solver_2
 :: solver__1[solver_1_pid]@endstate_2 -> goto accept -- solver_1 joined main task
 :: else -> skip -- otherwise, loop back
 od;
accept: -- accept state of FSA
 do
 :: skip -- infinite loop; solver_3 was forked but
 od -- solver_1 joined main task before solver_3
} -- joined solver_2

Figure 4.15. Never Claim for no_s1js3j

 The assertions to check no_s1js3j are shown in Figure 4.16. To check this property

using assertions, we needed to add two additional variables, called solver_3_forked and

solver_3_joined, to keep track of whether or not solver_3 had been forked and joined.

When solver_3 is forked, solver_3_forked is set to true and when solver_3 joins,

solver_3_joined is set to true. When solver_1 joins the main task, the assertion that

either solver_3 both forked and joined or solver_3 was not forked at all is checked. If the

81

assertion is false, solver_3 was forked but solver_1 joined the main task before solver_3

joined solver_2, violating no_s1js3j.

solver_1
 . . .
state_5:
 if
 :: solver__1_join?synch -> atomic {
 assert (((solver_3_forked == true) & (solver_3_joined == true))
 | (solver_3_forked == false));
 goto endstate_2 }
 fi
 . . .
solver_2
 . . .
state_3:
 if
 :: solver__3_fork!synch -> atomic { solver_3_forked = true;
 goto state_4 }
 fi;
state_4:
 if
 :: solver__3_join!synch -> atomic { solver_3_joined = true;
 goto state_5 }

 fi;
 . . .

Figure 4.16. Assertions for no_s1js3j

 The SMV specification for no_s1js3j is shown in Figure 4.17. We use

solver_3_forked and solver_3_joined variables as described above to keep track of

when solver_3 has been forked and joined. The specification states that Always,

Globally, when solver_1 has joined the main task, either solver_3 both forked and joined

or solver_3 was not forked.

 SPEC
 AG ((solver_1 = s3) -> ((solver_3_forked & solver_3_joined)
 | !solver_3_forked))

Figure 4.17. SMV Specification for no_s1js3j

 Alternatively, we can avoid adding the solver_3_forked and solver_3_joined

variables by using the alternate CTL specification shown in Figure 4.18. The

specification checks to see if there Exists an execution path on which, in the Future,

82

solver_1 has joined the master task and solver_3 is in state 3 or 5 (has been forked but has

not joined). If this specification is true, no_s1js3j can be violated.

 SPEC
 EF ((solver__1 = s2) & ((solver__3 = s3) |
 (solver__3 = s5)))

 Figure 4.18. Alternate SMV Specification for no_s1js3j

 The INCA query for no_s1js3j is shown in Figure 4.19. We specify an interval

starting at the initial state of the program in which solver_1 joins the main task and

solver_3 is forked but does not join solver_2. If such an interval exists, it is possible for

solver_3 to be forked and solver_1 to join the main task before solver_3 joins solver_2.

 (defquery "no_s1js3j" "nofair"
 (omega-star-less (sequence
 (interval :initial t
 :ends-with '((rend "main;solver_1.join"))
 :require '((rend "solver_2;solver_3.fork"))
 :forbid '((rend "solver_2;solver_3.join"))))))

Figure 4.19. INCA Query for no_s1js3j

 The FLAVERS QRE for no_s1js3j is shown in Figure 4.20. The events of interest

are when solver_1 joins and when solver_3 is forked and joins. The tool should check

that the specified sequence occurs on all paths. The sequence is informally specified as

"Either solver_3 is forked and joins before solver_1 joins or solver_1_joins (i.e., solver_3

is not forked)."

 { solver_1_join, solver_3_fork, solver_3_join} all

 [-solver_1_join, solver_3_fork, solver_3_join]*;
 ((solver_3_fork;
 [-solver_1_join, solver_3_join]*;
 solver_3_join;
 [-solver_1_join]*;
 solver_1_join)
 |
 solver_1_join);
 [solver_1_join, solver_3_fork, solver_3_join]*

Figure 4.20. QRE for no_s1js3j

83

 The third property we check for the divide and conquer program is no_s3f. The

never claim for no_s3f is shown in Figure 4.21. The FSA for the never claim stays in the

initial state until either solver_3 is forked (when solver_2 moves to s4) or solver_2 joins

solver_1. If solver_3 is forked, the FSA enters an infinite loop. If solver_2 joins

solver_1 (without forking solver_3), the FSA moves to the accept state and SPIN reports

the violation of the never claim.

never {
 do
 :: solver__2[solver_2_pid]@state_4 -> break -- solver_3 was forked
 :: solver__1[solver_1_pid]@state_5 -> goto accept -- solver_3 was not forked
 :: else -> skip -- otherwise, loop back
 od;
 do
 :: skip -- infinite loop
 od;
accept: -- accept state of FSA
 do
 :: skip -- infinite loop; solver_3 was not forked
 od
}

Figure 4.21. Never Claim for no_s3f

 The assertions to check no_s3f are shown in Figure 4.22. When solver_3 is forked,

solver_3_forked is set to true. After solver_1 joins, the assertion that solver_3 was

forked is checked. If the assertion is false, solver_3 was never forked, violating no_s3f.

main
 . . .
 :: solver__1_join!synch -> atomic { assert (solver_3_forked == true);
 goto endstate_3 }
 . . .
solver_2
 . . .
 :: solver__3_fork!synch -> atomic { solver_3_forked = true;
 goto state_4 }
 . . .

Figure 4.22. Assertions for no_s3f

 The SMV specification for no_s3f is shown in Figure 4.23. We use

solver_3_forked as described above to keep track of when solver_3 has been forked.

84

The specification states that Always, Globally, when solver_1 has joined the main task,

solver_3 was forked.

 SPEC
 AG ((solver_1 = s2) -> solver_3_forked)

Figure 4.23. SMV Specification for no_s3f

 Alternatively, we can avoid adding the solver_3_forked variable by using the

alternate CTL specification shown in Figure 4.24. The specification states that Always,

the main task is not in state 3 (has not terminated) until solver_3 is in state 3 or 5 (has

been forked). If this specification is false, it is possible for the program to execute

without forking solver_3, violating no_s3f.

 SPEC
 A [!(main = s3) U ((solver__3 = s3) |
 (solver__3 = s5))]

Figure 4.24. Alternate SMV Specification for no_s3f

 The INCA query for no_s3f is shown in Figure 4.25. We specify an interval starting

at the initial state of the program in which solver_1 joins the main task but solver_2 is not

allowed to fork solver_3. If such an interval exists, it is possible for solver_1 to join the

master task without solver_3 being forked, violating no_s3f.

 (defquery "no_s3f" "nofair"
 (omega-star-less (sequence
 (interval :initial t
 :ends-with '((rend "main;solver_1.join"))
 :forbid '((rend "solver_2;solver_3.fork"))))))

Figure 4.25. INCA Query for no_s3f

 The FLAVERS QRE for no_s3f is shown in Figure 4.26. The events of interest are

when solver_1 joins and when solver_3 is forked. The tool should check that the

specified sequence occurs on all paths. The sequence is informally specified as "Solver_3

is forked before solver_1 joins."

 { solver_1_join, solver_3_fork} all

 [-solver_1_join, solver_3_fork]*;
 solver_3_fork;

85

 [solver_1_join, solver_3_fork]*

Figure 4.26. QRE for no_s3f

4.3 Dining Philosophers

 The dining philosophers problem has been analyzed extensively in the literature. We

included the standard problem and three variations of it in our experiment.

4.3.1 Standard Problem (dp)

 In the standard dining philosophers problem, a certain number of philosophers sit

around a table, with a single fork between a philosopher and the neighbor to its left. Each

philosopher thinks for a while, then picks up both forks (one at a time, left fork first) to

eat, then puts the forks back down and thinks some more. Because the forks between the

philosophers are shared, it is not possible for all the philosophers to eat at the same time.

Our solution for the dining philosophers problem uses a task for each fork and a task for

each philosopher. Because all the philosophers can pick up their left forks and wait to

pick up their right forks, deadlock is possible in this program.

 We have selected two properties to check for the standard dining philosophers

program. The first of these is deadlock. The second property can be phrased as "Can two

adjacent philosophers ever be eating at the same time?" If we can prove that an arbitrarily

selected pair of adjacent philosophers can not be eating concurrently, we can show that it

is not possible for all the philosophers to be eating concurrently. By symmetry, checking

two specific adjacent philosophers is sufficient; if these two philosophers can not be

eating concurrently, no two adjacent philosophers can. In our experiment, we check this

property for philosopher 1 and philosopher 2. For ease of reference, we call this property

no_p1p2. We note that the property specifications for no_p1p2 are essentially the same

as the property specifications to check for two writers writing concurrently in the

readers/writers problem.

 The never claim for no_p1p2 is shown in Figure 4.27. The FSA for the never claim

stays in the initial state until both philosopher_1 and philosopher_2 are at s3; in other

86

words, both philosophers are eating. If this occurs, the FSA for the never claim goes to

the accept state (and never leaves it), and SPIN reports the violation of the never claim.

never {
 do
 :: phil__1[phil_1_pid]@state_3 & -- if philosophers 1 and 2 are both eating,
 phil__2[phil_2_pid]@state_3 -> goto accept -- go to accept state
 :: else -> skip -- otherwise, loop back
 od;
accept: -- accept state of FSA
 do
 :: skip -- infinite loop; philosophers 1 and 2 both
 od -- eating has been found
}

Figure 4.27. Never Claim for no_p1p2

 The assertions to check no_p1p2 are shown in Figure 4.28. When philosopher_1

starts to eat, the flag indicating that philosopher_1 is eating is set and the assertion that

philosopher_2 is not eating is checked. Before philosopher_1 stops eating, the flag

indicating that philosopher_1 is eating is cleared. We note that the flag can not be cleared

after philosopher_1 stops eating, because SPIN then finds a violation of the assertion by

having philosopher_2 start to eat before the flag is cleared. Similar assertions are

embedded in the philosopher_2 process.

philosopher_1 philosopher_2

s2: if s2: if
 :: fork__1_up!synch -> :: fork__2_up!synch ->
 atomic { phil_1_eating = true; atomic { phil_2_eating = true;
 assert (phil_2_eating == false); assert (phil_1_eating == false);
 goto s3 } goto s2 }
 fi; fi;
s3: phil_1_eating = false; s3: phil_2_eating = false;
 if if
 :: fork_2_down!synch -> goto s4 :: fork_3_down!synch -> goto s4
 fi fi

Figure 4.28. Assertions for no_p1p2

 The SMV specification for no_p1p2 is shown in Figure 4.29. Essentially, the

specification states that Always, Globally, if philosopher_1 is eating philosopher_2 is not

eating and if philosopher_2 is eating philosopher_1 is not eating.

87

88

 SPEC
 AG (((phil__1 = s3) -> !(phil__2 = s3)) &
 ((phil__2 = s3) -> !(phil__1 = s3)))

Figure 4.29. SMV Specification for no_p1p2

 The INCA query for no_p1p2 is shown in Figure 4.30. We specify an interval,

starting at the initial state of the program, that ends after philosopher_1 and

philosopher_2 have both started eating an arbitrary number of times. If such an interval

exists, it is possible for philosopher_1 and philosopher_2 to be eating concurrently.

 (defquery "no_p1p2" "nofair"
 (omega-star-less (sequence
 (interval :initial t
 :open t
 :ends-with '((rend "phil_1;fork_1.up")
 (rend "phil_2;fork_2.up"))))))

Figure 4.30. INCA Query for no_p1p2

 The FLAVERS QRE for no_p1p2 is shown in Figure 4.31. The events of interest are

when philosopher_1 and philosopher_2 start and stop eating. The tool should check that

the specified sequence occurs on all paths. The sequence is informally specified as "Any

event but philosopher_1 or philosopher_2 starting to eat occurs 0 or more times, then

either philosopher_1 starts eating and stops eating without an intervening philosopher_2

starting to eat, or philosopher_2 starts eating and stops eating without an intervening

philosopher_1 starting to eat, then any events but philosopher_1 or philosopher_2 starting

to eat occurs 0 or more times".

 { phil_1_start_eating, phil_1_stop_eating,
 phil_2_start_eating, phil_2_stop_eating} all

 [-phil_1_start_eating, phil_2_start_eating]*;
 (((phil_1_start_eating;
 [-phil_2_start_eating, phil_1_stop_eating]*;
 phil_1_stop_eating)
 |
 (phil_2_start_eating;
 [-phil_1_start_eating, phil_2_stop_eating]*;
 phil_2_stop_eating));
 [-phil_1_start_eating, phil_2_start_eating]*)*

Figure 4.31. QRE for no_p1p2

89

4.3.2 Dining Philosophers with Dictionary (dpd)

 In this variation of the standard dining philosophers problem, the philosophers eat

and think as described above, but also pass a dictionary around the table. The

philosopher currently holding the dictionary can not be eating, since it can not pick up

any forks until it passes the dictionary to the next philosopher. This removes the

possibility of deadlock in the system.

 As with the standard version, we check for deadlock and for philosopher_1 and

philosopher_2 eating concurrently. We also check a third property, which can be stated

"Can philosopher i ever start eating while holding the dictionary?" By symmetry we can

check this for a single philosopher and generalize the results to most of the philosophers

in the system (all philosophers but philosopher_1), so we check this property for

philosopher 2. Because philosopher_1 starts out holding the dictionary, and all other

philosophers start out not holding the dictionary, our symmetry argument only applies to

philosophers 2 through N for a size N version of this program For notational

convenience we call this property no_p2d.

 The property specifications for deadlock and no_p1p2 are as described for dp, with

the minor change that philosopher_1 is eating in state 5 and philosopher_2 is eating in

state 4 in this variation of the problem. The property specifications for no_p2d are

provided below.

 The never claim for no_p2d is shown in Figure 4.32. To check this property, we

needed to add an additional variable to keep track of whether or not philosopher_2 was

holding the dictionary. The holding_dictionary variable is set to false when

philosopher_2 hands off the dictionary and set to true when philosopher_2 accepts the

dictionary. The FSA for the never claim stays in the initial state until philosopher_2 is in

state 4 (eating) and philosopher_2 is holding the dictionary (holding_dictionary == true).

If this occurs, the FSA for the never claim goes to the accept state (and never leaves it),

and SPIN reports the violation of the never claim.

90

never {
 do
 :: phil__2[phil_2_pid]@state_4 & -- if philosopher 2 is eating and holding
 (holding_dictionary == true) -> goto accept -- the dictionary, go to accept state
 :: else -> skip -- otherwise, loop back
 od;
accept: -- accept state of FSA
 do
 :: skip
 od
}

Figure 4.32. Never Claim for no_p2d

 The assertions to check for philosopher_2 eating while holding the dictionary are

shown in Figure 4.33. When philosopher_2 starts to eat, the assertion that philosopher_2

is not holding the dictionary is checked. As for the never claim, we use the

holding_dictionary variable to recognize whether or not philosopher_2 is holding the

dictionary.

philosopher_2
. . .
 :: phil__2_dictionary?synch -> atomic { holding_dictionary = true;
 goto state_6 }
 fi;
state_3:
 if
 :: fork__2_up!synch -> atomic { assert (holding_dictionary == false);
 goto state_4 }
 fi;
 . . .
 :: phil__3_dictionary!synch -> atomic { holding_dictionary = false;
 goto state_1 }

Figure 4.33. Assertions for no_p2d

 The SMV specification for no_p2d is shown in Figure 4.34. Essentially, the

specification states that Always, Globally, if philosopher_2 is eating then philosopher_2

is not holding the dictionary. As for the PROMELA programs, the holding_dictionary

variable is set to false when philosopher_2 hands off the dictionary and set to true when

philosopher_2 accepts the dictionary.

91

 SPEC
 AG ((phil_2 = s3) -> !holding_dictionary)

Figure 4.34. SMV Specification for no_p2d

 Alternatively, we can avoid using the holding_dictionary variable by using the

alternate CTL specification shown in Figure 4.35. The specification states that Always,

Globally, if philosopher_2 is in state 6 (holding the dictionary), philosopher_2 can not go

to state 4 (eating) until it has gone to state 1 (handed off the dictionary). An interesting

side effect of using this specification is that we had to add a fairness constraint to check

the property. The semantics of the Until operator require that (phil__2 = s1) be true at

some time in the future, otherwise the formula evaluates to false. Since there are

executions in which philosopher_2 accepts the dictionary but never passes it off again

(essentially, philosopher_2 "starves" holding the dictionary), the specification evaluates to

false without the fairness constraint. The fairness constraint specifies that philosopher_2

enters state 1 (passes off the dictionary) infinitely often, at which point we can

successfully check the property.

 FAIRNESS
 (phil__2 = s1)
 SPEC
 AG ((phil__2 = s6) -> A [!(phil__2 = s4) U (phil__2 = s1)])

Figure 4.35. Alternate SMV Specification for no_p2d

 It is important to note that, by adding the fairness constraint, we have changed the

property, at least in some sense. The specification still checks whether or not

philosopher_2 can eat while holding the dictionary, but including the constraint may have

eliminated a large number of program executions that SMV would have had to consider

without the constraint. Although we were unable to formulate the property without the

fairness constraint (and without additional variables), it may be possible to do so, with the

resulting property equivalent to no_p2d.

 The INCA query for no_p2d is shown in Figure 4.36. We specify an interval starting

at the initial state of the program that ends after philosopher_1 has handed the dictionary

92

to philosopher_2 an arbitrary number of times. We then specify a second interval in

which philosopher_2 starts to eat, but does not hand off the dictionary in the interval. If

such a pair of intervals exists, it is possible for philosopher_2 to be eating while holding

the dictionary.

 (defquery "no_p2d" "nofair"
 (omega-star-less (sequence
 (interval :initial t
 :open t
 :ends-with '((rend "phil_1;phil_2.dictionary")))
 (interval :ends-with '((rend "phil_2;fork_2.up"))
 :forbid '((rend "phil_2;phil_3.dictionary"))))))

Figure 4.36. INCA Query for no_p2d

 Alternatively, we can avoid using multiple intervals in the query by adding an

additional constraint to the query as shown in Figure 4.37. The query specifies an

interval, starting at the initial program state, ending after philosopher_2 has started eating

an arbitrary number of times, in which philosopher_2 has accepted the dictionary more

times than it has passed off the dictionary. If such an interval exists, philosopher_2 can

eat while holding the dictionary.

 (defquery "no_p2d_con" "nofair"
 (omega-star-less (sequence
 (interval :initial t
 :open t
 :ends-with '((rend "phil_2;fork_2.up"))
 :constraints '((<= (- "call(phil_2;phil_3.dictionary)"
 "call(phil_1;phil_2.dictionary)")
 -1))))))

Figure 4.37. Alternate INCA Query for no_p2d

 The FLAVERS QRE for no_p2d is shown in Figure 4.38. The events of interest are

when philosopher_2 and philosopher_3 accept the dictionary and when philosopher_2

starts eating. The tool should check that the specified sequence occurs on all paths. The

sequence is informally specified as "The first event of interest to occur is philosopher_2

accepting the dictionary (philosopher_1 hands off the dictionary to philosopher_2), then

93

philosopher_2 hands off the dictionary without eating in the interim, then events other

than philosopher_2 accepting the dictionary occur 0 or more times".

 { phil_2_dictionary, phil_3_dictionary, phil_2_eating} all

 [-phil_2_dictionary]*;
 (phil_2_dictionary;
 [-phil_2_eating,phil_3_dictionary]*;
 phil_3_dictionary;
 [-phil_2_dictionary]*)*

Figure 4.38. QRE for no_p2d

4.3.3 Dining Philosophers with Fork Manager (dpfm)

 In this variation of the dining philosophers problem we replace the fork tasks with a

single fork manager that keeps track of the status of all the forks in the system. To start

eating, a philosopher calls a single entry in the fork manager task, and to stop eating the

philosopher calls a different entry in the fork manger task. The possibility of deadlock is

removed, and the fork manager task enforces the constraint that no two adjacent

philosophers can be eating concurrently.

 The property specifications for deadlock and no_p1p2 are as described above, with

the minor change that the philosophers are now eating in state 2 rather than in state 3 for

the standard problem.

 To accurately check no_p1p2 we need information about the fork shared between

philosopher_1 and philosopher_2. To include this information in the analysis, we model

the status of the fork (fork 2) between philosopher_1 and philosopher_2.

4.3.4 Dining Philosophers with Host (dph)

 In this variation of the standard dining philosophers problem, the philosophers eat

and think as described for the standard problem, but also must get permission from a host

task to "enter the dining room" before starting to eat and to "exit the room" after finishing

eating. The host task admits no more than one philosopher fewer than the number of

forks in the system into the dining room, thereby avoiding deadlock.

94

 For this variation we check for deadlock and philosopher_1 and philosopher_2 eating

concurrently (no_p1p2). The property specifications are as described above, with the

minor change that the philosophers are now eating in state 4 rather than in state 3 for the

standard problem.

 We can accurately check no_p1p2 using simply the structure of the program, but to

check for deadlock we need information about the number of philosophers currently in

the dining room. To include this information in the analysis, we model the philosopher

count variable maintained in the host task to keep track of the number of philosophers in

the dining room.

4.4 Elevator

 The elevator program provides a simulation of a set of elevators; the version we use

was developed by the Arcadia consortium. The elevators can be called to certain floors,

sent to certain floors from within the elevator, set to idle if no requests are pending, or

shut down. Our implementation of a size N elevator program consists of a simulation

driver, a controller task to handle requests for the elevator to go to certain floors, an

elevator task to provide an interface to the elevators, N elevator simulation tasks to

simulate the N elevators, and N doorman tasks to simulate doormen for the N elevators.

Because of certain limitations in the current version of the CFG to SEDL translation tool,

the elevator program was not included in our experiment. We include the property

specifications below for future reference.

 We have selected three properties to check for the elevator program. The first of

these is deadlock. The second property can be phrased as "Can an elevator ever be

moved while its doors are open?" The significance of this property should be clear, since

a violation could lead to severe injury. By symmetry, we can check this property on an

arbitrary elevator - for our experiment, we check the property for elevator_1. For ease of

reference, we call this property no_omc (for no open doors, move elevator, close doors).

The third property can be phrased as "Can an elevator ever be shut down while it has

95

pending requests?" If this can occur, either someone will be left waiting for the elevator

or, even worse, someone will be trapped within the elevator. Again by symmetry we can

check this property on a single elevator, so we check it for elevator_1. When an elevator

has no pending requests, its direction of motion is set to idle. For ease of reference, we

call this property no_sdni (for no shut down elevator when it is not idle).

 The never claim for no_omc is shown in Figure 4.39. The FSA for the never claim

stays in the initial state until the error flag is set to true (which occurs if elevator_1 moves

while its doors are open). If this occurs, the FSA for the never claim goes to the accept

state (and never leaves it), and SPIN reports the violation of the never claim.

 We added two variables to help us check this property. One variable, called

door_open, was set to true when the doors of elevator_1 were opened and false when the

doors of elevator_1 were closed. The other variable, called error, was initialized to false

and set to door_open when elevator_1 moved. Thus, error was only set to true if

elevator_1 moved while its doors were open, violating no_omc.

never {
 do
 :: error == true -> goto accept -- if elevator_1 moved while door open, go to accept
 :: else -> skip -- otherwise, loop back
 od;
accept: -- accept state
 do
 :: skip -- infinite loop; elevator_1 moved with the doors open
 od
}

Figure 4.39. Never Claim for no_omc

 The assertions to check no_omc are shown in Figure 4.40. When the doors of

elevator_1 are opened, door_open is set to true. Door_open is then set to false in the

next state, just before the doors are closed again (for the same reason as for no_w1w2 for

the readers/writers problem). When elevator_1 moves, at which point it notifies the

controller that it is at a certain floor, the assertion that the doors are closed (i.e., not open)

is checked. If the assertion is ever false, elevator_1 can move while its doors are open.

96

doorman_1
 . . .
s3:
 if
 :: elevator_open_door_1!synch -> atomic {
 door_open = true;
 goto s4 }
 fi;
s4:
 door_open = false;
 if
 :: elevator_close_door_1!synch -> goto s5
 fi;
 . . .
elevator_1
 . . .
 :: controller_at_floor!synch -> atomic {
 assert(door_open == false);
 goto s4 }
 . . .

Figure 4.40. Assertions for no_omc

 The SMV specification for no_omc is shown in Figure 4.41. We use a door_open

variable and an error variable as described for the never claim, and specify that Always,

Globally, the error does not occur.

 SPEC
 AG (!error)

Figure 4.41. SMV Specification for no_omc

 The INCA query for no_omc is shown in Figure 4.42. We specify an interval,

starting at the initial state of the program, that ends after the door of elevator_1 has been

opened an arbitrary number of times. We specify a second interval in which elevator_1

moves but does not close its doors before moving. We can infer that elevator_1 has

moved by the call on the controller.at_floor entry, since this call only occurs if the

elevator moves. If the interval exists, it is possible for elevator_1 to move while its doors

are open, violating no_omc.

 Alternatively, we can avoid using two intervals by adding a constraint to the query as

shown in Figure 4.43. The query specifies an interval, starting at the initial program state,

97

that ends with elevator_1 moving, and the doors of elevator_1 have been opened more

times than they have been closed.

 (defquery "no_omc" "nofair"
 (omega-star-less (sequence
 (interval :initial t
 :open t
 :ends-with '((rend "doorman_1;elevator.open_door_1")))
 (interval
 :ends-with '((rend "elevator_1;controller.at_floor"))
 :forbid '((rend "doorman_1;elevator.close_door_1"))))))

Figure 4.42. INCA Query for no_omc

 (defquery "no_omc_con" "nofair"
 (omega-star-less (sequence
 (interval : initial t
 :ends-with '((rend "elevator_1;controller.at_floor"))
 :constraints '((>= (- "call(doorman_1;elevator.open_door_1)"
 "call(doorman_1;elevator.close_door_1)")
 1))))))

Figure 4.43. Alternate INCA Query for no_omc

 The FLAVERS QRE for no_omc is shown in Figure 4.44. The events of interest are

when the doors of elevator_1 are opened and closed and when elevator_1 moves. The

tool should check that the specified sequence occurs on all paths. The sequence is

informally specified as "Any event but the doors of elevator_1 being opened occurs 0 or

more times, followed by the doors of elevator_1 being opened and closed without an

intervening movement of elevator_1, followed by any event but the doors of elevator_1

being opened occurs 0 or more times."

 { elevator_open_door_1, elevator_close_door_1, elevator_1_moved} all

 [-elevator_open_door_1]*;
 (elevator_open_door_1;
 [-elevator_close_door_1, elevator_1_moved]*;
 elevator_close_door_1;
 [-elevator_open_door_1]*)*;

Figure 4.44. QRE for no_omc

 We note that we could not use a rendezvous on controller.at_floor to check for

elevator_1 moving, because any of the elevators can call that entry. We therefore

98

embedded an internal event in the elevator_1 task to reflect when it was making a call on

that entry.

 The third property we check on the elevator program is no_sdni. The never claim for

no_sdni is shown in Figure 4.45. The FSA for the never claim stays in the initial state

until elevator_1 is shut down (goes to state 3) while it is not idle. We use the elev_1_idle

flag to keep track of when elevator_1 is idle. This flag is initialized to false, set to true

when elevator_1 is initialized (to idle), and set to false when the direction of movement

for elevator_1 is set.

never {
 do
 :: elevator__1[elev_1_pid]@endstate_3 & -- if elevator_1 is shut down while
 elev_1_idle == false -> goto accept -- it is not idle, go to accept state
 :: else -> skip -- otherwise, loop back
 od;
accept: -- accept state
 do
 :: skip -- infinite loop; elevator_1 shut down
 od -- while not idle
}

Figure 4.45. Never Claim for no_sdni

 The assertions to check no_sdni are shown in Figure 4.46. When the elevator_1 is

initialize, elev_1_idle is set to true, and when the direction for elevator_1 is set,

elev_1_idle is set to false. When elevator_1 is shut down, the assertion that it is idle is

checked; if this assertion is false, elevator_1 can be shut down while it still has pending

requests.

 The SMV specification for no_sdni is shown in Figure 4.47. We use an elev_1_idle

variable as described above, and specify that Always, Globally, if elevator_1 is shut down

then it is idle.

 The INCA query for no_sdni is shown in Figure 4.48. We specify an interval starting

at the initial state of the program and ending after the direction for elevator_1 has been set

(i.e., elevator_1 is not idle) an arbitrary number of times. We specify a second interval in

99

which the system is shut down and elevator_1 is not set to idle. If such an interval exists,

it is possible for the system to shut down while elevator_1 is not idle, violating no_sdni.

elevator_1
s1:
 if
 :: elevator_1_init?synch -> atomic { elev_1_idle = true;
 goto s2 }
 fi;
s2:
 if
 :: elevator_1_set_direction?synch -> atomic {
 elev_1_idle = false;
 goto s2 }
 :: elevator_1_shut_down?synch -> atomic {
 assert (elev_1_idle == true);
 goto end_s3 }
 :: controller_at_floor!synch -> goto s2
 fi;
 . . .

Figure 4.46. Assertions for no_sdni

 SPEC
 AG ((elevator_1 = s3) -> elev_1_idle)

Figure 4.47. SMV Specification for no_sdni

 (defquery "no_sdni" "nofair"
 (omega-star-less (sequence
 (interval :initial t
 :ends-with '((rend "elevator;elevator_1.set_direction"))
 (interval
 :ends-with '((rend "driver;controller.shut_down"))
 :forbid '((rend "elevator-task;elevator_1-task.set_idle"))))))

Figure 4.48. INCA Query for no_sdni

 The FLAVERS QRE for no_sdni is shown in Figure 4.49. The events of interest are

when elevator_1 is made idle, when elevator_1 is given a direction to move, and when

the system is shut down. The tool should check that the specified sequence occurs on all

paths. The sequence is informally specified as "Any event but elevator_1 given a

direction to move or system shut down, followed by the sequence

elevator_1_set_direction; elevator_1_set_idle occurring 0 or more times, followed by

system shut down."

100

 { elevator_1_set_idle, elevator_1_set_direction, controller_shut_down} all

 [-elevator_1_set_direction, controller_shut_down]*;
 (elevator_1_set_direction;
 [-elevator_1_set_idle, controller_shut_down]*;
 elevator_1_set_idle;
 [-elevator_1_set_direction, controller_shut_down]*)*;
 controller_shut_down

Figure 4.49. QRE for no_sdni

4.5 Gas Station

 The gas station program, originally described in [HL85], provides a simulation of a

self-service gas station. Customers prepay the operator for a specific pump, at which

point the operator queues the customer and activates the pump. The customer then starts

and stops pumping on the selected pump. The pump reports the charge to the operator,

who then provides change to the customer. Our implementation of a size N gas station

program consists of an operator task, 2 pump tasks, and N customer tasks.

 We have selected three properties to check for the gas station program. The first of

these is deadlock. The second property can be phrased as "Can two customers ever be

pumping on the same pump at the same time?" By symmetry, we can check this property

on an arbitrary pair of customers and an arbitrary pump - for our experiment, we check

the property for customer_1, customer_2, and pump_1. For ease of reference, we call this

property no_c1c2. The third property can be phrased as "Can a customer ever prepay on

one pump and get change based on the charge from the other pump?" Again by symmetry

we can check this property on an arbitrary customer and pump, so we check it for

customer_1, prepaid on pump_1, getting change based on the charge from pump_2. For

ease of reference, we call this property no_c1p2.

 The never claim for no_c1c2 is shown in Figure 4.50. The FSA for the never claim

stays in the initial state until customer_1 and customer_2 are in state 5 (pumping on

pump_1) at the same time. If the two customers are ever pumping on pump_1 at the

same time, the FSA moves to the accept state and SPIN reports the violation of the never

claim and terminates.

101

never {
 do
 :: customer__1[cust_1_pid]@state_5 & -- if customer_1 and customer_2 are both
 customer__2[cust_2_pid]@state_5 -> goto accept -- pumping on pump_1, go to accept state
 :: else -> skip -- otherwise, loop back
 od;
accept: -- accept state
 do
 :: skip -- infinite loop; customer_1 and customer_2
 od -- were both pumping on pump_1
}

Figure 4.50. Never Claim for no_c1c2

 The assertions to check no_c1c2 are shown in Figure 4.51. When customer_1 starts

pumping on pump_1, the flag indicating that customer_1 is pumping is set and the

assertion that customer_2 is not pumping is checked. Before customer_1 stops pumping,

the flag indicating that customer_1 is pumping is cleared. We clear the flag before

customer_1 stops pumping for the same reason as no_w1w2 in the readers/writers

problem. Similar assertions are embedded in the customer_2 process.

customer_1 customer_2

state_4: state_4:
 if if
 :: pump__1_start__pumping!synch -> :: pump__1_start__pumping!synch ->
 atomic { cust_1_pumping = true; atomic { cust_2_pumping = true;
 assert (cust_2_pumping == false); assert (cust_1_pumping == false);
 goto state_5 } goto state_5 }
 fi; fi;
state_5: state_5:
 cust_1_pumping = false; cust_2_pumping = false;

Figure 4.51. Assertions for no_c1c2

 The SMV specification for no_c1c2 is shown in Figure 4.52. The specification states

that Always, Globally, if customer_1 is pumping on pump_1 then customer_2 is not and

if customer_2 is pumping on pump_1 then customer_1 is not.

 The INCA query for no_c1c2 is shown in Figure 4.53. We specify an interval,

starting at the initial state of the program, which ends when both customer_1 and

customer_2 have started pumping on pump_1 an arbitrary number of times. If such an

102

interval exists, it is possible for customer_1 and customer_2 to be pumping on pump_1

concurrently.

 SPEC
 AG (((customer_1 = s5) -> !(customer_2 = s5))
 &
 ((customer_2 = s5) -> !(customer_1 = s5)))

Figure 4.52. SMV Specification for no_c1c2

 (defquery "no_c1c2" "nofair"
 (omega-star-less (sequence
 (interval :initial t
 :open t
 :ends-with '("call(cust_1-task;pump_1-task.start_pumping)"
 "call(cust_2-task;pump_1-task.start_pumping)")))))

Figure 4.53. INCA Query for no_c1c2

 The FLAVERS QRE for no_c1c2 is shown in Figure 4.54. The events of interest are

when customer_1 and customer_2 start and stop pumping. The tool should check if the

specified sequence occurs on any path. The sequence is informally specified as

"Customer_1 and customer_2 start and stop pumping (without the other customer starting

to pump in the interim) an arbitrary number of times, followed by either customer_1

starting to pump then customer_2 starting to pump before customer_1 stops pumping or

customer_2 starting to pump then customer_1 starting to pump before customer_2 stops

pumping".

 We initially formulated this query as an all paths property, but the structure of the

graphical representation FLAVERS generates for this program and property precluded

accurately checking the all paths property. Specifically, the graph has a path from the

point at which customer_1 (or customer_2) starts pumping to the terminal node for the

program. Since the original property specified that the customers had to start and stop

pumping on all paths, FLAVERS responded that the property did not hold. Because there

does not exist a path on which the property specified above is violated, the above property

can be accurately checked by FLAVERS. While one could argue that the original

103

specification should have been used, we followed the process described at the beginning

of this chapter instead.

 { cust_1_start_pumping,cust_1_stop_pumping,
 cust_2_start_pumping,cust_2_stop_pumping} none

 [-cust_1_start_pumping,cust_2_start_pumping]*;
 (((cust_1_start_pumping;
 [-cust_2_start_pumping,cust_1_stop_pumping]*;
 cust_1_stop_pumping)
 |
 (cust_2_start_pumping;
 [-cust_1_start_pumping,cust_2_stop_pumping]*;
 cust_2_stop_pumping));
 [-cust_1_start_pumping,cust_2_start_pumping]*)*;
 ((cust_1_start_pumping;
 [-cust_2_start_pumping,cust_1_stop_pumping]*;
 cust_2_start_pumping)
 |
 (cust_2_start_pumping;
 [-cust_1_start_pumping,cust_2_stop_pumping]*;
 cust_1_start_pumping));
 [cust_1_start_pumping,cust_1_stop_pumping,
 cust_2_start_pumping,cust_2_stop_pumping]*

Figure 4.54. QRE for no_c1c2

 The third property we check on the gas station program is no_c1p2. The never claim

for no_c1p2 is shown in Figure 4.55. The FSA for the never claim stays in the initial

state until customer_1 has prepaid on pump_1 and received change based on the charge

for pump_2. If this ever occurs, the FSA moves to the accept state and SPIN reports the

violation of the never claim and terminates.

 We use some additional variables in the PROMELA to keep track of when

customer_1 has prepaid on pump_1 (prepay_1_pump_1) and received change based on

the charge for pump_2 (cust_1_pump_2_change). When customer_1 prepays on

pump_1, prepay_1_pump_1 is set to true and cust_1_pump_2_change is set to false.

When customer_1 receives change based on the charge for pump_1, the

prepay_1_pump_1 flag is set to false. When customer_2 receives change based on the

charge for pump_2, cust_1_pump_2_change is set to true. Therefore, if customer_1

104

prepays on pump_1 and receives change based on the charge for pump_2, both variables

are set to true and the never claim catches the property violation.

never
{
 do
 :: prepay_1_pump_1 == true & -- if customer_1 prepaid on pump_1 but
 cust_1_pump_2_change == true -> goto accept -- got change for pump_2, go to accept
 :: else -> skip -- otherwise, loop back
 od;
accept: -- accept state
 do
 :: skip -- infinite loop; customer_1 got the wrong
change
 od
}

Figure 4.55. Never Claim for no_c1p2

 The assertions to check no_c1p2 are included at a number of states in the operator

task; an example is shown in Figure 4.56. We use the prepay_1_pump_1 variable as

described above. When customer_1 receives change based on the charge from pump_2

(as in state_22), the assertion that customer_1 did not prepay on pump_1 is checked. If

this assertion is ever false, customer_1 prepaid on pump_1 but received change based on

the charge for pump_2.

operator
 . . .
state_22:
 if
 :: customer__1_task_change!synch -> atomic {
 assert (prepay_1_pump_1 == false);
 goto state_2 }
 fi;
 . . .

Figure 4.56. Assertions for no_c1p2

 The SMV specification for no_c1p2 is shown in Figure 4.57. The variables

prepay_1_pump_1 and cust_1_pump_2_change are used as described for the never

claim above. The specification states that Always, Globally, if customer_1 has just

received change based on the charge for pump_2 then customer_1 did not prepay on

pump_1.

105

 SPEC
 AG (cust_1_pump_2_change -> !prepay_1_pump_1)

Figure 4.57. SMV Specification for no_c1p2

 Alternatively, we can avoid modeling the additional variables in SMV by using the

alternate CTL specification shown in Figure 4.58. The specification states that if

customer_1 enters state 4 (has prepaid on pump 1), customer_1 can not enter state 1 (just

received change) until the operator has entered states 14, 20, 24, or 29 (received charge

from pump_1). We also had to add a fairness constraint to ensure the customer_1 task

does not "starve" waiting for its change. We note that adding the fairness constraint

changes the property somewhat.

 FAIRNESS
 (customer__1_task = s1)
 SPEC
 AG ((customer__1_task = s4) -> A [!(customer__1_task = s1) U
 ((operator_task = s29) |
 (operator_task = s24) |
 (operator_task = s14) |
 (operator_task = s20))])

Figure 4.58. Alternate SMV Specification for no_c1p2

 The INCA query for no_c1p2 is shown in Figure 4.59. We specify an interval,

starting at the initial state of the program, that ends after customer_1 has prepaid on

pump_1 an arbitrary number of times. We specify a second interval that ends with the

operator giving customer_1 its change, contains pump_2 providing the charge to the

operator, and forbids pump_1 providing a charge to the operator. If such a pair of

intervals exist, it is possible for customer_1 to receive change based on the charge for

pump_2 after prepaying on pump_1, violating no_c1p2.

 Alternatively, we can avoid using multiple intervals by adding a constraint as shown

in Figure 4.60. The query specifies an interval, starting at the initial state of the program,

ending after the operator has given customer_1 change an arbitrary number of times, in

which the number of times customer_1 has prepaid on pump_1 is at least 2 greater than

the number of times pump_1 has provided a charge for customer_1 to the operator. Note

106

that it is valid for the number of prepays to be one greater, which occurs when

customer_1 has prepaid on pump_1 but has not yet finished pumping.

 (defquery "no_c1p2" "nofair"
 (omega-star-less (sequence
 (interval :initial t
 :open t
 :ends-with '((rend "operator-task;customer_1-task.operator-prepay_1_pump_1-end")))
 (interval
 :ends-with '((rend "operator-task;customer_1-task.change"))
 :require '((rend "pump_2-task;operator-task.charge_1_pump_2"))
 :forbid '((rend "pump_1-task;operator-task.charge_1_pump_1"))))))

Figure 4.59. INCA Query for no_c1p2

(defquery "no_c1p2_con" "nofair"
 (omega-star-less (sequence
 (interval :initial t
 :open t
 :ends-with '((rend "operator-task;customer_1-task.change"))
 :constraints '((>= (- "call(operator-task;customer_1-task.operator-prepay_1_pump_1-end)"
 "call(pump_1-task;operator-task.charge_1_pump_1)")
 2))))))

Figure 4.60. Alternate INCA Query for no_c1p2

 The FLAVERS QRE for no_c1p2 is shown in Figure 4.61. The events of interest are

when customer_1 prepays on pump_1, when customer_1 receives change based on the

charge for pump_1, and when customer_1 receives change based on the charge for

pump_2. The tool should check that the specified sequence occurs on all paths. The

sequence is informally specified as "Whenever customer_1 prepays on pump_1,

customer_1 receives change based on the charge for pump_1 without an intervening event

where customer_1 receives change based on the charge for pump_2.

 { operator_prepay_1_pump_1,cust_1_pump_1_change,cust_1_pump_2_change} all

 [-operator_prepay_1_pump_1]*;
 (operator_prepay_1_pump_1;
 [-cust_1_pump_1_change,cust_1_pump_2_change]*;
 cust_1_pump_1_change;
 [-operator_prepay_1_pump_1]*)*

Figure 4.61. QRE for no_c1p2

107

 We can check no_c1c2 and no_c1p2 accurately without modeling any of the

variables in the program. Without modeling variables, however, we receive spurious

results saying that deadlock is possible. To remove these spurious results, we need to

model the variables that keep track of the numbers of active customers on pump_1 and

pump_2.

4.6 Hartstone

 The hartstone problem is based on the hartstone benchmark program, which

iteratively starts and stops a series of tasks, collecting information about whether or not

each of the tasks meets certain timing deadlines. The problem commonly analyzed in the

literature (and here as well) abstracts away the timing information, retaining the iterative

start/stop communication structure. Our implementation of a size N hartstone program

consists of a set of N tasks, each of which iteratively accepts a start/stop sequence or

terminates, and a main task that iteratively starts and then stops the N tasks using for

loops.

 We have selected two properties to check for the hartstone program. The first of

these is deadlock. The second property can be phrased as "On any iteration in the main

task, can task_3 be started before task_2?" This property checks to see if the start

ordering is preserved in the main task. For ease of reference, we call this property

no_t3t2.

 The never claim for no_t3t2 is shown in Figure 4.62. The FSA for the never claim

stays in the initial state until the error condition (task_3 starting before task_2 on some

iteration) is true. If this ever occurs, the FSA moves to the accept state and SPIN reports

the violation of the never claim and terminates.

 We have used two additional PROMELA variables to keep track of the status of

task_2 and the error condition. When task_2 is started, the variable t_2_started is set to

true and when task_2 is stopped, t_2_started is set to false (clearing the flag for the next

iteration). If task_3 is started and the t_2_started variable is false, the error variable is

108

set to true. This indicates that task_3 has started before task_2 on some iteration, and

SPIN reports the violation of the never claim and terminates.

never {
 do
 :: error == true -> goto accept -- if the error condition occurs, go to accept state
 :: else -> skip -- otherwise, loop back
 od;
accept: -- accept state
 do
 :: skip -- infinite loop; task_3 started before task_2 on some iteration
 od
}

Figure 4.62. Never Claim for no_t3t2

 The assertions to check no_t3t2 are shown in Figure 4.63. When task_2 is started,

we set the t_2_started variable to true. When task_3 is started, we check the assertion

that task_2 was started and set the t_2_started variable to false to clear it for the next

iteration. If the assertion is ever false, task_3 can start before task_2 on some iteration,

and SPIN reports the violation and terminates.

main
 . . .
state_2:
 if
 :: t__2_start!synch -> atomic { t_2_started = true;
 goto state_3 }
 fi;
state_3:
 if
 :: t__3_start!synch -> atomic { assert (t_2_started == true);
 t_2_started = false;
 goto state_4 }
 fi;
 . . .

Figure 4.63. Assertions for no_t3t2

 The SMV specification for no_t3t2 is shown in Figure 4.64. The specification states

that Always, Globally, task_2 goes first (i.e., before task_3). We use two variables to

keep track of the status of task_2 and the fact that task_2 went first. When task_2 is

started, the t_2_started variable is set to true. When task_3 is started, the t_2_first

variable is set to t_2_started and the t_2_started variable is set to false. If task_3 is ever

109

started when t_2_started is false (task_2 has not been started yet), t_2_first is set to

false, and the SMV specification is then false.

 SPEC
 AG (t_2_first)

Figure 4.64. SMV Specification for no_t3t2

 Alternatively, we can avoid modeling the additional variables in SMV by using the

alternate CTL specification shown in Figure 4.65. The specification states that Always,

Globally, if t__1 is in state 3 (just been started), indicating the start of an iteration starting

and stopping the tasks, then t__3 is not in state 3 (started) until t__2 is in state 3 (started).

 SPEC
 AG ((t__1 = s3) -> A [!(t__3 = s3) U (t__2 = s3)])

Figure 4.65. Alternate SMV Specification for no_t3t2

 The INCA query for no_t3t1 is shown in Figure 4.66. We specify an initial interval

starting at the initial state of the program and ending, after an arbitrary number of

iterations, at the beginning of the loop in the main task. The second interval ends with

task_3 starting, but task_2 is not allowed to start within the interval. If such a pair of

intervals exists, it is possible for task_3 to start before task_2 on some iteration of the

loop, violating no_t3t2.

 (defquery "no_t3t2" "nofair"
 (omega-star-less (sequence
 (interval :initial t
 :open t
 :ends-with '((rend "main;t_1.start")))
 (interval :ends-with '((rend "main;t_3.start"))
 :forbid '((rend "main;t_2.start"))))))

Figure 4.66. INCA Query for no_t3t2

 Alternatively, we can avoid using a query with multiple intervals by adding a

constraint as shown in Figure 4.67. We specify an interval, starting at the initial program

state, in which the number of times t_3 has been started is greater than the number of

times t_2 has been started.

110

 (defquery "no_t3t2_con" "nofair"
 (omega-star-less (sequence
 (interval :initial t
 :constraints '((>= (- "call(main;t_3.start)"
 "call(main;t_2.start)")
 1))))))

Figure 4.67. Alternate INCA Query for no_t3t2

 The FLAVERS QRE for no_t3t1 is shown in Figure 4.68. The events of interest are

when task_1 starts and when task_3 starts. The tool should check that the specified

sequence could occur on some path. The sequence is informally specified as "The

sequence task_1 starting; task_3 starting occurs 0 or more times, followed by task_3

starting before task_1." The set of tasks that are started and stopped in this program is

specified as an array of task types. FLAVERS does not currently support using elements

of arrays of task types as communicating tasks, so FLAVERS was not used to check

no_t3t2 in the experiment.

 { task_1_start, task_3_start} none

 [-task_1_start,task_3_start]*;
 (task_1_start;
 [-task_3_start]*;
 task_3_start;
 [-task_1_start,task_3_start]*)*;
 task_3_start;
 [task_1_start,task_3_start]*

Figure 4.68. QRE for no_t3t2

4.7 Memory Management

 The memory management problem is based on the conservative release and allocate

memory management algorithms in [For88]. The problem consists of a set of user tasks,

an allocation procedure that allocates memory to the users from three memory sources, a

release procedure that frees memory no longer required by the users, and a mechanism for

enforcing critical sections and atomic actions. Our implementation of a size N memory

management problem consists of N user tasks, an allocate procedure with three additional

procedures to support allocation, a release procedure with two additional procedures to

support releasing memory, a task to enforce critical sections, a task to enforce atomic

111

actions, a task to monitor when all users are done, a procedure to shut down the system,

and a driver task to start and stop the system.

 We have selected three properties to check for the memory management program.

The first of these is deadlock. The second property can be phrased as "Can two users ever

be in the critical section at the same time?" If we can prove that an arbitrarily selected

pair of users can not be in the critical section concurrently, we can show that mutual

exclusion is enforced for the critical section. By symmetry, checking two specific users is

sufficient; if these two users can not be using the resource concurrently, no two users can.

In our experiment, we check this property for user_1 and user_2. For ease of reference,

we call this property no_u1u2. The third property can be phrased as "Can the system ever

be shut down while a user is allocating memory?" If this property is possible, the system

could shut down before all users were done. By symmetry, checking this property for an

arbitrary user is sufficient. In our experiment, we check this property for user_1. For

ease of reference, we call this property no_sdu1a (for no shut down while user 1

allocating).

 The never claim for no_u1u2 is shown in Figure 4.69. The FSA for the never claim

stays in the initial state until both user_1 and user_2 are in the critical section. If this

occurs, the FSA for the never claim goes to the accept state (and never leaves it), and

SPIN reports the violation of the never claim.

 The assertions to check no_u1u2 are shown in Figure 4.70. When user_1 enters the

critical section, user_1_in_crit_sect is set to true and the assertion that user_2 is not in

the critical section is checked. Before user_1 leaves the critical section, the

user_1_in_crit_sect variable is set to false. Similar assertions are embedded in the

user_2 process. There are actually several places in each user task where the user enters

or leaves the critical section, so we have shown a representative example of the

assertions.

112

never {
 do
 :: (user__1[user_1_pid]@state_3 | user__1[user_1_pid]@state_5 | user__1[user_1_pid]@state_6 |
 user__1[user_1_pid]@state_7 | user__1[user_1_pid]@state_8 | user__1[user_1_pid]@state_9 |
 user__1[user_1_pid]@state_11 | user__1[user_1_pid]@state_13 | user__1[user_1_pid]@state_14 |
 user__1[user_1_pid]@state_15 | user__1[user_1_pid]@state_16 | user__1[user_1_pid]@state_17 |
 user__1[user_1_pid]@state_18 | user__1[user_1_pid]@state_19 | user__1[user_1_pid]@state_20 |
 user__1[user_1_pid]@state_22 | user__1[user_1_pid]@state_23 | user__1[user_1_pid]@state_24 |
 user__1[user_1_pid]@state_25 | user__1[user_1_pid]@state_26 | user__1[user_1_pid]@state_31 |
 user__1[user_1_pid]@state_32 | user__1[user_1_pid]@state_33 | user__1[user_1_pid]@state_34 |
 user__1[user_1_pid]@state_35 | user__1[user_1_pid]@state_36 | user__1[user_1_pid]@state_37 |
 user__1[user_1_pid]@state_38) &
 (user__2[user_2_pid]@state_3 | user__2[user_2_pid]@state_5 | user__2[user_2_pid]@state_6 |
 user__2[user_2_pid]@state_7 | user__2[user_2_pid]@state_8 | user__2[user_2_pid]@state_9 |
 user__2[user_2_pid]@state_11 | user__2[user_2_pid]@state_13 | user__2[user_2_pid]@state_14 |
 user__2[user_2_pid]@state_15 | user__2[user_2_pid]@state_16 | user__2[user_2_pid]@state_17 |
 user__2[user_2_pid]@state_18 | user__2[user_2_pid]@state_19 | user__2[user_2_pid]@state_20 |
 user__2[user_2_pid]@state_22 | user__2[user_2_pid]@state_23 | user__2[user_2_pid]@state_24 |
 user__2[user_2_pid]@state_25 | user__2[user_2_pid]@state_26 | user__2[user_2_pid]@state_31 |
 user__2[user_2_pid]@state_32 | user__2[user_2_pid]@state_33 | user__2[user_2_pid]@state_34 |
 user__2[user_2_pid]@state_35 | user__2[user_2_pid]@state_36 | user__2[user_2_pid]@state_37 |
 user__2[user_2_pid]@state_38) -> goto accept -- go to accept state
 :: else -> skip -- otherwise, loop back
 od;
accept: -- accept state
 do
 :: skip; -- infinite loop
 od
}

Figure 4.69. Never Claim for no_u1u2

user_1 user_2

 :: crit_sect_cs_start!synch -> atomic { :: crit_sect_cs_start!synch -> atomic {
 user_1_in_crit_sect = true; user_2_in_crit_sect = true;
 assert(user_2_in_crit_sect == false); assert(user_1_in_crit_sect == false);
 goto state_21 } goto state_21 }

state_25: state_25:
 user_1_in_crit_sect = false; user_2_in_crit_sect = false;
 if if
 :: crit_sect_cs_end!synch -> goto state_48 :: crit_sect_cs_end_synch!synch -> goto state_48
 fi; fi;

Figure 4.70. Assertions for no_u1u2

 The SMV specification for no_u1u2 is shown in Figure 4.71. The specification

states that Always, Globally, if user_1 is not out of the critical section (i.e., it is in the

113

critical section) then user_2 is out of the critical section and if user_2 is not out of the

critical section then user_1 is out of the critical section.

SPEC
 AG (((!(user__1 = s1) & !(user__1 = s2) & !(user__1 = s4) & !(user__1 = s12) &
 !(user__1 = s21) & !(user__1 = s27) & !(user__1 = s28)) ->
 ((user__2 = s1) | (user__2 = s2) | (user__2 = s4) |
 (user__2 = s12) | (user__2 = s21) | (user__2 = s27) |
 (user__2 = s28)))
 &
 ((!(user__2 = s1) & !(user__2 = s2) & !(user__2 = s4) & !(user__2 = s12) &
 !(user__2 = s21) & !(user__2 = s27) & !(user__2 = s28)) ->
 ((user__1 = s1) | (user__1 = s2) | (user__1 = s4) |
 (user__1 = s12) | (user__1 = s21) | (user__1 = s27) |
 (user__1 = s28))))

Figure 4.71. SMV Specification for no_u1u2

 The INCA query for no_u1u2 is shown in Figure 4.72. We specify an interval

starting at the initial state of the program in which both user_1 and user_2 enter the

critical section, and neither one is allowed to leave the critical section. If such an interval

exists, it is possible for user_1 and user_2 to be in the critical section concurrently.

 (defquery "no_u1u2" "nofair"
 (omega-star-less (sequence
 (interval :initial t
 :open t
 :ends-with '("call(user_1-task;crit_sect-task.cs_start)"

 "call(user_2-task;crit_sect-task.cs_start)")))))

 Figure 4.72. INCA Query for no_u1u2

 The FLAVERS QRE for no_u1u2 is shown in Figure 4.73. The events of interest

are when user_1 and user_2 enter and leave the critical section. The tool should check if

the specified sequence occurs on any path. The sequence is informally specified as

"User_1 and user_2 enter and leave the critical section (without the other user entering

the critical section in the interim) an arbitrary number of times, followed by either user_1

entering the critical section then user_2 entering the critical section before user_1 leaves

the critical section or user_2 entering the critical section then user_1 entering the critical

section before user_2 leaves the critical section".

114

 { user_1_in_crit_sect,user_1_not_in_crit_sect,
 user_2_in_crit_sect,user_2_not_in_crit_sect} none

 [-user_1_in_crit_sect,user_2_in_crit_sect]*;
 (((user_1_in_crit_sect;
 [-user_2_in_crit_sect,user_1_not_in_crit_sect]*;
 user_1_not_in_crit_sect)
 |
 (user_2_in_crit_sect;
 [-user_1_in_crit_sect,user_2_not_in_crit_sect]*;
 user_2_not_in_crit_sect));
 [-user_1_in_crit_sect,user_2_in_crit_sect]*)*;
 ((user_1_in_crit_sect;
 [-user_2_in_crit_sect,user_1_not_in_crit_sect]*;
 user_2_in_crit_sect)
 |
 (user_2_in_crit_sect;
 [-user_1_in_crit_sect,user_2_not_in_crit_sect]*;
 user_1_in_crit_sect));
 [user_1_in_crit_sect,user_1_not_in_crit_sect,
 user_2_in_crit_sect,user_2_not_in_crit_sect]*

Figure 4.73. QRE for no_u1u2

 The third property we check on the memory management program is no_sdu1a. The

never claim for no_sdu1a is shown in Figure 4.74. The FSA for the never claim stays in

the initial state until the system has shut down and user_1 is still in the process of

allocating memory. If this occurs, the FSA for the never claim goes to the accept state

(and never leaves it), and SPIN reports the violation of the never claim. We set the

user_1_allocating variable to true when user_1 starts allocating and to false when user_1

stops allocating.

never {
 do
 :: final[final_pid]@endstate_4 & -- if the system has shut down and
 user_1_allocating == true -> goto accept -- user_1 is allocating, go to accept
 :: else -> skip -- otherwise, loop back
 od;
accept: -- accept state
 do
 :: skip -- infinite loop; system shut down while
 od -- user_1 was allocating
}

Figure 4.74. Never Claim for no_sdu1a

115

 The assertions to check no_sdu1a are shown in Figure 4.75. When user_1 starts

allocating memory user_1_allocating is set to true and when user_1 stops allocating

memory user_1_allocating is set to false. The system shuts down when the task named

final goes to state end_s3. If the assertion is ever false, the system has shut down while

user_1 was allocating, violating no_sdu1a.

final
 . . .
 :: mem__driver_final_go_end!synch ->
 atomic { assert(user_1_allocating == false);
 goto endstate_4 }
 . . .

Figure 4.75. Assertions for no_sdu1a

 The SMV specification for no_sdu1a is shown in Figure 4.76. The specification

states that Always, Globally, if the system has been shut down (final = s3) then user_1 is

not allocating. The user_1_allocating variable is set and cleared as described above.

 SPEC
 AG ((final = s3) -> !user_1_allocating)

Figure 4.76. SMV Specification for no_sdu1a

 Alternatively, we can avoid using the user_1_allocating variable in SMV by using

the alternate CTL specification shown in Figure 4.77. The specification states that

Always, Globally, if user_1 is in state 2 (just started allocating), final can not go to state 4

(terminate) until user_1 goes to state 4 or 27 (stops allocating). Note that we had to also

add a fairness constraint to ensure user_1 doesn't "starve" waiting to stop allocating,

which changes the property somewhat.

 FAIRNESS
 (user__1 = s27)
 SPEC
 AG ((user__1 = s2) -> A [!(final = s4) U ((user__1 = s4) |
 (user__1 = s27))])

Figure 4.77. Alternate SMV Specification for no_sdu1a

 The INCA query for no_sdu1a is shown in Figure 4.78. We specify an interval,

starting at the initial state of the program, that ends after user_1 has started allocating an

116

arbitrary number of times. We specify a second interval in which the system is shut down

(at the end of the go entry) and user_1 is not allowed to stop allocating. If such an

interval exists, it is possible for the system to shut down while user_1 is allocating,

violating no_sd1ua.

 (defquery "no_sdu1a" "nofair"
 (omega-star-less (sequence
 (interval :initial t
 :open t
 :ends-with '("internal(user-task_1;user_1_allocating)"))
 (interval
 :ends-with '((rend "final;driver.final-go-end"))
 :forbid '("internal(user-task_1;user_1_not_allocating)")))))

Figure 4.78. INCA Query for no_sdu1a

 Alternatively, we can avoid using multiple intervals by adding a constraint as shown

in Figure 4.79. We specify an interval, starting at the initial state of the program, that

ends with system shut down, and include a constraint that user_1 has started allocating

more times than it has stopped allocating (and is thus allocating at the end of the interval).

 (defquery "no_sdu1a_con" "nofair"
 (omega-star-less (sequence
 (interval :initial t
 :ends-with '((rend "final;driver.final-go-end"))
 :constraints '((>= (- "internal(user-task_1;user_1_allocating)"
 "internal(user-task_1;user_1_not_allocating)")
 1))))))

Figure 4.79. Alternate INCA Query for no_sdu1a

 The FLAVERS QRE for no_sdu1a is shown in Figure 4.80. The events of interest

are when user_1 starts and stops allocating memory and when the system shuts down.

The tool should check that the specified sequence could occur on some path. The

sequence is informally specified as "The sequence user_1 allocating; user_1 not

allocating occurs 0 or more times, followed by user_1 allocating and the system shutting

down before user_1 stops allocating."

 We can accurately check all the properties without modeling any variables in the

program. We also analyzed the properties while modeling a variable in each user task

117

that keeps track of whether or not memory has been allocated to determine impact on

analysis time.

 { user_1_allocating,user_1_not_allocating,mmgt_crit_sect_whoa} none

 [-user_1_allocating,user_1_not_allocating,mmgt_crit_sect_whoa]*;
 (user_1_allocating;
 [-user_1_not_allocating,mmgt_crit_sect_whoa]*;
 user_1_not_allocating;
 [-user_1_allocating,user_1_not_allocating,mmgt_crit_sect_whoa]*)*;
 user_1_allocating;
 [-user_1_not_allocating,mmgt_crit_sect_whoa]*;
 mmgt_crit_sect_whoa;
 [user_1_allocating,user_1_not_allocating,mmgt_crit_sect_whoa]*

Figure 4.80. QRE for no_sdu1a

4.8 Ring

 The ring problem [Cor94] is based on a simulation of token ring access to a resource.

The problem contains a ring of servers, each of which has an associated master. Each

master iteratively requests and then releases the resource. When a master requests the

resource, the associated server checks if it is holding the token. If it is, the request is

granted, otherwise the server tells the next server in the ring that it needs the token and

waits to grant the request until it has received the token. When the master releases the

resource, the server will pass the token along if the previous server in the ring needs it. If

the previous server needs the token and the server is not holding the token, the server tells

the next server in the ring that it needs the token, and passes it to the previous token when

it has received it. Our implementation of a size N ring program consists of N server tasks

and N master tasks. Each server task uses a token variable to indicate if it holding the

token or not and a using variable to indicate whether the associated master is using the

resource or not.

 We have selected two properties to check for the ring program. The first of these is

deadlock. The second property can be phrased as "Can two masters ever be using the

resource at the same time?" Because there may be a difference between two adjacent

masters, two masters with another master between them, and so on, we can not use a

118

symmetry argument to say that checking any two masters is sufficient. For our purposes,

however, we check the property for master_1 and master_2, and view a proof that the

property holds as one piece of evidence needed to show that the more general property

holds. For ease of reference, we call this property no_m1m2.

 The never claim for no_m1m2 is shown in Figure 4.81. The FSA for the never claim

stays in the initial state until both master_1 and master_2 are using the resource. If this

occurs, the FSA for the never claim goes to the accept state (and never leaves it), and

SPIN reports the violation of the never claim.

never {
 do
 :: master__1[master_1_pid]@state_3 & -- if master_1 and master_2 are both using
 master__2[master_2_pid]@state_3 -> goto accept -- the resource, go to accept state
 :: else -> skip -- otherwise, loop back
 od;
accept: -- accept state
 do
 :: skip
 od
}

Figure 4.81. Never Claim for no_m1m2

 While this was an intuitive property to specify, we had to use the "atomic"

PROMELA construct to force the release of the resource and the transition of the

releasing master to its new state to occur as an atomic action. Otherwise, when SPIN

performs the analysis it would be possible for the resource to be released by master_1 (for

instance), and then for master_2 to acquire the token and enter state 3 before master_1

executed its transition out of state 3.

 The assertions to check no_m1m2 are shown in Figure 4.82. When master_1 starts

using the resource, the master_1_using variable is set to true and the assertion that

master_2 is not using the resource is checked. Before master_1 stops using the resource,

the master_1_using variable is set to false. Similar assertions are embedded in the

master_2 process. If either of the assertions is ever false, master_1 and master_2 are

using the resource at the same time, and no_m1m2 is violated.

119

master_1
 . . .
state_2:
 if
 :: master_1_server_1_request_end?synch -> atomic { master_1_using = true;
 assert(master_2_using == false);
 goto state_3 }
 fi;
state_3:
 master_1_using = false;
 . . .

Figure 4.82. Assertions for no_m1m2

 The SMV specification for no_m1m2 is shown in Figure 4.83. The specification

states that Always, Globally, if master_1 is using the resource then master_2 is not and if

master_2 is using the resource master_1 is not.

 SPEC
 AG (((master_1 = s3) -> !(master_2 = s3)) &
 ((master_2 = s3) -> !(master_1 = s3)))

Figure 4.83. SMV Specification for no_m1m2

 The INCA query for no_m1m2 is shown in Figure 4.84. We specify an interval

starting at the initial state of the program ending after master_1 and master_2 have started

using the resource an arbitrary number of times. If such an interval exists, it is possible

for master_1 and master_2 to be using the resource concurrently.

 (defquery "no_m1m2" "nofair"
 (omega-star-less (sequence
 (interval :initial t
 :ends-with '((rend "server_1;master_1.server_1-request-end")
 (rend "server_2;master_2.server_2-request-end"))))))

 Figure 4.84. INCA Query for no_m1m2

 The FLAVERS QRE for no_m1m2 is shown in Figure 4.85. The events of interest

are when master_1 and master_2 start using the resource and release the resource. The

tool should check that the specified sequence occurs on all paths. The sequence is

informally specified as "Any event but master_1 or master_2 starting to use the resource

occurs 0 or more times, then either master_1 starts using the resource and releases it

without an intervening master_2 starting to use it, or master_2 starts using the resource

120

and releases it without an intervening master_1 starting to use it, then any events but

master_1 or master_2 starting to use the resource occurs 0 or more times".

 { master_1_start_using, server_1_release,
 master_2_start_using, server_2_release} all

 [-master_1_start_using, master_2_start_using]*;
 (((master_1_start_using;
 [-master_2_start_using, server_1_release]*;
 server_1_release)
 |
 (master_2_start_using;
 [-master_1_start_using, server_2_release]*;
 server_2_release));
 [-master_1_start_using, master_2_start_using]*)*

Figure 4.85. QRE for no_m1m2

 We cannot accurately check no_m1m2 when we do not model any variables in the

program, but we can check it accurately by modeling the token and using variable for

each server task. We therefore include analysis runs modeling these variables in the

experiment.

121

CHAPTER 5

METRICS AND MEASUREMENTS

 This chapter describes the metrics used as predictor variables and the measurements

used as response variables in our experiment. We hypothesize that there are certain

characteristics of programs that affect the feasibility of analysis and the accuracy of the

analysis results for those programs. In addition, we believe that certain characteristics of

a property being checked may also affect feasibility and analysis accuracy for that

property on a given program. Our goal is to use statistical regression techniques to

determine how well each of the program and property characteristics predicts the values

of the response variables. The resulting regression equations can then be used as

predictive models to predict each tool's analysis performance given a specific program

and property.

5.1 Metrics

 For our purposes, a metric is defined as a measurement of some characteristic of the

program or property of interest. We divide our metrics into three categories: program

metrics, internal representation metrics, and property metrics. The program metrics are

used to capture characteristics of the Ada programs being analyzed. The internal

representation metrics are used to capture characteristics of the set of FSAs for that

program, the set of TIGs for that program, and the state space and transition relation for

SMV. The property metrics are used to capture characteristics of the SPIN never claim

and assertions, INCA query, and FLAVERS Property Automaton for each property. We

treat the program, internal representation, and property metrics as predictor variables in

the experiment.

 The metrics have been selected in a number of ways. Characteristics that affect

analysis feasibility based on the theoretical bounds of the techniques are included, as are

122

other characteristics that we believe may have an effect on analysis performance. Metrics

that have been proposed in the concurrency analysis literature are also included.

5.1.1 Program Metrics

 The program metrics are used to capture certain characteristics of the Ada program

being analyzed. These characteristics include several measures of the size of the

program, various measures of nondeterminism in the program and other characteristics of

the program structure, and a metric indicating how many variables are modeled in the

representations.

 The theoretical upper bound on the number of possible program states for a

concurrent program is exponential in the number of tasks in that program. We therefore

include the number of tasks in the program (T) as one of the program metrics.

 We suspect that the number of possible communications in a program affects the

number of reachable states for that program. To calculate the number of

communications, Ci, for a task Ti, we add the number of accept statements in the task to

the number of entry calls in the task. We use two measures of communication size as

metrics - the average number of communications for the set of tasks in the program, given

by C
T

Ci
i

T

=
�
��

�
��=

�
1

1

 and the maximum number of communications in the set of tasks for the

program, given by MaxC Ci= max().

 One of the characteristics of concurrent Ada programs that makes them particularly

difficult to analyze is nondeterminism. None of the metrics above try to account for

nondeterminism in the program being analyzed. Damerla and Shatz [DS92] propose

several metrics that we also include in our experiment; the metrics are intended to

quantify the nondeterminism in Ada programs. A metric called Alpha is used to account

for the nondeterminism in entries when several tasks can make entry calls on those entries

(entry nondeterminism). Alpha is given by ()Callsii

e
−

=
� 1
1

, where e is the number of entries

not contained in selects and Callsi is the number of calls on entry i. The one is subtracted

123

because an entry with only one caller is deterministic. A metric called Alpha' is similar to

Alpha, but also takes into account the clustering and spreading of entry calls. Entry calls

on a given accept are clustered when they occur in a single task; entry calls on a given

accept are spread when they occur in multiple tasks. For example, if all the entry calls on

a given accept are clustered in the same task, the entry nondeterminism for this accept

should be 0. Alpha' for a particular accept a is given by
ia ix TT' () * (())Alpha = − +Π 2 1 ,

where xi is the sum of entry calls in task i on the accept a and T is the number of tasks

making calls on the accept. Alpha' is given by
aa

e 'Alpha
=
�

1
. The metric Beta is used to

account for the nondeterministic selection of rendezvous within select statements (select

nondeterminism). Beta is given by ()Callsii

s
−

=
� 1
1

, where s is the number of selects and

Callsi is the number of calls on entries within select i. The one is subtracted because a

select with only one call on an entry within the select is deterministic. Similarly to Alpha'

, a metric Beta' is defined to account for entry call spreading and clustering. Beta' for a

particular select a is given by
ia ix TT' () * (())Beta = − +Π 2 1 , where xi is the sum of entry

calls in task i on alternatives in the select and T is the number of tasks making calls on

alternatives in the select. Beta' is given by
aa

s
'Beta

=
�

1
. The metrics Gamma (Alpha +

Beta) and Gamma' (Alpha' + Beta') are used to account for total nondeterminism.

 Levine and Taylor [LT93] propose a metric similar to Gamma called Cnd to account

for nondeterminism. Cnd is given by () ()Callsii
Calledii

e s s
−

=
� + −

=
�

+
1

1
1

1
, where Callsi is the

number of entry calls on entry i and Calledi is the number of select alternatives with one

or more callers. The difference between Cnd and Gamma is that Cnd includes entry

nondeterminism for all entries (as opposed to excluding those in selects) and counts the

number of select alternatives with one or more callers when calculating select

nondeterminism. To account for clustering and spreading, Cnd' is defined as

 ((ijx iT
i

ijz iR
ij

iT
iT

e s

j

iR
iR

s

=

+

=
∏ − + +

=
� ∏ − +

=
�

1 1
2 1

1
2 1

1
* (())) * (())).

124

Ti is the number of task with calls on entry or select statement i, xij is the number of entry

calls in task j on entry i, Ri is the smaller of Ti and the number of alternatives of select

statement i with one or more callers, and zij is the number of entry calls in task j on entry

alternatives in select statement i (if Ri = Ti) or the number of alternatives in select

statement i with one or more calls in task j.

 Levine and Taylor also propose a metric, Cif, for capturing the communication

structure or information flow for the tasks comprising the program. Cif is given by

 ()()
ln

in edgesi out edgesii

T T
− −

=
�
�
�

�
�1

,

where T is the number of tasks in the program, in-edgesi is the sum of task entries and

shared variables read in task i, and out-edgesi is the sum of entry calls and shared

variables written by task i. Cnd, Cnd', and Cif are also included in our experiment.

 As discussed earlier, we sometimes choose to model certain variables to try to

improve the accuracy of the analysis. When we do so, both the accuracy and the time to

complete the analysis are almost always affected. While we capture some of the effects

of this modeling indirectly through the metrics described above, we also explicitly

include a metric, Vars, that specifies the number of variables that are modeled in the

program.

5.1.2 Internal Representation Metrics

 The internal representation metrics are used to capture characteristics of the set of

FSAs for a given program, the set of TIGs for that program, and the state space and

transition relation for the SMV representation of the program. These characteristics

include several measures of the sizes of the representations and a measure of the graph

theoretic complexity of the program in terms of TIGs.

 As noted above, the upper bound for the number of states in a concurrent program is

exponential in the number of tasks, T. When the program is represented by a set of FSAs,

125

the upper bound is given by NT, where N is given by
1

1T
ni

i

T

=
�
�
��

�
�� and ni is the number of

states in task i. We therefore include N as a predictor variable. We also include the

maximum number of states in an FSA, MaxN ni= max() , as a predictor variable, because

a large number of states in an FSA for one of the tasks could significantly affect N.

Wampler has proposed the metric NT/2 as a good predictor of reachability graph size, at

least for some programs [Wam85] and we include the WFSA (for Wampler, FSAs)

metric in our experiment as well.

 Because we believe the communications between the FSAs will affect the analysis,

we include two measures of communication size for the FSAs, noting that in general

transitions in the FSAs represent accepts or entry calls in the original program. We

include the average number of transitions in the set of FSAs for the program, given by

TRANS
T

Transi
i

T

=
�
��

�
��=

�
1

1

 and the maximum number of transitions in the set of FSAs for

the program, given by MaxTRANS Transi= max().

 The above metrics can also be calculated for the set of TIGs for a given program

(rather than the set of FSAs). We call the average number of nodes in the set of TIGs TN,

the maximum number of nodes MaxTN, the average number of edges TE, the maximum

number of edges MaxTE, and the Wampler metric WTIG (for Wampler, TIGs). We

calculate these metrics for TIGs as well because a TIG is a conceptually different

representation of a task than an FSA. The key difference is that the FSAs include

information about choices in the task based on variable values, while TIGs abstract that

information away. We note that the elision of variable information tends to yield TIGs

that are smaller, in some cases much smaller, than the FSAs for the same tasks.

 Levine and Taylor [LT93] propose a metric, called Cgt, intended to capture the

graph theoretic complexity of the program. Cgt is given by E - N + T + 1, where E is the

number of entry calls and accepts in the program, N is the number of TIG nodes in the

126

program, and T is the number of tasks in the program. Cgt is included as a predictor

variable.

 In addition to the metrics above, we also include two characteristics of the SMV

system as predictor variables. We include the total number of task states (SMV St)

because this number is related to the total number of sequential regions in the program.

We also include the number of transitions in the transition relation (SMV Tr) as a

predictor variable, because each transition represents a possible communication in the

program.

5.1.3 Property Metrics

 We believe that characteristics of the property being analyzed might affect the

feasibility and accuracy of analysis of that property on a given program. We therefore

attempt to capture characteristics of these properties through certain metrics on the

property specifications for the tools. The property metrics are used to capture

characteristics of the SPIN never claim and assertions, INCA query, and FLAVERS

Property Automaton for each property.

 Since expressing a property as an FSA seems to be a general and intuitive technique,

we include three metrics on FLAVERS Property Automata to capture the size of the

property. We include the size of the event alphabets (i.e., number of events of interest)

and the number of states in the automaton as predictor variables. We include the number

of transitions in the automaton that do not directly lead to a violation of the property,

which gives us another measure of the size of the property.

 We can capture the number of events of interest in the property by considering the

INCA query as well, so we include the number of distinct events in the INCA query as a

predictor variable. We also include the number of intervals in the INCA query, since

multiple intervals in the query can significantly increase the size of the system of

inequalities.

127

 While FLAVERS QREs and INCA queries tend to be in terms of events, checking a

property in SPIN entails specifying the property in terms of states. The SPIN never claim

is essentially an FSA for the property, so we include the number of states and transitions

in the never claim as predictor variables. We also include the number of assertions and

the number of assignments to variables used in the assertions as measures of the amount

of information needed to check the property.

5.2 Measurements

 We consider a variety of measurements as response variables in the experiment.

These measurements have been chosen as indicators of the feasibility and utility of using

a particular tool to analyze a given program and property. The measurements can be

broken into two categories: feasibility measurements and accuracy measurements.

 The feasibility measurements are used to indicate whether each tool could be used to

analyze a given program and property. The total analysis time for the program and

property is a good indicator of feasibility, so we include analysis time as a response

variable. Whether or not each analysis fails (takes more than 5 hours or terminates

because of exhausted memory, an internal error, or inability to compile) is considered to

be a good indicator of feasibility, so we include a boolean measure of failed/not failed as

a response variable.

 While the feasibility of using an analysis tool on a given program and property is

clearly an important consideration, the utility of the tool is also determined by the

accuracy of the analysis results. Whether or not each analysis yields spurious results is

considered to be a good indicator of accuracy, so we include a boolean measure of

spurious/not spurious as a response variable.

128

CHAPTER 6

STATISTICAL ANALYSIS TECHNIQUES

 This chapter describes the statistical analysis techniques we use to analyze our

experimental data and to generate our predictive models. We present our data collection

strategy, discuss the statistical tests we apply to check for bias, explain the preprocessing

required before applying the regression techniques, discuss our techniques for generating

the predictive models from the data, and describe our analysis of the resulting models and

their associated parameters.

 All statistical analysis is performed using SPSS from SPSS Inc. and CLASP from the

University of Massachusetts, Amherst.

6.1 Data Collection Strategy

 To collect the data for the experiment, we attempted five analysis runs for each

analysis case; each analysis case represents a certain tool/configuration/size/property

combination. With the exception of INCA, which must be run in a Lisp environment, the

set of analysis cases for all the tools were run in a random order. The run order was

randomized to reduce caching effects, which could cause runs 2 through 5 to run more

quickly than the first run for a given analysis case. For INCA, we randomized the order

of INCA analysis cases, though INCA runs are not interspersed with runs of other tools

since INCA is the only tool that must be run in a Lisp environment.

 For each analysis case, we took the mean of the five runs as the analysis time. We

also calculated confidence intervals for each of these means to ensure that we are using an

analysis time that is a reasonable estimate of the "true" analysis time. Large variations in

the measurement times for a given analysis case lead to wide confidence intervals,

showing that we are "less sure" of the accuracy of our time measurement. Since the tools

are deterministic, large confidence intervals may indicate that other factors (such as

129

system loading) are impacting the analysis times. In extreme cases, large confidence

intervals led us to rerun the set of analysis cases.

 To calculate the confidence intervals, we took the mean, x , of the five runs as an

estimate of the analysis time. We used the standard deviation, s, of the set of five times

to calculate the estimated standard error of the mean, given by �σx

s=
5

. We then

calculated the confidence interval as x x± 2 776. * �σ . The 2.776 value is from a t-

distribution with 4 degrees of freedom for confidence at the 0.05 level for a two-tailed

test. Because we do not know if our mean analysis time is higher or lower than the true

population mean, a two-tailed test is appropriate.

6.2 Checking for Bias Statistically

 Running each tool/configuration/size/property five times also provides data for

statistically checking for bias in our experiment. To explain our technique, we discuss

checking to see whether using assertions rather than never claims introduces bias against

SPIN, but the methodology for the checking the other biases is identical.

 To check whether using assertions adversely impacted SPIN analysis times, we

perform a standard form of hypothesis testing. In hypothesis testing, a null hypothesis

(H0) and an alternative hypothesis (H1) are formed, a set of data is collected, and the

probability of collecting that set of data given the null hypothesis is calculated. Note that

H1 does not have to be the exact opposite of H0. If this probability is very small (less

than 0.05 is typically considered significant), we can reject the null hypothesis (and

accept the alternative hypothesis) with a small probability of doing so incorrectly. If we

do not reject the null hypothesis, we have not proved it - we have simply been unable to

reject it given the data at hand.

 The null hypothesis for our example is that analysis times using assertions are equal

to analysis times using never claims. For our alternative hypothesis, we check whether

the analysis times are different. This is called a two-tailed test, since our alternative

130

hypothesis considers both ends of the distribution of possible data samples given by the

null hypothesis. Strictly speaking, our hypotheses are actually concerned with the means

of sets of analysis times (sets of 5, given our data collection strategy), which gives us a

standard test for our hypotheses - the two sample t-test.

 To use the two sample t-test, we calculate t
x x

x x

N A

N A

= −
−�σ

, where xN is the mean of the

analysis times using never claims, xA is the mean of the analysis times using assertions,

and
N Ax x−�σ is calculated from the standard deviations of the two samples and the sample

size (5). Essentially, the t value quantifies the probability that both samples were drawn

from populations with equal means.

 Given a t value, we reference a table (or let our software reference a table) of t-values

and probabilities given the sample size. We can determine the probability of the t value

given the null hypothesis, and if that probability is less than 0.05, we reject the null

hypothesis and accept the alternative hypothesis that the analysis times are actually

different. If this occurs, we then conduct a one-tailed test to check the alternative

hypothesis that assertion analysis times are actually faster than never claim analysis times.

If we can reject the null hypothesis for this case, this will imply that we have not

introduced bias against SPIN by using assertions.

 As described above, we use a two sample t-test to check the possibility of bias for a

given tool/configuration/size/property. We also would like to know whether bias has

been introduced over all the programs, sizes, and properties. To do this, we can use a

paired-sample t-test.

 In a paired sample t-test, both the never claim and assertion analyses are run on the

same set of programs, sizes, and properties. For each such program/size/property, the

difference between the two analysis times is calculated. The mean of the resulting

distribution of differences is called δx and the standard deviation of the distribution is

called δs . The t value is given by δ δ

δ

µx

s N

−
, with δµ = 0 given our null hypothesis that the

131

means are equal (so the mean of the differences will be 0). The t value is checked as

before, and we reject the null hypothesis at the 0.05 level when possible. If we reject the

null hypothesis, we should then determine whether or not using assertions yields smaller

analysis times by conducting a one-tailed test.

6.3 Preprocessing the Data

 It has been noted in the literature that high linear correlations between several (or

many) of our predictor variables can cause problems [Bla70, HL89] in both of the

regression techniques that we use. It is therefore necessary for us to preprocess our

experimental data, removing predictor variables that are highly correlated to other

predictors.

 One relatively straightforward way to detect multicollinearity is to consider the

pairwise Pearson correlation coefficients for the predictor variables [NWK85]. Pearson's

correlation coefficient provides an estimate of the linear relationship between two

variables x and y. The coefficient ranges from -1.0 to 1.0, with a coefficient magnitude

close to 1.0 indicating a strong relationship and a magnitude close to 0.0 indicating no

linear relationship. We note that a low correlation only indicates that the variables are not

linearly associated; they could still be related in some non-linear way. If we find a high

correlation coefficient between two predictor variables, this provides strong evidence that

the variables are collinear, implying that we should elide one of them from the model.

 Before omitting certain variables from the model, we would like some assurance that

the correlation coefficients represent a systematic linear relationship and did not simply

occur by chance. Standard statistical tests are not applicable, since our concern is about

distributions of the correlation coefficients rather than distributions of the mean.

However, we can use randomization tests, in conjunction with correlation, to test the

hypothesis that two samples are linearly dependent [Coh95].

 To conduct the randomization test, we randomly pair up values of the first and

second variables and calculate the correlation coefficient. This gives us a single point in

132

the distribution of correlation coefficients that are possible for our set of data, given the

null hypothesis that the two variables are in fact linearly independent. We then repeat the

random pairing and coefficient calculation many times (in our case, 1000) to build a

distribution of possible correlation coefficients. We then take the correlation coefficient

with the true pairing (i.e., matching variable values for the same analysis cases) and

determine where this correlation coefficient falls on the generated distribution. If the

coefficient falls below the 5th value in the distribution or above the 995th value

(conceptually, p < 0.05), we can reject the null hypothesis with high confidence, i.e., we

can state that there is a linear dependence between the two variables with only a small

probability that we are wrong. We conduct the randomization test on all variable pairs

that have a correlation coefficient magnitude greater than 0.75. We note that

randomization tests do not provide results that are generalizable to populations, so the

two variables could in fact be linearly independent over the set of all possible data. The

tests do, however, provide sufficient power given our specific data set.

 When we discover a set of variables that are collinear to each other, we remove all

but one of those variables from the regression analysis. The decision about which

collinear variables to elide is not critical from the standpoint of the fit of the model we

create, since the reason we're omitting the variables is because they provide the same

influence as the variables we include in the model. In an effort to make the predictive

models more intuitive, however, our tendency is to prefer variables representing the

program metrics over those representing the internal representation metrics, and to prefer

simpler internal representation metrics over more complicated ones.

6.4 Building the Models

 One of the goals of our experiment is to provide a set of data on which we can apply

statistical analysis techniques to generate predictive models. These predictive models can

then be used by an analyst to select an appropriate analysis tool given a specific program

and property. We have selected our response variables to let us predict analysis time,

133

whether or not an analysis will fail, and whether or not an analysis is likely to yield

spurious results. We note that standard linear regression techniques are appropriate for

building the predictive models of analysis time, while logistic regression is a sounder

choice for predicting the dichotomous failure and spurious result responses.

6.4.1 Linear Regression

 Linear regression models can be used as approximations of the functional

relationship between a response variable and a set of predictor variables [MP82]. We use

linear regression to build our predictive models of analysis time based on the set of

metrics selected for inclusion using the preprocessing discussed above.

 In linear regression, the form of the predictive model is y x xi i= + + + +0 1 1β β β ε... ,

where y is the predicted value, each xi is a metric, each βi is a coefficient calculated using

linear regression, and ε is an error term. The regression coefficients are calculated using

a linear least squares fit to the data. To make the regression coefficients comparable

among the metrics, we use standardized variables, which in essence puts each xi on the

same scale. The magnitudes of the resulting standardized regression coefficients can then

be used to consider the relative predictive powers of each metric. Note that larger

coefficients (positive or negative) indicate stronger predictive power.

 To select which variables to include in the linear model, we first check for

multicollinearity as described above. We then have a choice of a number of methods for

selecting from the remaining variables [DS66]. One alternative is to include all the

remaining variables in the linear regression. Another method, called backward

elimination, starts with all the variables and iteratively removes variables that have a

small effect on the predictive model. A third method, called forward selection, starts with

a single variable and iteratively adds variables until the remaining variables have an

insignificant effect on the predictive model. Finally, stepwise regression, an improved

version of forward selection, can be used to iteratively add variables and reconsider those

included in the model at each step.

134

 The idea behind careful variable selection is to generate a parsimonious model that

still captures a large amount of the variance in the data. Because our metrics are

automatically calculated, we are not concerned with the cost of collecting variable

information for use in the predictive model. It is possible, however, to overfit the model

to the data by using more variables than are necessary. In an overfitted model, the

coefficients can be numerically unstable and can change significantly with the inclusion

of additional data points. The overfitted model is thus very good for predicting the

relationships in the data from which it is built, but may not be as useful as a general

predictive model. We therefore apply all of the above model building techniques to try to

build a reasonable model. For the backward elimination technique, we use a probability

of 0.10 for removal from the model; for forward selection and stepwise regression, we

use a probability of 0.05 for inclusion in the model.

6.4.2 Logistic Regression

 While linear regression is a widely used for predicting continuous response variables,

it is not appropriate for predicting dichotomous response variables [Agr84]. Because

linear regression assumes that the response variable has a continuous range of values, it

can not be applied when the response variable can only have two values (true and false,

for instance). Logistic regression is the proper technique for these variables, so we use

logistic regression to build our predictive models for failure and presence of spurious

results. The description below is largely based on information in [HL89].

 In logistic regression, the logit is given by g x x xk k() ...= + + +0 1 1β β β . The logit is

transformed into π()
()

()
x e

e

g x

g x
=

+1
, which is used for coefficient calculation. To calculate

the coefficients in the equation, a maximum likelihood function is used to calculate the

effect of each data point and iterative methods are used to solve the resulting nonlinear

equations. The form of the resulting predictive model is y x= +π ε() .

135

 To select the variables for inclusion in the logistic regression model, we preprocess

the data as described above. Some statistical analysis philosophies claim that all

variables that have scientific significance should be included in the model. Since it is

unclear at this time which of the predictor variables (i.e., metrics) are important, we build

our logistic regression models starting with all the (preprocessed) predictor variables. We

build these models using three techniques: forcing all variables to be included, using

backward stepwise elimination of variables, and using forward stepwise selection of

variables. The stepwise techniques are analogous to those described above for linear

regression. Again, we use p=0.10 for elimination and p=0.05 for inclusion. We then

compare the resulting models to each other and select a reasonable model based on the

criteria discussed in Section 6.5.

6.5 Analyzing the Models

 After using linear or logistic regression to generate our predictive models, we

examine those models in several ways. We consider goodness of fit to determine how

well the model fits the data, we examine the residuals to check our assumptions about

errors in the model, and we check for outliers using the residuals.

6.5.1 Goodness of Fit

 To determine how well a predictive model fits the data used, we need some measure

of how well the model captures the variance in the data. For linear regression, the

standard measure of this is the Multiple Correlation Coefficient Squared, or R2. R2 is

given by 2 1R
SS

S
E

yy

= − . The residual sum of squares, SSE , is given by
2

1
(�)iy iy

i

N
−

=
� , which

squares the difference between the actual and predicted value of the response variable

(called the residual) at each data point. Syy is a measure of the total variability in the

response variable. Thus, R2 measures how much of the variance in the response variable

is captured by the predictive model. R2 ranges from 0 to 1, with a magnitude near 1

indicating that the model explains most of the variance in the data.

136

 In logistic regression, the deviance can be used to measure the amount of deviation

captured by the fitted model. Deviance is given by

 D y
y

y
yi

i

i
i

i

ii

n

= −
�
��
�
��+ − −

−
�
��

�
��

�
�
	

�
�

=
�2 1

1

11

ln
�

() ln
�π π ,

with the observed value at data point i given by iy , and the estimated value of π for that

point given by i�π . The deviance in logistic regression is analogous to the residual sum of

squares in linear regression. Because the deviance quantifies how much of the variance

in the data is captured by a specific model (with a smaller deviance indicating a better fit),

we use this value as one of our considerations when choosing between the models. We

believe the percent of the predictions by the model that are correct to be an even more

important consideration, so we use these values as our primary consideration when

selecting a logistic regression model.

 For both of the regression techniques, unrealistically large coefficients or standard

errors of the coefficients are indicative of numerical problems in the analysis. They can

indicate multicollinearity that was not removed by our preprocessing, and they can also

support the inference that the model has been overfit to the data.

6.5.2 Residual Analysis

 The above regression techniques assume that the errors (i.e., residuals) in the model

are independent, have zero mean, constant variance, and follow a normal distribution

[DS66]. These assumptions can be checked using plots of the standardized residuals

against the predicted response values (i i
i

N

Y y� �= �
=1

).

 The structure we would expect to find in these plots, given our assumptions about the

errors in the model, is essentially a horizontal line with residual values scattered

randomly above and below zero. If we find that the "spread" of the residuals increases (or

decreases) as the value of the response or predictor variable increases, we should suspect

that the variance is not constant. Techniques exist to account for this problem - for

137

instance, using a weighted least squares fit rather than the standard least squares fit. If we

find structure in the residual plots, such as an obvious quadratic component, additional

quadratic or cross-product terms in the model can be used to remove this structure. Our

analysis stops at recognition of such problems - we do not apply the more advanced

regression techniques.

 We note that visual inspection of the residual plots is a somewhat informal technique

for checking our assumptions. While more formal statistical techniques have been

proposed for checking these assumptions, the informal techniques are generally sufficient

for recognizing serious violations of the assumptions [DS66].

6.5.3 Identifying Outliers

 Outliers in our data can have a significant effect on the resulting model, particularly

for linear regression. We would therefore like to recognize such outliers so we can

investigate them further. It is not generally prudent to eliminate an outlier simply for

statistical reasons, and we are unlikely to eliminate any outliers from the data since we

don't know if the outliers are in fact more representative of "real" concurrent programs

than the more normal points in our data. We do, however, want to recognize the outliers

in our data to further examine them to gain insight into why these particular points are

outliers.

 One method for recognizing outliers is by doing so visually on the residual plots

described above. Points that are significantly separated from the other points are

indications of outliers, and should be investigated further. Another, more formal method,

uses studentized residuals. A studentized residual is a residual that has basically been

standardized by dividing by the square root of the variance of the residual. Given a

studentized residual, we can check a table of threshold values (for a given probability) to

determine if the point should be considered an outlier [DW80]. We apply both these

methods to try to identify outliers in our data.

138

6.6 Summary of Statistical Analysis

 Statistical analysis techniques are thus used in a variety of ways to process the data

gathered from the experiment. Two sample and paired-sample t-tests are used to check

for biases that might have been introduced by our methodology. Randomization tests are

used to preprocess the data, removing extraneous collinear variables from the regressions.

Linear regression is used to build predictive models for analysis time and logistic

regression is used to build predictive models for failure and spurious results. The

resulting models are analyzed for goodness of fit, and the residuals from the models are

examined to check the assumptions of the regression techniques and to identify outliers in

the data.

139

CHAPTER 7

EMPIRICAL RESULTS

 This chapter describes the results of our experiment. We describe our experimental

environment, provide the empirical comparisons of the tools in terms of analysis time,

failures, and accuracy, and present the results of the statistical analysis described in

Chapter 6. We close with remarks about the validity of our predictive models and the

practical significance of our results.

7.1 Experimental Environment

 The tools used in the experiment were SPIN version 2.7.3, SPIN+PO version 3.1

(with SPIN version 1.6.5), TRACC dated 11/29/95, SMV version 2.4.4 (with upgrade for

Alphas, dated 10/11/95), INCA version 3.2, and FLAVERS dated 11/10/95.

 SPIN, SPIN+PO, and SMV accept command line options that can affect the

performance of these tools. In SPIN and SPIN+PO, the default depth of the reachability

graph generation can be increased with the -m option. We needed to increase this depth

for some of the larger problem sizes. To select a value for a given program, we selected

the smallest value (within 100,000) that would let us check all properties on that program.

SPIN+PO also provides a -DDEADLOCK flag that can be used when freedom from

deadlock is being checked. We used this flag for all SPIN+PO runs that were checking

for freedom from deadlock. For those programs with more than 32 tasks, we needed to

modify a variable in one of the SPIN+PO files to allow more than 32 processes; we set

this variable to 64 for those programs. When using assertions to check no_w1w2 in the

presence of deadlock, we used the -c0 flag for SPIN and SPIN+PO. This forces the tools

to search the entire state space; without this flag, the tools terminate on detection of the

deadlock. Unfortunately, this also means the tools do not terminate on an assertion

violation, but there is no way to instruct the tools to ignore deadlocks and terminate on

assertion violations. Because SMV version 2.4.4 automatically enforces weak fairness,

140

the specification "EX 1" is always true; with CMU's assistance, we removed one line

from the SMV code to allow checking "EX 1". We used the revised version of SMV for

all SMV runs. We also used the SMV -f option, which calculates the reachable states of

the system before checking the SPEC formula, for all SMV runs.

 The experimental platform was an AlphaStation 200 4/233 with 128 MB of real

memory. Virtual memory limits were set to 131072 KB for data, 2048 KB for the stack,

and 121800 KB for program memory. We ran SPIN, TRACC, SMV, INCA, and

FLAVERS on this platform. We were unable to build SPIN+PO on the Alpha, so we ran

SPIN+PO on a SPARCstation 10 Model 40 with 32 MB of memory. Total virtual

memory on the Sparc was set to 2105343, with 8192 KB for the stack and "unlimited"

memory for data and program memory.

 To allow comparison of SPIN+PO with the other tools, we calculated a

multiplication factor for the SPARC analysis times relative to the Alpha analysis times

and multiplied all SPIN+PO analysis times by this factor. To calculate the factor, we ran

the first three sizes of SPIN and SMV (without -REORDER) and all sizes of SPIN+PO

on the SPARC; we could not build the other tools on the SPARC. For each

configuration/size/property for these tools, we calculated the ratio (Alpha Time)/(SPARC

Time). We then averaged these ratios and used the result (0.376) as the multiplication

factor. We use the original SPARC times when we build the predictive models and

convert to Alpha time after using the models to generate a predicted (SPARC) analysis

time. We also note that, because the SPARC has less memory than the Alpha, SPIN+PO

could run out of memory on the SPARC on an analysis run for which the Alpha would

have had sufficient memory.

7.2 Checking for Bias Statistically

 Recall that we identified a number of ways in which we could inadvertently bias the

experimental results based on the program representation or property specifications we

used as input to the tools. Specifically, we suspected that the variable ordering in the

141

SMV input could introduce bias, that adding variables to check properties could introduce

bias against SMV, that modeling properties as assertions rather than never claims in

PROMELA could bias the results for SPIN, and that the INCA input might introduce bias

because there are no accept bodies, because the tasks are uniquely specified, or because

the query was specified with two intervals rather than with additional inequalities. To

check for these biases, we executed the t-tests described in Section 6.2. Specifically, we

executed two sample t-tests to check the possibility of bias for each program/size/property

and paired sample t-tests to check for bias over all the programs, sizes and properties.

 The symbolic model checking method implemented in SMV is sensitive to the size

of the OBDDs generated, which is in turn sensitive to the variable ordering presented in

the SMV input. To check if we introduced bias against SMV with the variable ordering

in our SMV input, we ran the analysis cases both with and without the REORDER

option. Our null hypothesis is that analysis times without using the REORDER option

are equal to analysis times using the REORDER option. For our alternative hypothesis,

we check whether analysis times using the REORDER option are smaller, because it

seems to us that this option should provide a performance improvement. The result is a

one-tailed test. For the two sample t-tests, in 146 cases we could reject the null

hypothesis (implying that using REORDER was significantly faster than not using

REORDER), in 99 cases the difference was not significant, and in 28 cases there was

statistically significant evidence that not using the REORDER option was faster than

using the REORDER option. For the paired sample t-test, the difference in analysis times

using REORDER and not using REORDER were not statistically significant. This result

was surprising, but further investigation indicated that, on programs with a ring structure

(such as cyclic, dining philosophers, and so on), using the REORDER option led to larger

analysis times. These larger analysis times reduced the significance of the other (smaller)

analysis times enough that we do not have sufficient statistical evidence to reject the null

hypothesis. Because the analysis times are not significantly different, however, and

142

because the two sample t-tests indicate that there are many cases in which using the

REORDER option yields smaller analysis times, the analysis times included in the

models below are for SMV runs using the REORDER option.

 We used two different styles for specifying and checking SMV properties -

embedding additional variables in the transition relation and checking properties based on

those values, and developing an alternate CTL specification (without adding additional

variables). We note that this choice only applies to some of the properties; many of the

properties can be checked without using additional variables. The properties for which

we use both styles are presented in Chapter 4. We only execute the t-tests for these

properties. Our null hypothesis is that analysis times using the additional variables are

equal to analysis times using the alternate CTL specification. For our alternative

hypothesis, we check whether analysis times are statistically different (i.e., that they are

unequal). We selected this alternative because we did not have any preliminary insight

about which style would yield better performance. The result is a two-tailed test, since

we are simply checking for a difference in analysis times. For the two sample t-tests, in

42 cases we had statistically significant evidence that using the additional variables was

faster, in 14 cases the difference was not significant, and in 24 cases there was

statistically significant evidence that using the alternate CTL specification was faster than

using additional variables. For the paired sample t-test, we had statistically significant

evidence (p < 0.04) that using the additional variables led to smaller analysis times.

These t-test results indicate that for these programs, sizes and properties using additional

variables is faster than using the alternate CTL specifications. All SMV analysis times

included in the models below are for SMV runs using additional variables (for those

properties on which this style is appropriate).

 SPIN allows the user to specify properties as never claims or as assertions embedded

in the PROMELA program. We specified the properties as assertions to allow

comparison with the SPIN+PO results and as never claims to ensure we were not biasing

143

our results against SPIN by using assertions. Our null hypothesis is that analysis times

using assertions are equal to analysis times using never claims. For our alternative

hypothesis, we check whether analysis times are statistically different (i.e., that they are

unequal). We selected this alternative because we did not have any preliminary insight

about which form of property specification would yield better performance. The result is

a two-tailed test. For the two sample t-tests, in 83 cases we had statistically significant

evidence that using assertions was faster, in 52 cases the difference was not significant,

and in three cases we had statistical evidence that using never claims was faster. For the

paired sample t-test, the difference between using never claims and assertions was not

statistically significant. Although using assertions was not statistically better than using

never claims, it was also not statistically worse. This indicates that we have not

introduced bias against SPIN by using assertions, but we must treat these results with

caution. Examination of the data indicates that, for some properties, using assertions to

check the property can yield significantly larger analysis times than using never claims.

This is a result of our use of the -c0 flag as described above. We therefore build

predictive models for both SPIN using never claims and SPIN using assertions.

 There are several areas where our methodology could introduce bias against INCA.

To check for these biases, we executed analysis runs for inputs with and without accept

bodies, for inputs consisting of unique tasks and also with arrays of tasks, and, for some

properties, with both a query with multiple intervals and a query with a single interval and

an additional inequality.

 For the two sample t-test for inputs with and without accept bodies, in 13 cases we

had statistically significant evidence that inputs without accept bodies yield smaller

analysis times, in 123 cases the difference was not statistically significant, and in 11 cases

we had statistical evidence that using accept bodies was faster. For the paired sample t-

test, the difference between the analysis times with and without accept bodies was not

statistically significant. These results indicate that we have not introduced bias against

144

INCA by not using accept bodies. For the two sample t-test for inputs containing unique

tasks compared to inputs containing arrays of tasks, in 66 cases we had statistically

significant evidence that using unique tasks was faster, in 160 cases the difference was

not statistically significant, and in four cases we had statistically significant evidence that

using arrays was faster. For the paired sample t-test, the difference between the analysis

times using the unique tasks and the times including these tasks in the array was not

statistically significant. These results indicate that we have not introduced bias against

INCA by specifying unique tasks rather than arrays of task. For the two sample t-test for

inputs using multiple intervals as opposed to an additional inequality, in 23 cases we had

statistically significant evidence that using multiple intervals was faster, in 3 cases the

difference was not statistically significant, and in 32 cases we had statistical evidence that

using the additional inequality was faster. For the paired sample t-test, the difference

between the analysis times using multiple intervals as opposed to an additional inequality

was not statistically significant. These results indicate that we have not introduced bias

against INCA by using multiple intervals. The analysis times included in the models

below are for INCA input with no accept bodies, unique tasks, and properties specified

using multiple intervals rather than additional inequalities (where appropriate).

7.3 Experimental Data

 The data from our experiment is too voluminous to provide here; it is, however,

available from the author. Analysis times ranged from hundredths of seconds to several

hours. All the tools failed on some runs, and all the tools generated some spurious

results. Counts of failure and spurious results are provided explicitly in Sections 7.6 and

7.7, respectively.

 It is instructive to consider briefly the input domain in terms of the metrics described

in Chapter 5. The predictive models are likely to provide more predictive power within

the domain in which they were developed. A user of the predictive models may thus be

able to gain additional insight into the accuracy of the predictions through comparison of

145

the metrics for the program and property to be analyzed and the input domain of the

experiment. Statistical summaries of the program and property metrics are provided in

Tables 7.1 and 7.2. In the tables, we provide the minimum and maximum values for each

metric to indicate the range of that metric's values. We provide the median, which is the

middle value in the data, the mean, and the standard deviation to provide insight into the

shape of the distribution of the metric's values.

Table 7.1. Program Metric Data for Experiment

T
Mimimum Maximum Median Mean Std. Deviation

C
MaxC
Alpha
Alpha'
Beta
Beta'
Gamma
Gamma'
Cnd
Cnd'
Cif
N
MaxN
TRANS
MaxTRANS
WFSA
TN
MaxTN
TE
MaxTE
WTIG
Cgt
SMVSt
SMVTr
Vars

3 61 9 13.03 11.08
2.08 19.00 3.5 5.19 4.23

4 120 6 14.22 19.24
0 87 0 9.10 17.72
0 5.72E+07 0 1.00E+06 7.36E+06
0 84 9 15.57 17.83
0 2.81E+14 44 7.06E+12 4.41E+13
0 171 13 24.67 32.79
0 2.81E+14 44 7.06E+12 4.41E+13
0 171 13 24.67 32.79
0 1.85E+08 32 6.92E+06 3.22E+07
0 5.69E+09 0 5.74E+07 5.27E+08

2.33 212.22 4.39 14.79 33.90
3 1814 11 82.97 273.06

3.00 1129.67 10.04 54.61 135.83
4 10045 40.50 532.87 1466.43

3.56 1.39E+21 6118.33 2.21E+19 1.71E+20
3.08 20.78 4.75 6.87 5.00

5 121 7.50 16.32 20.25
3.68 89.78 7.43 14.62 16.71

5 672 20 61.73 114.25
7.02 1.39E+21 5156.35 2.32E+19 1.79E+20

5 631 40 76.22 104.02
7 1910 57 140.01 285.12
5 10087 98 580.58 1457.09
0 24 0 2.05 4.37

Table 7.2. Property Metric Data for Experiment

146

QRE Alphabet
QRE States
QRE Trans
Query Events
Query Intervals
Never States
Never Trans
Assertions
Assignments

Mimimum Maximum Median Mean Std. Deviation

3 89 5 11.68 14.87
3 5 4 3.87 0.66
1 265 13 27.32 37.83
2 13 2 2.81 2.08
1 2 1 1.16 0.37
3 6 3 3.23 0.61
4 10 4 4.45 1.22
1 20 2 3.19 4.82
1 34 4 5.39 7.67

147

7.4 Analysis Time Comparisons

 In this section we present the results of the analysis time comparisons, both when

analysis time is measured from the native input of each tool and when total analysis time

is measured.

7.4.1 Native Input Analysis Times

 In this section, we provide a comparison of the analysis times starting with the native

input specification for each tool. We begin with a comparison of the mean analysis times

for the tools, shown in Table 7.3. We also provide standard deviations to show how

much the data varies and medians to give some insight into how much outliers affect the

mean.

Table 7.3. Mean Native Input Analysis Times

SPIN, Never Claims

SPIN+PO
TRACC
SMV
INCA
FLAVERS

Deadlock Other Properties

SPIN, Assertions -

-

Mean

40.97

Std Dev Median Mean Std Dev Median

37.95

10.65
13.12
106.31

255.93

51.11
13.38
534.08

-

-
209.39

-

-

0.33

0.18
6.88
0.75
2.86

65.34
55.58
37.13
18.94
46.09
11.40
333.68

342.29
304.71
155.11
37.20
202.47
30.29

1006.66

0.87
0.85
0.51
4.51
1.02
2.56
45.58

 For checking deadlock, SPIN+PO has the smallest mean analysis time, followed by

TRACC. We must use this result with caution, however, because TRACC detects

spurious deadlocks much more often than the other tools. Because TRACC terminates

the analysis on detection of the spurious deadlock, the TRACC analysis times are reduced

because of the inaccurate results. SPIN and INCA provide approximately equivalent

mean analysis times checking for deadlock. For checking other properties, INCA,

TRACC, and SPIN+PO have the lowest mean analysis times. As with deadlock, the

TRACC analysis times are small due to detection of spurious property violations. In

addition, because TRACC fails on relatively small sizes of all the programs, there are no

large analysis times that act as outliers.

148

 We note that many of the standard deviations in the table are very large. This

indicates that there are large amounts of variability in the analysis times for most of the

tools. We also note that the median values are significantly less than the means, in some

cases several orders of magnitude smaller. We view this as an indication that outliers are

having a significant effect on the mean analysis times. We therefore consider an alternate

approach for analysis time comparison.

 Another way to compare the analysis times is by counting the number of cases for

which each tool had the fastest analysis time and comparing these counts. The results are

provided in Table 7.4.

Table 7.4. Fastest Case Counts, Native Input Analysis Time

SPIN, Never Claims

SPIN+PO
TRACC
SMV
INCA
FLAVERS

Deadlock Other Properties

SPIN, Assertions
28
-

47
0
40
9
-

23
24
25
0
66
49
2

 For checking deadlock, SPIN+PO and SMV provide the largest number of cases for

which they yield the fastest analysis times. We note that SMV had the largest mean

analysis time for checking deadlock, so this comparison technique yields significantly

different results from a mean analysis time comparison. For checking other properties,

SMV and INCA provide the largest number of cases for which they yield the fastest

analysis times.

 These results must be considered with care, however. Because we restricted the

maximum size of each program based on the tool that performs worst on that program,

some of the other tools may be able to scale to much larger sizes of that program. The

above table also does not show the magnitude of difference in analysis times. For

example, a tool might not have the fastest analysis time for a particular case, but the

analysis time for that tool on that case might only be 0.01 seconds longer than the fastest

149

time. This difference is probably not significant to the analyst, but is reflected in the

counts in the table.

 As discussed in Chapter 3, we believe that simply counting the fastest cases for each

tool might bias the results against a tool that consistently does well but is seldom the

fastest. We propose using the average ranking for each tool for the comparison; these

average rankings are provided in Table 7.5.

Table 7.5. Average Rankings, Native Input Analysis Time

SPIN, Never Claims

SPIN+PO
TRACC
SMV
INCA
FLAVERS

Deadlock Other Properties

SPIN, Assertions
2.11

-
1.85
4.60
2.23
3.31

-

3.07
2.59
2.73
6.00
2.15
3.27
4.99

 For checking deadlock, SPIN+PO, SPIN, and SMV have the best average rankings.

Note that SPIN had significantly fewer fastest analysis cases than SMV, but it has a

slightly better average ranking than SMV. For checking other properties, SMV, SPIN

using assertions, and SPIN+PO have the best average rankings. Although INCA has the

second largest number of fastest analysis cases, it has the fifth best average ranking.

7.4.2 Total Analysis Times

 To gain more insight into the true cost of using these tools to analyze Ada programs,

we also collected timing information for all the translation steps in the analysis process

and for the compilation of the PROMELA programs. We then recalculated the total

analysis times for each tool, including all times from input of the Ada program to output

of the analysis results.

 We first compare the mean analysis times for each tool. These times are provided in

Table 7.6. For checking deadlock, TRACC has the smallest mean analysis time, followed

by SPIN+PO and INCA. We note (again) that the mean analysis times for TRACC are

low because of its detection of spurious deadlocks. For checking other properties,

150

TRACC, INCA, and SMV have the lowest mean analysis times. As discussed above,

TRACC analysis times are small because spurious results and a large number of failures.

Table 7.6. Mean Total Analysis Times

SPIN, Never Claims

SPIN+PO
TRACC
SMV
INCA
FLAVERS

Deadlock Other Properties

SPIN, Assertions -

-

Mean

60.48

Std Dev Median Mean Std Dev Median

71.35

57.49
23.33
133.23

282.03

66.33
18.56
537.63

-

-
211.32

-

-

25.95

35.22
14.67
21.72
20.92

101.86
89.34
84.79
25.17
76.00
31.94
344.82

365.47
326.72
161.38
37.65
208.89
33.69

1010.50

27.67
27.37
40.86
11.03
26.56
21.90
55.25

 When we use the means from the total analysis times rather than from the native

input analysis times, we find that SPIN and SPIN+PO do not provide as good

performance relative to the other tools. The analysis times for SPIN and SPIN+PO are

increased both by the conversion of the Ada program to PROMELA and by the

compilation of the generated C program.

 As with the native input analysis times, the standard deviations in the table are very

large. This indicates that there are large amounts of variability in the analysis times for

most of the tools. We also note that the median values are significantly less than the

means, though this difference is not nearly as pronounced as it is for native input analysis

times. The difference still provides evidence, however, that outliers are having a

significant effect on the mean analysis times.

 Because we believe that a comparison of average rankings provides a more

meaningful comparison than counts of the fastest cases for each tool, we next consider

these rankings. The average rankings are provided in Table 7.7.

 For checking deadlock, INCA, TRACC, and SMV provide the best average rankings.

For checking other properties, these same three tools provide the best average rankings.

TRACC rankings are better than we would expect because of the large numbers of

spurious results and failures for TRACC.

151

Table 7.7. Average Rankings, Total Analysis Time

SPIN, Never Claims

Deadlock

SPIN+PO
TRACC
SMV
INCA
FLAVERS

Other Properties

SPIN, Assertions
3.21

-
4.08
1.89
1.99
1.71

- 4.28
1.43
2.11
3.17
5.15
3.43
4.16

 The most noticeable difference between these results and those for native input

analysis times is that INCA moves from the fourth best average ranking to the best

average ranking for checking deadlock and from the fifth best average ranking to the best

average ranking for checking other properties. One reason for this is that the time for

building the FSAs for the program is included in INCA's native input analysis time but is

not included in the SPIN, SPIN+PO, or SMV native input analysis times, even though the

FSAs must be built to generate the input for these tools. Because this time is often non-

trivial, including it in the total analysis time for all the tools has a noticeable effect. Also,

the time to compile the C programs generated by SPIN and SPIN+PO has an adverse

affect on the average rankings for these tools.

7.5 Failure Comparisons

 The counts and percentages of failures for each tool are provided in Table 7.8. Note

that the total number of cases for TRACC is less than for the other tools. Because the

current implementation of TRACC only allows modeling boolean variables, we could not

model the variables in 48 of the cases. Also, because it is necessary to write a separate

program for each property TRACC checks and because we had preliminary indications

that TRACC is not a viable static analysis tool, at least compared to the others in the

experiment, we only checked some of the non-deadlock properties using TRACC.

 As the table indicates, the TRACC tool had the worst failure percentages by far,

followed by SPIN+PO, which seemed to do better checking for deadlock as opposed to

checking other properties. This may be due in part to our use of the -c0 to check some of

152

these properties in the presence of deadlock. The SPIN tool using assertions may have

experienced a large number of failures for the same reason; using never claims seemed to

be more effective, at least in the context of failures. SMV and FLAVERS had a small

number of failures, and INCA was the best tool for avoiding failures, with only 1 failure

out of 300 cases.

Table 7.8. Counts for Failures

SPIN, Never Claims

Not Failure

 Deadlock
 Other Properties
SPIN, Assertions
 Other Properties
SPIN+PO
 Deadlock
 Other Properties
TRACC
 Deadlock
 Other Properties
SMV
 Deadlock
 Other Properties
INCA
 Deadlock
 Other Properties
FLAVERS
 Other Properties

Failure Total % Failures

105 15 120 12.5
149 31 180 17.2

141 39 180

110 10 120 8.3
18.918034146

45 27 72 37.5
62.5483018

167 13 180 7.2

21.7

109 11 9.2120
167 13 180 7.2

119 1 120 0.8
180 0 180 0.0

7.6 Spurious Result Comparisons

 We provide the counts and percentages of spurious results for each tool in Table 7.9.

We note that the table only includes analysis runs that did not fail, since these runs do not

provide any results.

 As the table indicates, TRACC analyses clearly yield the largest percentage of

spurious results, followed by FLAVERS and INCA checking for deadlock. SPIN,

SPIN+PO, and SMV provide nearly equivalent percentages of spurious results checking

for deadlock. Using SPIN with assertions or SPIN+PO provides the smallest percentage

of spurious results for checking properties other than deadlock.

153

Table 7.9. Counts for Spurious Results

SPIN, Never Claims

Not Spurious

 Deadlock
 Other Properties
SPIN, Assertions
 Other Properties
SPIN+PO
 Deadlock
 Other Properties
TRACC
 Deadlock
 Other Properties
SMV
 Deadlock
 Other Properties
INCA
 Deadlock
 Other Properties
FLAVERS
 Other Properties

Spurious Total % Spurious

70 35 105 33.3
128 20 148 13.5

130 11 141 7.8

72 38 110 34.5
8.214612134

6 39 45 86.7
27.818513

78 83 161 51.6

75 34 109 31.2
150 17 10.2167

65 54 119 45.4
157 23 180 12.8

 Because the table includes all analysis runs that do not fail, it also includes cases for

which a spurious result is impossible. For example, if a property is in fact violated in a

given program (no_r1w in our readers/writers program, for example), a spurious result is

not possible. If a tool answers that the property is violated, this is an accurate result. If a

tool answers that the property is not violated, this is not a spurious result, it is an

indication that the analysis is not conservative. We did not have any cases for which a

tool was not conservative, but in 18 of the 300 cases (6%) a property violation occurs and

spurious results are therefore not possible. These cases are counted as accurate results in

the table above and the logistic regressions that follow.

7.7 Successful Analysis Case Comparisons

 Because the failure and spurious result percentages are calculated for a different

number of cases for each tool, it is difficult to immediately discern the percentage of

successful analysis cases for each tool. We define a successful analysis cases as a case

that runs to completion (does not fail) and yields the correct answer (does not give a

spurious result). The results of these calculations are provided in Table 7.10.

154

Table 7.10. Successful Analysis Percentages

SPIN, Never Claims

Failure

 Deadlock
 Other Properties
SPIN, Assertions
 Other Properties
SPIN+PO
 Deadlock
 Other Properties
TRACC
 Deadlock
 Other Properties
SMV
 Deadlock
 Other Properties
INCA
 Deadlock
 Other Properties
FLAVERS
 Other Properties

Spurious Total % Successful

15 120 58.3
31 180 71.7

39 180

10 120 60.0
74.418034

27 72 8.3
27.14830

13 180 46.7

72.2

11 62.5120
13 180 83.3

1 120 54.2
0 180 87.2

Successful

35
20

11

38
12

39
5

34
17

54
23

83

70
129

130

72
134

6
13

75
150

65
157

84

 For checking deadlock, SMV and SPIN+PO have the highest successful analysis

percentages, though all of the tools except TRACC are in a fairly small (8%) range. For

checking other properties, INCA and SMV have significantly better successful analysis

percentages than the rest of the tools. The percentages for SPIN using never claims, SPIN

using assertions, and SPIN+PO are within 3% of each other. The percentage for

FLAVERS is significantly lower than most of the other tools, and TRACC has the worst

percentage by far.

7.8 Preprocessing the Data

 High linear correlation between our predictor variables (i.e., the metrics) can cause

numerical stability problems in both linear and logistic regression. Before applying these

regressions, we preprocess our data to remove collinear variables. To gain some

assurance that we are not removing too many variables, we conduct randomization tests

to check the null hypothesis that variable pairs are collinear by chance. We then select

which variables to elide from the models based on collinearity, and use the remaining

variables in the regressions.

155

 We begin the preprocessing of the data by calculating the pairwise Pearson's

correlation coefficient for each pair of program metrics and for each pair of property

metrics. For metrics pairs in which the magnitude of the coefficient is greater than 0.75,

we run a randomization test on that pair as described in Section 6.3. In all such cases, we

can reject the null hypothesis (with p < 0.001) that the two metrics are actually not

linearly correlated.

 Based on these results, we build sets of collinear variables and select which variables

to elide from the regression models. The selection of the single variable to include from

each set is somewhat arbitrary and should not affect the results of the regressions, but we

tend to select variables that are measures of the program rather than the internal

representations, or internal representation measures that correspond to the FSAs rather

than the TIGs. We believe that this guideline for variable selection will lead to more

intuitive predictive models. The resulting sets of collinear variables, and the variables we

select for inclusion in the regression models, are shown in Table 7.11.

Table 7.11. Collinear Sets of Metrics

Set of Collinear Metrics Selected Metric

{ N, MaxN, TRANS, TE, MaxTE, Cgt } N

{ TRANS, MaxTRANS, SMV Trans }

{ WFSA, WTIG }

{ C, Alpha, Gamma, Cnd, TN } C

{ MaxC, MaxTN }

{ Cnd', Beta', Gamma' }
{ Cnd, Beta, Gamma }

{ T }
{ Vars }

{ Alpha' }
{ Cif }

{ QRE Alphabet, QRE Trans }
{ Never States, Never Trans }
{ Assertions, Assignments }

{ QRE States }
{ Query Events }

{ Query Intervals }

Cnd'
Beta

MaxTRANS
MaxC
WFSA

T
Vars

Alpha'
Cif

QRE Alphabet
Never States
Assertions
QRE States

Query Events
Query Intervals

156

7.9 Predictive Models for Analysis Time

 We use linear regression to build the predictive models for analysis time, where

analysis time is measured from the native input for each tool. Because analysis time is

not meaningful for those analysis cases that failed, the regression only includes analysis

cases that did not fail. We would expect an analyst to use the predictive models for

failure first to check whether or not the analysis will fail, then use the predictive models

for analysis time if the analysis is not predicted to fail. Because most of the tools provide

automatic checking for deadlock (or, for INCA, a "pre-canned" query), the property

metrics are not meaningful for checking deadlock. We therefore generate two models for

each tool - one for deadlock, using only the program metrics as independent variables,

and one for the other properties, using both the program and property metrics as

independent variables.

 As described in Chapter 6, we use four different linear regression methods for each

model. The methods are the enter method, backward elimination, forward selection, and

stepwise regression. Because the R2 value quantifies how much of the variance in the

data is captured by a specific model (with an R2 greater than 0.800 indicating a good fit),

we use this value as one of our primary considerations when choosing between the

models. The R2 values for each of the linear regressions are provided in Table 7.12.

More detailed examination of each model is provided in the following sections. The

selected models for analysis time, failures, and spurious results are provided in the

Appendix.

7.9.1 SPIN, Never Claims

 This section provides the results of our linear regressions for analysis runs using

SPIN with properties specified using never claims. Although checking for deadlock does

not actually require a never claim, we include it here rather than with the assertions; this

choice is arbitrary, since assertions are not used to check for deadlock either.

157

Table 7.12. R2 Values for Analysis Time Models

SPIN, Never Claims

Method

 Deadlock
 Other Properties
SPIN, Assertions
 Other Properties
SPIN+PO
 Deadlock
 Other Properties
TRACC
 Deadlock
 Other Properties
SMV
 Deadlock
 Other Properties
INCA
 Deadlock
 Other Properties
FLAVERS
 Other Properties

Regression
Enter Backward

Elimination
Forward
Selection

Stepwise

0.415 0.387 0.387 0.387

0.218 0.178 0.156 0.156

0.955 0.951 0.951 0.951

0.176 0.109 0.109 0.109

0.572 0.537 0.537 0.537

0.350 0.333 0.333 0.333

0.468 0.452 0.426 0.426

0.128 0.052 0.052 0.052

0.999 0.998 0.996 0.996

0.223 0.178 0.076 0.076

0.902 0.897 0.897 0.897

0.960 0.958 0.959 0.957

7.9.1.1 Predictive Model for Deadlock

 The results of the linear regressions indicate that for SPIN checking for deadlock, the

Cnd' (a measure of nondeterminism in the program) and MaxTRANS (the maximum

number of transitions in the set of FSAs for the program) metrics have the largest effect

on analysis time. We see evidence of this both in the coefficients from the enter method,

where these two metrics have the largest coefficients, and from the fact that the other

methods excluded all but these two metrics from their models. We also note that the

backward elimination, forward selection, and stepwise regression methods all generated

the same model. This is not always the case, but is not uncommon.

 Although there are no indications of numerical instability or overfitting (i.e.,

extremely large coefficients or standard errors) in the enter method model, we select the

model generated by the other methods instead. The R2 value for these models is only

slightly smaller than the R2 for the enter method model (representing a 7% reduction),

and the inclusion of significantly fewer variables may make the model slightly more

158

general. The R2 value of 0.387 indicates that the model does not fit the experimental data

very well, which in turn implies that it probably will not provide much predictive power

for real programs either.

 As we reviewed the selected model, we noted that the predicted values of analysis

time can be negative; this occurs because the regression simply performs a least-squares

fit to the data without considering the "meaning" of time. While a negative predicted

time has no practical meaning, it could still be used for comparison to the (potentially

negative) predicted analysis times for the other tools. Unfortunately, once a tool was

selected, a negative predicted analysis time would give no insight into how long the

analysis might actually take.

 To check our assumptions about the errors (i.e., residuals) in the model (see Section

6.5.2), we plot the standardized residuals against the predicted analysis times. Example

plots are shown in Figures 7.1 and 7.2.

CndPRIME

2000000001000000000-100000000

T
I

M
E

2000

1000

0

-1000

105

104

103

Figure 7.1. Plot of Standardized Cnd' Residuals vs Predicted Time

 The plot of standardized MaxTRANS residuals seems to support our assumptions

about the residuals, because the residuals appear to be scattered randomly about the 0 line

(with the exception of the outliers, discussed below). The plot of standardized Cnd'

159

residuals, however, seems to indicate that there is an additional linear effect of Cnd' that

has not been included in the model. This could occur because of an error in the analysis

software (unlikely, given the maturity of the SPSS software) or, more likely, an indication

that additional cross-product terms (i.e., terms of the form xixj) would lead to a better

model. As stated in Chapter 6, our analysis stops at recognition of this problem - we do

not add cross-product terms or use other more advanced regression techniques.

MaxTRANS

400020000-2000-4000-6000

T
I

M
E

2000

1000

0

-1000

105

104

103

Figure 7.2. Plot of Standardized MaxTRANS Residuals vs Predicted Time

 We have identified several outliers in the residual plots above. These are marked as

analysis cases 103, 104, and 105. These cases correspond to checking for deadlock on the

readers/writers program with 12 readers and writers, modeling no variables (103), the

Writer variable (104), and both the Writer and Readers variables (105). These cases

include the largest values of Cnd' in the dataset, and the MaxTRANS values are well into

the upper quartile for the dataset. The analysis time for case 103 is in the upper quartile

of analysis times, case 104 yields the largest analysis time in the dataset, but the analysis

time for case 105 is fairly small. We do not exclude these outliers from our analysis,

since they may be more representative of real program properties than the other data

points, but believe there is still some value in identifying them.

160

 Another technique for identifying outliers is to use the studentized residuals.

Threshold values for studentized residuals for various p values, numbers of observations

(cases in the dataset), and independent variables are included in [DW80]. The threshold

value for p < 0.05, 105 cases, and 11 independent variables is 3.42; any studentized

residual magnitude above this value represents an outlier. The only analysis cases in our

dataset with values above this threshold are cases 103 (-6.45), 104 (9.70), and 105 (-

4.08). We have therefore identified the same outliers using both informal examination of

the residual plots and the more formal studentized residual method.

7.9.1.2 Predictive Model for Other Properties

 The results of the four regressions indicate that for SPIN using never claims and

checking properties other than deadlock, the MaxTRANS and Query Events (number of

events in the INCA query) metrics have the largest effect on analysis time.

 The backward elimination, forward selection, and stepwise regression models are all

equivalent. We select the backward elimination model over the enter method model

because 13 variables are removed from the model at the cost of a 5% reduction in the R2

value. We note that the R2 value of 0.333 is low, and the model is therefore unlikely to

provide good predictive power.

 In the interest of brevity, we do not provide the standardized residuals plots for any

of the remaining linear regressions; our technique for visually identifying higher order

trends and outliers is as demonstrated above. The plots for this model do not indicate any

problems with our assumptions about the distribution of the residuals.

 From the plots of standardized residuals against predicted analysis times and the

studentized residuals, we identify cases 143 and 144 as outliers. These cases are for the

readers/writers program with 12 readers and writers, no variables (143) and the Writer

variable (144) modeled, checking the no_w1w2 property. For case 143, the model

significantly overestimates the analysis time, since a (spurious) property violation is

found. For case 144, the model significantly underestimates the analysis time; we

161

believe this is simply a result of a poor fit of the model to this point, which represents the

largest analysis time in the dataset.

7.9.2 SPIN, Assertions

 This section provides the results of our linear regressions for analysis runs using

SPIN with properties specified using assertions. Because the regressions for checking for

deadlock were included in the previous section, we only include regressions for checking

other properties in this section.

 The results of the four regressions indicate that for SPIN using assertions and

checking properties other than deadlock, the MaxTRANS and Query Events metrics have

the largest effect on analysis time.

 We select the backward elimination model over the enter method model, since the

removal of 10 variables from the model only results in a 3% reduction in the R2 value.

We do not select the forward selection or stepwise regression models because the

reduction in R2 is 9%, while only 4 more variables are removed than for the backward

elimination model. The R2 value of 0.452 indicates that the model is not likely to

provide much predictive power.

 The plots of standardized residuals against predicted analysis times do not indicate

any higher-order effects; the residuals seem randomly scattered around the 0 line. From

these plots and the studentized residuals, we identify cases 137, 138, 139, and 140 as

outliers. These cases correspond to the readers/writers program with 12 readers and

writers. Case 137 checks no_w1w2 with only the Writer variable modeled; this case

yields the largest analysis time for SPIN using assertions. Case 138 checks no_w1w2

with both variables modeled; despite the small value of MaxTRANS for this case, it takes

significantly longer than predicted. Cases 139 and 140 check no_r1w with the no

variables (139) and only the Writer variable (140) modeled. The value of MaxTRANS

for these cases is very large, but the actual analysis time is small because a property

violation is quickly detected.

162

7.9.3 SPIN+PO

 This section provides the results of our linear regressions for analysis runs using

SPIN+PO. The section includes a model for checking for deadlock and a model for

checking other properties.

7.9.3.1 Predictive Model for Deadlock

 The results of the four regressions indicate that for SPIN+PO, checking deadlock, the

C (average number of communications per task), Alpha' (a measure of nondeterminism),

Beta (another measure of nondeterminism), Cnd', and MaxTRANS metrics have the most

significant effect on analysis time. It is interesting to note that, while the Cnd' metric has

a relatively large coefficient for the enter method model, it is not selected by any of the

more advanced regression techniques.

 Again, there are no indications of numerical instability in the enter method model.

Because using the next best model (generated by the backward elimination method)

results in a reduction of almost 20% in the R2 value, we select the enter method model as

our predictive model. The reduction in the R2 value is caused by the fact that, once the

backward elimination model contains three variables, none of the remaining variables has

a sufficient effect on the predictions to be included in the model (recall our significance

threshold for adding additional variables to the model is 0.10). However, including all

these remaining variables, as the enter method model does, apparently allows the model

to capture more of the variance in the data. We note that we again have a very low R2;

for SPIN+PO checking deadlock, our predictive model only accounts for slightly more

than 20% of the variance in our experimental data. Such a weak model is not likely to be

of practical use for predicting analysis times for real programs.

 The standardized residuals plots seem to indicate a missing linear term for both Cnd'

and MaxTRANS. We suspect that adding cross-product terms might help with this

problem.

163

 Analysis cases 59 and 105 appear to be outliers. The threshold value for the

studentized residuals in this dataset is 3.44. Only case 105 has a studentized residual

(9.23) above this threshold (the studentized residual for case 59 is 2.94). Case 105 is for

the readers/writers program with 8 readers and writers and only the Writer variable

modeled. This generates a very large state space (with no deadlock possible), which in

turn yields the largest analysis time in the dataset.

7.9.3.2 Predictive Model for Other Properties

 The results of the four regressions indicate that for SPIN+PO, checking properties

other than deadlock, the Beta, Vars, and QRE Alphabet (number of events in the QRE

alphabet) metrics have the largest effect on analysis time.

 The backward elimination, forward selection, and stepwise regression models are all

equivalent. We select the enter method model as our predictive model, since using the

more advanced techniques results in a reduction of 59% in the R2 value. This occurs

because all the variables but Alpha' are eliminated from the backward elimination model

because the significance of their effects is less than 0.10 when they are considered

individually. Similarly, Alpha' is the first variable selected for inclusion by the forward

selection and stepwise regression techniques, and none of the other variables have

sufficient effect individually (threshold for adding variables is 0.05) to be included in the

model. Including all the variables in the enter method model, despite the minimal

individual effects of each of them, results in a model that captures a much larger (though

still small) portion of the variance in the data. The R2 value of 0.128 is very low,

indicating that this is probably a very weak predictive model.

 From the studentized residuals and plots of standardized residuals, we identify cases

8, 33, and 133 as outliers. All these cases have large analysis times (including the largest

for this dataset), and in all these cases we had to use the -c0 option to check the property

in the presence of deadlock. We believe this "unusual" configuration (we did not have to

use the -c0 option most of the time) leads to the poor fit of the model to these points.

164

7.9.4 TRACC

 This section provides the results of our linear regressions for analysis runs using

TRACC. The section includes a model for checking for deadlock and a model for

checking other properties. We point out that, because TRACC had such a high number of

failures and because we did not write custom property checkers for the majority of the

other properties, the datasets in this section are much smaller than those for the other

tools.

7.9.4.1 Predictive Model for Deadlock

 The results of the four regressions indicate that for TRACC, checking deadlock, the

T (number of tasks) and C metrics have the most significant effect on analysis time.

 We select the backward elimination model as our predictive model, since it yields

only a slight reduction (less than 1%) in R2 over the enter method model while removing

six variables from the model. The forward selection and stepwise regression models are

equivalent to the backward elimination model. We note that our R2 value (0.951) is

much higher than we are typically finding in our regressions, and such a high value

implies that the model may provide good predictive power.

 There appears to be a mild linear component in the plot of the standardized T

residuals, but the other plots look like the random distribution of points around the 0 line

that we expect.

 Analysis cases 17, 35, and 39 appear to be outliers. The threshold value for the

studentized residuals in this dataset is 3.11. Only case 17 has a studentized residual

(3.84) above this threshold. Case 17 is for the dining philosophers with dictionary

program with six philosophers. For this case, the value of T is relatively small, but the

analysis time is large.

7.9.4.2 Predictive Model for Other Properties

 The results of the four regression indicate that for TRACC, checking properties other

than deadlock, the Wampler (FSA) metric has the greatest effect on analysis time. It is

165

interesting to note that the enter method model excludes some of the variables. These

variables are excluded because they are constant (or nearly so); essentially, they do not

have sufficient variance, given the size of the dataset (18 cases), to have an effect on the

regression.

 We select the forward selection model (the stepwise regression model is equivalent)

as our predictive model. The reduction in R2 over the enter method model is less than

1%, and 12 variables are removed from the model. The R2 value is very high (0.996),

indicating that this model may provide good predictive power.

 There appears to be a mild negative linear component in the plot of the standardized

Cnd' residuals and a stronger positive linear component in the plot of the standardized

Wampler (FSA) residuals. The other plots do not indicate any problems.

 Using the studentized residuals and standardized residuals plots, we identify case 11

as the only outlier. Some of the plots indicated that cases 2 or 6 might also be outliers,

but the studentized residuals for these cases were significantly less than the threshold.

Case 11 is for the dining philosophers with host program with 3 philosophers and no

variables modeled. Both values of the Wampler (FSA) metric and the analysis time for

this case are relatively large, but only just in the top quartile, so it is not clear why this

case is not predicted well by the model.

7.9.5 SMV

 This section provides the results of our linear regressions for analysis runs using

SMV. The section includes a model for checking for deadlock and a model for checking

other properties. Because our statistical analysis above indicates that whether or not we

use the REORDER option has no statistically significant effect on analysis time, we build

the models below for runs using the REORDER option.

7.9.5.1 Predictive Model for Deadlock

 The results of the four regressions indicate that for SMV, checking for deadlock, the

C, Beta, N, and Vars variables have the largest effect on analysis time.

166

 We select the enter method model as our predictive model, because choosing any of

the other models would results in a reduction of 38% in the R2 value. This reduction

occurs because only the Vars metric has a sufficient individual effect to be retained

(backward elimination) or added to (forward selection, stepwise regression) the model.

The combination of the effects of all the variables in the enter method model allows it to

capture more of the variance in the data. We note, however, that the R2 value for the

enter method model is very low, so the model is not likely to provide significant

predictive power.

 From the studentized residuals and plots of the standardized residuals, we identify

cases 90 and 93 as outliers. We also initially identified case 21 as a potential outlier from

the plots, but the studentized residual for this case is well below the threshold. Case 90 is

for the ring program with 6 servers and masters and no variables modeled. Case 93 is for

the ring program with 10 servers and masters and all 20 variables modeled. The values

for C and N are fairly small for these cases, but the analysis times are large. We believe

this occurs because the ring problem has the ring structure for which the REORDER

option does not tend to work well.

7.9.5.2 Predictive Model for Other Properties

 The results of the four regressions indicate that for SMV, checking properties other

than deadlock, the N, MaxC, and Beta metrics have the largest effect on analysis time.

 We select the enter method model as our predictive model; using the backward

elimination model would result in a reduction of 20% in the R2 value, and using the

forward selection of stepwise regression models would result in a reduction of 66% in

R2. The reduction for the backward elimination model occurs because the technique

eliminates 10 of the variables from the model because of their small individual effects.

The forward selection and stepwise regression techniques both select the N metric for

inclusion in the model, then do not include any other variables because they do not have

sufficient individual effects. The combination of all the variables in the enter method

167

model, however, captures more of the variance in the data. The R2 value of 0.223

implies that the model is unlikely to provide much predictive power.

 The plots of the standardized residuals do not indicate any problems. From these

plots and the studentized residuals, we identify cases 16 and 135 as outliers. Case 16 is

for the cyclic program with 10 customer and scheduler tasks and no variables modeled,

checking no_c2ss. The value of T for this case is in the upper quartile but the value of n

is not large, so the model significantly underestimates the analysis time. This case

represents the longest analysis time for SMV. Case 135 is for the ring program with 10

servers and masters and all variables modeled, checking no_m1m2. This case represents

the second largest analysis time for SMV, and again the model significantly

underestimates the analysis time.

7.9.6 INCA

 This section provides the results of our linear regressions for analysis runs using

INCA. The section includes a model for checking for deadlock and a model for checking

other properties. Our statistical analysis above indicates that whether we use arrays or

unique tasks is not statistically significant, whether or not accepts have bodies is not

statistically significant, and whether we use multiple intervals or use additional

constraints is not statistically significant. We therefore build the models below for runs

using unique tasks, no accept bodies (except where required by the program), and

multiple interval queries (where necessary).

7.9.6.1 Predictive Model for Deadlock

 The results of the four regressions indicate that for INCA, checking for deadlock, the

C and N metrics have the largest effect on analysis time.

 We select the backward elimination model as our predictive model, since it yields a

fairly small reduction (6%) in R2 over the enter method model while removing nine

variables from the model. The forward selection and stepwise regression models are

168

equivalent to the backward elimination model. We note that the R2 value (0.537) is

lower than our informal threshold for a good fit.

 The plots of the standardized residuals do not indicate any problems. From these

plots and the studentized residuals, we identify cases 69 and 70 as outliers. We also

identified case 71 as an outlier from the plots, but the standardized residual for this case is

well below the threshold. Cases 69 and 70 are for the gas station problem with 5

customers, without variables modeled (69) and with all variables modeled (70). The

values for C and N are large for these cases. Case 69 detects a spurious deadlock, so the

observed analysis time is significantly less than predicted. Case 70 represents the largest

INCA analysis time, and the effect of the other 118 cases causes the model to under-

predict this analysis time.

7.9.6.2 Predictive Model for Other Properties

 The results of the four regressions indicate that for INCA, checking properties other

than deadlock, the MaxTRANS metric has the largest effect on analysis time.

 The backward elimination, forward selection, and stepwise regression models are

equivalent. We select the backward elimination model over the enter method model as

our predictive model, because it removes 11 variables from the model and results in a

reduction of only 1% in the R2 value. The R2 value of 0.897 indicates that the model

may have strong predictive power.

 The plot of the standardized MaxTRANS residuals demonstrates a moderate linear

component that is not accounted for by the model. The other plots did not provide any

evidence of problems.

 From the studentized residuals and plots of standardized residuals, we identify cases

101 and 103 as outliers. These cases are for the gas station program with 6 customers and

no variables modeled, checking no_c1c2 (101) and no_c1p2 (103). The values for

MaxTRANS are very large for these cases, as are the analysis times, but the effects of the

other 178 points in the regression cause the model to significantly overestimate the

169

analysis time for case 101 and to significantly underestimate the analysis time for case

103.

7.9.7 FLAVERS

 This section provides the results of our linear regressions using FLAVERS. Because

FLAVERS does not currently support checking for deadlock, we only include regressions

for checking other properties in this section.

 The results of the four regressions indicate that for FLAVERS, checking properties

other than deadlock, the C, MaxC, and Alpha' metrics have the largest effect on analysis

time.

 We select the stepwise regression model over the others as our predictive model. It

removes the most variables (9) from the model, and has an R2 value less than 1% smaller

than the R2 value for the enter method. The R2 value of 0.957 implies that this model

may provide strong predictive power.

 The plot of the standardized C residuals indicates a moderate linear component not

accounted for by the model and the plot of the standardized Alpha' residuals indicates a

stronger linear component. The other plots do not indicate any problems.

 Using the studentized residuals and plots of standardized residuals, we identify cases

112, 114, and 116 as outliers. Cases 112 and 114 are for the memory management

program with 5 users and all variables modeled, checking no_u1u2 (112) and no_sdu1a

(114). Case 116 is for the memory management program with 6 users and all variables

modeled, checking no_u1u2. The values of the C and Alpha' metrics are very high for

these cases, as are the analysis times, but the effect of the other 158 cases cause a poor fit

to these cases.

7.10 Predictive Models for Failures

 We use logistic regression to build the predictive models for failure. The regression

(obviously) includes all analysis cases, both those that did and did not fail. As discussed

above, the property metrics are not meaningful for checking deadlock. We therefore

170

generate two models for each tool - one for deadlock, using only the program metrics as

independent variables, and one for the other properties, using both the program and

property metrics as independent variables.

 As described in Chapter 6, we use three different logistic regression methods for each

model. The methods are the enter method, backward elimination, and forward selection.

Because the deviance quantifies how much of the variance in the data is captured by a

specific model (with a smaller deviance indicating a better fit), we use this value as one of

our considerations when choosing between the models. We believe the percent of the

predictions by the model that are correct to be an even more important consideration, so

we provide these values as well. The deviance and percent correct values for each of the

logistic regressions are provided in Table 7.13. More detailed examination of each model

is provided in the following sections.

Table 7.13. Deviances and Percents Correct for Failure Models

SPIN, Never Claims
 Deadlock
 Other Properties
SPIN, Assertions
 Other Properties
SPIN+PO
 Deadlock
 Other Properties
TRACC
 Deadlock
 Other Properties
SMV
 Deadlock
 Other Properties
INCA
 Deadlock
 Other Properties
FLAVERS
 Other Properties

Deviance % Correct% Correct Deviance Deviance % Correct
Enter Method Backward Elimination Forward Selection

-
50.093

81.298

6.819
24.719

-

25.614
-

-
-

-

-
95.56

89.44

98.33
98.89

-

95.83
-

-
-

-

-
51.535

82.311

6.819
25.493

-

25.765
-

-
-

-

-
94.44

90.00

98.33
98.33

-

95.83
-

-
-

-

33.993
57.540

63.634

22.565
48.404

64.567
-

59.654
65.580

3.450
-

3.450

95.83
94.44

91.67

97.50
94.44

84.72
-

93.33
96.11

-
98.33

99.44

-
- - -

 As we tried to run these regressions, we often encountered numerical problems,

especially with the enter and backward elimination methods. We do not have sufficient

171

statistical analysis experience to determine what caused these numerical problems, but we

developed a process that worked around them in most cases. When we encountered

numerical problems as we were building a model for deadlock, we simply selected one of

the models that was successfully created. When we encountered numerical problems as

we were building a model for the other properties, we removed the property metrics from

the regression; this often solved the problem.

7.10.1 SPIN, Never Claims

 This section provides the results of our logistic regressions to predict failure of

analysis runs using SPIN with never claims. As for the predictive models for analysis

times, we include deadlock in this section as well.

7.10.1.1 Predictive Model for Deadlock

 We had numerical problems using the enter and backward elimination methods on

this dataset. The results of the forward selection regression indicate that, while the Alpha'

and Cif (information flow) metrics are included in the model, the N (average number of

FSA states) metric has the strongest influence.

 Although the coefficients and deviance for the predictive model are of statistical

interest, more insight about the predictive power of the model can be gained through

consideration of a classification table of predicted vs observed failures. Such a table is

provided in Table 7.14. A "0" row or column in the table indicates no failure, and a "1"

row or column indicates a failure. This table shows that, for the 105 analysis cases that

did not fail, the predictive model predicts that 104 will not fail and 1 will fail. Of the 15

analysis cases that did fail, the predictive model predicts that 4 will not fail and that 11

will fail. Overall, the predictive model predicts 95.83% of the analysis cases correctly,

and thus will hopefully provide good predictive power for real programs as well.

 For our residual analysis, we plot the standardized residuals against the failure

variable; the resulting plot is shown in Figure 7.3. We originally plotted the standardized

172

residuals against the predicted failures, but it was more difficult to detect potential

outliers in the resulting plot.

Table 7.14. SPIN Failure Classification Table for Deadlock

Observed

Predicted

0

0

Percent
Correct

99.05 %104 1

1

1 73.33 %4 11

95.83 %Overall :

Standardized Residual

6543210-1-2

F
A
I
L
E
D

1.2

1.0

.8

.6

.4

.2

0.0

-.2

10243

4
47

6

Figure 7.3. Plot of Standardized Residuals vs Failures

 We identify the residuals associated with analysis cases 43, 46, 47, and 102 as

outliers. The SPSS software also identifies these four points as outliers, using a threshold

value of 2.00 on the studentized residuals. These cases are for the dining philosophers

with fork manager program with: 6 philosophers, no variables modeled (43), 7

philosophers, no variables modeled (46), and 7 philosophers with only fork_2 modeled

173

(47), and for the size 12 ring program with all variables modeled (102). These cases all

have a fairly low value of n, but all 4 cases failed.

7.10.1.2 Predictive Model for Other Properties

 We had numerical problems with the enter method and backward elimination

regressions when we included the property metrics, so we perform these regressions

including only the program metrics. The results of the three regressions indicate that for

SPIN using never claims and checking properties other than deadlock, the C and T

metrics have the largest effect on whether or not the analysis will fail.

 We select the enter method model as our predictive model because it provides the

highest percent correct value; the classification table for this model is shown in Table

7.15.

Table 7.15. SPIN, Never Claims, Failure Classification Table

Observed

Predicted

0

0

Percent
Correct

98.66 %147 2

1

1 80.65 %6 25

95.56 %Overall :

 In the interest of brevity, we do not provide the plots of the standardized residuals

against failures for this or any of the following logistic regressions; our outlier analysis is

as described above. From the standardized residuals plot, we identify cases 9, 13, and 17

as outliers; SPSS identifies the same set of cases. These cases are for the cyclic program

checking no_c2ss with no variables modeled for sizes 6 (9), 8 (13), and 10 (17). For

these cases, C and T are close to their mean values, but all three cases fail. We note that

we had to use the -c0 option for these cases to check no_c2ss in the presence of deadlock,

and suspect this contributed to the failures.

174

7.10.2 SPIN, Assertions

 This section provides the results of our logistic regressions to predict failure of

analysis runs using SPIN with assertions. Because the regressions for checking for

deadlock were included in the previous section, we only include regressions for checking

other properties in this section.

 We had numerical problems with the enter method and backward elimination

regressions when we included the property metrics, so we perform these regressions

including only the program metrics. The results of the three regressions indicate that for

SPIN using assertions and checking properties other than deadlock, the C and

NeverStates (the number of states in the never claim) have the largest effect on whether

or not the analysis will fail.

 We select the forward selection model as our predictive model, since it provides the

best percent correct value. The classification table for this model is shown in Table 7.16.

Despite the fairly high overall percent correct, this model incorrectly predicts successful

analysis runs for 10 of the cases that actually fail.

Table 7.16. SPIN, Assertions, Failure Classification Table

Observed

Predicted

0

0

Percent
Correct

96.45 %136 5

1

1 74.36 %10 29

91.67 %Overall :

 Examination of the standardized residuals plot indicates that cases 30 and 65 are

outliers. The SPSS software also identifies cases 31 and 144 as outliers. Case 30 is for

the dac program with 40 solvers, checking no_s3f. The NeverStates value is large enough

that the predictive model predicts failure, but the case actually completes successfully,

Case 31 is for the dac program with 50 solvers, checking no_s1js3j. The values of C and

175

NeverStates are small, so the model predicts successful completion, but the case fails

because the generated C program can not be compiled. Case 65 is for the dining

philosophers with fork manager program with 6 philosophers and no variables modeled,

checking no_p1p2, and case 144 is for the ring program with 12 servers and masters and

all variables modeled, checking no_m1m2. For both these cases, the values of C and

NeverStates are small enough that the model predicts successful completion, but the cases

actually fail.

7.10.3 SPIN+PO

 This section provides the results of our logistic regressions to predict failure of

analysis runs using SPIN+PO. The section includes a model for checking for deadlock

and a model for checking other properties.

7.10.3.1 Predictive Model for Deadlock

 The results of the three regressions indicate that for SPIN+PO, checking for

deadlock, the Beta and N metrics have the largest effect on whether the analysis case will

fail.

 Because some of the coefficients are very large in the enter and backward elimination

models, we need to investigate further for numerical problems. Specifically, these

coefficients may indicate an overfitting of the model to the data. This inference is

supported by the fact that the standard error of several of the coefficients is very large.

We therefore reject the enter and backward elimination models as overfitted, and select

the forward selection model as our predictive model.

 The classification table of predicted against observed failures is shown in Table 7.17.

Although the classification tables for the other models indicate 98.33% correct

predictions, we accept the slight decrease in predictive accuracy to gain numerical

stability in the model.

 In our examination of the plot of the standardized residuals we identify cases 46, 116,

and 118 as outliers. The SPSS software identifies cases 46 and 118 as outliers. Case 46

176

is for the dining philosophers with fork manager problem with 7 philosophers and no

variables modeled. The predictive model does not predict failure for this case because N

and Beta are small, but the case actually fails. Case 118 is for the readers/writers problem

with 12 readers and writers and no variables modeled. The predictive model predicts

failure for this case because Beta is large, but the case does not fail (deadlock is detected).

Table 7.17. SPIN+PO Failure Classification Table for Deadlock

Observed

Predicted

0

0

Percent
Correct

99.09 %109 1

1

1 80.00 %2 8

97.50 %Overall :

7.10.3.2 Predictive Model for Other Properties

 The results of the three regressions indicate that for SPIN+PO, checking properties

other than deadlock, the C and QREAlpha (number of events in the QRE alphabet)

metrics have the largest effect on whether the analysis case will fail.

 We again discover evidence (i.e., large coefficients and standard errors) of overfitting

in the enter and backward elimination models. We therefore reject the enter and backward

elimination models as overfitted, and select the forward selection model as our predictive

model.

 The classification table of predicted against observed failures is shown in Table 7.18.

As for predicting deadlock failures, we accept a slight decrease in predictive accuracy to

gain numerical stability in the model.

 In our outlier analysis we identify cases 81 and 163 from the plot of the standardized

residuals. The SPSS software also identifies cases 157 as an outlier. Case 81 is for the

dining philosophers with host program with 7 philosophers and no variables modeled,

checking no_p1p2. The C and QREAlpha metrics are close to their means for this case,

177

but the case fails because the state space is too large. Cases 157 and 163 are for the

readers/writers program with 6 (157) and 8 (163) readers and writers and no variables

modeled, checking no_w1w2. The model predicts failure for these two cases, but

because the Writer variable is not modeled, SPIN+PO detects a (spurious) property

violation and successfully completes the analysis.

Table 7.18. SPIN+PO Failure Classification Table for Other Properties

Observed

Predicted

0

0

Percent
Correct

97.26 %142 4

1

1 82.35 %28

94.44 %Overall :

6

7.10.4 TRACC

 This section provides the results of our logistic regressions to predict failure of

analysis runs using TRACC. The section includes a model for checking for deadlock and

a model for checking other properties.

7.10.4.1 Predictive Model for Deadlock

 We had numerical problems with the enter method and backward elimination

regressions, so we select the forward selection model as our predictive model. This

model indicates that the Beta variable has the most effect on whether or not the analysis

will fail; in fact, the other variables do not have large enough individual effects to be

included in the model.

 The classification table for this model is provided in Table 7.19. Note that the

percent correct percentage for predicting cases that actually fail is low, leading to an

overall percent correct value smaller than those for our other predictive models for

failure.

178

 Our outlier analysis and the SPSS software indicate that cases 22, 23, 24, 30, and 83

are outliers. Cases 22, 23, and 24 are for the standard dining philosophers program with

8 (22), 10 (23), and 12 (24) philosophers. The value of the Beta metric is 0 for these

cases, so the model predicts that the analysis will not fail, but the cases actually do fail.

Case 30 is for the dining philosophers with dictionary program with 7 philosophers.

Again, Beta is 0 so the model does not predict failure, but the case actually does fail.

Case 83 is for the memory management program with 3 users and no variables modeled.

The value of the Beta metric is 42 for this case, so the model predicts that the analysis

will fail, but the case actually does not fail.

Table 7.19. TRACC Failure Classification Table for Deadlock

Observed

Predicted

0

0

Percent
Correct

95.56 %43 2

1

1 66.67 %18

84.72 %Overall :

9

7.10.4.2 Predictive Model for Other Properties

 We had numerical problems with all three regression methods when we included the

property metrics, so we performed these regressions including only the program metrics.

Although we could get all three regression methods to build models using only the

program metrics, all of the models had several terms with very high coefficients and

standard errors. Because all three models appear to be overfitted to the data and are

therefore probably not general enough for use as predictive models, we do not select any

of them. We thus do not provide a predictive model for failures of TRACC checking

properties other than deadlock.

7.10.5 SMV

179

 This section provides the results of our logistic regressions to predict failure of

analysis runs using SMV. The section includes a model for checking for deadlock and a

model for checking other properties.

7.10.5.1 Predictive Model for Deadlock

 The results of the three regressions indicate that, for SMV, checking for deadlock,

the C and MaxC metrics have the largest effect on whether or not the analysis will fail.

 We select the enter method model because it provides the lowest deviance and the

highest percent correct; the backward elimination model is equivalent. The classification

table for this model is provided in Table 7.20. We note that, despite the high overall

percent correct value, the model is not as accurate as we would like for predicting failed

cases.

Table 7.20. SMV Failure Classification Table for Deadlock

Observed

Predicted

0

0

Percent
Correct

98.17 %107 2

1

1 72.73 %8

95.83 %Overall :

3

 In our analysis of the plot of the standardized residuals we identify cases 7, 9, 14, and

120 as outliers. The SPSS software does not identify case 9 as an outlier, but since this

case is not predicted correctly, we include it as an outlier. Cases 7 and 9 are for the cyclic

program with 8 (7) and 10 (9) customers and schedulers with no variables modeled. The

values of C and MaxC are small enough that the model does not predict failure for these

cases, but the cases actually fail. Case 14 is for the dac program with 20 solvers; the

model predicts failure for this case, but the case actually completes successfully. Case

120 is for the readers/writers program with 12 readers and writers and all variables

180

modeled. The predicted probability of failure is 0.516, which is rounded up to a predicted

failure, but the case actually completes successfully.

181

7.10.5.2 Predictive Model for Other Properties

 We had numerical problems with the enter method and backward elimination

regressions when we included the property metrics, so we performed these regressions

including only the program metrics. We again had numerical problems with these

methods; only the forward selection method generated a model (using both program and

property metrics). The results of the this regression indicate that, for SMV, checking

properties other than deadlock, the T and MaxTRANS metrics have the strongest effect

on whether or not the analysis will fail.

 The classification table for the forward selection model is provided in Table 7.21.

Although the overall percent correct value is over 96%, the model does a poor job

predicting cases that failed. It seems more important to us to accurately predict cases that

will fail rather than cases that will not fail, so this model is not as good in our view as the

overall percent correct value implies.

Table 7.21. SMV Failure Classification Table for Other Properties

Observed

Predicted

0

0

Percent
Correct

100.00 %167 0

1

1 46.15 %6

96.11 %Overall :

7

 Our outlier analysis indicates that cases 15, 19, 21, 139, 141, 143, and 144 are

outliers. Case 15 is for the cyclic program with 10 customers and schedulers and no

variables modeled, checking no_c3c2. Cases 19 and 21 are for cyclic program with 12

customers and schedulers and no variables modeled, checking no_c3c2 (19) and no_c2ss

(21). For these three cases, the T values are in the top quartile of T values, but the

MaxTRANS values are just above the bottom quartile of MaxTRANS values. This

causes the model to predict success for these cases, all of which actually fail. Cases 139,

182

141, and 143 are for the ring program with 8 (139), 10 (141), and 12 (143) customers and

no variables modeled, checking no_m1m2. Case 144 is for the ring program with all

variables modeled, checking no_m1m2. In all these cases, the T values are in the top

quartile but the MaxTRANS values are in the second quartile. The model predict that

these cases will not fail, but in fact they do.

7.10.6 INCA

 This section provides the results of our logistic regressions to predict failure of

analysis runs using INCA. The section includes a model for checking for deadlock and a

model for checking other properties.

7.10.6.1 Predictive Model for Deadlock

 We had numerical problems using the enter and backward elimination methods on

this dataset. The results of the forward selection regression indicate that for INCA,

checking for deadlock, the value of N has the strongest influence on whether or not the

analysis case will fail.

 The classification table for the forward selection model is provided in Table 7.22.

Despite the high overall percent correct value, the model does not predict the single

failure case correctly. Because there is only one failure in the dataset used to generate the

model, we are unsure how useful this model would be in practice.

Table 7.22. INCA Failure Classification Table for Deadlock

Observed

Predicted

0

0

Percent
Correct

99.16 %118 1

1

1 0.00 %0

98.33 %Overall :

1

 Our examination of the plot of the standardized residuals indicates that cases 71 and

72 are outliers. The SPSS software does not classify these (or any) cases as outliers, but

183

since they represent the two cases for which the model does not predict failure accurately,

we include them as outliers. The cases are for the gas station program with 6 customers

and no variables (71) and all variables (72) modeled. The value of N is larger for case 71

and the model predicts failure, but INCA detects a (spurious) deadlock for this case and

terminates successfully. The value of N is smaller for case 72 and the model does not

predict failure, but for this case the INCA analysis fails.

7.10.6.2 Predictive Model for Other Properties

 INCA did not fail on any of the cases for which we checked properties other than

deadlock. It is therefore not possible to use logistic regression to build a predictive model

for failure of these analysis cases. The simplest model we could use, of course, would be

one that ignored all the metrics and predicted that all analysis cases would not fail, but we

suspect this a result of our input domain, rather than an indication than INCA never fails

checking properties other than deadlock. Experimental data over a wider input domain,

leading to at least some INCA failures, would be required to build a predictive model.

7.10.7 FLAVERS

 This section provides the results of our logistic regressions to predict failure of

analysis runs using FLAVERS. Because FLAVERS does not currently support checking

for deadlock, we only include regressions for checking other properties in this section.

 We had numerical problems with the enter method and backward elimination

regressions when we included the property metrics, so we performed these regressions

including only the program metrics. We again had numerical problems with these

methods; only the forward selection method generated a model (using both program and

property metrics). The results of the this regression indicate that for FLAVERS, checking

properties other than deadlock, the Vars metric has the strongest influence on whether or

not the analysis will fail. Further investigation of the model, however, shows that all the

terms in the model have very high coefficients and standard errors. Because the model

therefore appears to be overfitted to the data and is probably not general enough for use as

184

a predictive model. We therefore do not provide a predictive model for failures of

FLAVERS checking properties other than deadlock.

7.11 Predictive Models for Spurious Results

 We use logistic regression to build the predictive models for spurious results.

Because a result can not be spurious in an analysis case that fails, the regression only

includes analysis cases that did not fail. As discussed above, the property metrics are not

meaningful for checking deadlock. We therefore generate two models for each tool - one

for deadlock, using only the program metrics as independent variables, and one for the

other properties, using both the program and property metrics as independent variables.

 As described in Chapter 6, we use three different logistic regression methods for each

model. The methods are the enter method, backward elimination, and forward selection.

Because the deviance quantifies how much of the variance in the data is captured by a

specific model (with a smaller deviance indicating a better fit), we use this value as one of

our considerations when choosing between the models. We believe the percent of the

predictions by the model that are correct to be an even more important consideration, so

we provide these values as well. The deviance and percent correct values for each of the

logistic regressions are provided in Table 7.23. More detailed examination of each model

is provided in the following sections. We experienced the same numerical problems as in

the failure regressions, and we followed the same approach to resolve them.

7.11.1 SPIN, Never Claims

 This section provides the results of our logistic regressions to predict spurious results

for analysis runs using SPIN with never claims. As for the predictive models for analysis

times, we include deadlock in this section as well.

7.11.1.1 Predictive Model for Deadlock

 The results of the three regressions indicate that for SPIN, checking for deadlock, the

Vars metric has the most significant effect on whether or not analysis results are spurious.

185

This is not particularly surprising, since in the presence of spurious results we modeled

additional variables to improve analysis accuracy.

Table 7.23. Deviances and Percents Correct for Spurious Result Models

SPIN, Never Claims
 Deadlock
 Other Properties
SPIN, Assertions
 Other Properties
SPIN+PO

 Other Properties
TRACC
 Deadlock
 Other Properties
SMV
 Deadlock
 Other Properties
INCA
 Deadlock
 Other Properties
FLAVERS
 Other Properties

Deviance % Correct% Correct Deviance Deviance % Correct
Enter Method Backward Elimination Forward Selection

2.773
-

2.773
-

5.407 94.44

45.814
46.635

27.636

48.391
18.314

 Deadlock

-

-
32.774

-
58.770

158.229

87.62
91.22

96.45

87.27
97.26

94.44

-
95.21

-
92.78

72.05

46.600
47.643

30.560

49.388
-

-

-
37.502

-
61.153

163.609

88.57
91.22

96.45

86.36
-

94.44

-
93.41

-
92.22

73.29

50.335
51.862

77.238

57.427
28.240

29.150

50.272
51.176

43.974
78.265

36.078

89.52
91.22

92.20

84.55
95.89

88.89

87.16
92.81

94.96
87.78

95.65

 Although the enter method model has the smallest deviance (by 2%), we select the

backward elimination model as our predictive model. Consideration of the classification

tables indicates that the enter method predicts that accurate results will be provided from

7 of the cases that actually yield spurious results, while the backward elimination model

only (incorrectly) predicts 5 such accurate results. We believe this to be a more important

consideration than a small increase in deviance. The classification table for the selected

model is provided in Table 7.24.

 From the plot of the standardized residuals, we identify cases 17, 30, 33, and 36 as

outliers. The SPSS software only identifies case 17 as an outlier, since the studentized

residuals for cases 30, 33, and 36 are below 2.00. Case 17 is the standard dining

philosophers problem with 2 philosophers (and no variables). The model predicts a

spurious result for this case, but the actual analysis results are accurate. Cases 30, 33, and

186

36 are all for the dining philosophers with fork manager problem with only fork_2

modeled. The model does not predict spurious results for these cases, but SPIN does

detect (spurious) deadlock for these cases.

Table 7.24. SPIN Spurious Results Classification Table for Deadlock

Observed

Predicted

0

0

Percent
Correct

90.00 %63 7

1

1 85.71 %5 30

88.57 %Overall :

7.11.1.2 Predictive Model for Other Properties

 We had numerical problems with all three regression methods when we included the

property metrics, so we performed these regressions including only the program metrics.

The results of the three regressions indicate that for SPIN using never claims and

checking properties other than deadlock, the Vars metric has the strongest effect on

whether or not the analysis results will be spurious, followed by the C metric.

 All three regression methods yield the same percent correct values, but we select the

forward selection model as our predictive model, despite the fact that it has the largest

deviance. We make this selection because this model contains the fewest metrics, and

thus may be slightly more general than the other models.

 The classification table for the selected model is provided in Table 7.25. Despite the

fairly high overall percent correct value, the incorrect predictions for 40% of the cases

yielding spurious results is somewhat larger than we would like.

 Our examination of the plot of the standardized residuals identifies cases 3, 7, 10, 13,

122, and 128 as outliers. The SPSS software does not identify any outliers (based on the

studentized residuals), but since the above 6 cases are also predicted incorrectly by the

model, we include them as outliers. Cases 3, 7, 10, and 13 are for the cyclic program

187

with 4 (3), 6 (7), 8 (10), and 10 (13) customers and schedulers with no variables modeled,

checking no_c3c2. The effect of the C metric causes the model to predict accurate results

for these case, but in fact they actually yield spurious results. Cases 122 and 128 are for

the readers/writers program with 4 (122) and 6 (128) readers and writers and no variables

modeled, checking no_r1w. The model predicts spurious results for these two cases, but

they actually yield accurate identification of the property violation.

Table 7.25. SPIN, Never Claims, Spurious Results Classification Table

Observed

Predicted

0

0

Percent
Correct

96.09 %123 5

1

1 60.00 %8 12

91.22 %Overall :

7.11.2 SPIN, Assertions

 This section provides the results of our logistic regressions to predict spurious results

for analysis runs using SPIN with assertions. Because the regressions for checking for

deadlock were included in the previous section, we only include regressions for checking

other properties in this section.

 We had numerical problems with the enter method and backward elimination

regressions when we included the property metrics, so we perform these regressions

including only the program metrics. The results of the three regressions indicate that, as

usual, the Vars metric has the strongest effect on whether or not the analysis will yield

spurious results, followed by the C metric.

 We select the backward elimination model as our predictive model because it

provides the highest percent correct value. Although the deviance for this model is

slightly higher than for the enter method model (the percent correct values are identical),

we accept this growth to reduce the metrics in the model to four.

188

 The classification table for the selected model is shown in Table 7.26. The accuracy

of the model for predicting cases yielding spurious results is somewhat low, but the

overall percent correct value is high.

Table 7.26. SPIN, Assertions, Spurious Results Classification Table

Observed

Predicted

0

0

Percent
Correct

98.46 %128 2

1

1 72.73 %3 8

96.45 %Overall :

 Our examination of the plot of the standardized residuals identifies cases 3, 7, 112,

and 118 as outliers. The SPSS software only identifies cases 3 and 7 as outliers; the

studentized residuals for the other two cases are below the threshold. Cases 3 and 7 are

for the cyclic program with 4 (3) and 6 (7) customers and schedulers with no variables

modeled, checking no_c3c2. The effect of the C metric causes the model to predict

accurate results for these case, but in fact they actually yield spurious results.

7.11.3 SPIN+PO

 This section provides the results of our logistic regressions to predict spurious results

for analysis runs using SPIN+PO. The section includes a model for checking for

deadlock and a model for checking other properties.

7.11.3.1 Predictive Model for Deadlock

 The results of the three regression indicate that for SPIN+PO, checking for deadlock,

the Vars metric has the largest effect on whether or not an analysis will yield spurious

results, followed by the C metric.

 We select the enter method model as our predictive model because it provides the

highest percent correct value and the lowest deviance. The classification table for this

model is provided in Table 7.27. The overall percent correct value for this model is lower

189

than we have typically found, but it is still high enough to indicate a good fit for the

model.

Table 7.27. SPIN+PO Spurious Results Classification Table for Deadlock

Observed

Predicted

0

0

Percent
Correct

90.28 %65 7

1

1 81.58 %7 31

87.27 %Overall :

 We identify case 19 as an outlier from our examination of the plot of the

standardized residuals. The SPSS software also identifies cases 17 and 66 as outliers, but

since accurate results are correctly predicted for these cases, we do not include them as

outliers. Case 19 is for the standard dining philosophers program with 2 philosophers.

The model predicts a spurious result for this case, while SPIN+PO actually correctly

identifies the possibility of deadlock.

7.11.3.2 Predictive Model for Other Properties

 We had numerical problems with all three regression methods when we included the

property metrics, so we performed these regressions including only the program metrics.

The backward elimination method still had numerical problems, but we were able to

complete the other two regressions. The results of these regressions indicate that for

SPIN+PO, checking properties other than deadlock, the Vars metric has the largest effect

on whether or not an analysis will yield spurious results, followed by the C metric.

 Despite the fact that the enter method model has a higher percent correct value, we

select the forward selection model as our predictive model. The coefficient and standard

error for the Vars metric in the enter method is extremely high, and we select the forward

selection model to avoid choosing a model that is probably overfitted to the data.

190

 The classification table for the selected model is provided in Table 7.28. The

accuracy for predicting cases that yield spurious results is somewhat low, but the overall

percent correct value is fairly high.

 Our examination of the plot of the standardized residuals indicates that cases 3, 121,

and 127 are outliers. The SPSS software only identifies cases 3 and 121 as outliers, but

since case 127 is not predicted correctly by the model, we include it as an outlier as well.

Case 3 is for the cyclic program with 4 customers and schedulers and no variables

modeled, checking no_c3c2. As we have seen in the other spurious result models, the C

metric has sufficient effect to cause the model to predict an accurate result, but the case

actually yields a spurious result. Cases 121 and 127 are for the readers/writers program

with 2 (121) and 4 (127) readers and writers and no variable modeled, checking no_r1w.

The model predicts spurious results for these cases, but SPIN+PO accurately detects the

property violation.

Table 7.28. SPIN+PO Spurious Results Classification Table for Other Properties

Observed

Predicted

0

0

Percent
Correct

97.76 %131 3

1

1 75.00 %3 9

95.89 %Overall :

7.11.4 TRACC

 This section provides the results of our logistic regressions to predict spurious results

for analysis runs using TRACC. The section includes a model for checking for deadlock

and a model for checking other properties.

7.11.4.1 Predictive Model for Deadlock

 We had numerical problems with the enter method and backward elimination

regressions. The results of the forward selection regression indicate that for TRACC,

191

checking for deadlock, the C metric has the strongest effect on whether or not the analysis

will yield spurious results.

 The classification table for the forward selection model is provided in Table 7.29.

The overall percent correct value for this model is lower than we typically find, but is still

high enough to provide a good fit to the data.

Table 7.29. TRACC Spurious Results Classification Table for Deadlock

Observed

Predicted

0

0

Percent
Correct

33.33 %2 4

1

1 92.44 %1 38

88.89 %Overall :

 Our examination of the plot of the standardized residuals indicates that cases 10, 11,

and 12 are outliers. The SPSS software also identifies these cases as outliers. These

cases are for the standard dining philosophers program with 2 (10), 4 (11), and 6 (12)

philosophers. The model predicts that these three cases will yield spurious results, but

TRACC actually correctly detects the possibility of deadlock.

7.11.4.2 Predictive Model for Other Properties

 We had numerical problems with all three regression methods when we included the

property metrics, so we performed these regressions including only the program metrics.

Although we could get all three regression methods to build models using only the

program metrics, all of the models had several terms with very high coefficients and

standard errors. Because all three models appear to be overfitted to the data and are

therefore probably not general enough for use as predictive models, we do not select any

of them. We thus do not provide a predictive model for spurious results for TRACC

checking properties other than deadlock.

192

7.11.5 SMV

 This section provides the results of our logistic regressions to predict spurious results

for analysis runs using SMV. The section includes a model for checking for deadlock and

a model for checking other properties.

7.11.5.1 Predictive Model for Deadlock

 We had numerical problems with the enter method and backward elimination

regressions. The results of the forward selection regression indicate that for SMV,

checking for deadlock, the Vars metric has the largest effect on whether or not an analysis

will yield spurious results, followed by the C metric.

 The classification table for the forward selection model is provided in Table 7.30.

The accuracy for the model's predictions for case that yield spurious results is somewhat

low, but the overall percent correct value is high enough to indicate a reasonably good fit.

Table 7.30. SMV Spurious Results Classification Table for Deadlock

Observed

Predicted

0

0

Percent
Correct

92.00 %69 6

1

1 76.47 %8 26

87.16 %Overall :

 Our examination of the plot of the standardized residuals indicates that case 16 is an

outlier. The SPSS software also indicates case 67 is an outlier, but because this case is

predicted correctly by the model, we do not include it as an outlier. Case 16 is for the

standard dining philosophers programs with 2 philosophers. The model predicts a

spurious result for this case, but SMV correctly detects the possibility of deadlock.

7.11.5.2 Predictive Model for Other Properties

 We had numerical problems with all three regression methods when we included the

property metrics, so we performed these regressions including only the program metrics.

193

The results of these regressions indicate that for SMV, checking properties other than

deadlock, the Vars metric has the largest effect on whether or not an analysis will yield

spurious results, followed by the C metric.

 Despite the fact that it has the lowest overall percent correct value, we select the

forward selection model as our predictive model. In both the enter method and backward

elimination models, the coefficient and standard error for the Vars metric are very large,

providing evidence of overfitting.

 The classification table for the selected model is provided in Table 7.31. While the

overall percent correct value is fairly high, the model incorrectly predicts accurate results

for 41% of the cases that yield spurious results. This model may thus not be as useful for

predicting spurious results as the overall percent correct value implies.

Table 7.31. SMV Spurious Results Classification Table for Other Properties

Observed

Predicted

0

0

Percent
Correct

96.67 %145 5

1

1 58.82 %7 10

92.81 %Overall :

 We identify case 11 as an outlier in the plot of the standardized residuals; the SPSS

software identifies case 11 as the only outlier. Case 11 is for the cyclic program with 8

customers and schedulers and no variables modeled, checking no_c3c2. The model

predicts an accurate analysis result for this case, but SMV actually detects a spurious

property violation.

7.11.6 INCA

 This section provides the results of our logistic regressions to predict spurious results

for analysis runs using INCA. The section includes a model for checking for deadlock

and a model for checking other properties.

194

7.11.6.1 Predictive Model for Deadlock

 We had numerical problems with the enter method and backward elimination

regressions. The results of the forward selection regression indicate that for INCA,

checking for deadlock, the Vars metric has the largest effect on whether or not an analysis

will yield spurious results, followed by the C metric.

 The classification table for the forward selection model is provided in Table 7.32.

All of the percent correct values in the table are high, indicating a good fit.

Table 7.32. INCA Spurious Results Classification Table for Deadlock

Observed

Predicted

0

0

Percent
Correct

96.92 %63 2

1

1 92.59 %4 50

94.96 %Overall :

 Examination of the plot of the standardized residuals indicates that cases 19, 61, and

63 are outliers. The SPSS software also identifies case 70 as an outlier, but because this

case is predicted correctly by the model, we do not classify it as an outlier. Case 19 is for

the standard dining philosophers program with 2 philosophers. The model predicts a

spurious result, but INCA correctly detects the possibility of deadlock. Cases 61 and 63

are for the gas station program with 1 (61) and 2 (63) customers and no variables

modeled. The model predicts accurate results for these two cases, but INCA detects a

(spurious) deadlock.

7.11.6.2 Predictive Model for Other Properties

 We had numerical problems with all three regression methods when we included the

property metrics, so we performed these regressions including only the program metrics.

The results of these regressions indicate that for INCA, checking properties other than

195

deadlock, the Vars metric has the largest effect on whether or not an analysis will yield

spurious results, followed by the C metric.

 We select the enter method model as our predictive model because it provides the

highest percent correct value and the lowest deviance. The classification table for this

model is provided in Table 7.33. Despite the high overall percent correct value, the

accuracy of the model predictions for cases that yield spurious results is somewhat low.

Table 7.33. INCA Spurious Results Classification Table for Other Properties

Observed

Predicted

0

0

Percent
Correct

96.82 %152 5

1

1 65.22 %8 15

92.78 %Overall :

 Examination of the plot of the standardized residuals indicates that cases 154 and

160 are outliers. The SPSS software also indicates that these two cases are the only

outliers. Cases 154 and 160 are for the readers/writers program with 4 (154) and 6 (160)

readers and writers and no variables modeled, checking no_r1w. The model predicts that

these cases will yield spurious results, but INCA correctly detects the property violation.

7.11.7 FLAVERS

 This section provides the results of our logistic regressions to predict spurious results

for analysis runs using FLAVERS. Because FLAVERS does not currently support

checking for deadlock, we only include regressions for checking other properties in this

section.

 We had numerical problems with the enter method and backward elimination

regressions when we included the property metrics, so we perform these regressions

including only the program metrics. The results of the three regressions indicate that, as

196

usual, the QRE States metric has the strongest effect on whether or not the analysis will

yield spurious results, followed by the C metric.

 We select the forward regression model as our predictive model because it provides a

significantly higher percent correct value and significantly lower deviance than the other

models. The classification table for the selected model is provided in Table 7.34. All the

percent correct values in the table are high.

Table 7.34. FLAVERS Spurious Results Classification Table for Other Properties

Observed

Predicted

0

0

Percent
Correct

94.87 %74 4

1

1 96.39 %3 80

95.65 %Overall :

 Examination f the plot of standardized residuals indicates that cases 71, 73, and 119

are outliers. The SPSS software also indicates that case 78 is an outlier, but because the

model predicts this case accurately, we do not include it as an outlier. Cases 71 and 73

are for the dining philosophers with host program with 6 (71) and 7 (73) philosophers and

no variables modeled, checking no_p1p2. The model predicts spurious results for these

cases, but FLAVERS accurately checks the property. Case 119 is for the ring program

with 2 servers and masters and no variables modeled, checking no_m1m2. The model

predicts and accurate analysis result, but FLAVERS detects a (spurious) property

violation.

7.12 Validating the Models

 We require two characteristics of good predictive models - the models must be

correctly generated from valid experimental data, and the models must prove to be useful

in actual practice. We have carefully developed a sound empirical methodology to ensure

our experimental data is valid, and we have rigorously applied standard statistical analysis

197

techniques to ensure that the models have been correctly generated from that data.

Showing that the models will be useful in practice, however, is much more difficult.

 We believe the best way to find out whether the models are useful in practice is to

use them on real programs and properties, and determine whether they provide good

predictive power. We have begun this effort with the case study programs discussed in

Chapter 8.

 Another way to try to validate the models (i.e., show that they are correct and useful)

is to use them for larger sizes of the academic programs included in the experiment.

While this seems intuitively attractive, it will not yield any insight about the predictive

power of the models for real programs and properties. The predictive models we generate

essentially represent n-dimensional vectors, where n is the number of metrics included in

the model. Our hope is that the combination of the academic programs and properties in

the experiment will yield a vector that approximates the direction in which the n metrics

grow in real programs. None of the academic programs in the experiment follow this n-

dimensional vector. We would therefore not expect good predictions for larger sizes of

these programs. The best we could learn from such a study is how well the predictive

models work for larger academic programs, and since predicting performance on large

academic programs is not the goal of our predictive models, the results would not be of

practical interest.

 The predictive models we have built for failure and spurious results seem to provide

reasonable predictive power within the dataset. Of course, these models still need to be

validated on real programs. Unfortunately, the predictive models we have built for

analysis times generally only capture a small amount of the variance in the dataset. Given

that the predictive models will not even work very well within the dataset, it would be

unreasonable to expect that they will have good predictive power outside this domain,

whether on real programs or larger academic programs. We therefore limit our discussion

to the validity of the predictive models within the input domain of the experiment.

198

 We first provide a comparison of the tools based on analysis time. Table 7.35 lists

the number of times each tool had the fastest analysis time for an analysis case, as well as

the number of times the predictive models predict each tool will have the fastest analysis

time. As usual, we separate checking for deadlock from checking the other properties. In

cases where two tools had the (same) fastest analysis time, both tools were credited with

the fastest time.

Table 7.35. Counts of Fastest Analysis Times

SPIN, Never Claims

Observed

SPIN+PO
TRACC
SMV
INCA
FLAVERS

Predicted Observed Predicted
Deadlock Other Properties

SPIN, Assertions
28
-

47
0
40
9
- -

26
40
0
10
-

43 23
23
24
0
67
49
2

13
12
11
1
28
73
36

 For predicting analysis times checking for deadlock, the predictive models yield

optimistic predicted counts for SPIN and INCA and pessimistic predicted counts for

SPIN+PO. For predicting analysis times checking other properties, the predictive models

yield optimistic predicted counts for INCA, FLAVERS, and TRACC and pessimistic

predicted counts for SPIN and SPIN+PO. When we calculate the average magnitude of

the optimistic or pessimistic predictions (expressed as a percentage), we find that the

average error magnitude is over 250% (ignoring TRACC). We note that a large part of

this error is caused by the significant overestimate for FLAVERS, but when we exclude

this estimate the average error magnitude is still almost 72%. This result indicates that

the predictive models do not provide good predictive power, even in the input domain of

the experiment.

 The analysis above still excludes an important consideration, however. For instance,

for checking deadlock, the observed and predicted counts for SMV are both 40. This

does not indicate, however, which cases are observed to be the fastest and which cases are

199

predicted to be the fastest. The 40 cases predicted to be the fastest by the predictive

models may not include any of the 40 cases for which SMV actually provides the fastest

analysis time. It is also important, therefore, to consider the correspondence between

specific observed and predicted fastest cases.

 Toward this end, we have examined the data to determine the number of cases in

which the predictive models select the fastest tool. The results are provided in Table

7.36. We have also included the number of times the predictive models select the second

and third fastest tools. The total number of analysis cases is 299; 119 for deadlock, and

180 for other properties.

Table 7.36. Specific Case Predictions

Fastest Tool

Third Fastest Tool

Deadlock Other Properties

Second Fastest Tool
30
47
29

62
30
24

 For checking deadlock, the predictive models select the fastest tool in 25% of the

cases, the second fastest tool in 40% of the cases, and the third fastest tool in 24% of the

cases. For checking other properties, the predictive models select the fastest tool in 34%

of the cases, the second fastest tool in 17% of the cases, and the third fastest tool in 13%

of the cases. While the predictive models do not select the fastest tool as often as we had

hoped, they do select one of the fastest three tools 89% of the time for deadlock and 64%

of the time for other properties. The experiment includes 5 analysis tools that check for

deadlock, so a random tool selection would pick one of the three fastest tools 60% of the

time. The experiment includes 7 analysis tools for checking other properties (using two

property specification styles for SPIN), so a random selection would pick one of the three

fastest tools 43% of the time. These results indicate that the predictive models may be

able to provide some useful guidance to an analyst trying to select an analysis tool,

despite the weaknesses in the models discussed above.

200

 As a final examination of the validity of the predictive models over the input domain

of the experiment, we quantify the effect of using the predictive models. To do so, we

use the average ranking measure we use to compare the tools in Section 7.4. We

originally considered using mean analysis time for comparison, but the cases requiring

significant analysis time overwhelmed the much more numerous cases requiring less

time.

 The results are provided in Table 7.37. For comparison purposes, we have also

included the effect of randomly selecting a tool for each case and the effect of using each

tool for all the cases.

Table 7.37. Effect of Using Predictive Models

SPIN, Never Claims

SPIN+PO
TRACC
SMV
INCA
FLAVERS

Deadlock Other Properties

SPIN, Assertions

Predictive Models
Random Selection

2.11
-

1.85
4.60
2.23
3.31

-

3.07
2.59
2.73
6.00
2.15
3.27
4.99

2.21
2.40

2.92
3.11

 As always, the results in the table must be considered with care. Comparison

between using the predictive models and randomly selecting a tool for each case is

straightforward, and this comparison indicates that at least the predictive models provide

better tool selection than random selection does. When we compare using the predictive

models to using specific tools for all cases, however, the comparison is not as

straightforward. The predictive models never select a tool that fails (in the experiment),

but all the tools fail on at least one case. For checking deadlock, using SPIN+PO or SPIN

for all cases provides better performance than using the predictive models (ignoring

failures). For the other properties, using SPIN (with assertions), SPIN+PO, or SMV

provides better performance than using the predictive models, again ignoring failures.

201

7.13 Summary

 We use a variety of statistical techniques to analyze our experimental data. In this

section, we summarize the results presented above.

 We use two sample t-tests and paired sample t-tests to statistically test for biases we

may have introduced by our methodology. Of the six areas of potential bias identified,

we find that in five of those areas there was no statistical evidence that our methodology

introduced bias. For specifying SMV properties, we discover that, when appropriate, it is

generally better to specify properties using additional variables in the transition relation

than to use an alternate CTL specification. All the data in the dataset therefore represents

using additional variables (when necessary).

 We preprocess our data to remove metrics that are collinear with others, since this

collinearity can cause problems in both the linear and logistic regression techniques. This

preprocessing reduces the number of program metrics included from 26 to 11, and

reduces the number of property metrics from 9 to 6. We conduct randomization tests to

ensure we have not removed metrics with apparent (but not real) collinearity; the results

of these tests indicate that we have only removed metrics that are truly collinear in this

dataset.

 The results of our linear regressions are disappointing. We use threshold of 0.800 for

the R2 value to indicate a good fit, and 8 out of the 12 linear models we build have R2

values less than 0.54. Because these models do not capture much of the variance in the

experimental data, they are unlikely to provide good predictive power for real programs.

We also check to see if one or more of the metrics commonly appear in the models,

indicating that there are certain characteristics of the program or property that affect the

analysis times for all the tools. We find no such common characteristics in the linear

regression models.

 The results of our logistic regressions to predict failure of analysis runs are more

encouraging. For all our selected predictive models for failure, the overall percent correct

202

value is greater than 90%. This indicates that these models may provide reasonable

predictive power for real programs. We again do not find any common characteristics

that appear in all the models.

 The results of our logistic regressions to predict spurious results for analysis runs are

also encouraging, with all our selected predictive models having overall percent correct

values greater than 87%. Again, this implies that these models may provide reasonable

predictive power for real programs. All but one of these models had the strongest effect

on the results from the number of variables modeled. This is not surprisingly, because

when an analysis run yielded a spurious result, we added additional variable modeling to

try to improve the accuracy of the analysis. The average number of communications in

the tasks in the program also had a noticeable effect in all these models.

 We discuss several approaches for validating the models, but because the linear

regression models appear to be weak, we restrict our attention to the validity of these

models over the input domain of the experiment. The models do not predict the fastest

tool for a given program and property very well (24% of the time for deadlock, 34% of

the time for other properties). They do, however, select one of the three fastest tools a

significant percentage of the time, which may be somewhat useful. We quantify the

impact of using the predictive models, comparing to random tool selection and selecting

one tool to use for all programs and properties. Using the predictive models was better

than random tool selection, but was worse than selecting certain tools for all the analyses.

 Finally, because our real interest is in how long each of the tools takes to analyze

Ada programs, we also analyze timing data that includes all times from input of the Ada

program to output of the analysis results.

203

CHAPTER 8

CASE STUDIES

 In this chapter we describe the results of our preliminary examination of several

programs we have acquired from government and academic sources. To be most useful,

concurrency analysis tools need to be applicable to programs of realistic size, containing

realistic communication structures. In almost all cases, including the experiment we have

conducted, static concurrency analysis tools have been demonstrated using programs from

the concurrency analysis literature. It is not clear that these academic programs are

representative of concurrent programs in general. Most tasks in these programs are

relatively small, and the program constructs used in these programs are relatively simple.

 To begin gathering information about how the concurrency analysis tools will fare

when applied to real concurrent programs, we have acquired several real concurrent

programs and examined various characteristics of those programs. Our examination

includes discussion of the program constructs and language features used in the programs

and observations about program characteristics that are likely to affect the applicability of

static concurrency analysis tools to these programs. The programs and the results of our

examination are described below.

8.1 Programs Considered

 The programs we examined were acquired from academic and government sources.

To find these programs, we monitored the newsgroup comp.lang.ada, discussed our need

for real programs at conferences and demonstrations, and reviewed the concurrency

analysis literature for previous work with real concurrent programs.

 We actually had a surprising amount of difficulty gaining access to real concurrent

programs. Our sample therefore does not represent a careful selection from a large set of

programs; rather, it consists of all the real programs to which we could gain access. We

believe our difficulties arose for a number of reasons. For example, we believe a large

204

number of concurrent programs are written under government contract, and our access to

this group of programs was severely curtailed for contractual and security reasons. In

addition, we require source code to perform the static concurrency analysis. Many

commercial and government agencies are hesitant to provide source code for their

products. Of course, there are potentially many other factors that also make it difficult for

the academic community to gain access to real concurrent programs.

8.1.1 Border Defense System (BDS)

 The Border Defense System (BDS) code was written by T. Griest and M. Sperry of

LabTek Corporation in 1988/89. The code was designed to simulate a system in which

incoming targets are detected and tracked, rockets are assigned to those targets and

launched, and damage assessment is carried out to determine whether the rockets destroy

their targets.

 The system consists of approximately 4K lines of code, contained in 58 files (25

package specifications and 33 package and procedure bodies). After appropriate inlining

has been accomplished (see Section 8.2.1), the system consists of 14 tasks.

8.1.2 Train Control Program

 The train control code was written by a group of students at SUNY/Plattsburgh for a

real-time class; it was provided to us by John McCormick. The code was designed to

control a model railroad train system, in which the system senses the locations of multiple

trains on the track, provides access to sections of track in a manner that avoids collisions,

and processes commands for the trains on the track.

 The system consists of approximately 5K lines of code, contained in 31 files (17

package specifications and 14 package and procedure bodies). After appropriate inlining

has been accomplished, the system consists of 46 tasks.

205

8.1.3 ALSP Common Module (ACM)

 The ALSP Common Module (ACM) code was written by a group at Mitre

Corporation; it was provided to us by Richard Weatherly. The code was designed to

coordinate multiple interacting simulations, providing communication between the

simulations and management of the simulation objects.

 The system consists of approximately 30K lines of code, contained in 262 files (50

package specifications and 212 package and procedure bodies). We have not yet

attempted inlining on this system, so we do not know exactly how many tasks will be in

the system, but we are estimating approximately 59 tasks.

8.2 Conversion to Control Flow Graphs

 As the first step in our experimental methodology, we convert the Ada program to be

analyzed into a set of CFGs. There are a number of characteristics of the programs

considered here that adversely affect this conversion. These "problem areas" include task

interactions in called procedures, separate packages, generic definitions and

instantiations, use of Ada attributes, use of pragmas, use of compiler-dependent packages,

use of discriminated types, and use of exception handlers for control flow.

8.2.1 Task Interactions in Called Procedures

 When an Ada program is converted to a set of CFGs, a CFG is created for each

function, procedure, task, and exception handler in the system. This approach causes

problems, however, when one procedure calls another and the called procedure contains a

task interaction. For analysis purposes, the calling procedure needs to include this

interaction, and simply using the set of CFGs created for the program does not explicitly

provide this information. This problem can occur through an arbitrary number of

procedure calls, so it is not limited to the simple "one call level" example given above.

Ensuring that task interactions contained in called procedures are considered by the

analysis implies that some sort of interprocedural analysis needs to be performed to

gather this information. We discuss several alternatives for solving this problem below,

206

but examine the scope of this problem for the three programs examined here before we do

so.

 In the BDS code, 17 procedures and tasks contain task interactions, either directly or

through procedure calls. Of these, three are procedures that are called by other

procedures and tasks. One call is the maximum depth of procedure calls required to reach

a procedure containing an interaction. In the train control code, 85 procedures and tasks

contain task interactions, either directly or through procedure calls. Of these, 39 are

procedures that are called by other procedures and tasks. Four calls is the maximum

depth of procedure calls required to reach a procedure containing an interaction. In the

ACM code, 404 procedures and tasks contain task interactions, either directly or through

procedure calls. Of these, 298 are procedures that are called by other procedures and

tasks. We have not yet determined the maximum depth of procedure calls required to

reach a procedure containing an interaction. Clearly, the above data indicates that the

problem of called procedures containing task interactions is a pervasive one, and must be

addressed.

 There are several ways to handle the requirement for interprocedural analysis to

address this problem. We have implemented a rudimentary inlining tool that performs

structural inlining on the CFGs. Essentially, a CFG node representing a call on a

procedure to be inlined is replaced by the CFG of the inlined procedure. This is

essentially a brute-force approach to the interprocedural analysis, and it is easy to see that

this approach can explode the size of the CFGs for the system. The largest CFG we have

produced using this technique (on the train code) contains 2,887 nodes and 3,508 edges.

We have not yet attempted to inline procedures in the ACM code.

 We believe there are much more elegant solutions to this problem than structural

inlining; certainly, the compiler community uses more advanced techniques. We are

currently working to develop a more elegant solution that will provide the necessary

interprocedural analysis without incurring the size explosion of structural inlining.

207

 We also note that we originally tried to identify the procedures that needed to be

inlined (because they contained task interactions) manually on the BDS code. We then

developed a tool to identify these procedures automatically when we started to generate

the CFGs for the train control code. As part of our testing of this new tool, we used it to

check our manual inlining results for the BDS code. Even for this relatively simple

system, we had overlooked one procedure call to a procedure containing a task

interaction. It therefore seems to us that extensive automated tool support is absolutely

critical when we undertake analysis of real programs.

8.2.2 Separate Packages

 One of the language features provided by Ada is the ability to declare procedure and

package bodies as separate. These separate bodies represent distinct compilation units,

allowing iterative large-scale development of systems. Certainly, none of the programs in

the concurrency analysis literature use this language feature.

 We have discovered, however, that this feature is commonly used in our real

programs. The BDS code contains 10 compilation units that are declared to be separate,

the ACM code contains 127 such compilation units; the train control code does not

contain any. While not every real program uses this language feature, it is clear that it is

certainly not uncommon in real programs.

 Our tools were not originally robust enough to handle a large number of the separate

compilation units. We have made modifications to our tools to make them more robust,

but there are still several separate compilation units we can not process correctly.

Unfortunately, we have not yet found a standard way to identify "problematic" separates,

so the processing of separate compilation units is still a trial-and-error process. Our

current workaround for the separate compilation units we can not process correctly is to

manually modify the code to include the separate unit in its parent unit. This defeats the

original purpose of the separate unit, but lets us build the CFGs for the programs.

208

8.2.3 Generics

 Another feature provided by Ada is the generic. A generic is a package or procedure

that performs specified functions on whatever types and/or procedures are provided in an

instantiation of that generic.

 The BDS code does not use any generics. The train control code uses two very

simple generics; we had no trouble processing these with our tools. The ACM code

makes extensive use of generics, including nested generic instantiations (i.e., instantiation

of a generic that instantiates another generic). Our tools were originally unable to handle

nested generic instantiations, but we have since modified them to process these structures

correctly.

8.2.4 Use of Attributes

 Ada provides a set of attributes that let the user discover or set properties of certain

types and variables. For example, the storage_size attribute can be used to specify how

much storage is allocated for variables declared to be of a certain type. The BDS code

uses several attributes that caused problems for our tools. Our workaround in these cases

was to delete the use of the attribute. We feel that this workaround is reasonable,

especially since the attributes are used to specify characteristics of the operational

environment, which we ignore in our static analysis anyway.

8.2.5 Use of Pragmas

 Ada allows pragmas as another means of giving the compiler instructions for the

compilation. The BDS code, train control code, and ACM code all use pragmas that

caused problems for our tools. Our workaround for these was to remove the troublesome

pragmas, using the same rationale as for attributes.

8.2.6 Use of Compiler-Dependent Packages

 Both the BDS code and the train control code use compiler-dependent packages.

These packages were not provided with the code for licensing reasons, so these uses can

not be processed correctly by our tools. Our workaround for these was to build shell

209

packages to provide the interface to the missing package without providing the actual

functionality. While we recognize that this changes the semantics of the program, we do

not believe tasking-related operations are included in these packages. Our changes

should therefore not affect the results of static concurrency analysis.

8.2.7 Use of Discriminated Types

 Like many high-level languages, Ada provides the capability to declare variant

records; in Ada this is accomplished using discriminated types. The ACM code contains

several uses of discriminated types that caused problems for our tools. In one case, our

tools could not correctly process an implicit dereference of a pointer to a discriminated

type. The workaround for this was to explicitly dereference the pointer before using it.

In another case, our tools could not correctly process a derivation of a discriminated type,

where the discriminated type was defined in a separate compilation unit. This problem

has been corrected by a modification to our tools.

8.2.8 Use of Exception Handlers for Control Flow

 Exception handlers are an Ada construct designed to provide special processing in

the event of unusual program behavior. For example, if a divide by zero occurs in the

program, Ada raises the Constraint_Error exception. An exception handler that traps this

exception can provide special processing to recover from the error or to allow graceful

degradation of the program behavior.

 The ACM code contains three procedures in which exception handlers are used to

detect the exit condition for a loop. This is problematic, since the exception can be raised

at any statement within the loop. Our workaround for this was to add a conditional exit

statement after every statement in the loop (based on a dummy condition), but this does

not seem to be a feasible approach if exception handlers are used to detect normal (for

instance, loop exit) conditions. In fact, determining how to sensibly model exceptions

and exception handlers and their effect on control flow in a program appears to be rich

topic for extensive research.

210

8.3 Characteristics Affecting Analysis

 After we have converted the Ada code for a program into a set of CFGs, we then

either apply an analysis tool directly (FLAVERS, for instance) or convert to a set of FSAs

and from there to the input language of an analysis tool. Through our examination of the

BDS code, train control code, and ACM code, we have discovered several characteristics

of these programs that are likely to affect our ability to perform static analysis on them.

These characteristics include dynamic allocation of tasks in the system, exception

handlers that contain task interactions, complex individual tasks, and inclusion of task

types in complicated data structures.

8.3.1 Dynamic Task Allocation

 Ada provides the capability to declare task types and then to declare variables of

those types or pointers to those types. Pointers to a task type can be allocated at run time,

which essentially creates a new task during execution of the program. Because the static

concurrency analysis techniques examined here use a static (i.e., constant) model of the

tasks in the system, these techniques can not analyze programs containing dynamic task

allocation.

 Several of the tasks in the ACM code are dynamically allocated, so this is a real

barrier to our ability to analyze this code. It turns out, however, that there is a static

bound on the number of tasks present at any given time, so we can model the dynamically

allocated tasks with static tasks. To do so, we replace the points of allocation with a call

on a (new) start entry in the static tasks, and replace points of deallocation with calls on a

(new) stop entry in the static tasks. This does not exactly capture the semantics of the

dynamic task allocation, since the pointer could be deallocated when the task pointed to is

at any point in its execution, while accepts can only occur at set points in the task. We

believe, however, that this approach may provide sufficiently close semantics to allow

useful analysis of the modified code.

211

 The dynamic allocation of a statically bounded number of tasks brings up an

interesting design question - why would a developer dynamically allocate tasks whose

number is bounded (in some cases in the ACM code, the pointer is simply for a local

variable that is allocated once)? A task that is inactive does not get a time slice in the

Ada run-time environments we are familiar with, so there does not appear to be a valid

time concern. We asked the developer of the ACM code about this, and were told that

they needed to use task types so they could abort those tasks if necessary. This explains

why task types were used, but does not explain why the developers used dynamically

allocated pointers to those task types rather than variables of those task types. Given the

problems that it causes, dynamic task allocation should be avoided whenever possible if

the programs is to be subjected to static concurrency analysis.

8.3.2 Task Interactions Within Exception Handlers

 We mentioned above that exception handlers are problematic for static analysis

techniques. This problem is exacerbated when the exception handlers contain task

interactions. If we ignore the exception handlers, we could miss potential program

behaviors, implying that our analysis is no longer conservative. On the other hand, it is

difficult to see how to sensibly model exceptions and exception handling so that the size

of the graph structure of the program does not increase drastically.

 The BDS code does not contain any exception handlers with task interactions, but the

train control code does contain one such exception handler. The ACM code contains 442

exception handlers that contain task interactions. Clearly, this is a problem that will need

to be addressed if we are to perform analysis of real code. Our current approach is to

ignore the exception handlers in a program, but we would like to eventually capture the

full semantics of the program in our analysis.

8.3.3 Complexity of Individual Tasks

 One of the reasons that we believe the concurrent programs from the concurrency

analysis literature may not be representative of real concurrent programs is that the tasks

212

in the academic programs tend to be fairly simple. We have noted that, in the three real

programs we have examined, the number of tasks in a given real program may not be

much larger than the number of tasks in a program from the literature, but the individual

tasks can be much more complex. For example, the ACM code contains a task with 58

entries; we have yet to discover a task with this complexity in the set of programs

typically analyzed in the literature.

8.3.4 Task Types in Complicated Data Structures

 Because Ada allows the definition of task types, pointers to task types can be

contained in arbitrarily complicated data structures. This does not appear to be a

significant problem in the BDS or train control code. The ACM code, however, contains

pointers to task types in complicated data structures. The worst case in the ACM code is

a variable that is a pointer to an array of records, where two of the fields of the record are

pointers to task types. Because in many cases the possible interactions in the system are

determined by matching fully qualified entry names, building the entry names for tasks in

such a structure is difficult but necessary.

8.4 Discussion

 Our examination of the BDS code, train control code, and ACM code has led to the

identification of a number of issues that arise when we try to analyze real code rather than

the academic code from the concurrency analysis literature.

 The real concurrent programs discussed above tend to use more advanced Ada

features than the academic programs. Use of these features often causes problems for our

tools, even those tools that have been extensively used for a number of years. Real

concurrent programs also seem to have certain characteristics that will make them

difficult to analyze. The most notable of these is the dynamic allocation of tasks, but

other constructs, such as exception handlers that contain task interactions, may also have

a significant impact.

213

 It is difficult to draw general conclusions about real programs based on the three

programs considered in this chapter, especially since we can not make any claims about

how well these programs represent real concurrent programs in general. Even within this

very limited dataset we see wide variations in the usage of language features and the

characteristics that are likely to make the programs difficult to analyze. The BDS code

and train control code have several troublesome areas, but seem like they should be

amenable to analysis given some minor changes. The ACM code, on the other hand, has

a large number of characteristics that will make this code extremely difficult to analyze.

Because we do not know which of these programs are more like real concurrent code in

general, we are unwilling to ignore any of them in our observations. We caution,

however, that the observations above may give bleaker predictions about how amenable

real concurrent code will be to analysis than is actually the case, especially if the ACM

code represents an outlier. Further examination of a larger number of real concurrent

programs will be required before we start getting a sense of what a typical concurrent

program "looks like".

 We have suggested workarounds for most of the problems we have encountered, and

believe we are approaching the point where we will be able to attempt to prove properties

on at least some of these real programs. Given the differences between the real programs

and academic programs, analysis of these real programs is liable to yield significant

insight into the applicability of static concurrency analysis in practice.

214

CHAPTER 9

IMPROVING PETRI NET-BASED STATIC ANALYSIS ACCURACY

 This chapter presents an approach for improving the accuracy of Petri net-based

static analysis methods by eliminating some spurious results from the analysis report.

Usually, an analysis method produces a spurious result as a consequence of considering

paths that can never be executed in the program (commonly called infeasible paths) or of

considering aliasing that can never occur in the program. For an example of an infeasible

path, consider the program in Figure 9.1. In the caller2 task, the path through the true

branch of the first conditional and the false branch of the second conditional is infeasible,

assuming the value of BranchCond does not change between the two conditionals.

Infeasible paths are natural phenomena of the internal representations we use for analysis

and are usually not indicative of a fault in the code.

task body caller1 is
begin
 accepter.entry2;
end caller1;

task body accepter is
begin
 accept entry1;
 accept entry2;
end accepter;

task body caller2 is
 BranchCond : boolean;
begin

 if BranchCond then
 accepter.entry1;

 end if;

 if BranchCond then
 null;
 else
 accepter.entry2;

 else
 null;

 end if;
end caller2;

 ...

 ...

Figure 9.1. Example Program

 We conjecture a scenario in which an analyst submits a program and property to a

static analysis tool and then examines the anomaly report that results from the analysis.

Since some of the reported anomalies might be spurious, due to consideration of

infeasible paths or imprecise alias resolution, the analyst must examine each anomaly to

determine if it is a spurious result or not. If a large number of the results are spurious,

weeding these out might overwhelm the analyst, causing results that actually do

215

correspond to erroneous program behavior to be discarded. If the number of spurious

results is extremely large, the analyst may lose confidence in the analysis tool altogether

and forego using it.

 It has been our experience that, after looking at an anomaly report, an analyst easily

recognizes certain infeasible paths that are the cause of at least some of the spurious

results. Early experience with static analysis tools indicated that analysts identified

impossible pairs of statements after examining anomaly reports. Using information about

these impossible pairs to recognize spurious results was shown to be intractable for

analyses based on control flow graph representations of a program [GMO76]. The

approach presented in this chapter for improving accuracy is based on a Petri net model

of a concurrent program. We describe how certain kinds of infeasible path information

can be effectively captured in this model, improving the accuracy of the analysis results

without degrading the performance of the analysis.

 Thus, the basic idea is that an analyst would apply the static analysis method to the

Petri net model of the program. Through examination of the anomaly report, certain

infeasible paths that are causing spurious results to be reported become apparent. The

analyst, using our approach, refines the Petri net model of the program with this

information and reapplies the analysis. Of course, if the analyst knew of infeasible paths

before running the initial analysis, that information could be incorporated immediately.

In our experience, however, analysts do not tend to think about infeasible paths until after

examining an anomaly report with some obvious spurious results. The new anomaly

report typically contains fewer spurious results than the previous report, since the

additional information should have eliminated the cause of some inaccuracies.

Frequently, the new report is significantly smaller since additional, as yet undetected,

spurious results are eliminated as well. This smaller report may not be so overwhelming

to evaluate, perhaps allowing the analyst to recognize additional spurious results more

easily. The effect is an iterative process in which the analyst examines an anomaly report,

216

adds additional information to the analysis, and reapplies the analysis repeatedly until the

desired accuracy is achieved.

 Our approach allows the analyst to include selected control and/or data information

in the Petri net model of the program. The basic idea is to introduce information about

the states that the program being analyzed can enter during execution; this information

may be in the form of sequences of program statements or in the form of variable values.

Petri nets are used because including additional program state information in the net and

using that information to control the transitions in the net is relatively straightforward.

We hypothesize that, by including additional program state information in the Petri net,

we can generate a more accurate estimate of the program state space. Analysis of this

more accurate state space considers fewer infeasible paths, potentially reducing the

number of spurious results reported by the analysis and increasing the value of the

analysis results.

 The following section describes the program representations we use to analyze

concurrent programs with our approach, and Section 9.2 explains how we represent

certain state information to improve the accuracy of those representations. Section 9.3

presents our empirical results, and Section 9.4 offers some conclusions based on those

results and some pointers to future work.

9.1 Program Representations

 Because Ada is one of the few commonly used languages supporting concurrency,

we use Ada examples to explain our static analysis method and our accuracy-improving

approach. The approach, however, is applicable to any language using rendezvous-style

communication, and could be extended to most other communication styles as well. In

Ada programs, potentially concurrent activities occur in tasks3. Ada tasks typically

communicate with each other using a rendezvous. In a rendezvous, the calling task

3Concurrent activities in Ada programs can also occur in procedures; for simplicity, we call them tasks in this paper.

217

makes an entry call on a specific entry in the called task; the calling task then suspends

execution until the called task terminates the rendezvous. The called task executes any

statements contained in the accept body for the entry, then terminates the rendezvous and

continues execution.

 Our static analysis method builds upon a variety of internal representations of a

concurrent Ada program to capture information about the program. First, we represent

each task with a Task Interaction Graph (TIG) [LC89], which abstracts sequential regions

of control flow into single nodes. The nodes in the TIG for a task are connected by edges

representing possible interactions (entry calls/accepts) between that task and other tasks

in the program. We then combine the set of TIGs for all the tasks in a program into a

Petri net [DCN95] to model the system as a whole. Finally, we use the Petri net to

generate a reachability graph to represent an estimate of all states the program can enter

when started in the initial program state. Petri nets and reachability graphs are central to

the techniques we use for improving accuracy, so these representations are described

more fully below.

9.1.1 Petri Nets

 Petri nets have been proposed as a natural and powerful model of information flow in

a system [Pet77]. A Petri net can be represented as a 5-tuple (P, T, I, O, M0). P is the set

of places in the Petri net, where a place can hold zero or more tokens. If a place holds

one or more tokens, the place is said to be marked. T is the set of transitions in the Petri

net. Tokens are moved between places in the net by the firing of transitions. A transition

can only be fired if it is enabled; for a transition to be enabled, each of the input places

for the transition must contain at least one token. I is a function mapping places in P to

inputs of transitions in T. When a transition fires, a token is removed from each of the

places that are inputs to the transition, and a token is deposited in each of the output

places of the transition; O is a function mapping places in P to outputs of transitions in T.

M0 is a list of all the places in the net that are initially marked.

218

 Petri nets appear to be a valuable representation for modeling concurrent software

[SC88]. In our analysis method, we use a Petri net representation generated from the set

of TIGs for the concurrent program. Each place in the Petri net corresponds to a

sequential region of code in one of the tasks in the program, and each transition

represents a possible interaction (entry call/accept) between two tasks in the program.

For an example Petri net, based on the TIGs generated for the program in Figure 9.1, see

Figure 9.2. In Figure 9.2, the places representing a task's states are displayed in a column

under the task name and each transition, which represents an inter-task communication, is

displayed between the two interacting tasks4. Places that represent potential termination

points for a task are represented with double circles. For example, the caller2 task could

potentially terminate at place 6 (by taking the false branch of the first conditional and the

true branch of the second), place 7 (by taking the true branch of both conditionals), or

place 8 (by taking the true branch of the first conditional and the false branch of the

second). We use TIG-based Petri Nets (TPNs) because it has been shown that TPNs

substantially reduce the size of the Petri net, thereby increasing the size of the programs

that can be successfully analyzed [DCN95]. Although this example is small, in general

Petri nets can be extremely complex and are not usually visualized.

caller1 accepter caller2

1

2
34entry2

entry2
entry2

entry1

1

2

3 6

4

5 8

7

4Because of the optimized representation used in a TIG, two transitions are used to represent the interaction between
the accepter and caller2 tasks for the entry2 entry. Transition 2 represents the interaction occurring after caller2 takes
the false branch in the first conditional and transition 3 represents the interaction occurring after caller2 takes the true
branch in the first conditional.

219

Figure 9.2. Petri Net

 A Petri net is called safe if each place in the Petri net can contain at most one token.

Safety is a desirable property, because safe Petri nets are guaranteed to have a finite

number of reachable states. It has been shown that TPNs are safe [Cha95b].

9.1.2 Reachability Graphs

 Often, developers want to determine whether or not the concurrent program being

analyzed could potentially enter a state in which a specified property is violated; for

instance, is it possible for the program to enter a state in which it deadlocks. One method

for answering such questions is to enumerate all possible program states and check the

property at each state. A reachability graph can be used to represent the program state

space.

 A reachability graph for a Petri net consists of a set of nodes, N = { ni} , and a set of

arcs, A = { ai} . Nodes in the reachability graph correspond to markings of the Petri net;

the root node of the reachability graph corresponds to the initial marking (M0) of the Petri

net. An arc goes from ni to nj if and only if the marking of the Petri net can change from

ni to nj with the firing of a single transition. Although in actuality several interactions,

represented by fired transitions, can take place concurrently, we can capture all possible

execution sequences by firing a single transition at a time; we use this approach, because

the resulting graph is greatly simplified. We note that only markings reachable from the

initial marking by some sequential combination of transition firings are included in the

reachability graph. It is helpful to observe that a marking of a Petri net simply represents

the states of all the tasks being modeled by the Petri net; we therefore consider nodes in

the reachability graph as states the program can reach when started from the initial

program state. Figure 9.3 provides the reachability graph for the Petri net in Figure 9.2.

Each node in the figure is annotated with the Petri net places that are marked in the

corresponding program state.

220

2, 5, 7 3

2

4

1 1, 3, 6

1, 4, 7

1, 5, 8

Figure 9.3. Reachability Graph

9.2 Improving Accuracy

 In this section we examine an approach for improving the accuracy of static analysis

without adding significantly to the cost of such analysis. To improve accuracy, we

include additional program state information in the Petri net. Although we describe the

approach in terms of TPNs, the approach is also applicable to other Petri net

representations, such as those from [SC88]. The reachability graph generated from this

enhanced Petri net representation provides a more accurate estimate of the program state

space than the original reachability graph. Analysis of the revised reachability graph is

thus more accurate, and the number of spurious results reported by the analysis should be

less than or, in the worst case, the same as the number of spurious results reported for the

original reachability graph. Since we propose a scenario where an analyst introduces

additional information in response to discovering spurious results in the anomaly report,

we would expect the number of such results to decrease. The increase in cost to gain this

accuracy improvement includes the cost of incorporating the additional program state

information in the Petri net and the cost of analyzing the resulting reachability graph.

 Our approach can incorporate additional control flow or data flow information in the

Petri net. The first technique, enforcing impossible pairs, retains information about past

program states to eliminate some infeasible paths from consideration by the analysis; this

technique may be suitable when conditionals are controlled by complicated conditions or

when interactions between certain program statements are easily recognized by the

analyst. The second technique, representing variable values, eliminates some infeasible

paths by modeling variable values. This technique is suitable when conditionals are

controlled by a small number of boolean or enumerated variables. We would expect an

221

analyst to select the technique that seems most appropriate or natural for the problem at

hand.

 For either technique, it is important that the enhanced Petri net continue to be an

accurate representation of the program under analysis; in other words, adding the

additional control or data information must not hide errors that would have been exposed

through analysis of the original Petri net. Although not presented here, to ensure our

techniques are error-preserving we have verified that the new Petri net is still an accurate

representation of the program. Since the new Petri net is actually a more accurate

representation than the original Petri net, it can be shown that the only program states

removed from the reachability graph are those that are reached through infeasible paths.

9.2.1 Enforcing Impossible Pairs

 Impossible pairs [GMO76] are pairs of program statements that can not both execute

in the same execution of the program. In the mid-seventies, impossible pairs were

recognized as an intuitive concept that developers could potentially exploit to improve the

accuracy of their results. It was demonstrated in [GMO76], however, that deciding

whether or not a path exists that does not include any impossible pairs is an NP-complete

problem. Rather than explicitly solving the above problem to improve accuracy, we

implicitly remove some infeasible paths from consideration by adding information about

impossible pairs to the Petri net.

 In this chapter, we use a less restrictive definition of impossible pairs than the one

given in [GMO76], since we believe our definition more accurately captures the

restriction that an analyst would want to include. In our definition, executing the first

member of the impossible pair inhibits execution of the second member, but executing

the second member of the impossible pair has no impact on the executability of the first

222

member5. In an extension of our technique, we also account for cases in which the

second member of an impossible pair should only be disabled temporarily; this can occur

if the condition that causes the second member to be disabled can subsequently change.

Finally, we restrict our attention here to cases in which the impossible pair consists of two

interaction (entry call or accept) statements, since the majority of concurrency analysis is

concerned with communication events.

 We observe that statements in an impossible pair are conceptually different from

statements that Can't Happen Together (CHT) [MR93]. Impossible pairs identification is

concerned with identifying invalid sequences of statements, whereas CHT analysis is

concerned with identifying statements that can not execute concurrently.

 The technique described below involves representing additional program state

information to eliminate infeasible paths that contain both members of an impossible pair.

For an example of when this technique is useful, consider the program in Figure 9.1, and

assume for the moment that the conditions in the if statements are much more

complicated than the value of a boolean variable. If the condition in the first conditional

in the caller2 task evaluates to true, leading to the entry call on entry1 in the first

conditional, the call on entry2 in the second conditional is impossible because the truth

value of the condition does not change. Note that, similar to symbolic model checking,

we could try to encode the possible values of the complicated condition in the Petri net.

For general boolean expressions, however, the encoding of the condition in the Petri net

could be quite large. Instead, we use information about this impossible pair to improve

the accuracy of the Petri net and the corresponding reachability graph.

 There are three distinct activities associated with enforcing impossible pairs:

recognizing the impossible pairs in a program, recognizing which regions in the program

5Of course, using our definition an analyst could represent two statements a and b as an impossible pair as
described in [GMO76] by specifying two impossible pairs, [a,b] and [b,a].

223

re-enable second members of the impossible pairs, and including information about the

impossible pairs in the Petri net. Although sophisticated methods, such as symbolic

evaluation [CR81], could be used to recognize impossible pairs and regions re-enabling

them, we assume that these are relatively easy for an analyst to manually identify after

examining the anomaly report. We would expect that after discovering several spurious

results in the report, the analyst would introduce specific impossible pair information to

improve the accuracy of the results. In any case, for this presentation we assume that

some method has been used to recognize the impossible pairs and the regions re-enabling

them, so our discussion below focuses on including information about these impossible

pairs in our Petri net.

 To simplify our explanation, we assume a single impossible pair in the program but

note that the technique can be extended to multiple impossible pairs [Cha95b]. Also note

that, using the same basic technique, more complicated flow constraints than impossible

pairs could be incorporated given Petri net representations of those constraints.

 To illustrate the ideas presented here, we modify the Petri net given in Figure 9.2.

Transition 1, which corresponds to the accepter.entry1 statement in the caller2 task, is the

first member of the impossible pair. Transitions 2 and 3, which correspond to the

accepter.entry2 statement in the caller2 task, represent the second member of the

impossible pair. The enhanced Petri net is shown in Figure 9.4.

caller1 accepter caller2

1

2
34 Disabled

Enabled

5

1

2 5

4

3 6

7

8

10

9

Figure 9.4. Petri Net With Impossible Pairs Represented

224

 In general, to include impossible pair information in our Petri net we add two new

places that control firing of the transitions corresponding to the second member of the

impossible pair in the program, and also add duplicates of the transitions corresponding to

the first member of the impossible pair. The first new place, called the Enabled place for

the second member, is used to enable execution of the second member; the second new

place, called the Disabled place for the second member, is used to inhibit execution of the

second member. Because we restrict our attention here to impossible pairs of interaction

statements, the first member and second member of the impossible pair are each

represented by one or more transitions in the Petri net. We connect the Enabled place as

an input to all transitions that correspond to the task statement for the second member,

which ensures the statement can only execute when the Enabled place contains a token

(transitions 2 and 3 in Figure 9.4) . We also connect the Enabled place as an output of

these transitions, which lets the task statement execute multiple times. Since executing

the first member of the impossible pair prohibits the second member from executing, we

must ensure that firing the transition corresponding to the first member of the impossible

pair results in an unmarked Enabled place and a marked Disabled place for the second

member of the impossible pair. Because the second member may be enabled or disabled

before executing the first member, we copy the transition corresponding to the first

member, including all inputs and outputs of the transition. We then use the original

transition (transition 1 in Figure 9.4) to change the second member from enabled to

disabled when the first member is executed and the duplicate transition (transition 5 in

Figure 9.4) to keep the second member disabled if it is already disabled when the first

member is executed; we call these disabling transitions.

 To ensure that the second member is enabled or disabled (but not both), we have

connected the new places to the net such that exactly one of the Enabled place/Disabled

place pair for the second member is marked at any given time. The Enabled place is

initially marked, and the Disabled place is initially unmarked (see Figure 9.4).

225

 In an extension of the technique described above, we also consider the possibility

that the second member of an impossible pair should only be disabled temporarily. For

example, if the first member of an impossible pair is contained within a loop and the

condition is changed at the end of the loop, the second member of the impossible pair

should be re-enabled at the end of the loop. Because the statement changing such a

condition will typically not be an interaction statement, this statement is contained within

the TIG region corresponding to a place in the Petri net; we call this region a re-enabling

region, since it re-enables execution of a statement. To re-enable the second member, we

modify transitions into the place corresponding to the re-enabling region. Because the

statement to be re-enabled may be enabled or disabled before we reach the transition to be

modified, we copy the transition, including all inputs and outputs of the transition. We

then use the original transition to change the statement from disabled to enabled and the

duplicate transition to keep the second member enabled if it is already enabled; we call

these re-enabling transitions. In our example program the second member of the

impossible pair is never re-enabled, so these transition modifications are not required for

the Petri net in Figure 9.4.

 In our example, the Petri net without impossible pair information is shown in Figure

9.2, and the corresponding reachability graph is shown in Figure 9.3. Node 4 in the

reachability graph represents a deadlock of the caller1 task. The transition fired to enter

this node, however, represents an interaction that is not possible, because the true branch

is traversed in the first conditional in the caller2 task to reach node 2, and the condition is

not changed before the second conditional. Therefore, an analysis result that reports

deadlock for this program is a spurious result, since the program can not actually execute

the path required to reach the deadlocked node. Using the technique for impossible pairs

described above, we add impossible pairs information to the Petri net as shown in Figure

9.4; the corresponding reachability graph is shown in Figure 9.5. Note that in Figure 9.5

we have retained the reachability graph node numbering from Figure 9.3 to facilitate

226

comparison. For this example the spurious result has been removed by the additional

information included, and thus analysis of the resulting graph can yield more accurate

results.

227

2

3

1 1, 3, 6, 9

1, 4, 7, 10

2, 5, 7, 10

Figure 9.5. Reachability Graph With Impossible Pairs Represented

9.2.2 Representing Variable Values

 When we include representation of impossible pairs information in our Petri net, we

eliminate some infeasible paths from consideration by explicitly representing information

about paths in the program execution. We can also implicitly eliminate some infeasible

paths by representing the values of selected variables in the program. This technique is

applicable when conditions in the program conditionals are relatively simple and include

a small number of boolean or enumerated variables whose values can be statically

determined in at least some regions of the program. As with the impossible pairs

technique, we modify the Petri net to capture additional information about the program

states. In this case, however, the state information is in the form of variable values. We

can use this additional information to exclude interactions that are infeasible based on

those values, thereby excluding some infeasible paths from our analysis.

 For an example of when this technique is useful, consider again the program in

Figure 9.1 and assume that BranchCond is set to true at the beginning of caller2. Thus,

caller2 makes the entry call on entry1, but the entry call on entry2 is impossible, based on

the value of BranchCond. If we modify the corresponding Petri net to include

information about values of the variable BranchCond, we can improve the accuracy of the

reachability analysis by eliminating consideration of the entry call on entry2.

 There are four activities to be considered when we represent variable values in a Petri

net: recognizing the interactions that are controlled by specific variable values,

recognizing the regions that change the variable's value (and how they change it),

building the representation for the variable, and connecting it to the existing Petri net.

We believe that this is often straightforward in practice, particularly when a boolean

228

variable is used to control communication in the program. For these cases, an analyst

should easily be able to identify such controlling variables and could specify those

variables for inclusion in the Petri net. In this chapter, we assume the first two actions

have been accomplished and focus on the actual representation and inclusion of the

variable value information.

 We represent a variable in the program for which we want to maintain value

information with a variable subnet. This subnet contains two kinds of places: value

places and operation places. The subnet includes a value place for each possible value of

the variable, plus an "Unknown" place to account for those occasions on which we can

not statically determine the variable's value. To simplify the presentation, we describe a

variable subnet for a boolean variable. The variable subnet for a Boolean variable would

have a "True" place, a "False" place, and an "Unknown" place. When the "Unknown"

place is marked, the variable could be true or false; based on the connections described

below, both possibilities are considered during generation of the reachability graph. The

"Unknown" place is marked in the initial marking of the Petri net. The variable subnet

also includes operation places for the valid operations on a variable of the given type; for

example, the valid operations on a boolean variable are "Assign True", "Assign False",

and "Not". For each operation, we connect the corresponding operation place to

transitions between the appropriate value places. For example, the Boolean variable

subnet contains a transition with "Assign True" and "False" as inputs and "True" as an

output. The variable subnet is effectively a finite state machine for the variable, with

transitions between the states (values) of the variable controlled by operations on the

variable.

 To make the resulting subnet safe, we modify the Petri net to ensure the operation

places can never contain more than one token, using transformations similar to those

described by Peterson [Pet81]. For every operation place for the variable, we add an

operation prime place, yielding two places for each possible operation on the variable.

229

For each transition with an operation place as an output, we add the corresponding

operation prime place as an input. For each transition with an operation place as an input,

we add the corresponding operation prime place as an output. This transformation yields

a safe subnet, with the additional property that only one of the operation place/operation

prime place pair for a given operation can be marked at any given time. If none of the

regions corresponding to marked places in the initial marking of the original Petri net

modify the modeled variable, all operation prime places are marked in the initial marking

of the Petri net; otherwise, the appropriate operation places are marked, with the

corresponding operation prime places left unmarked. We also note that, since it is

possible for the program to exit a region in which the value of a variable is statically

determinable into a region in which the value is not statically determinable, we need to

provide an "Assign Unknown" operation as well. The resulting variable subnet for a

Boolean variable is as shown in Figure 9.6, but the subnet shown has not yet been

connected to the Petri net for a program.

False True Unknown

AssignFalseAssignFalse' AssignTrue AssignTrue' AssignUnknown AssignUnknown' Not Not'

Figure 9.6. Boolean Variable Subnet

 To use the additional information provided by the variable subnet, we need to

connect the variable subnet to the Petri net. Figure 9.7 illustrates the revisions to the Petri

net using the example shown in Figures 9.1 and 9.2. The variable subnet for the

230

BranchCond variable is abstracted to facilitate understanding. In Figure 9.7, a T, F, or U

on an arc represents a connection to the True, False, or Unknown value place in the

BranchCond Subnet. Also, connections between transitions and operation prime places

are as described below, but are omitted from this figure for clarity.

 A variable subnet is connected to the Petri net for a program in two cases: at

transitions controlled by the variable and at transitions leading into or out of places

corresponding to regions that modify the value of the variable. In the first case, a

transition is controlled by a variable if the transition can only occur if the variable has a

certain value. In this case, we copy the transition. The appropriate value place for the

variable is connected as an input to the original transition (transitions 1, 2, and 3 in Figure

9.7), and the same value place is connected as an output of the transition to preserve the

value of the variable. We add the Unknown value place as an input and output for the

duplicated transition (transitions 5, 6, and 7 in Figure 9.7) to represent the fact that the

interaction may be possible in the case where the variable's value is currently

undetermined. In addition, we add all operation prime places for the variable as inputs

and outputs for the original and duplicate transitions to ensure any required modifications

to the variable have been completed before we use the variable's value. In this manner,

we exclude all markings from the reachability graph that include firing this transition

when the variable does not have the required value, thereby improving the accuracy of the

analysis.

 In the second case, to effect changes to the variable values, we need to account for

regions from the program (places in the Petri net) in which the variable is changed (by

assignment, for instance); we call these regions modifying regions. If we assign

BranchCond the value true initially in the caller2 task then the corresponding place (place

6 in Figure 9.7) corresponds to a modifying region. For each of these regions, we add the

appropriate operation place as an output and the corresponding operation prime place as

an input of all transitions leading into the modifying region; this initiates modification of

231

the variable on entry into the modifying region. We also add the operation prime place as

an input and output of all transitions exiting the modifying region; because the operation

prime place will not be marked until the operation on the variable is completed, this

ensures the modification is complete before the program exits the modifying region.

Since the operation prime places have already been added to transitions 1 and 5 as

described above, no further changes are required in Figure 9.7.

 Note that a single region can potentially modify a given variable in several different

ways. To simplify the description we assume a simpler model here, in which a single

region modifies a given variable in one specific way. Note that more complicated

modeling can be used to handle the more general case. Also note that since the region

represented by place 6 in the Petri net would contain BranchCond := true, in our

initial marking the AssignTrue place is marked (and the AssignTrue' place is unmarked).

 Using a variable subnet as described above yields the Petri net shown in Figure 9.7.

The corresponding reachability graph is shown in Figure 9.8, where the reachability graph

nodes are annotated with the marked Petri net places as well as the marked value,

operation, and operation prime places in the BranchCond Subnet. Again we see that the

spurious result is no longer reported.

caller1 accepter caller2

1

2
34

5

6
7

BranchCond
Subnet

U
T

T

U

F

F

U
U

U

F

FU

1

2 5

4

3 6

7

8

Figure 9.7. Petri Net With Variable Subnet Added

 Information about variable values could also be incorporated using an FSM, with

states of the FSM representing variable values and transitions in the FSM representing

operations on the variable. While the FSM would certainly be easier to understand than

232

Figure 9.6, the difficulty comes when incorporating the FSM into the model. An FSM

can not be "connected" to the Petri net as our variable subnets are, so the FSM would

need to be used during reachability graph generation, potentially slowing down the

generation process significantly. Representing variables with variable subnets provides

the same accuracy improvements as would be provided with FSMs, while retaining a

standard Petri net as the program model.

3

2

5

1
Unknown,
AssignTrue,
AssignFalse_Prime,

True,
AssignTrue_Prime, AssignFalse_Prime,

True,
AssignTrue_Prime, AssignFalse_Prime,
 AssignUnknown_Prime, Not_Prime

True,
AssignTrue_Prime, AssignFalse_Prime,
 AssignUnknown_Prime, Not_Prime

1, 3, 6,

 AssignUnknown_Prime, Not_Prime

1, 3, 6,

 AssignUnknown_Prime, Not_Prime

1, 4, 7,

2, 5, 7,

Figure 9.8. Reachability Graph Using Variable Subnet

9.2.3 Choosing Between the Two Techniques

 The two techniques described above give the analyst flexibility when determining

what kind of additional information to include to improve analysis accuracy. In general,

we expect the analyst to choose whichever technique appears more natural given the

program being analyzed and the property of interest.

 The impossible pairs technique seems particularly attractive when static information

about the impossible pairs in the program is readily available and transitions correspond

to members of a single impossible pair. If the control flow decisions in the program are

complicated, the impossible pairs technique may be more suitable than the variable values

technique. The impossible pairs technique will tend to be expensive for programs for

233

which the Petri net contains transitions that affect multiple members of impossible pairs,

since the number of these transitions grows exponentially in the number of impossible

pairs affected.

 In the variable values technique, efficient algorithms for recognizing the regions that

affect a variable's value are available. An analyst may also be able to easily identify those

variables that are used in the program to control communications. If the control flow

decisions on those variables are not extremely complicated, recognizing the transitions

controlled by the variable values and making the appropriate connections is relatively

straightforward. The additional information added to the Petri net is based on the

variable type, so the variable subnet for a variable with relatively few values (such as a

boolean variable), used in relatively few locations, does not increase the Petri net size

significantly. Limitations of this technique include the requirement to be able to statically

determine variable values to gain accuracy improvement, the difficulties determining the

proper connections to account for complicated conditions, and the rapid growth of the

size of the variable subnet as the number of possible values of the represented variable

grows.

9.3 Empirical Results

 We have run experiments on a small set of programs to gather information about

how the application of our approach affects the sizes of the Petri nets and reachability

graphs for these examples. We hypothesize that our accuracy-improving approach can

improve analysis accuracy without significantly impacting performance.

 In each of the techniques presented, the size of the Petri net is increased by the places

and transitions added to model the additional semantic information. On one hand, we

expect the size of the reachability graph to grow as the size of the Petri net grows, since

the upper bound on the size of the reachability graph is exponential in the number of Petri

net places. On the other hand, we would expect the additional modeling in the Petri net

to remove some infeasible paths from consideration, thereby reducing the size of the

234

reachability graph. We perform the experiments to acquire preliminary indications of

which scenario is more common and also to gain experience applying the approach.

 Whenever the approach is applied, the resulting reachability graph more accurately

represents the program state space. However, this does not necessarily guarantee that the

number of spurious results in the anomaly report will be reduced. For instance, if the

states removed from the reachability graph are independent of the property being

checked, the number of spurious results in the anomaly report will stay the same. For that

reason, we consider our accuracy improvements as improvements in the reachability

graph as a representation of the program state space, rather than as reductions in the

number of spurious results in the anomaly report. While we expect that improving the

accuracy of the reachability graph will commonly reduce the number of spurious results,

whether or not this occurs in practice depends on the property being checked.

 To perform the experiments below we modified an existing tool set. Tools to

convert an Ada program to a TIG and a set of TIGs to a Petri net were already available.

We developed a general tool to generate the reachability graph from a Petri net, and also

built several specialized tools to include impossible pair information and variable subnets

in the Petri net.

 For the experiments described here, we used various sizes of the readers/writers

problem and the gas station problem. The notation rwXY indicates an instance of the

readers/writers problem with X readers and Y writers. The code for readers/writers

programs is fairly standard, with a Boolean variable WriterPresent used to track the

presence of a writer. The notation gasXY indicates an instance of the standard gas station

problem [HL85] with X customers and Y pumps.

 For the impossible pair technique, identifying the impossible pairs in the program to

be analyzed is done manually. Once we have identified which regions correspond to

impossible pairs, we provide this information to a tool that scans the transitions in the

Petri net and automatically modifies the transitions as described in the previous section.

235

 When we use the variable subnet technique, we provide the name of the variable to

be modeled to the Petri net toolset. The toolset then automatically generates a variable

subnet with the appropriate value and operation places. Currently, we only automatically

build Boolean variable subnets. We then take the resulting variable subnet and manually

connect it to the original Petri net by recognizing interactions that are controlled by the

variable value and also identifying regions in which an operation is performed on the

variable. This activity could be automated by scanning for the variable name in branches

and select guards and by collecting information about operations on the variable for each

region.

 The effects of using these techniques for the sample programs can be found in Table

9.1. In the table, NA means that no additional information is included in the Petri net for

the program. Imp specifies a Petri net that includes information about impossible pairs

and Var specifies a Petri net that includes one or more variable subnets.

Table 9.1. Effects of Approach on Petri Nets and Reachability Graphs

Program Refinement Places Transitions Nodes Arcs
Petri Net Reachability Graph

rw21 NA
Imp
Var
NA
Imp
Var
NA
Imp
Var
NA
Imp
Var
NA
Imp
Var
NA
Imp
Var
NA
Imp
Var
NA
Imp

rw22

rw23

rw32

rw25

rw52

gas31

gas51

17
25
28
20
28
31
23
31
34
23
31
34
29
37
40
29
33
40
39
45
87
59
64

48
183
105
66

306
138
84

429
171
81

336
168
120
675
237
111
638
228
75

111
224
163
463

41
31
52

175
98

166
609
248
426
579
308
502

6,229
1,320
2,330
5,811
2,972
4,678

493
931
559

9,746
22,841

119
71
94

692
276
348

3,031
794
978

2,884
1,097
1,295

43,571
4,888
5,908

40,660
14,955
16,665

987
1,773

885
26,785
57,655

236

 For the Imp version of the Petri net for readers/writers problems, we model the

impossible pairs resulting from whether or not a writer is present. These pairs were easy

to recognize given the simple guards in the control task. Including this information

improves the accuracy of the analysis by eliminating consideration of some infeasible

paths through the program and reduces the size of the reachability graph as well.

 For the Imp version of the gas station problems, we use impossible pairs to reflect the

fact that if a customer enters an empty pump queue, then that customer gets their change

before any other customer. Including information about impossible pairs in gas31 and

gas51 yields reachability graphs with approximately twice as many nodes and arcs as the

original reachability graph.

 Including impossible pairs information in the Petri net can cause an increase in the

reachability graph size because we encode not just the current program state, but also

information about the path leading to that state. For example, consider the state in which

customer 1 and customer 2 have both pre-paid the operator. Without impossible pairs

information, this state is represented by a single node in the reachability graph. When we

include impossible pairs information, the reachability graph contains one node for this

state in which customer 1 entered the (empty) queue first, one node in which customer 2

entered the (empty) queue first, and one state in which neither entered an empty queue. In

such cases, the improvement in accuracy comes at the cost of a larger reachability graph

to be analyzed.

 For the Var version of readers/writers, we model the WriterPresent variable that is

included in the guards of the main select statement. Selecting this variable to be modeled

and recognizing the appropriate connection points for the variable subnet were

straightforward because of the basic operations on the variable and the simplicity of the

guards containing the variable. We observe that, for instances of readers/writers larger

than rw21, the technique yields two benefits: it improves the accuracy of the analysis by

eliminating consideration of some infeasible paths through the program and it reduces the

237

size of the reachability graph. For rw21, this technique increases the size of the

reachability graph. This occurs because of the possible interleavings of firing transitions

that change the variable value and firing transitions that are independent of the variable

value. As the problem is scaled, the affect of these interleavings seems to decrease, and

we see reduction in the reachability graph size instead of growth.

 For the Var version of gas31, we implement a variable subnet for each element of the

customer queue, in addition to the counter for the number of active customers. Because

our tools don't currently automatically build subnets for enumerated or subrange types, we

manually built the subnets for this version. Modeling the customer queue and number of

active customers yields a slight increase in the number of reachability graph nodes, so

simply checking for a property at each node would take somewhat longer. In addition, we

note that manually building the variable subnets was tedious. Although building the

subnet for each queue element is straightforward, the difficulty comes in recognizing

where the gas31 code moves the queue forward and representing that movement with the

subnets. In any case, the analysis is more accurate, since using the variable subnets

ensures that change is always given to the correct customer. Developing the model of the

customer queue was sufficiently time-consuming that we did not attempt this for the

gas51 program.

 For the readers/writers problem, the impossible pairs and variable value techniques

implicitly model the "same" information (the value of the WriterPresent variable). It is

therefore valid to directly compare the sizes of the resulting reachability graphs (since

they have the same accuracy), and to note that the impossible pairs technique is more

effective at reducing the size of the graph. On the other hand, the Imp Petri nets contain

many more transitions than the Var Petri nets for this problem, so it may take longer to

actually generate the (smaller) Imp reachability graphs. With both techniques, the

accuracy of the reachability graph is improved; the reduction in size is a beneficial side

effect.

238

 For the gas station problem, our impossible pairs results are not comparable to the

Var version, since we are not capturing the same information in our Petri net. The Var

version captures a significant amount of state information for only a slight increase in

reachability graph size, but manually adding the required variable value modeling was

difficult. The Imp version captures less information than the Var version, and yields a

large increase in reachability graph size, but including the modeling was straightforward.

 Table 9.2 lists several properties of each program considered. Entries is the number

of unique entries in the program and Entry Calls is the total number of calls on those

entries. Variables provides the number of variables modeled in the Var version of the

Petri net, with the number of possible variable values (including unknown) following in

parentheses. For instance, for the Var version of the gas31 Petri net, we model 3

variables with 4 possible values and 1 variable with 5 possible values. Impossible Pairs

provides the number of impossible pairs modeled in the Imp version of the Petri net. For

the readers/writers programs, the numbers of variables and impossible pairs modeled stay

constant as the problem is scaled. This occurs because the additional modeling is applied

to the control task, which does not change as the problem is scaled. For the gas station

problems, the number of impossible pairs modeled grows as the problem is scaled

because the modeling is applied in the operator task, which grows as the problem size

grows.

Table 9.2. Program Properties

Program Entries
Entry

Variables Pairs

rw21
rw22
rw23
rw32
rw25
rw52
gas31

Calls
Impossible

4
4
4
4
4
4
10 17

14
14

10
10

6
8

1 (3)
1 (3)
1 (3)
1 (3)
1 (3)
1 (3)

3 (4), 1 (5)

7
7
7
7
7
7
6

gas51 14 27 - 20

9.4 Conclusions

239

 Static analysis can be used to answer questions about properties of concurrent

programs, although often with the inclusion of spurious results. We have identified an

approach that can be used to improve the accuracy of Petri net-based analysis of

concurrent programs. In several cases that we examined, the approach reduced the size of

the reachability graph for the system as well. The impossible pairs technique retains

additional program state information in the form of the impossible pair transitions that are

currently enabled and disabled, and the variable subnet technique retains additional

program state information in the form of the current values of selected variables.

 The cost of using the above techniques can vary considerably from program to

program. To effectively use variable subnets, we must first recognize which variables

affect the control flow of the program and identify the regions in which those variables

are modified. We must also determine how the represented values should be connected

to the transitions of the Petri net to accurately reflect how the values influence the

interactions of the program. The difficulty of doing this ranges from very easy (for

control flow decisions based on a Boolean variable's value only, for example) to very

difficult (for control flow decisions containing complicated conditions). Alternatively,

we can sometimes account for complicated conditions by including impossible pairs

information instead. The complexity of adding the information for the impossible pairs is

linear in the number of original transitions in the Petri net; the difficulty comes in

recognizing the regions of the program that represent impossible pairs. Ultimately, the

decision about which technique to use will fall on the analyst. For some programs, the

impossible pairs may be easily recognized by the analyst, whereas for other programs,

representing key variables that control communications in the program may seem more

straightforward.

 In several of the programs examined, the reachability graph size or complexity was

reduced as a side effect of the improved accuracy. Static analysis models generally

include infeasible as well as feasible paths through the program; the state space which

240

needs to be searched for the property is therefore larger than the actual possible state

space of the program. Because our goal was to improve accuracy by eliminating

impossible program states from the reachability graph, it is reasonable to expect a smaller

reachability graph to result. On the other hand, in some cases our modeling of the

additional state information leads to larger graphs, because we add possible interleavings

between activities on our variable subnets or Enabled/Disabled impossible pair places and

the original Petri net. In all cases, the generated reachability graph represents more

accurately the possible states of the program because of the additional information

modeled.

 We have examined how to incorporate accuracy-improving semantic information

into Petri nets. It is not as easy to modify the semantics of other internal representations

that are commonly used for analysis, such as control flow graphs, abstract syntax trees,

and program dependency graphs. A complementary and somewhat similar approach is

explored in [DC94], but instead of modifying the internal representation, the approach

incorporates the additional semantic constraints in the analysis algorithms. Similarly,

information about impossible pairs or variable values could be incorporated in the

reachability graph generation algorithm rather than in the Petri net representation of the

program. It is not clear how this would affect the size of the resulting reachability graph,

but the added complexity in the algorithm might lead to a significant increase in

reachability graph generation time. It is too early to determine when one approach might

be superior to the other.

 Because of various limitations, we have only demonstrated the viability of our

approach on a small sample of programs. It is doubtful, however, that these programs are

representative of the population of "real" concurrent programs. To more accurately

quantify how well these techniques work in general, more experiments need to be run on

a larger sample of programs. Our future plans include performing a series of experiments

using this approach on a wider range of program sizes and complexities.

241

 For the programs examined here, we have manually detected variables and

impossible pairs to model, then added them to the Petri net using partially automated

tools. More support could be provided to the analyst through automatic recognition of

variables that control interaction patterns in the program; these variables could then be

automatically included in the Petri net or recommended as useful variables to model.

Automatically detecting impossible pairs in the program may not be feasible except in

simple cases, but further automating the process of modeling variables and impossible

pairs is a potential area for future research.

 It would also be interesting to make the tool interactive to determine the effects on

analysis accuracy of representing other user-supplied information. If the analysis yields

spurious results that are not easily eliminated using the above techniques, it may be

possible to include additional information from the user to refine the Petri net to improve

accuracy. Other constraints on the control flow, such as sequences of certain statements

that can never occur or must always occur, can be modeled with subnets and attached

appropriately. More generally, any constraints that can be expressed with a subnet could

be used to improve the accuracy of analysis results, as long as the analyst or an enhanced

tool could determine how to attach the subnet appropriately. To ensure conservativeness,

the modifications would need to be error-preserving, at least for the property being

checked.

 The results above support our hypothesis that modeling specific kinds of program

state information in the Petri net can lead to cost-effective improvements in the accuracy

of the corresponding reachability graph, and for some programs reduce the size of the

reachable state space as well. Further work needs to be done to more accurately quantify

the benefits of these techniques, and the tools should be made more robust to allow

additional investigation of these and other techniques for improving static analysis

accuracy.

242

CHAPTER 10

CONCLUSION

 Static concurrency analysis techniques can be used to check that the behavior of

concurrent systems meet specified requirements. A variety of these methods have been

proposed, including reachability analysis, symbolic model checking, integer

programming, and data flow analysis. Given the variety of tools available, analysts need

assistance when selecting which tools to use for a specific program and property.

Empirical tool comparisons can provide useful insight into which tool would be most

suitable for a given program and property.

 The main contribution of this dissertation is the methodology we have developed to

gather experimental data and analyze that data. We believe that this methodology can be

used to conduct sound empirical comparisons of concurrency analysis tools and to

provide valuable assistance to analysts selecting a tool for analysis of a concurrent

system. In describing our methodology, we identify many of the concerns and tradeoffs

that must be considered. We believe that the description will be informative to those

considering similar such investigations.

 To ensure that an empirical comparison is fair, a careful comparison methodology

must be employed. For the comparison to be fair, the tools should be used on the same

input domain of programs and properties and the methodology should not introduce bias

against one or more of the tools. A valid comparison methodology should therefore

ensure that each tool is analyzing the same program and property, or recognize and

identify cases in which this is not possible. Such a methodology should also try to

minimize bias introduced by the methodology.

 To ensure each tool analyzes the same program, the methodology presented above

uses an Ada program as a canonical model of the concurrent system and carefully

translates this model to the inputs for each of the tools. This translation process has been

243

carefully developed and automated, but because of differences in the semantics of the

analysis tools it may not be possible to force them to analyze identical programs. Instead,

we view our process as (at least close to) the best we can do for this set of analysis tools.

To ensure each tool checks the same property, the properties of interest are carefully

created. This task can be difficult given the variety of property specification formalisms.

Because we manually convince ourselves that the properties are the same, there is always

some question whether or not we have specified identical properties.

 The program and property translations in our methodology can inadvertently

introduce bias against one or more of the tools. This bias can be introduced by the form

of the inputs generated for each tool, by the configuration in which each tool is run, by the

form of the property specification, and by other unknown factors. The methodology

attempts to recognize possible areas of bias and, when possible, executes analysis runs to

ensure such bias is not introduced by the methodology.

 We know that our methodology introduces some bias through our selection of

program sizes. Specifically, the sizes for a specific program and property are selected

based on the performance of the tool that does worst (in terms of analysis time and

failure) on that program and property. In many cases, this restricts some of the analysis

tools to an input domain that is much smaller than they could actually analyze. The

positive effect of this choice is that the comparison is performed for the same input

domain of programs, sizes, and properties. The negative effect is that some of the tools

are forced to analyze programs in only a small portion of their domain of applicability.

An alternative would be to select different sizes for each tool, based on the point at which

that tool fails. This would potentially give a clearer picture of each tool's performance,

especially in terms of failures, but would preclude direct comparison of analysis times

and failure percentages because of the differences in the input domain.

 The choice of what to measure for analysis time for the comparison is a difficult one.

Using each tool's native input as the starting point for the time measurement seems the

244

fairest, but may not give a true picture of analysis cost, at least for Ada programs, given

the translations required to generate the native input. Starting the analysis time

measurement with the input of the Ada program may give better insight into the true cost

of the analyses, but this time also includes potential inefficiencies contained in our

translation tools.

 We also note that the measured analysis times ignore a very interesting, and almost

always significant, time factor - the amount of time it takes an analyst to specify the

property of interest. Our informal observations below indicate problems that we

encountered with each of the tools specifying the properties. While many of these

problems are probably caused by our inexperience with the tools and their specification

formalisms, we believe that the property specification time would be non-trivial even for

experienced users. Developing an experiment to take this time into account, however,

would be a difficult undertaking, because many factors involving human behavior (i.e.,

analysis experience, training effects, and so on) would need to be accounted for in the

experimental design.

 A second contribution of this dissertation is the application of the methodology to

conduct an empirical comparison of six concurrency analysis tools. As we applied this

methodology, we gained valuable experience using each of the tools in the experiment.

Because we have the perspective of a user, rather than a developer, of these tools, we

believe these experiences provide interesting insights about the tools.

 One of the key differences between the tools (from the user's perspective) is whether

they are state-based or event-based. We classify a tool as state-based if properties are

typically specified in terms of states of the program being analyzed; SPIN, SPIN+PO,

TRACC, and SMV are state-based tools. We classify a tool as event-based if properties

are typically specified in terms of events that occur during execution of the program being

analyzed; INCA and FLAVERS are event-based tools. We make a similar distinction

between state properties and path properties. State properties can be checked by

245

considering each state of the system in isolation. Freedom from deadlock and no_w1w2

(from readers/writers) are examples of state properties. Path properties require

consideration of paths through the program, often in terms of events along those paths.

The no_r1w property (from readers/writers) is an example of a path property. We have

found that using state-based tools to check path properties can be somewhat difficult. For

example, in many cases we found it necessary to add additional variables to the system

specification being analyzed by the state-based tools to let us recognize the events of

interest for the property. We did not seem to experience the same difficulty using event-

based tools to check state properties because it was usually possible to identify the events

leading to the states of interest and to formulate the property in terms of those events. Of

course, we had more experience using event-based tools before conducting the

experiment described here, so this might simply be a result of our prior experience. We

provide more specific comments about the tools below.

 SPIN provides two different methods for specifying properties. Never claims

essentially represent a Finite State Automaton representation of the property, while

assertions are embedded in the program being analyzed. Our biggest difficulty with SPIN

was caused by the fact that, even with the processes in the program specified as FSAs, we

do not get a "true" transition on communication events. SPIN evaluates the guards for the

alternatives (typically the guards are communication events) in one step of the evaluation,

but does not execute the action associated with the selected alternative until some later

step. This was particularly problematic when we wanted to check mutual exclusion

properties. Consider the case where one user of a resource releases that resource (through

a communication), but is not transitioned to its new state because SPIN has not yet

executed the action associated with that communication. If a second user starts using the

resource, examination of the states of the processes in the system indicates that both users

are using the resource (i.e., mutual exclusion is violated). The evaluation of an

alternative in one step and execution of the action for that alternative in a later step also

246

made it difficult to specify properties as never claims. We were able to work around this

characteristic with careful specification of the never claim or embedding of assertions, but

the resulting properties were often less intuitive than those we originally formulated.

Because it is based on SPIN, SPIN+PO has this same characteristic.

 Because we specify the system for SMV using the transition relation of the system,

we were able to more easily identify events of interest than with the other state-based

tools. Because our events of interest are often communications in the program, which are

represented by transitions in the transition relation, we can identify these events by using

additional variables to identify when certain transitions occur. Adding these variables to

potentially large transition relations was initially a painful, manual process, but we

quickly developed a tool that automatically makes most of the changes. We had more

difficulty when we tried to avoid adding additional variables by specifying the properties

as alternate CTL formulae instead, because these formulae are in terms of states rather

than events. On the other hand, because the transition relation provides true state

transitions on the communications, we did not experience the same problems we had with

SPIN.

 We included TRACC as an additional reachability analysis tool for comparison, but

its performance, in terms of both analysis time and accuracy, indicates that it is not a

viable tool for static concurrency analysis. In addition, a special program must be written

to check each property, an effort we would not expect an analyst to undertake each time a

new property of interest is developed.

 INCA is one of the two event-based tool in the experiment, and identification of the

communications in the program is automatically provided by the tool. We initially had

some difficulty determining when multiple intervals were required to check properties,

but discussions with the developers of the tool clarified this issue. We also had some

difficulty determining the semantics of certain query constructs (:ends-with, for instance),

247

but view this as a documentation problem rather than a weakness of the tool. Finally, we

found the Lisp syntax of the queries somewhat inconvenient.

 FLAVERS is also an event-based tool, and identification of rendezvous accepts is

automatically provided. Because the tool does not identify specific communications

(accepts of entry calls from two different tasks are marked with the same event), we

occasionally had to add annotations to capture the events of interest. This characteristic

also led us to manually add annotations to check the mutual exclusion properties, for

which we encountered a problem similar to that for SPIN. FLAVERS annotations can

only be specified to occur just before or just after a communication, while we wanted the

annotations to be exactly at certain communications. Our workaround for this was

similar to the one used for SPIN. Properties in FLAVERS are specified as Quantified

Regular Expressions (QREs). Given our familiarity with regular expressions, we found

this an intuitive way to specify properties. We note, however, that we developed a

process in which we created a QRE for our property of interest and then converted it to an

FSA to confirm that it specified the property we intended. On several occasions, this

process indicated that our property was not quite specified correctly, so we made

modifications to the QRE one or more times before achieving the property we wanted to

check. This experience implies that, for FLAVERS, FSAs may be a more useful property

specification formalism than QREs.

 To allow the use of statistical tests to check for bias and to gain confidence in the

analysis times collected, we ran each analysis case five times. In an effort to remove

caching effects from these runs, we randomized the order in which the analysis cases

were run. While we believe this approach is reasonable, there are some practical

difficulties with it. For example, a change to one tool's input requires that the entire set of

analysis cases be rerun, since the analysis cases are randomized across multiple tools. An

alternative would be to somehow clear the cache before each analysis case. We would

still run each analysis case five times to allow the statistical testing for bias, but would no

248

longer need to randomize the order of those runs. We could then run the analysis cases

for each tool as they became available, and would no longer have to rerun the entire set of

cases when one tool's input changed. Because all of these tools are regularly updated, an

additional benefit of using the new approach would be that we could run the analysis

cases for a new version of one of the tools without having to rerun the analysis cases for

the other tools as well.

 A third contribution of this dissertation is the demonstration of careful statistical

analysis to check for bias and to develop predictive models for analysis time, failures, and

spurious results. Unfortunately, the linear regression models for analysis time did not

generally capture much of the variance in the experimental data, so they are not likely to

provide much predictive power for real programs. For some of the metrics, we

occasionally identified additional linear components that were not accounted for by the

regression model. It is possible that adding additional cross-product terms to the model

or using more sophisticated regression techniques will yield better predictive models, but

we stopped our analysis at identification of these problems. It is also possible that the

metrics we have chosen do not capture those characteristics that actually do affect

analysis time, and that a different set of metrics would yield better predictive models. Of

course, it may also be the case that there does not exist a set of metrics that will yield

good predictive models, but we believe additional experimentation should be performed

before we reach this conclusion. We note that the results of the logistic regressions for

failure and spurious result predictive models yielded much better results than the linear

regressions, though these models still need to be validated on real programs.

 We have also noticed that minor changes in the Ada source can have significant

effects on analysis performance. For example, the Ada program we used for

readers/writers contained several unguarded select alternatives. INCA yielded spurious

results when checking for freedom from deadlock because of this. However, guards can

be added to these alternatives without changing the semantics of the program. When we

249

included these guards and modeled both the Writer and Readers variables we were able

to eliminate the spurious results from INCA. Thus, even differences in programming

style in the Ada program can lead to variations in analysis tool performance. These style

differences do not affect the values of the metrics we use, so the variations in tool

performance caused by these style differences will not be captured in the predictive

models built using our metrics.

 To be most useful, the analysis tools need to be applicable to programs of realistic

size, containing realistic communication structures. In almost all cases, including the

experiment conducted for this dissertation, concurrency analysis tools have been

demonstrated using programs from the concurrency analysis literature. It is not clear that

these academic programs are representative of concurrent programs in general. Most

tasks in these programs are relatively small, for instance, and the program constructs used

in these programs are relatively simple. A fourth contribution of the work presented here

is the preliminary examination of several "real" programs. The examination includes

quantification of the communication structure of the programs, discussion of the program

constructs used in the programs, and observations about program characteristics that are

likely to affect the applicability of static concurrency analysis tools to these programs.

 Performing fair experimental comparisons of concurrency analysis tools is difficult

given the variety of tool semantics and property specification formalisms. We believe

that the methodology presented in this dissertation can be used as a basis for such

comparisons. The methodology attempts to ensure the tools are analyzing the same

programs and properties, and it provides a method for statistically checking various

assumptions about biases that may be introduced by the methodology. The methodology

has been developed so it can be used on real programs as well as those from the

concurrency analysis literature, so it is applicable to case studies as well as experiments.

Through continued use of this methodology, we should be able to conduct additional

experiments that broaden our understanding of various static concurrency analysis

250

techniques and provide analysts with useful insights about which tools would be most

appropriate for specific programs and properties of interest.

APPENDIX

PREDICTIVE MODELS

 This appendix provides the equations for the predictive models we selected to predict

analysis time, failures, and spurious results for each of the tools.

A.1 Analysis Time Predictive Models

 This section provides the equations for the predictive models we selected to predict

analysis time. The equation for SPIN checking deadlock is

 Analysis Time = -5.285194 + 2.58366E-06*Cnd' + 0.085944*MaxTRANS.

The equation for SPIN using never claims to check other properties is

 Analysis Time = 1.99480E-04*Alpha' + 2.52515E-06*Cnd' +
 0.104129*MaxTRANS - 54.090492*Query Events + 140.704582.

The equation for SPIN using assertions to check other properties is

 Analysis Time = 28.023946 + 4.470356*T - 2.808051*MaxC + 2.809042*Beta +
 2.07503E-06*Cnd' + 0.156220*MaxTRANS - 83.595626*Query Events +
 119.416482*Query Intervals.

The equation for SPIN+PO checking deadlock is

 Analysis Time = 5.561660 + 0.957373*T - 6.444770*C - 0.290362*MaxC +
 1.17370E-04*Alpha' + 2.579100*Beta - 1.29418E-06*Cnd' - 3.17055E-09*Cif -
 0.044143*N + 0.031457*MaxTRANS - 2.43181E-21*WFSA + 0.245484*Vars.

The equation for SPIN+PO checking other properties is

 Analysis Time = 122.064648 +7.021475*T - 13.844693*C - 6.028394*MaxC +
 1.86244E-04*Alpha' + 7.899061*Beta - 3.16718E-06*Cnd' - 9.83386E-08*Cif +
 1.893762*N + 0.033242*MaxTRANS + 1.57110E-19*WFSA +
 25.766125*Vars -11.576069*QRE Alphabet + 1.910704*QRE States -
 0.761156*Query Events + 134.807495*Query Intervals -
 49.258551*Never States - 6.273414*Assertions.

251

252

The equation for TRACC checking deadlock is

 Analysis Time = 0.397474 + 0.541131*T + 0.135893*MaxC + 0.008972*Alpha' +
 0.181751*N + 4.58857E-21*WFSA.

The equation for TRACC checking other properties is

 Analysis Time = 18.987413 - 1.852495*T - 3.345392*C - 0.007447*Cnd' -
 0.043212*Cif + 0.216304*WFSA.

The equation for SMV checking deadlock is

 Analysis Time = -11.131395 + 10.712972*T - 41.659575*C - 4.234177*MaxC +
 2.65252E-06*Alpha' + 9.744026*Beta - 3.75022E-06*Cnd' - 1.08421E-07*Cif +
 9.161629*N - 0.096725*MaxTRANS + 4.89367E-20*WFSA + 30.185195*Vars

The equation for SMV checking other properties is

 Analysis Time = -110.172226 + 6.936632*T - 13.241819*C - 4.913227*MaxC +
 8.70360E-07*Alpha' + 4.326865*Beta - 1.29216E-06*Cnd' - 7.25095E-08*Cif +
 4.075190*N - 0.040636*MaxTRANS + 9.98048E-20*WFSA - 4.940134*Vars
 + 1.995971*QRE Alphabet + 19.152749*QRE States - 9.523060*Query Events
 + 157.192641*Query Intervals - 41.925466*Never States - 1.473770*Assertions

The equation for INCA checking deadlock is

 Analysis Time = 4.592838 -7.889957*C + 5.806953*N.

The equation for INCA checking other properties is

 Analysis Time = 21.303073 + 7.24986E-08*Cnd' + 0.017519*MaxTRANS -
 6.985987*QRE States - 2.814540*Query Events + 3.342872*Never States +
 0.577033*Assertions.

The equation for FLAVERS checking other properties is

 Analysis Time = -343.063823 + 130.849429*C - 48.007135*MaxC +
 7.39592E-05*Alpha' + 7.344377*Beta + 8.29521E-07*Cif + 5.960648*N -
 2.33986E-18*WFSA + 16.000030*QRE Alphabet

253

A.2 Failure Predictive Models

 This section provides the equations for the predictive models we selected to predict

failures. The form of the predictive equations is Pr()
()

()
Failure e

e

g x

g x
=

+1
; for readability,

we provide equations for g(x) below. The equation for SPIN checking deadlock is

 g(x) = -4.0399 + 1.26E-07*Alpha' + 7.95E-09*Cif + 0.0830*N.

The equation for SPIN using never claims to check other properties is

 g(x) = -4.4229 + 0.1321*T - 0.3799*C - 0.0721*MaxC + 0.0012*Alpha' +
 0.0805*Beta - 0.0006*Cnd' + 1.92E-09*Cif + 0.0397*N + 0.0090*MaxTRANS
 - 2.6E-21*WFSA + 0.0102*Vars.

The equation for SPIN using assertions to check other properties is

 g(x) = 6.6110 + 0.2749*T - 1.4242*C - 0.1312*MaxC + 5.92E-07*Alpha' -
 1.8E-08*Cnd' + 0.3675*N - 0.2309*Vars - 2.8209*Never States.

The equation for SPIN+PO checking deadlock is

 g(x) = -6.7785 + 0.0710*Beta + 0.0459*N + 0.0007*MaxTRANS.

The equation for SPIN+PO checking other properties is

 g(x) = 7.3872 - 1.4322*C + 7.34E-07*Alpha' + 0.2331*Beta + 0.2134*N -
 1.3656*QRE Alphabet - 0.8042*Query Events.

The equation for TRACC checking deadlock is

 g(x) = -2.0140 + 0.1147*Beta.

Because we had indications that all the failure models we built for TRACC checking
other

properties were overfit to the data, we do not provide an equation for TRACC checking

other properties. The equation for SMV checking deadlock is

 g(x) = -14.5847 + 0.4086*T + 3.6889*C - 2.0163*MaxC - 0.0001*Alpha' +
 0.1014*Beta - 4.1E-09*Cnd' - 6.7E-07*Cif + 0.3898*N +
 8.96E-05*MaxTRANS + 1.58E-19*WFSA - 0.1367*Vars.

254

The equation for SMV checking other properties is

 g(x) = -4.2911 + 0.0536*T + 0.0006*MaxTRANS.

The equation for INCA checking deadlock is

 g(x) = -11.0889 + 0.0527*N.

INCA did not fail on any of the cases for which it was used to check properties other than

deadlock, so we do not provide an equation for INCA checking other properties. Because

we had indications that all the failure models we built for FLAVERS checking other

properties were overfit to the data, we do not provide an equation for FLAVERS

checking other properties.

A.3 Spurious Result Predictive Models

 This section provides the equations for the predictive models we selected to predict

failures. The form of the predictive equations is Pr()
()

()
Spurious Results =

+

g x

g x

e

e1
; for

readability, we provide equations for g(x) below. The equation for SPIN checking

deadlock is

 g(x) = 8.0896 - 0.2590*T - 1.8541*C - 0.1526*Alpha' + 0.2539*Beta +
 0.3956*N - 0.0015*MaxTRANS - 5.6727*Vars.

The equation for SPIN using never claims to check other properties is

 g(x) = 6.9290 - 3.3254*C + 0.7151*N - 0.0004*MaxTRANS - 10.7109*Vars.

The equation for SPIN using assertions to check other properties is

 g(x) = 8.1618 - 0.2886*T - 2.9286*C + 0.5816*N - 11.1929*Vars.

The equation for SPIN+PO checking deadlock is

 g(x) = 6.6263 - 0.2370*T - 1.0433*C - 0.0980*MaxC - 0.2057*Alpha' +
 0.2141*Beta - 3.5E-09*Cnd' + 2.25E-09*Cif + 0.2264*N - 0.0010*MaxTRANS
 - 8.4E-18*WFSA - 4.7549*Vars.

The equation for SPIN+PO checking other properties is

 g(x) = 10.1997 - 0.2419*T - 3.5706*C + 0.4826*N - 12.2021*Vars.

255

The equation for TRACC checking deadlock is

 g(x) = 3.6589 - 0.3487*C.

Because we had indications that all the spurious result models we built for TRACC

checking other properties were overfit to the data, we do not provide an equation for

TRACC checking other properties. The equation for SMV checking deadlock is

 g(x) = 8.3817 - 0.4975*T - 1.2482*C + 0.1847*Beta + 0.1081*N - 4.1590*Vars.

The equation for SMV checking other properties is

 g(x) = 7.1481 - 0.1515*T - 2.1992*C + 0.1435*N - 10.3828*Vars.

The equation for INCA checking deadlock is

 g(x) = 9.1374 - 0.2867*T - 1.9769*C + 0.3537*Beta + 0.0095*MaxTRANS -
 3.2146*Vars.

The equation for INCA checking other properties is

 g(x) = 3.9281 - 0.0991*T - 1.6297*C + 0.0243*MaxC - 1.9E-07*Alpha' +
 0.1987*Beta + 2.59E-08*Cnd' - 6.1E-09*Cif + 0.1292*N - 0.0019*MaxTRANS
 - 6.0E-21*WFSA - 10.7992*Vars.

The equation for FLAVERS checking other properties is

 g(x) = -31.1782 - 2.7071*C + 0.6871*MaxC + 0.5250*Beta - 0.3649*N +
 1.0691*Vars + 10.1329*QRE States - 2.0786*Query Events -
 0.4609*Assertions.

256

BIBLIOGRAPHY

[Agr84] Agresti, Alan, Analysis of Ordinal Categorical Data, John Wiley & Sons,

 New York, 1984.

[AS87] Alpern, Bowen and Schneider, Fred B. Recognizing safety and liveness.
 Distributed Computing, 2:117-126, 1987.

[AK84] Avizienis, A. and Kelly, J.P.J. Fault tolerance by design diversity:

Concepts
 and experiments. Computer, 17(8):67-80, Aug 1984.

[ABC+91] Avrunin, George S., Buy, Ugo A., Corbett, James C., Dillon, Laura K.,

and
 Wileden, Jack C. Automated analysis of concurrent systems with the
 constrained expression toolset. IEEE Transactions on Software
 Engineering, 17(11):1204-1222, November 1991.

[ACD+94] Avrunin, G.S., Corbett, J.C., Dillon, L.K., and Wileden, J.C. Automatic
 derivation of time bounds in uniprocessor concurrent systems. IEEE
 Transactions on Software Engineering, 20(9):708-719, 1994.

[BDF92] Balbo, Gianfranco, Donatelli, Susanna, and Franceschinis, Giuliana.

 Understanding parallel program behavior through petri net models.
 Journal of Parallel and Distributed Computing, 15(3):171-187,
 July 1992.

[BSH86] Basili, Victor R., Selby, Richard W., and Hutchens, David H.
 Experimentation in software engineering. IEEE Transactions on

 Software Engineering, SE-12(7):733-743, July 1986.

[BS87] Basili, Victor R. and Selby, Richard W. Comparing the effectiveness of
 software testing strategies. IEEE Transactions on Software

 Engineering, SE-13(12):1278-1296, December 1987.

[BW84] Basili, Victor R. and Weiss, David M. A methodology for collecting valid
 software engineering data. IEEE Transactions on Software

 Engineering, SE-10(6):728-738, November 1984.

[Bla70] Blalock, Hubert M., Jr. Correlated Independent Variables: The Problem of
 Multicollinearity. In Edward R. Tufte, editor, The Quantitative

 Analysis of Social Problems. Addison-Wesley Publishing Company,
 Massachusetts, 1970.

257

[BCM+90] Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., and Hwang, L.J.
 Symbolic model checking : 1020 states and beyond. In Proceedings of

 the Fifth Annual IEEE Symposium on Logic in Computer Science,
 pages 428-439, 1990.

[Cha95a] Chamillard, A.T. An exploratory study of program metrics as predictors
 of reachability analysis performance. In Proceedings of the 1995
 European Software Engineering Conference, pages 343-361,

 Barcelona, Spain, September 1995.

[Cha95b] Chamillard, Albert Timothy. Improving static analysis accuracy on
 concurrent Ada programs: Complexity results and empirical findings.
 Technical Report TR 95-49, University of Massachusetts, Amherst,

 1995.

[CC96] Chamillard, A.T., and Clarke, Lori A. Improving the accuracy of Petri net-
 based analysis of concurrent programs. In Proceedings of the 1996
 International Symposium on Software Testing and Analysis (ISSTA),

 pages 24-38, San Diego CA, January 1996.

[CK93] Cheung, S.C. and Kramer, J. Tractable flow analysis for anomaly detection
 in distributed programs. In Proceedings of the Software Engineering
 Conference, 1993.

[CK94] Cheung, S.C. and Kramer, J. An integrated method for effective behaviour
 analysis of distributed systems. In Proceedings of the 16th

 International Conference on Software Engineering, pages 309-320,
 Soreno Italy, May 1994.

[CK95] Cheung, S.C. and Kramer, J. Compositional reachability analysis of finite-

 state distributed systems with user-specified constraints. In
 Proceedings of the Third ACM SIGSOFT Symposium on Foundations
 of Software Engineering, pages 140-150, Washington DC, October
 1995.

[CES86] Clarke, E.M., Emerson, E.A., and Sistla, A.P. Automatic verification of
 finite-state concurrent systems using temporal logic specifications.

 ACM Transactions on Programming Languages and Systems,
 8(2):244-263, April 1986.

[CR81] Clarke, Lori A. and Richardson, Debra J. Symbolic evaluation methods -
 implementations and applications. In Computer Program Testing,

 pages 65-102. Chandrasekaran and Radicchi, editors, North-Holland
 Publishing Company, 1981.

258

[Coh95] Cohen, Paul R., Empirical Methods for Artificial Intelligence, The MIT
 Press, Massachusetts, 1995.

[CW90] Compton, B. Terry and Withrow, Carol. Prediction and control of Ada
 software defects. Journal of Systems and Software, 12(3):199-207,

 July 1990.

[Cor93] Corbett, James C. Identical tasks and counter variables in an integer
 programming based approach to verification. In Martin Feather and

 Axel van Lamsweerd, editors, Proceedings of the Seventh
 International Workshop on Software Specification and Design,

 pages 100-109, Los Alamitos, California, December 1993.

[Cor94] Corbett, James C. An empirical evaluation of three methods for deadlock
 analysis of Ada tasking programs. In Proceedings of the 1994
 International Sympoosium on Software Testing and Analysis (ISSTA),
 pages 228-239, Seattle WA, August 1994.

[CA94] Corbett, James C. and Avrunin, George S. Towards scalable compositional
 analysis. In Proceedings of the Second ACM SIGSOFT Symposium on
 Foundations of Software Engineering, pages 62-75, New Orleans,
 Louisiana, December 1994.

[CA95] Corbett, James C. and Avrunin, George S. Using integer programming to
 verify general safety and liveness properties. Journal of Formal

 Methods in System Design, 6(1):97-123, 1995.

[DS92] Damerla, Srinivasarao and Shatz, Sol M. Software complexity and Ada
 rendezvous: Metrics based on nondeterminism. Journal of Systems

 and Software, 17(2):119-127, February 1992.

[DW80] Daniel, Cuthbert and Wood, Fred S., Fitting Equations to Data: Computer
 Analysis of Multifactor Data, John Wiley & Sons, New York, 1980.

[DO88] DeMillo, Richard and Offutt, J. An experimental evaluation of automatic
 test data generation. In Proceedings of the Sixth Annual Pacific

 Northwest Software Quality Conference, pages 209-232, Portland,
 Oregon, September 1988.

[DS66] Draper, N.R. and Smith, H., Applied Regression Analysis, John Wiley &
 Sons, New York, 1966.

[Dun86] Dunham, Janet R. Experiments in software reliability: Life-critical
 applications. IEEE Transactions on Software Engineering,
 SE-12(1):110-123, January 1986.

259

[DN84] Duran, Joe W. and Ntafos, Simeon C. An evaluation of random testing.
 IEEE Transactions on Software Engineering, SE-10(4):438-444, July
 1984.

[DBD+94] Duri, S., Buy, U., Devarapalli, R., and Shatz, S.M. Application and
 experimental evaluation of state space reduction methods for deadlock
 analysis in Ada. ACM Transactions on Software Engineering and
 Methodology, 3(4):340-380, October 1994.

[DC94] Dwyer, Matthew B. and Clarke, Lori A. Data flow analysis for verifying
 properties of concurrent programs. In Proceedings of the Second

 ACM SIGSOFT Symposium on Foundations of Software Engineering,
 pages 62-75, New Orleans, Louisiana, December 1994.

[DCN95] Dwyer, Matthew B., Clarke, Lori A., and Nies, Kari A. A compact petri

 net representation for concurrent programs. In Proceedings of the
 17th International Conference on Software Engineering, Seattle,
 Washington, April 1995.

[FPG94] Fenton, Norman, Pfleeger, Shari Lawrence, and Glass, Robert L. Science
 and substance: A challenge to software engineers. IEEE Software,

 pages 86-95, July 1994.

[For88] Ford, Ray. Concurrent algorithms for real-time memory management.
 IEEE Software, pages 10-23, September 1988.

[FW93] Frankl, Phyllis G. and Weiss, Stewart N. An experimental comparison of

 the effectiveness of branch testing and data flow testing. IEEE
 Transactions on Software Engineering, 19(8):774-787, August 1993.

[GMO76] Gabow, Harold N., Maheshwari, Shachindra N., and Osterweil, Leon J. On
 two problems in the generation of program test paths. IEEE

 Transactions on Software Engineering, SE-2(3):227-231, September
 1976.

[GW91] Godefroid, Patrice and Wolper, Pierre. Using partial orders for the

efficient
 verification of deadlock freedom and safety properties. In Proceedings

 of the Third Workshop on Computer Aided Verification, pages
 417-428, July 1991.

[Hal76] Halstead, M.H., Elements of Software Science, North-Holland,
 Amsterdam, 1977.

[HL85] Helmbold, D. and Luckham, D.C. Debugging Ada tasking programs.

260

 IEEE Software, pages 47-57, March 1985.

261

[Hol91] Holzmann, Gerard J., Design and Validation of Computer Protocols.
 Prentice-Hall, Englewood Cliffs, NJ, 1991.

[HL89] Hosmer, David W., Jr. and Lemeshow, Stanley, Applied Logistic
 Regression, John Wiley & Sons, New York, 1989.

[HFG+94] Hutchins, Monica, Foster, Herb, Goradia, Tarak, and Ostrand, Thomas.
 Experiments on the effectiveness of dataflow- and controlflow-based

 test adequacy criteria. In Proceedings of the 16th International
 Conference on Software Engineering, pages 191-200, Soreno Italy,
 May 1994.

[IMO+84] Iannino, Anthony, Musa, John D., Okumoto, Kazuhira, and Littlewood,

 Bev. Criteria for software reliability model comparisons. IEEE
 Transactions on Software Engineering, SE-10(6):687-691, November
 1984.

[IR85] Iyer, Ravishankar K. and Rossetti, David J. Effect of system workload on
 operating system reliability: A study on IBM 3081. IEEE Transaction

 on Software Engineering, SE-11(12):1438-1448, December 1985.

[KL86] Knight, John C. and Leveson, Nancy G. An experimental evaluation of the
 assumption of indpendendence in multivarsion programming. IEEE
 Transactions on Software Engineering, SE-12(1):96-109, January

 1986.

[LT93] Levine, David L. and Taylor, Richard N. Metric-driven reengineering for
 static concurrency analysis. In Proceedings of the 1993 International
 Symposium on Software Testing and Analysis (ISSTA), pages 40-50,
 Cambridge MA, June 1993.

[LC87] Li, H.F. and Cheung, W.K. An empirical study of software metrics. IEEE
 Transactions on Software Engineering, SE-13(6):697-708, June 1987.

[Lit91] Littlewood, Bev. Software reliability modelling: achievements and
 limitations. In Proceedings of the 5th Annual European Computer
 Conference, pages 336-334, Bologna Italy, May 1991.

[LC89] Long, Douglas L. and Clarke, Lori A. Task interaction graphs for
 concurrency analysis. In Proceedings of the 11th International

 Conference on Software Engineering, pages 44-52, Pittsburgh PA,
 May 1989.

262

[LC91] Long, Douglas and Clarke, Lori A. Data flow analysis of concurrent
 systems that use the rendezvous model of synchronization. In

 Proceedings of the ACM SIGSOFT Symposium on Testing, Analysis
 and Verification (TAV4), Victoria, Canada, pages 236-250, October
 1991.

[MR91] Masticola, Stephen P. and Ryder, Barbara G. A model of Ada programs

for
 static deadlock detection in polynomial time. In Proceedings of the
 Workshop on Parallel and Distributed Debugging, pages 97-107,

 May 1991.

[MR93] Masticola, Stephen P. and Ryder, Barbara G. Non-concurrency analysis.
 In Proceedings of the ACM Symposium on Principles and Practices of
 Parallel Programming (PPOPP), 1993.

[McC76] McCabe, Thomas J. A complexity measure. IEEE Transactions on
 Software Engineering, 2(4):308-320, December 1976.

[McD89] McDowell, Charles E. A practical algorithm for static analysis of

programs.
 Journal of Parallel and Distributed Computing, 6:515-536, 1989.

[McM93] McMillan, Kenneth L., Symbolic Model Checking, Kluwer Academic
 Publishers, Boston, MA, 1993.

[Mil80] Milner, R., A Calculus of Communicating Systems, volume 92 of Lecture
 Notes in Computer Science. Springer-Verlag, Berlin, 1980.

[MP82] Montgomery, Douglas C. and Peck, Elizabeth A., Introduction to Linear
 Regression Analysis, John Wiley & Sons, New York, 1982.

[MSS89] Murata, Tadao, Shenker, Boris, and Shatz, Sol M. Detection of Ada static
 deadlocks using petri net invariants. IEEE Transactions on Software
 Engineering, 15(3):314-326, March 1989.

[MO84] Musa, John D. and Okumoto, Kazuhira. A comparison of time domains

for
 software reliability models. Journal of Systems and Software,
 4(4):277-287, November 1984.

[NCO96] Naumovich, Gleb N., Clarke, Lori A., and Osterweil, Leon J. Verification

 of communication protocols using data flow analysis. Technical
Report TR 96-27, University of Massachusetts, Amherst, 1996.

263

[NWK85] Neter, John, Wasserman, William, and Kutner,Michael H., Applied Linear
 Statistical Models, Richard D. Irwin, Inc, Illinois, 1985.

[OC92] Osterweil, Leon and Clarke, Lori A. A proposed testing and analysis
 research initiative. IEEE Software, pages 89-96, September 1992.

[Pet77] Peterson, James L. Petri nets. Computing Surveys, 9(3):223-252,
 September 1977.

[Pet81] Peterson, James L., Petri Net Theory and the Modeling of Systems,

 Prentice-Hall, 1981.

[Pfl94] Pfleeger, Shari Lawrence. Design and analysis in software engineering part
 1: The language of case studies and formal experiments. ACM

 SIGSOFT Software Engineering Notes, 19(4):16-20, October 1994.

[PS90] Porter, Adam A., and Selby, Richard W. Evaluating techniques for
 generating metric-based classification trees. Journal of Systems and
 Software, 12(3):209-218, July 1990.

[PST+95] Porter, A., Siy, H., Toman, C.A., and Votta, L.G. An experiment to assess
 the cost-benefits of code inspections in large scale software

 development. In Proceedings of the Third ACM SIGSOFT
 Symposium on Foundations of Software Engineering, pages 92-103,
 Washington DC, October 1995.

[PV94] Porter, A.A. and Votta, L.G. An experiment to assess different defect
 detection methods for software requirements inspections. In

 Proceedings of the Sixteenth International Conference on Software
 Engineering, Soreno Italy, pages 103-112, May 1994.

[RS90] Reif, John H. and Smolka, Scott A. Data flow analysis of distributed
 communicating processes. International Journal of Parallel

 Programming, 19(1):1-30, 1990.

[Rus91] Russell, Glen W. Experience with inspection in ultralarge-scale
 developments. IEEE Software, 8(1):25-31, January 1991.

[Sca89] Scanlan, David A. Structured flowcharts outperform pseudocode: An
 experimental comparison. IEEE Software, pages 28-36, September

 1989.

[SMT92] Schneider, G. Michael, Martin, Johnny, and Tsai, W.T. An experimental
 study of fault detection in user reuirements documents. ACM

 Transactions on Software Engineering and Methodology,

264

 1(2):188-204, April 1992.

265

[SC88] Shatz, S.M. and Cheng, W.K. A petri net framework for automated static
 analysis of Ada tasking behavior. Journal of Systems and Software,
 8(5):343-359, December 1988.

[SMM+77] Shneiderman, Ben, Mayer, Richard, McKay, Don, and Heller, Peter.
 Experimental investigations of the utility of detailed flowcharts in
 programming. Communications of the ACM, 20(6):373-381, June

 1977.

[Sho75] Shooman, Martin L. Software reliability: Measurement and models. In

 Proceedings of the 1975 Annual Reliability and Maintainability
 Symposium, Washington DC, pages 485-491, January 1975.

[Tay83a] Taylor, Richard N. A general-purpose algorithm for analyzing concurrent
 programs. Communications of the ACM, 26(5):362-376, May 1983.

[Tay83b] Taylor, Richard. Complexity of analyzing the synchronization structure of
 concurrent programs. Acta Informatica, 19:57-84, 1983.

[TO80] Taylor, Richard N. and Osterweil, Leon J. Anomaly detection in

concurrent
 software by static data flow analysis. IEEE Transaction on Software
 Engineering, SE-6(3):265-277, May 1980.

[TLP+95] Tichy, Walter F., Lukowicz, Paul, Prechelt, Lutz, and Heinz, Ernst A.
 Experimental evaluation in computer science: A quantitative study.

 The Journal of Systems and Software, 28(1):9-18, January 1995.

[Val90] Valmari, A. A stubborn attack on state explosion. In E.M. Clarke and R.P.
 Kurshan, editors, Computer-Aided Verification '90, number 3 in

 DIMACS Series in Discrete Mathematics and Theoretical Computer
 Science, pages 25-41, Providence, Rhode Island, 1991.

[VW84] Vessey, Iris and Weber, Ron. Research on structured programming: An
 empiricist's evaluation. IEEE Transactions on Software Engineering,
 SE-10(4):397-407, July 1984.

[YY91] Yeh, Wei Jen and Young, Michal. Compositional reachability analysis

using
 process algebra. In Proceedings of the ACM SIGSOFT Symposium on
 Testing, Analysis and Verification (TAV4), Victoria, Canada, pages

 49-59, October 1991.

[YT88] Young, Michal and Taylor, Richard N. Combining static concurrency
 analysis with symbolic execution. IEEE Transactions on Software

266

 Engineering, 14(10):1499-1511, October 1988.

[YTF+89] Young, Michal, Taylor, Richard N., Forester, Kari, and Brodbeck, Debra.

 Integrated concurrency analysis in a software development
 environment. In Proceedings of the ACM SIGSOFT '89 Third
 Symposium on Testing, Analysis and Verification (TAV3), pages

 200-209, 1989.

