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ABSTRACT

AN EMPIRICAL COMPARISON OF STATIC CONCURRENCY
ANALY SIS TECHNIQUES

SEPTEMBER 1996
ALBERT T. CHAMILLARD
B.E.E., GEORGIA INSTITUTE OF TECHNOLOGY
M.Sc., UNIVERSITY OF SOUTHERN CALIFORNIA
Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST
Directed by: Professor Lori A. Clarke

Developers of concurrent software need cost-effective analysis techniques to acquire
confidence in the reliability of that software. Analysis of concurrent programs is difficult
because, in many cases, the patterns of communication among the various parts of the
program are complicated and the number of possible communicationsis large.

One class of techniques that can be used for analysis of concurrent programsiis static
analysis, which uses compile-time information to prove properties about a program.
Given the variety of concurrency analysis tools available, analysts need assistance when
selecting tools to use to check a specific program and property. Despite exponential
worst-case bounds for most of the techniques, average case analysis times may help
differentiate between the techniques in practice. The techniques provide arange of
analysis accuracies, but these accuracies have not been formally or empirically quantified.
Empirical tool comparisons can therefore provide useful insight into which tool would be
most suitable for a given program and property.

The main contribution of the work presented here is the development of a sound
methodology for comparing concurrency analysis tools, with a thorough description of the
experimental design and constraints, discussion of the issues and tradeoffsinvolved in

devel oping such a methodol ogy, and valid application of statistical analysis. We apply

Vi



this methodology to conduct an experiment to compare a number of concurrency analysis
tools. Comparisons are accomplished for analysis time, anaysis failures, and analysis
accuracy of thetools.

Secondary contributions of the work presented here include devel opment of
predictive models and preliminary examination of several "real" programs. We develop,
with varying degrees of success, predictive models that may help an analyst estimate the
anaysistime, anaysisfailure, and analysis accuracy of each tool given aprogram and a
property to be checked. We aso provide a preliminary examination of several "real"
programs, including a discussion of the program constructs used in the programs and
observations about program characteristics that are likely to affect the applicability of

static concurrency analysis tools to these programs.
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CHAPTER 1
INTRODUCTION

Developers of concurrent software need cost-effective analysis methods to acquire
confidence in the reliability of that software. Analysis of concurrent programsis difficult
because, in many cases, the patterns of communication among the various parts of the
program are complicated and the number of possible communicationsislarge. One class
of methods that can be used for analysis of concurrent programsis static analysis, which
uses compile-time information to prove properties about a program.

A number of techniques have been proposed for static concurrency analysis (i.e.,
static analysis of concurrent programs). These techniques include: reachability analysis,
which generates the state space of the concurrent program and checks the property of
interest on that state space; symbolic model checking, which checks the property on a
symbolic representation of the state space; inequality necessary condition analysis, which
specifies the program and property as a system of integer inequalities and looks for a
solution to that system; and dataflow analysis, which checks the property by solving a
dataflow problem on a graphical representation of the program. For each of the
techniques, one or more tools have been devel oped to implement the technique.

Unfortunately, there is little information available to help analysts choose between
the analysistools. Most of the static concurrency analysis techniques are NP-compl ete,
leading to exponential analysis times in the worst case. Despite these exponential worst-
case bounds, average case analysis times may help differentiate between the techniquesin
practice. All static analysis tools may produce spurious results -- that is, report that a
property fails when in fact the cases in which it fails do not correspond to actual program
behaviors. Usually, atool produces a spurious result as a consequence of considering
paths that can never be executed in the program (commonly called infeasible paths) or of

considering aliasing that can never occur in the program. The tools provide a range of



analysis accuracies, but these accuracies have not been formally or empirically quantified.
Empirical tool comparisons can therefore provide useful insight into which tool would be
most suitable for a given program and property.

The main contribution of the work presented here is the development of a sound
methodology for comparing concurrency analysis tools, with a thorough description of the
experimental design and constraints, discussion of the issues and tradeoffsinvolved in
devel oping such a methodol ogy, and valid application of statistical analysis. Fair
concurrency analysis tool comparisons are difficult to accomplish given the diverse
program semantics and property specification formalisms of the tools. Our methodol ogy
includes a process to try to ensure each tool examines the same programs and properties.
We also need to guard against introducing bias against one or more of thetools. Our
methodol ogy includes recognition of a number of biases our methodology could
introduce and statistical testing for these biases. We apply our methodology to conduct
an experiment to compare a number of concurrency analysistools. Comparisons are
accomplished for analysis time, analysis failures, and analysis accuracy of the tools.

Secondary contributions of the work presented here include devel opment of
predictive models and preliminary examination of several "rea” programs. We
hypothesize that the behavior of the tools, both in terms of performance and accuracy, is
affected by characteristics of the program being analyzed and the property being checked
for that program. These characteristics are measured using existing and newly-devel oped
metrics. We develop, with varying degrees of success, predictive models that may help
an anayst estimate the analysistime, analysis failure, and analysis accuracy of each tool
given a program and a property to be checked. These predictive models are in the form of
mathematical equations. We conjecture a scenario in which an analyst calculates the
program and property metrics, solves the predictive equations, and selects the tool whose

predicted behavior meets their accuracy and time requirements.



To be most useful, the analysis tools need to be applicable to programs of redlistic
size, containing realistic communication structures. In almost all cases, static
concurrency analysis tools have been demonstrated using programs from the concurrency
anaysis literature. It isunlikely that these academic programs are representative of
concurrent programs in general. Most tasks in these programs are relatively small, for
instance, and the program constructs used in these programs are relatively simple. We
provide a preliminary examination of several "real" programs, including a discussion of
the program constructs used in the programs and observations about program
characteristics that are likely to affect the applicability of static concurrency anaysistools
to these programs.

The remainder of the thesisis organized as follows. Chapter 2 contains areview of
the related work in static concurrency analysis and experimental software engineering.
Chapter 3 presents the experimental methodology we use for the experiment, illustrating
the methodol ogy with analysis of a concurrent program and several properties of interest
for that program. Chapter 4 describes the other concurrent programs and properties
included in the experiment. Chapter 5 introduces the program and property metrics we
use as the variables in the predictive models and the measurements we predict with those
models. Chapter 6 describes the statistical analysis techniques we use to check for biasin
the experiment and to build the predictive models. Chapter 7 presents our empirical
results. Chapter 8 provides the results of our examination of several "real" programs. A
method for improving the accuracy of certain kinds of static concurrency analysisis
provided in chapter 9. Chapter 10 provides our conclusions and directions for future

research.



CHAPTER 2
RELATED WORK

Work related to this dissertation can be separated into two categories. Because we
conduct experiments using a number of static concurrency analysis techniques, we survey
the static concurrency analysis literature in the first section. Because our work is
empirical, the second section contains a discussion of the difficulties that must be
addressed in software engineering experiments and areview of prior work in
experimental software engineering.

2.1 Static Concurrency Anaysis Techniques

Static analysis can be used to check whether a selected property, often called the property
of interest, holds for a specific program. Numerous techniques for static analysis of
concurrent programs have been proposed. The major approaches include reachability
analysis, symbolic model checking, integer programming, dataflow analysis,
compositional analysis, and combinations of these. In this section we survey these major
approaches.

2.1.1 Reachability Analysis

Reachability analysis checks whether a property of interest holds on all executions
(or no executions) of aconcurrent program by considering all reachable states of the
program being analyzed. Theoretical results [Tay83b] have shown that using reachability
analysis to answer various analysis questions is NP-complete. Because the best known
solutions to NP-complete problems are exponential, Taylor's results imply that, in
general, the time and space requirements for this technique are exponential.

Taylor presents complexity results for various analysis questions about
synchronization events in concurrent programs [Tay83b]. These anaysis questions
include determining points of possible synchronization, determining actions that can

occur in parallel, and determining errors inherent in the synchronization structure



(deadlock, for instance). Taylor shows that most analysis tasks are NP-complete, even
under severe restrictions on program structure. The restrictions include prohibiting
branches, loops, and select statementsin al tasks, or prohibiting branches and loops in
the tasks and only allowing one task to have entry calls on agiven entry. Itisclear that a
variety of important questionsin static analysis of concurrent programs are intractable;
indeed, Taylor points out that, even when feasibility of program paths isignored, the
problems only become tractable when enough restrictions are applied to make a system
fully deterministic.

2.1.1.1 Reachability Analysis Approaches

The set of reachable program states used in reachability analysis can be generated
using avariety of program representations, including flow graphs [Tay83a, Y TF+89] and
Petri nets [Pet77, SC88, DCN95].

Taylor's algorithm [Tay83a] implements a graph-based approach for reachability
analysis. The algorithm provides a means for checking properties of interest using a flow
graph model of the program to generate the set of reachable states. Using a program call
graph to mark units (tasks) that can directly or indirectly perform atasking activity,
Taylor defines a concurrency state as an ordered tuple of task state nodes. To generate
the set of reachable states, a successor function is used to generate the successor states
from each concurrency state. The resulting graph is called the Concurrency History
Graph (CHG). A complete concurrency history of a program is defined as all non-loop
paths through the concurrency states of the program. Properties of interest are checked on
the CHG.

Because the size of the CHG often grows exponentially in the number of tasksin the
program (commonly called state-space explosion), Taylor suggests parceling the analysis
by connected components. Analysis can be performed on each connected component,
with the results of these analyses combined in the global reachability analysis. Taylor

also discusses severa problems associated with static concurrency analysis techniques,



these problems include imprecision caused by aliasing and delay statements, aswell as
difficulties analyzing programs containing dynamic task creation.

Shatz and Cheng [SC88] implement a Petri net-based approach for reachability
analysis of Adaprograms. An Adaprogram is converted to a Petri net using atranslation
table of Ada constructs to Petri net building blocks. A reachability graph is generated
from the Petri net, where each node in the graph represents a reachable marking of the net
and each arc in the graph represents the firing of asingle transition. Shatz and Cheng
check properties of interest about states of the program using the generated reachability
graph.

A variety of methods can be used to check properties of areachability graph. For
some properties, examination of each state is sufficient to check the property. For others,
information about the path to each state is required; these properties can be checked using
dataflow analysis or model checking. Clarke et al [CES86] present amodel checking
technique for checking properties on areachability graph. Each state is assigned the set
of atomic propositionstruein that state. The property of interest is expressed in
Computation Tree Logic (CTL), apropositional, branching-time temporal logic. The
technique works through the reachability graph in stages, processing all subformulas of
length 1, then length 2, and so on up to the length of the property formula. In each stage,
each state in the reachability graph is marked with the subformulas that are true at that
state. After all stages have been completed, the property holdsif and only if for each state
the property formulaistrue in that state. Proving properties using this technique requires
O(length of formula* (# states + # state transitions)) time.
2.1.1.2 State Space Reduction Approaches

To combat the state-space explosion problem in reachability analysis, various
approaches have been suggested to reduce the size of the reachable state space. The
approaches discussed below attempt these reduction in two different ways - by reducing

the program model from which the reachability graph is generated or by reducing the



reachable state space asit is generated. We note that, for all the state space reduction
techniques, in the worst case the size of the reachabl e state space remains exponentia in
the number of tasks.

Long and Clarke [LC89] suggest using Task Interaction Graphs (T1Gs) as a reduced
program representation that retains task interaction information. The TIG consists of a
finite set of nodes, N = { nj}, and afinite set of directed edges, E = {gj}. Each nodenj
represents a maximal region of sequential code, and each directed edge represents a task
interaction (either the start or end of an entry call or an accept). The set of nodes includes
asingle start node and a set of terminal nodes for the TIG. Thereisan edge from n; to nj
if and only if the task can potentially participate in the task interaction represented by the
edge, causing the task to exit the sequential region represented by n; and enter the
sequential region represented by nj. Use of TIGs as the program model results in reduced
representations of the reachable state space, thereby increasing the size of the programs
that can be analyzed.

A few analysis techniques have used TIGs as the underlying program model. The
Concurrency Analysis Tool Suite (CATS) [Y TF+89] provides an analysis tool set for
concurrent programs. CATS uses a graph-based model of the program with tasks
modeled as TIGs. A Task Interaction Concurrency Graph (reachability graph) is
generated from the set of TIGs of the program. The toolset can be used to evaluate
assertions about sequences of task interactions by performing temporal logic assertion
checking on the reachability graph. The toolset separately checks for deadlock in the
reachability graph.

TIGs can also be used in a Petri net-based approach to reachability analysis. Dwyer
et a [DCN95] generate a Petri net model of the program (called a TIG-based Petri Net, or
TPN) using TIGs for each task. Property predicates for properties of interest can be
defined and checked at each state in the reachability graph generated from the TPN.

Using TPNs reduces the size of the enumerated state space, sometimes at the expense of



increased analysis costs at each state. For the programs examined in [DCN95], the
compaction in reachability graph size is two orders of magnitude. Essentially, using a
TPN trades space for time; the reachability graph is smaller than for a control flow-based
technique, but checking the property predicate at each reachable state can be more
expensive than for a control flow-based technique. For the examples examined in
[DCN95], the total cost of analysis was less using TPNSs.

As an dternative to reducing the representation of the program model, the set of
reachable states can potentially be reduced during reachability graph generation. A
variety of techniques have been proposed for these types of reductions; the magjor
approaches are discussed below. We note that most of these techniques apply
independently of the choice of program model.

One magjor contributor to the state space explosion is the consideration of all possible
interleavings of potentially concurrent activities in the program. For certain kinds of
properties, Vamari introduces an approach called stubborn sets [Va90], in which the
effects of interleavings are reduced through consideration of a subset of each set of
possible interleavings. A stubborn set is defined as a set of state transitions that can
affect each other. More precisely, any disabled transition in the set can only be enabled
by atransition in the set, the transitions in the set are independent of transitions outside
the set, and at least one of the transitionsin the set isenabled. A linear algorithm exists
for finding "almost" optimum stubborn sets for a given state, and a quadratic algorithm
can be used to find optimum stubborn sets for that state.

Using this technique to generate the next states from the current state, only the
enabled transitions in the stubborn sets are used; in ordinary reachability analysis, all
enabled transitions in the system are used to generate the next states. Using stubborn sets,
if the number of enabled transitions for a particular state is smaller than the number of
enabled transitions in the system, the state will have fewer next states. Thiscan, in turn,

lead to areduction in the size of the reachable state space. Vamari provesthat the



stubborn set method preserves Linear Tempora Logic (LTL) properties of the state space,
aslong asthe LTL operators "next state”" and "previous state”" are not used. TheLTL
formulas specifying the property of interest must be known before the state space is
generated, since they are used during state space generation. After the reduced state space
is generated using stubborn sets, the LTL formulas can be checked on the reduced state
space.

The partial orders approach of Godefroid and Wolper attempts to reduce the effects
of interleavings on the size of the reachable state space through the use of sleep sets
[GW91]. During the generation of the reachable state space, only one instance of
equivalent interleavings are considered at each state, where equival ence depends on the
property of interest. To accomplish this, the technique considers traces through an
automaton representing the concurrent program. A dependency relation on transitionsin
the system is developed and this relation is used in conjunction with the set of transitions
to explore only oneinterleaving for each possible trace of the system. This restriction to
one interleaving tends to reduce the size of the generated reachable state space
significantly.

The partial orders technique can be combined with existing reachability analysis
techniques to check properties on areduced reachable state space. Any property to be
checked must be specifiable as a finite state automaton, since the automaton for the
property is combined with the program automaton to perform the analysis. Because
interleavings that could affect the property being checked are not removed by the
technique, the reductions are property-preserving.

Rather than explicitly trying to eliminate the effects of interleavings, McDowell tries
to reduce the size of the reachabl e state space by combining sets of related states into
single states [McD89]. If two tasks are executing the same sequence of statements, it
may not be necessary to distinguish between them. Similarly, if several tasks are

executing the same sequence of statements, it may not be necessary to know how many



tasks are a a particular statement; it may be sufficient to know that at least onetask is at
that statement. McDowell uses a CHG [Tay834] to represent the reachabl e state space,
noting that several equivalent CHGs are possible for a given program when his mapping
for identical tasksisused. Two CHGs are defined to be equivalent if they contain the
same synchronization and parallel access anomalies. Taylor's reachability analysis
[Tay83a] generates a CHG containing all reachable states; McDowell's technique
attempts to generate an equivalent CHG containing fewer states. Thistechniqueisonly
useful for programs with sets of identical tasks; it isnot clear how often this program
structure occurs in practice.

Murata et al detect deadlock in Petri net models of Ada programs using structural
properties (invariants) of the Petri nets[MSS89]. In some cases deadlock can be detected
without generating the reachable state space; these are called inconsistency deadlocks. In
other cases the reachabl e state space must be generated to detect the deadlock; these are
caled circular deadlocks. T-invariants are employed to support the deadlock checking,
where a T-invariant represents the number of times each transition in the Petri net fires to
move a Petri net from a given marking back to that marking. Thistechnique specifically
excludes deadlock caused by loop statements, and these deadlocks will go undetected.

To detect inconsistency deadlocks, a set of linearly independent T-invariants, called
the Ada T-invariant, is calculated. If this set does not exist, or if sometransition isnot in
any of the T-invariants composing the set, then the transition is not on any executable
path, and the program has at |east one inconsistency deadlock. To detect circular
deadlocks, circular directed paths are identified where task segments on the paths start
and end with communication transitions. Existence of at least one such path isa
necessary (but not sufficient) condition for actual deadlock in the program. To identify
these paths, T-invariants are used for comparison of transition firing counts to guide
reachability graph generation. If such apath isidentified in the resulting reachability

graph, acircular deadlock is reported. Because a program can have multiple Ada T-
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invariants, areachability graph is generated for each Ada T-invariant. While the total
number of statesin the set of resulting reachability graphsis less than the total number of
reachabl e states for the single example given in the paper, it is not clear whether this will
commonly be the case in practice.

2.1.2 Symbolic Moddl Checking

Symbolic model checking techniques [BCM+90] represent the program state space
symbolically rather than explicitly. With this technique, the state transition relation for
the program to be analyzed is modeled using Ordered Binary Decision Diagrams
(OBDDs). An OBDD isadirected acyclic graph with a strict total order on the
occurrence of variables on any path from the root to any leaf in the OBDD. OBDDs can
be used to represent arbitrary boolean functions. The program to be analyzed is encoded
as a set of variables and operations on those variables, and this encoding is then used to
generate an OBDD model of the program. The property of interest is specified in the
temporal logic Computation Tree Logic (CTL), and aleast fixed point algorithm is used
to build an OBDD that symbolically represents the set of states in which the property
holds and to check whether all reachable states in the program satisfy the property of
interest.

Symbolic CTL model checking is known to be PSPACE-complete [McM93]. Inthe
worst case, the number of iterations required to reach afixed point can be exponential in
the number of variablesin the OBDDs. Burch et a [BCM+90] note that the size of the
OBDD is extremely sensitive to the variable ordering, so a poor choice for the variable
ordering can degrade the performance of the technique significantly.

2.1.3 Inequality Necessary Condition Analysis

The Inequality Necessary Condition Analysis technique [ABC+91, CA95] avoids
representing the state space of the program altogether. The system is represented as a set
of communicating finite state automata. Transitions in a given automaton represent

interna actions of that automaton, initiation of a communication with another automaton
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(an entry call or accept), or acommunication error (such as hanging waiting for a
communication that never occurs). Flow equations are created for each state in the set of
automata to specify that the number of times a given state is entered is equal to the
number of timesthat state is exited. Communication equations are generated for each
communication channel (entry) in the system to specify constraints on well-formed
behavior. For example, these equations enforce the constraint that the number of times
the accepting automaton transitions on accepts of this entry is equal to the total number of
times the callers transition on entry calls for thisentry. Restriction inequalities are
produced to disallow certain impossible behaviors. For example, a calling and accepting
automaton can not both hang waiting for a communication on the same entry, so
restriction inequalities are produced to prohibit this. Property inequalities are derived
from a specification of the negation of the property of interest. Integer linear
programming techniques are then used to check for an integer solution to the set of flow
equations, communication equations, restriction inequalities and property inequalities for
the system. If thereis no integer solution, the necessary conditions for the negation of the
property are not met, and the property must hold.

Integer linear programming is known to be NP-complete, and thus in the worst case
this technique can require exponentia time to find a solution or determine that none
exists.

The technique described in [ABC+91] can verify some interesting properties, such as
freedom from deadl ock, but can not be used to check liveness properties or properties
involving the relative order of eventsin a system trace. This technigque was subsequently
extended to handle both infinite traces and properties involving relative event orders
[Cor92]. Including information about certain types of infeasible synchronization events
and certain program variable values [Cor93] in the set of inequalities has been proposed
as one way to reduce the size of the set of inequalities.

2.1.4 Dataflow Anaysis

12



Dataflow analysis has been used extensively in compiler construction to recognize
opportunities for optimizations and has also been used for anomaly detection in
sequential and concurrent programs.

Taylor and Osterweil [TO80] use dataflow analysis to determine the presence or
absence of errors specified as anomalous or illegal sequences of eventsin a concurrent
program. The anaysisis performed on a Process Augmented Flowgraph (PAF), whichis
constructed by connecting the flowgraphs of each process with special edges indicating
all synchronization constraints. Taylor and Osterweil specify algorithms for detecting a
variety of data flow and synchronization anomalies. Each algorithm is specified with a
definition of the gen and kill functions, with the algorithms using standard (or in some
cases dightly modified) AVAIL and LIVE procedures. A techniqueis also described for
parceling the analysis by creating summary information for each task, then substituting
thisinformation at task schedule and wait nodes.

Long and Clarke [LC91] refine the anomaly detection techniques of [TO80],
presenting a technique for dataflow analysis of rendezvous model concurrent programs to
detect anomalies specified as patterns of events. Tasks are broken into task fragments
and summary information is calculated on each fragment. The order of calculation is
given by arendezvous graph, which is analogous to acall graph with task fragments
treated as procedures. Each entry call and accept isinterpreted as aprocedure call. For
each fragment, a pessimistic (minimal) gen and an optimistic (maximal) kill are
calculated for the input/output of the fragment, and the gen/kill information is used to
solve AVAIL and LIVE (or, more generally, forward and backward flow) problems.
Calculating the minimal gen and the maximal kill gives the "coarsest” gen/kill
information possible about the fragment, which is required because the calling context is
unknown at the time of gen/kill calculation. Called fragments are analyzed before their
calers so that summary information can be used during calculation of the summary

information for those fragments that invoke the given fragment; to improve accuracy at

13



this point, the technique accounts for formal parametersin entry calls (explicit procedure
calls) and local variablesin the scope of accepts (implicit procedure calls). For the
technique described, two assumptions are made about the structure of the program being
analyzed; each entry has only one accept, and the rendezvous graph is acyclic. Entries
with multiple accept statements would require multiple versions of the summary
information, one for each accept statement. The calls each accept services could be
determined to refine the analysis, though this refinement is NP-complete. Alternatively,
asin the approach suggested by Long and Clarke, worst case analysis of the summary
information can be used, with potentially less accurate results. Assuming an acyclic
rendezvous graph seems reasonable, since a cycle in the graph (assuming no recursive
procedures) generally, though not always, indicates the potential for deadlock.

Reif and Smolka [RS90] consider an asynchronous message passing (not
rendezvous) model of communication in concurrent programs they analyze. Initialy,
static communication patterns are assumed; in other words, channel arguments to
message primitives are constants. The system state is described as the state of each
process in the program, the value of each variable, and the contents of each
communication channel. Communication channels can either be First In-First Out (FIFO)
or unordered. The technique is subsequently extended to dynamic communication, in
which channel arguments to message primitives are expressions.

With their technique, each process in the program is modeled by a process flow
graph, which is a control flow graph in which only assignment, transmit, receive, and no-
op nodes areincluded. The program is modeled with an Event Spanning Graph (ESG).
An ESG is composed of the spanning tree for each process flow graph and a set of
message links, which are ordered pairs of transmit/receive statements specifying the same
communication channel. Restrictions on the ESG are that each node must be reachablein
its process flow graph and that at |east one transmit node matches each receive node. The

existence of an ESG is a necessary condition for all nodes to be reachable; if an ESG does
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not exist, at least one node in the set of process flow graph nodes is unreachable. Reif
and Smolka provide alinear algorithm for creating the ESG or recognizing that it does
not exist.

Reif and Smolka use dataflow analysis to determine the possible values of program
expressions at each node in the ESG. To solve the dataflow problem on the ESG, input
and output predicates are computed for each node, and a message predicate for each
channel is computed to record all messages sent over that channel. Nodesin the ESG are
visited in topological order, because very often convergence is obtained quickly when
topological order isused. At convergence, an estimate of the input and output variable
values for each node in the ESG is available.

The above dataflow analysis techniques can be applied to check a variety of
properties. In contrast, some dataflow analyses have focused on a single property of
interest, usually deadlock. Masticolaand Ryder [MR91] present a polynomia time
algorithm for deadlock detection in Ada programs. The program is modeled as a sync
hypergraph, with nodes for rendezvous statements, control edges for control flow
between statements in each task, and synchronization edges for possible rendezvous
between tasks. A sync hyperedge, connecting an entry call node to the begin and end of
the accept body, is used to force the entry caller to wait until the accept body is executed.
A Can't Happen Together relation (CHT) is calculated on the sync hypergraph, and this
relation is used with the sync hypergraph to detect cyclesin the graph corresponding to
potential deadlocks.

The CHT relationship [MR93] identifies pairs of statements that cannot execute
concurrently. CHT can be calculated in polynomial time through iterative application of
aset of predefined refinements. Refinements are applied until afixed point is reached,
meaning that no refinement can add a new node to the set of CHT nodes. The CHT set

generated by the technique is not guaranteed to be perfect (to contain al nodes that Can't
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Happen Together). In an experiment on 127 programs, at least 95% of the CHT pairs
were found in 90 of the 115 programs that had CHT pairs.

Rather than applying dataflow analysis for a single property, Dwyer and Clarke
[DC94] present a more general technique that uses polynomial time algorithms to check
whether or not a user-specified sequence of program events occurs on all paths or any
path in the concurrent program. The program is modeled as a Trace Flow Graph (TFG), a
conservative representation of program event traces. Nodesin a TFG represent control
states of individual tasks. There are three kinds of edgesin a TFG: control flow edges,
which represent program events local to a task; communication edges, which are used to
capture the communication predecessor in the task with which agiven task isengaging in
acommunication; and May Immediately Precede (MIP) edges, which are used to
explicitly capture potential interleaving of asynchronously executing program events.
The property of interest is specified as a Quantified Regular Expression (QRE), whichis
converted to a deterministic finite automaton called the Property Automaton (PA). To
solve the dataflow problem, states of the PA are propagated through the TFG using an
iterative worklist algorithm. The state propagation requires O(|PA[* |E|) time, where |PA|
isthe number of statesin the property automaton and |E| is the number of edgesin the
TFG. |E|is O(NJ2), where [N|is the number of nodesin the TFG. To check whether the
property holds, the PA statesthat are possible at program termination are compared to
the accepting states of the PA. For an al-paths property, the possible PA states at
program termination must be a subset of the accepting states of the PA for the property to
hold. For an any-path problem, the intersection of the possible PA states at program
termination and the accepting state of the PA must be non-empty for the property to hold.

A major strength of the approach described in [DC94] is the flexibility an analyst has
when applying accuracy-improving techniques to control the tradeoff between efficiency
of the analysis and accuracy of the analysisresults. The TFG can be refined prior to

analysis, using program- and property-specific information, to improve analysis efficiency
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with a potential gain in accuracy. Dwyer and Clarke describe two such refinements; one
refines the TFG by eliminating representation of events not contained in the PA and the
other removes certain MIP edges based on communication eventsin the TFG. In addition
to TFG refinements, feasibility constraints, based on the program and programming
language, can be used during the analysis to improve analysis accuracy. Feasibility
constraints encode necessary conditions for paths in the TFG to correspond to executable
paths in the program. The feasibility constraint described by Dwyer and Clarke enforces
alocal event ordering constraint by including information about control flow orderingsin
singletasks. Feasibility constraints are included in the analysis by forming the product
automaton of the PA and al feasibility constraints; the resulting automaton is used for the
state propagation described above.

Empirical results are provided for three programs, where combinations of the
refinements and feasibility constraints described above are used to check a variety of
properties on the programs. For the programs and properties examined, the actual
performance is quadratic in the number of TFG nodes, rather than the cubic theoretical
upper bound.

Naumovich et a [NCO96] conduct a case study using FLAVERS to verify protocol
behavioral requirement specifications for two communication protocols. A variety of
feasibility constraints are used to verify the specifications. Variable automata are used to
model selected variables, task automata are used to enforce the control flow in selected
processes, and customized feasibility constraints are al'so used. Properties are verified for
the three-way handshake connection establishment protocol and the alternating bit
transfer protocol. The case study aso shows how assumptions about the operating
environment of the software can be incorporated into the analysis, using message losses
to illustrate the technique.

2.1.5 Compositional Analysis
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To control the exponential cost of most of the techniques described above, it may be
possible to analyze portions of the system being analyzed, then combine the results for
the global analysis[Tay83a, YY91, CA94, CK95]. Severa approaches for performing
this compositional analysis are described below.

In the compositional reachability analysis of Yeh and Young [YY 91], reachability
graph representations for individual components are derived, then the representations are
hierarchically composed to generate a global reachability graph. Individual components
are described as process algebra expressions. The process a gebra expressions can be
transformed into process graphs, which are essentially reachability graphs with additional
algebraic structure. The process graph for multiple components is generated using the
algebraic product operation on component process graphs. To reduce process graph sizes,
it may be possible to verify that the implementation satisfies a ssmpler specification (by
finding a bisimulation between them); the process graph for the implementation can then
be replaced with the process graph for the simulation. Reducing and composing process
graphsis repeated iteratively until the system process graph has been generated, at which
point the property of interest can be checked. Yeh and Y oung note that applicability of
these techniques depends on clean modular decomposition of the system and the ability to
describe complicated implementations with simpler specifications of their behavior.

Noting that proving equivalence between two processes (implementation and
specification, for instance) is required for compositional analysis and may require
comparison of potentialy large reachability graphs, Corbett and Avrunin [CA94] present
amethod for equivalence checking of two processes without enumeration of the states of
the processes. The component processes of each process are used to generate a set of
necessary conditions for the existence of a system trace showing that the equivalence does
not hold. The necessary conditions are expressed in the form of a set of integer linear
equations. Integer linear programming techniques are then used to search for a solution

to the set of equations. If no solution exists, the necessary conditions can not be satisfied,
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and the processes are equivalent. The analysisis conservative, so it may be unable to
prove equivalence of two equivalent processes, but will never prove equivalence of two
inequivalent processes. The technique is only applicable to deterministic, divergence-free
processes. A processisdeterministic if the set of actions in which a process has engaged
completely determines the set of actionsin which it can engage in the future; a processis
divergence freeif it can not engage in an unbounded number of internal actions, thereby
ignoring external requests indefinitely. The technique has been successfully applied to
severa large problems, though in the worst case solving the set of integer linear equations
can require exponential time.

2.1.6 Combinations of Techniques

Since each of the techniques described above exhibits both strengths and
weaknesses, anatural step isto consider how multiple techniques can be combined to
take advantage of the strengths and avoid the weaknesses of each.

Y oung and Taylor [YT88] propose combining reachability analysis and symbolic
execution to improve the accuracy of reachability analysis for less cost than full symbolic
execution. Conceptually, the reachability graph provides path selection for the symbolic
execution, while the symbolic execution provides pruning of the reachability graph
through elimination of infeasible paths. When the techniques are used in isolation, every
path in a symbolic execution of the program corresponds to a path in the reachability
graph. Thereverseis not true, since the reachability graph can contain infeasible paths,
which are not included in symbolic execution paths.

The techniques can be combined in both a serial and an interleaved manner. Ina
serial application, reachability analysisis performed to mark which reachable states are
"Interesting”. Symbolic execution is then performed, where any "interesting” states
encountered are also marked "feasible". The analysis results only include "interesting,
feasible" states. We note that the entire reachable state space is aways generated in a

serial application. In an interleaved application, reachability analysisis performed to
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mark "promising” states until some criteriais met; for instance, until a state of interest is
discovered or acertain number of new states have been generated. Symbolic execution is
then run through the "promising” states from the reachability analysis. The two
techniques are applied in an alternating fashion until the analysisis complete. Inthe
interleaved application, the symbolic execution provides pruning of infeasible paths as
the reachable state space is generated; the reachable state space generated is more
accurate than in genera reachability analysis, and is aso potentially smaller if the
program contains one or more infeasible paths.

Severa methods are proposed to allow scaling of this combined technique. To help
control the combinatorial explosion in the size of the reachable state space, biconnected
components can be analyzed separately with the results then combined into a global
result, weak monitors can be used to parcel components of the system into modules to be
analyzed separately, and heuristic search can be used to guide partial exploration of the
state space. Use of heuristic search invalidates the guarantee that the combined technique
will detect all possible errors (i.e., the techniqueis no longer conservative).

Cheung and Kramer [CK94] suggest combining reachability analysis with dataflow
anaysis. These techniques are considered to be complimentary because reachability
analysis provides an exhaustive analysis of the program states but carries an exponential
complexity, while dataflow analysis provides a tractable, but more approximate, analysis
of the program. Dataflow analysisis applied in the early stages of development, when the
design is unstable and an approximate technique is sufficient. Reachability analysisis
applied in later stages, when stronger assurances of correct program behavior are
required. We note that the combination of techniques as described is not astightly
coupled as the combined technique described in [YT88]. Thereis no information sharing
between the two techniques, so neither technique is used to improve the accuracy or

reduce the cost of the other. More correctly, the combined technique proposed in [CK94]
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consists of selecting the appropriate analysis technique based on the development phase,

rather than a synergistic combination of the two techniques.
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2.2 Empirical Work in Software Engineering

While some empirical work has been and is being performed in software
engineering, the volume, and often the quality, of such work is lacking compared to other
scientific disciplines. To demonstrate the lack of empirical work in computer science,
Tichy et a [TLP+95] classify 400 research articles based on the amount of empirical
work contained in each. The computer science articles are extracted from refereed
journals, the 1993 SIGPLAN Conference on Programming Language Design and
Implementation (refereed conference), and arandom sample of 50 articles drawn using
the INSPEC database. Thejournals of Neural Computation (NC) and Optical
Engineering (OE) are used for comparison. Of the papersin software engineering
presenting new methods that would require experimental validation, over 50% contained
no experimental validation whatsoever. In contrast, of the ssimilar papersin NC and OE,
only 15% and 12%, respectively, lacked experimental validation. Conversely, the
fraction of these papersin NC and OE that devoted 20% or more space to experimental
validation was almost 70%, while only 20% of the corresponding software engineering
papers devoted as much space to validation. These results seem to demonstrate alack of
empirical work in software engineering, though this has been disputed. One factor that
may affect these resultsis that many software engineering techniques deal with human
behavior (i.e., code understanding, effectiveness of design methodologies, etc.), while the
experiments presented in NC and OE probably did not use human subjects. Osterweil
and Clarke call for more empirical work in software engineering, both in the form of
small, repeatable experiments and larger case studies on complex systems [OC92].

Fenton et al [FPG94] note that many research findings present new methods with a
theoretical analysis of the benefits, but no empirical evaluation to quantify the benefit.
They also point out that alarge number of the experiments that are performed are poorly
designed. In addition, most experiments are conducted on "toy" programs -- programs

that are so small they can not be considered to be a representative sample. For example,
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Vessey and Weber consider 9 experiments on structured programming [VW84]; four of
the experiments consider programs of 10 to 25 lines of code, three consider programs of
26 to 57 lines of code, one considers programs of 46 to 85 lines of code, and one
considers programs of 25 to 225 lines of code. Fenton et a also indicate that many
experiments use statistical methods incorrectly.

The problems discussed above are often caused by the difficulties facing an
experimenter in software engineering. Basili et a [BSH86] indicate the range of these
problems. There are wide variations in the environments in which software engineering
techniques are applied; desired costs, quality goals, personnel experience, the problem
domain, and other constraints can all affect the applicability of a certain technique.
Designing an experiment to account for these many variations is difficult, but is necessary
if the experimental results are to be generalized. Individual performance can also vary
widely, so the actual individuals used in an experiment are a critical factor in the
generalizability of the experimental results. Precisely stating the goals of an experiment
isanon-trivial task, particularly when addressing areas that do not have commonly
accepted definitions, like software quality. Experimental results must be carefully
quantified, based on the sample used and how well it represents the set of environments
to which the results are to be generalized.

Basili and Weiss [BW84] point out additional difficulties with conducting software
engineering experiments. These problems include the fact that there is often alarge
number of potentially confounding factors that can affect the results of the experiment
and the prohibitive expense of attempting controlled studiesin an industrial environment
with medium or large scale systems. They also note that timely data collection and
validation isimportant. Unmeasured data cannot be accurately recaptured, and without
validation, as much as 50% of the data that is collected may be erroneous.

Pfleeger 94 [Pfl194] aso points out that exerting control over the independent

variables (i.e., those that can affect the truth of the hypothesis) to do aformal experiment
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can be impossible or prohibitively expensive. In addition, experimenters often must
measure the factor of interest (quality, for example) indirectly; selecting the appropriate
indirect measures (number of defects, for instance) can be particularly difficult.

Despite the pitfalls facing an experimenter in software engineering, a number of
software engineering experiments have been conducted. We briefly survey a sample of
experiments from a number of areas of software engineering and discuss the experiments
related to testing and analysisin greater detail.

2.2.1 Howcharting Experiments

A flowchart can be used to express a high-level definition of a solution to some
problem. A flowchart consists of boxes corresponding to operations and aternativesin
the program, with edges connecting the boxes to reflect potentia flow of control from one
box to the next. Flowcharts have often been used as graphical representations of
computer programs.

Shneiderman et al [SMM+77] conducted a series of five experiments to determine
the utility of detailed flowchartsin program composition, comprehension, debugging, and
modification. Shneiderman et a conclude from the results of these five experiments that
flowcharts do not contribute to program composition, comprehension, debugging, and
modification. Scanlan [Sca89] investigated arelated set of hypotheses, namely that
structured flowcharts take |l ess time than pseudocode to comprehend, produce fewer
errors in understanding, give students more confidence in their understanding, reduce
time spent answering questions, and reduce the number of times students look at an
algorithm. On the basis of these experiments, Scanlan concludes that flowcharts do have
apositive, statistically significant effect.

2.2.2 Metrics Experiments

Program metrics have been proposed as a means of measuring various characteristics
of programs, such as program quality. Example metrics include Halstead's software

science metrics [Hal 77] and M cCabe's cylomatic complexity [McC76]. The experiments
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surveyed in this section examine the value of avariety of metrics as predictors of certain
program characteristics or examine the rel ationships among metrics.

Li and Cheung [LC87] classified 31 different metrics and examined the relationships
among them. While some metric pairs have low correlations, the more conventional
metrics are highly correlated, with Lines Of Code being as useful as other, more
complicated, metrics for measuring program complexity. Compton and Withrow
[CW90] explored how well the presence of predelivery defects predict postdelivery
defects and how well program complexity measures predict defect density. The empirical
datarevealed that packages with predelivery defects detected had a postdelivery defect
density (defects/SLOC) six times as large as those with no predelivery defects detected.
Porter and Selby [PS90] conducted an experiment using metrics to classify programsin a
classification tree according to some user-specified property (fault-prone, change-prone,
etc.). The classification tree can be used to identify components (in other systems) that
share the same property. This latter work is noteworthy because of the realistic programs
used, the thorough description of experimental design and results, and the careful use of
statistical analysis on the experimental data.

2.2.3 Reliability Experiments

Software reliability models typically use data about the past performance of a
program to estimate the future reliability of the program [Lit91]. For example, Shooman
[Sho75] developed software reliability models using data from three operating systems
and cal culated the model constants using data from 17 additional programs. lannino et al
[IMO+84] propose a set of criteriafor comparing the various software reliability models
that have been developed. Musa and Okumoto [MO84] used regression analysis on 15
sets of failure data to perform a model-independent comparison of the use of execution
time and calendar timein reliability models. They discovered that models using

execution time will almost always be superior to those using calendar time. The
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experiments surveyed in this section examine n-version programming (areliability
improvement technique) and analyze reliability datafrom large operational systems.

Avizienis and Kelly [AK84] conducted an experiment using n-version programming,
in which multiple versions of code meeting a given specification are independently
developed to improve the reliability of the system. Because the effectiveness of n-version
programming is based on the independence of the multiple versions, Knight and Leveson
[KL86] conducted an experiment to test this hypothesis. They conclude that dependent
errors do exist, and these must be considered when calculating the effects of n-version
programming. Datafrom another experiment [Dun86] also indicated that the
independence assumption requires further investigation. To help determine the cause of
operating system failures, lyer and Rossetti [IR84] anayzed reliability datafrom alarge
operational system. They discovered that the level of interactive processing on the
system had alarger effect on operating system failures than CPU execution rate.

2.2.4 |nspection Experiments

The use of software inspections has been proposed as a cost-effective technique for
discovering errors in specifications and code. The experiments surveyed here examine
the feasibility and effectiveness of inspections.

Porter and Votta [PV 94] conducted an experiment using different defect detection
methods for inspections of software requirements. They show that a Scenario-based
method has a higher defect detection rate than other methods. Schneider et a [SMT92]
also examined defect detection methods for requirements and found that replicating the
inspection process (N-fold inspections) yielded increased fault detection. Russell
[Rus91] relates experiences conducting inspections in a large-scale, industrial setting, and
Porter et al [PST+95] provide a status report of an ongoing experiment using inspections

in alarge scale software devel opment.
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2.2.5 Test Data Selection Experiments

Numerous techniques have been proposed for selection of test data and various
criteria have been introduced for measuring how well the generated test data "covers' the
program. A number of experiments have been conducted to determine how the data
sel ection techniques and coverage criteria perform and how they compare in practice.

Duran and Ntafos [DN84] experimentally examined the effectiveness of random test
data generation. The results of the random testing were compared to those based on a
form of partition testing called path testing. They concluded that random testing is
slightly weaker than path testing. Duran and Ntafos aso determined how well randomly
generated test data covered each of five programs, using a variety of coverage criteria
On average, random testing yielded a high level of segment and branch coverage, but less
coverage for the other criteria. Unfortunately, neither experiment quantified the statistical
significance of the results.

Basili and Selby [BS87] examined the effectiveness of code reading, functional
testing (equivalence partitioning and boundary value analysis) and 100% statement
coverage in terms of fault detection effectiveness, fault detection cost, and classes of
faults detected. Basili and Selby found that the number of faults observed depends on the
program type, but make no statements about which techniques seem better suited for
which program types. Their data analysis uses statistically valid techniques, and Basili
and Selby provide athorough summary of the results.

DeMillo and Offutt [DO88] examined the effectiveness of automatic test data
generation to support mutation testing. Adequacy of automatically generated test cases
was compared to adequacy of test cases selected using a number of coverage criteria,
including statement coverage, branch coverage, and others. The adequacies were
compared for asingle, 27 SLOC program. DeMillo and Offutt found that the
automatically generated test cases yielded high adequacy values, but lower precision
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values. Overdl, the experiment is not very satisfying, given the small sasmple sizeand a
number of flawsin the experimental design.

Frankl and Weiss [FW93] compared the fault exposing capabilities of all-edges
(branch testing) and all-uses (an instance of dataflow testing) coverage criteria, using test
data selected randomly for comparison. The experiment provides an overall comparison
of the criteria, acomparison for afixed test set size, and the relationship between
coverage and effectiveness for each criteria. Frankl and Weiss found that the all-uses
criteriawas more effective than the all-edges criteriain 5 of the 9 subjects at the 0.01
level. Finaly, Frankl and Weiss point out that effectiveness had a clear dependence on
percent coverage for only 3 of the 9 subjects. Their experiment design and data analysis
is noteworthy because it includes avoidance of ceiling effects, effective statistical
hypothesis testing, proper use of logistic regression, and recognition of potential biasin
the experiment.

Hutchins et al [HFG+94] experimentally compared the effectiveness of all-edges, all-
DUs and random criteria. The data implies that there are no discernible syntactic or
semantic characteristics of the faults that correlate with high fault detection by any of the
methods. It was aso determined that high coverage (even 100%) is not a good indicator
of testing adequacy (i.e., fault detection). The experiment was designed to avoid floor
and ceiling effects. Hutchins et al censored alarge part of their data without justification,
however, and the effects of the censoring are not quantified or discussed. Also, a second
order curve was fitted to severa plots, though Hutchins et a do not justify why a second
order curveis the appropriate choice.

2.2.6 Static Concurrency Analysis Experiments

Severa experiments have been conducted using a subset of the static concurrency
analysis techniques described in Section 2.1. Because most of the techniques are
exponential in the worst case, experimentation is needed to distinguish average costs

from worst case cost for the techniques. In addition, empirical work will support
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performance quantification of the techniques, both in terms of optimizations within a
given technique and through comparisons among the techniques.

Duri et al [DBD+93] experimented with various optimization techniques for Petri
net-based reachability analysis. Net reduction was used to reduce the Petri net model of
the program, while stubborn sets, partial orders (sleep sets), and net symmetry were used
to guide the reachability graph construction. Experiments were conducted on programs
of 3 to 100 dining philosophers, 3 to 10 customers for the 1-pump gas station problem, 3
to 5 customers for the 2-pump gas station problem, and readers/writers programs from 2
readers/1 writer to 10 readers/10 writers. The Border Defense System (BDS) program, an
11,000 line, 15 task program wasincluded aswell. In all, 32 programs of various sizes,
with and without deadlock, were included in the experiment. For each program, Duri et
al checked for deadlock without using any optimizations, using each optimization
separately, using net reduction with each of the remaining three optimizations, and using
net reduction with stubborn sets and net symmetry.

Data analysis consisted of comparisons of reachability graph sizes and generation
times for the various optimization combinations. This sort of comparison can give
informal evidence of certain relationships between the optimization techniques, but no
statistical analysisis provided to quantify the significance of the results. In addition,
there was no apparent attempt to formally characterize the growth rate for each of the
optimization combinations. Because the experiment is conducted on academic programs
(with the exception of BDS), the results of the experiment may not be generalizable to
"typical" concurrent programs. This experiment provides insight into applicability of the
combinations of optimization techniques, but the experimental design and informal data
analysis prevent Duri et al from making general comments about the performance of
these techniques.

Corbett [Cor94] provides an experimental evaluation of three static concurrency

analysis techniques: reachability analysisis performed using SPIN (genera reachability)
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and SPIN+PO (general reachability + partial orders); symbolic model checking is
performed using SMV; and INCA is used for inequality necessary condition analysis.
The property checked by al of the tools is freedom from deadlock. The experiment is
conducted on 7 scalable programs and one "real” program. Each scalable program was
analyzed with 4 different sizes in an arithmetic progression; the communication skeleton
of BDS (the "real" program) was analyzed asis. Corbett notes that conducting afair
evauation of these methods is extremely difficult. To help guarantee fairness, Finite
State Automata were built for the tasks in each program (using the INCA front end) and
these FSA s were automatically converted to the input language of each tool. The FSAs
provide a canonical model of the concurrent programs, ensuring al tools are solving the
same problem. Corbett also points out a potential bias against SMV because the FSAs
generated may present variables in an arbitrary order, and BDD sizeis sensitive to the
variable ordering. Timeto check for deadlock was measured for each of the tools on the
programs in the sample.

Analysis of the data provides insight into the applicability of each tool. Using
SPIN+PO generally allowed analysis of larger programs than SPIN, but the state space
continued to grow quickly. SPIN and SPIN+PO performed best on programs with a small
number of tasks and performed better than the other methods on the most data-intensive
program. SMV exhibited subexponentia growth in most programs, worked significantly
faster than reachability on programs with many tasks, and provided comparable
performance to the other methods on the gas station examples, despite potentia biases
from variable orderings. INCA excelled on programs containing many small tasks,

though adding a single large task seriously degraded performance.
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CHAPTER 3
EXPERIMENTAL METHODOLOGY

This chapter describes the experimental methodol ogy we have developed to provide
abasisfor valid comparisons of the performance, in terms of both analysis time and
accuracy, of various static concurrency anaysis tools. We begin with a description of
concurrent programs and some useful representations of those programs, then describe
the tools used in the experiment. We close with a presentation of our comparison
methodol ogy.

3.1 Concurrent Programs and Program Representations

Because Adais one of the few commonly used languages supporting concurrency,
we use Ada programs as the canonical model of concurrent programs to be analyzed. We
briefly describe here the principal concurrency constructs in Ada and several sources of
nondeterminism in concurrent Ada programs. The inputs to the tools included in the
experiment are based on program representations derived from the Ada programs. We
describe these program representations, discuss their relationship to the canonical Ada
program model, and describe how these representations can be converted to the input for
each tool.

In Ada programs, potentially concurrent activities occur in taskst. Adatasks
typically communicate with each other using arendezvous. In arendezvous, the calling
task makes an entry call on a specific entry in the called task; the calling task then
suspends execution until the called task terminates the rendezvous. The called task
executes any statements contained in the accept for the entry, then terminates the

rendezvous and, like the calling task, continues execution. Data can also be passed

1Ada also supports concurrent procedures, but for simplicity we only consider the tasking mechanism in our
discussion.
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between the two tasks at the start and termination of the rendezvous through parameters.
The rendezvous thus acts as a synchronization and communication point between two
tasks.

Nondeterminism isintroduced into an Ada program'’s execution in several ways.
When a calling task makes an entry call on agiven entry, the calling task is placed on a
task queue. When the called task reaches the corresponding entry, the run-time system
selects the calling task for the rendezvous from the front of the queue. Since we cannot in
general know the order of this task queue, thisis essentially equivalent to the run-time
system nondeterministically selecting a calling task for the rendezvous. Another source
of nondeterminism is the select statement, which consists of one or more alternatives,
each potentially including a guard that controls selection of that aternative. When a
select statement is executed, the guard of each alternative is evaluated, with unguarded
alternatives treated as though their guards are true. If more than one guard is true, one of
the alternatives with atrue guard and awaiting entry call is nondeterministically selected
for execution. If there are no waiting entry calls on the alternatives with true guards, the
task stalls until an entry call is made on one of these aternatives. If none of the guards
aretrue, the task containing the select statement is terminated with a program error.

3.1.1 Example Program

To solidify our description of the program representations and the various
concurrency analysis tools, we consider the readers/writers problem, an example that is
commonly studied in the concurrency analysis literature. The readers/writers problem
includes a set of readers and a set of writers that may be simultaneously accessing the
same document, with the restriction that when awriter is accessing the document no
readers or other writers can be accessing the document at that time. Our solution for the
readers/writers problem uses atask for each reader, atask for each writer, and asingle

task to control access to the document. An example program showing one reader and one
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writer can be found in Figure 3.1. To increase the size of the example program, we add

additional readers and writers with the same structure as reader_1 and writer_1 below.

task body reader_1 is
begi n
I oop
control .start_read;
control .stop_read;
end | oop;
end reader_1;

task body control is

Readers : Natural range 1 ..
Witer : Boolean := fal se;
begi n
I oop
sel ect

when (not Witer) =>
accept start_read;

1

=0

task body witer_1 is
begin
I oop
control .start_write;
control .stop_wite;
end | oop;
end witer_1;

Readers := Readers + 1;
or
accept stop_read;
Readers := Readers - 1;
or when (not Witer) and
(Readers = 0) =>
accept start_wite;

Witer := true;
or
accept st OP_Wri te;
Witer := fal se;
end sel ect;
end | oop;

end control;

Figure 3.1. AdaProgram for 1 Reader/1 Writer

We have selected three properties to check for the readers/writers program. The first
of these is deadlock, which occurs when the program reaches a non-terminal state in
which none of the tasks can continue executing. The second property can be phrased as
"Can areader ever read before some writer has written?' Our rationale for selecting this
property is to ensure no reader can read an empty document. Because of symmetry, we
do not need to check if each reader can read before some writer writes. All readers
behave in the same way as far as the control task is concerned, so checking asingle reader
issufficient; if the property is not possible for a specific reader, it is not possible for any
of them. In our experiment, we check this property for reader_1. For notational
convenience, we call this property no_rlw. Thethird property can be phrased as"Can
two writers ever be writing at the same time?* We check this property to ensure that
writers have mutually exclusive access to the document. Again by symmetry, checking
two specific writersis sufficient; if these two writers can not write concurrently, no two
writers can. In our experiment, we check this property for writer_1 and writer_2. For
notational convenience, we call this property no_wlw?2. Another property one would

expect to check for this program is whether areader and awriter can be accessing the
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document at the sametime. This property issimilar to the third property above, soit is
not described further.

3.1.2 Program Representations

All the tools in our experiment analyze the same Ada program. None of the tools
accept an Ada program directly as input, however, so we convert the canonical Ada
program to each tool's input representation. We build a set of Control Flow Graphs
(CFGs) from the Ada source code, creating a CFG for each task in the program. Several
of thetools use CFGs directly as the program description. Several other tools use
program descriptions based on Finite State Automata (FSAS). For those tools, we convert
each CFG to acorresponding FSA and then use the set of FSAs to generate atool's input.

Since the tools use two different program representations for the program being
analyzed, we try to ensure that each tool is analyzing the same program so that our
comparison will bevalid. The use of an Ada program as the canonical representation,
with conversion to other representations as necessary, is intended to provide acommon
program for analysis. We use a straight-forward agorithmic translation from the Ada
representation to each tool's required input representation. We examine the benefits and
drawbacks of this approach further in Section 3.3.

In general, we would like any static analysis method to be conservative; for agiven
property, the analysis must not overlook cases where the property failsto hold. To ensure
conservativeness, most methods use program representations that overestimate the
behavior of the program being analyzed. This overestimate can lead to inaccuracy in the
anaysisresults. If atool reports that a property does not hold, when in fact the cases
when it does not hold do not correspond to actual program behaviors, then thisiscaled a
spurious result. For example, if the program representation contains paths that can never
be executed in the program (commonly called infeasible paths), the tool may report that
the property failsto hold when it only fails on infeasible paths. The CFGs generated from

our canonical Ada program can contain infeasible paths because some information, such
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as each variable's values, is not included in the CFG. Since the inputsto SPIN,

SPIN+PO, TRACC, SMV, and FLAVERS are based on these CFGs, the possibility exists
that each of these toolswill yield spurious results. Similarly, in INCA an integer solution
to the set of inequalities could correspond to an infeasible trace (path) in the program. It
isimportant, therefore, that we consider the effects of our program representations on the
accuracy of the analysis.

As part of our experiment, we will improve the accuracy of the analysis results by
improving the accuracy of the program representations. One way to do thisis by
modeling the values of user-selected variables in the representations. To be conservative,
our representations initially include all possible values of the variablesin the program. It
may be possible, however, to statically determine the actual values of the variables and to
include this information in the representations. When we include the actual values of a
variablein arepresentation, we say we have modeled that variable.

For example, the Writer variable in the control task of the readers/writers program
ensures that only a single writer can be writing at atime. The Reader s variable ensures
that there is never a situation in which the reader is reading at the same time the writer is
writing. By modeling the values of one or both of these variables, we can generate
representations that more accurately represents the control task behavior.

3.1.2.1 Control Flow Graphs

One way to represent the behavior of a program iswith a control flow graph [Hec77].
A control flow graph (CFG) is similar to aflow chart, in that it represents all paths
through a procedure or task. A control flow graph consists of afinite set of nodes, N =
{nj|i=1,..,]}, wherej isthe total number of nodes in the CFG, and afinite set of
directed edges, E={¢gj |i = 1, ..., k}, where k isthe total number of edgesin the CFG. In
our representation, the set of nodes includes a single start node and a single end node for
the CFG. In addition, thereis asingle nodein the CFG for each of the following: the

declaration of the task and any local variablesin the task (thisnodeiscalled a
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Decl_Region node), the begin statement, the end statement, and each executable
statement. The start node in a CFG is always the Decl_Region node. Thereisan edge
from n;j to n; if the statement corresponding to n; is potentially executable immediately
after execution of the statement corresponding to nj. Thereis also an edge from the start
node to the node generated for the begin statement, an edge from the node generated for
the begin statement to the node generated for the first executable statement in the task,
and an edge from each of the exit nodes in the task to the node generated for the end
statement. Each CFG node is annotated with the statement associated with that node.

Each entry call in the task is represented by a single node. Each accept statement in
the task is represented by an Accept node followed by zero or more nodes representing
the executable statements in the accept body, followed by an Accept_End node. Accept
statements with no executabl e statements in the body are the only instance in which we
add two CFG nodes for a single statement; therefore, the number of nodesin aCFG is
never greater than twice the number of statementsin the corresponding task. For the
CFG for the control task in Figure 3.1, see Figure 3.2. In the figure, for the convenience
of the reader we annotate each node in the CFG with the kind of statement (i.e., loop,

assign, etc.) associated with it and each guard edge with the predicate for that guard.

. Decl_Region

‘ Begin

o

(not Writer) (not Writer) and

(Readers = 0)

Accept (start_reaq Accept (stop_rea ‘ Accept (stop_write) . Accept (start_write)

Accept_End (start_re Accept_End (stop_re

Assign (Readers := . Assign (Readers := ‘

Readers + 1) Readers - 1

‘ Accept_End (stop_write) . Accept_End (start_write)

. Assign (Writer := false) . Assign (Writer := true)

Enc

36



Figure 3.2. Example Control Flow Graph
The current form of the CFGs we use do not provide the capability to include
variable values within the CFG representation. While it would be possible to revise the
CFG representation to include thisinformation, it is not necessary, since the two tools
that use CFGs as their inputs provide methods for modeling variables. We therefore do
not model variablesin the CFGs; instead, we use the methods provided by these two tools
to model the variables.

3.1.2.2 Finite State Automata

As an dternative to the CFG representation, Finite State Automata (FSAS) can be
used to represent the behavior of the program. For each task in the program, we convert
the CFG for the task into an FSA for thetask. An FSA consists of afinite set of states, S
={s |i =1, ..., m}, where misthe total number of statesin the FSA, and afinite set of
state transitions, T = {tj |i = 1, ..., n}, where nis the total number of transitionsin the
FSA. The set of statesincludes asingle start state and one or more final states. Each
state in the FSA corresponds to one or more statements in a sequential region of codein
the task and may a so encode the values of variables that affect the synchronization
behavior of the task. Each state transition in the FSA corresponds to a rendezvous point
inthe task or to an internal action of thetask. Thus, thereis astate transition tj from s
(the source) to si (the target) if the communication event (entry call or accept)
represented by tj causes the task represented by the automaton to transition from the
region represented by s to the region represented by s, or if theinternal action
represented by tj occursin the task. We note that, if multiple tasks can rendezvous with
the task at arendezvous point, the FSA for the task contains atransition for each of those
rendezvous.

The conversion from a set of CFGsto a set of FSAs starts with atrandation of each
CFG to the S-Expression Design Language (SEDL), one of several input languages
accepted by the INCA toolset (discussed further in Section 3.3). The SEDL for atask is
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similar to the original Adafor the task converted to Lisp syntax. We then provide the
SEDL for the set of tasks comprising the program to INCA, which generates the FSAs
described above.

A textua form of the FSA for the control task in Figure 3.1 isgiven in Figure 3.3.
Because both the Writer and Reader s variables are included in the guards of the select
statement in the control task in this example, they can both affect the synchronization
behavior of thetask. The statesin the FSA therefore include encodings of all possible
values of those variables. State 2 encodes (Readers= 1, Writer =fase), State 3 encodes
(Readers=0, Writer =false), State 4 encodes (Readers= 0, Writer = true), and State 5
encodes (Readers= 1, Writer = true).

State 1.
T1:interna ---> State 2
T2: internal ---> State 3
T3:internal ---> State 4
T4 : internal ---> State 5
State 2:
T5: accept (writer_1, stop_write) ---> State 2
T6 : accept (writer_1, stop_write) ---> State 5
T7 : accept (reader_1, stop_read) ---> State 2
T8 : accept (reader_1, stop_read) ---> State 3
T9: accept (reader_1, start_read) ---> State 2
T10 : accept (reader_1, start_read) ---> State 3
State 3:
T11: accept (writer_1, stop_write) ---> State 3
T12: accept (writer_1, stop_write) ---> State 4
T13: accept (writer_1, start_write) ---> State 3
T14 : accept (writer_1, start_write) ---> State 4
T15: accept (reader_1, stop_read) ---> State 3
T16 : accept (reader_1, stop_read) ---> State 2
T17 : accept (reader_1, start_read) ---> State 3
T18 : accept (reader_1, start_read) ---> State 2
State 4:
T19: accept (writer_1, stop_write) ---> State 4
T20 : accept (writer_1, stop_write) ---> State 3
T21: accept (reader_1, stop_read) ---> State 4
T22: accept (reader_1, stop_read) ---> State 5
State 5:
T23: accept (writer_1, stop_write) ---> State 5
T24 : accept (writer_1, stop_write) ---> State 2
T25 : accept (reader_1, stop_read) ---> State 5
T26 : accept (reader_1, stop_read) ---> State 4

Figure 3.3. FSA for Control Task, No Variables Modeled
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The transitions from State 1 represent a nondeterministic choice of the initial values
of the Writer and Readersvariables. Since weinitially do not model these variables, the
FSA must consider all possible combinations of their values. Transitions that result in
changesto avariable lead to states encoding both possible values of that variable?. For
example, transitions from State 2 (where Writer = false) on the stop_write entry lead to
State 2 (Writer =false) and State 5 (Writer =true). Thisis becausethe Writer variable
is changed as aresult of the stop_write interaction, but without modeling the variable the
FSA does not reflect the actual new variable value.

Because CFGs typically overestimate task behavior, using the FSAs generated from
those CFGs may lead to spurious results. We can improve the accuracy of the analysis
results by modeling variablesin the FSAs. We do this by considering the values of user-
selected variables during the conversion from the CFG to the SEDL. Information about
variable values can be extracted from the abstract syntax tree annotation of each CFG
node. The FSA that includes modeling of the Writer variable is shown in Figure 3.4.

By modeling the value of the Writer variable, we have pruned transitions 3, 4, 6, 12,
13, 19, and 23 from the original FSA. Asan example of this pruning, consider transitions
3and 4 intheoriginal FSA. These transitions assume theinitial value of the Writer
variable can be true; when we model the Writer variable (and itsinitial value of false),
these transitions are no longer possible. The other transitions are pruned in asimilar
manner.

We note that, when one or more variables are considered in the conversion from a
CFG to an FSA, the two representations are no longer equivalent. The FSA contains
additional information about task behavior and therefore represents a more accurate

representation of the task. To make afair comparison between the analysis results of a

2In general, variables can have more than two values. In these cases, the transitions that result in changes to
the variable lead to states encoding all possible values of that variable.
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tool using the more accurate FSA representation and those from atool using CFGs, we
must ensure that the tool using the CFGs a so accounts for the same variablesincluded in
the FSA.

State 1.
T1:interna ---> State 2
T2: internal ---> State 3
State 2:
T5: accept (writer_1, stop_write) ---> State 2
T7: accept (reader_1, stop_read) ---> State 2
T8 : accept (reader_1, stop_read) ---> State 3
T9: accept (reader_1, start_read) ---> State 2
T10 : accept (reader_1, start_read) ---> State 3
State 3:
T11: accept (writer_1, stop_write) ---> State 3
T14 : accept (writer_1, start_write) ---> State 4
T15: accept (reader_1, stop_read) ---> State 3
T16 : accept (reader_1, stop_read) ---> State 2
T17 : accept (reader_1, start_read) ---> State 3
T18 : accept (reader_1, start_read) ---> State 2
State 4:
T20 : accept (writer_1, stop_write) ---> State 3
T21: accept (reader_1, stop_read) ---> State 4
T22: accept (reader_1, stop_read) ---> State 5
State 5:
T24 : accept (writer_1, stop_write) ---> State 2
T25 : accept (reader_1, stop_read) ---> State 5
T26 : accept (reader_1, stop_read) ---> State 4

Figure 3.4. FSA for Control Task, Writer Variable Modeled
In the examples that follow, our descriptions assume use of the controller FSA
shown in Figure 3.4. However, to help quantify the effect of modeling variables, in our
experiment all analyses were performed with three different versions of the controller
FSA - the version in Figure 3.3, the version in Figure 3.4, and a version that models both
the Writer and Readers variables.

3.2 Concurrency Analysis Tools

In our experiment, we consider several concurrency analysis methods and the tools
implementing those methods. Specifically, we consider the reachability analysis tools

SPIN, SPIN plus Partial Orders (SPIN+PO), and TRACC, the symbolic model checking
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tool SMV, the integer programming tool INCA, and the data flow analysis tool
FLAVERS.
3.2.1 Reachability Analysis

Reachability analysis enumerates the reachable states of the program being anayzed
and checks the property of interest on the reachable state space. State properties can be
checked by considering each state in isolation. Freedom from deadlock and writers 1 and
2 writing concurrently are examples of state properties. Path propertiesrequire
consideration of paths through the reachable state space. Reader 1 reading before some
writer writesis an example of a path property.
3.2.1.1 SPIN

The Simple Promela INterpreter (SPIN) [Hol91] performs reachability analysis on a
program represented as a set of finite state automata. The program is described in the
PROMELA language [Hol91], alanguage that was developed for specification of
network protocols. SPIN automatically checks for deadlock. Other propertiesto be
checked must be specified using never claims or assertions. In anever clam, the
property is represented as an FSA that should never reach an accept state. An assertionis
an expression that evaluates to true or false and is specified at user-selected pointsin a
PROMELA program.

Given the program and property specifications, SPIN builds atransition matrix with
an entry for each statement in the program. Each matrix entry consists of a specification
of the conditions under which the statement can be executed and a specification of the
effect of executing the statement. Starting from the initial state of the program, the tool
generates the reachabl e state space with a depth-first traversal algorithm, using the
transition matrix to generate next states from any given state. If at any time during the
analysis apotential deadlock state is found, the FSA for a never claim reaches an accept

state, or an assertion evaluates to false, the tool reports the error and terminates.
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To analyze the readers/writers problem with SPIN, we need to translate the Ada
program to a PROMELA program. A specification of a program in PROMELA consists
of adeclaration of the communication channels and global variables, a specification of a
process type for each task in the program, and an initialization function that specifies the
initial state of the program. In PROMELA it is possible to simulate asimple Ada
rendezvous by declaring a communication channel with O message capacity. Such a
channel forces a synchronization between two processes participating in arendezvous,
reflecting the semantics of the Adarendezvous. For the readers/writers problem, we
specify asingle channel for each entry in the corresponding Ada program. Multiple
processes can send to each channel but only a single process (in this case, the control
process) can receive from each channel. Thisis consistent with the Adarules for task
entries, where multiple tasks can make entry calls on a given entry but only one task can
accept the entry call. In PROMELA, the syntax <channel-name>!<var-name> specifies a
process trying to send variable var-name on the channel channel-name and <channel-
name>?<var-name> specifies a process trying to receive variable var-name from the
channel channel-name.

The PROMELA specification of a process is based on afinite state automaton, with
transitions between the states of the automaton specified as gotos. An if statement in
PROMELA consists of one or more aternatives with guards and an optional unguarded
else clause, and closely follows the semantics of the Ada select statement. When an if
statement is executed, the guard of each alternativeis evaluated. |If more than one guard
istrue, one of the alternatives with atrue guard is nondeterministically selected for
execution. If none of the guards are true and an else clause exists, the else clause is
executed. Unlike Ada, if none of the guards are true and there is no else clause, the
process containing the if statement hangs until one or more of the aternative guards

becomes true.
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To generate the PROMELA program for our readers/writers problem, we convert
each of the tasksin our canonical Ada representation into a CFG and then into an FSA as
described in Section 3.1. We then translate the set of FSAsinto a PROMELA program,
where the FSA for the control task is as shown in Figure 3.4. The resulting PROMELA

program can be found in Figure 3.5.

mtype = { synch};

chan control_start _read = [0] of { byte};
chan control_stop__read = [0] of { byte};
chan control_start _write = [0] of { byte};
chan control_stop__write=[0] of { byte};

proctype writer__1()

{

state 1:
if
:: control_start__ writelsynch -> goto state 2
fi;

state 2:
if
:: control_stop__ writelsynch -> goto state 1
fi

}

proctype reader _1()

{

state 1:
if
:: control_start_read!synch -> goto state 2
fi;

state 2:
if
:: control_stop__read!synch -> goto state 1
fi

}

proctype control()
{
state 1:
if
:: skip -> goto state 3
:: skip -> goto state 2
fi;
state 2:
if
:: control_stop__ write?synch -> goto state 2
:: control_stop__read?synch -> goto state 3
:: control_stop__read?synch -> goto state 2
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:: control_start__read?synch -> goto state 3
:: control_start_read?synch -> goto state 2
fi;

Figure 3.5. PROMELA Program for Readers/Writers Example
Continued, next page



Figure 3.5, continued

state 3:
if
:: control_stop__ write?synch -> goto state 3

:: control_start__ write?synch -> goto state 4

:: control_stop__read?synch -> goto state 3

:: control_stop__read?synch -> goto state 2

:: control_start__read?synch -> goto state 3

:: control_start__read?synch -> goto state 2
fi;

State 4:
if
:: control_stop__ write?synch -> goto state 3
:: control_stop__read?synch -> goto state 4
:: control_stop__read?synch -> goto state 5
fi;

State 5:
if
:: control_stop__ write?synch -> goto state 2
:: control_stop__read?synch -> goto state 4
:: control_stop__read?synch -> goto state 5
fi

}

init {
atomic { run writer__1();
run reader__1();
run control()

}
}

We note that this approach for generating a PROMELA input closely follows that
described by Corbett [Cor94], with the difference that our technique uses an Ada program
rather than a set of FSAs as the canonical model of the program. In addition, we use a
separate message channel for each entry in the program, while Corbett uses a separate
message channel for each pair of communicating processes for each entry. Our approach
is conceptually closer to the semantics of the underlying Ada program. Despite these
differences, our PROMELA input is very similar to that of Corbett, and both approaches
generate essentially the same state space.

We note that specifying each process as adistinct FSA is probably not standard
PROMELA "programming style". We recognize that this may introduce some bias, since

SPIN could potentially take advantage of multiple instantiations of process typesto
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provide more efficient state space generation. Our approach would preclude the use of
such specialized techniques. Our approach, however, greatly facilitates the process of
trandating from the canonical Ada representation to PROMELA, providing the benefits
discussed in Section 3.3. In addition, Corbett [Cor94] discovered that converting Ada
programs to the standard PROMELA programming style was difficult to do correctly,
even for experienced PROMELA users, and did not result in anoticeable difference in
performance compared to specifying each process as adistinct FSA.

After we have the specification of the program in PROMELA, we need to represent
the three properties we are interested in checking. Thefirst property, freedom from
deadlock, is automatically checked by SPIN, so no further specification of this property is
required. The second and third properties can be checked using either never claims or
assertions.

Example never clamsfor no_rlw and no_wiw?2 are found in Figure 3.6. Never
clams are typically formulated in terms of the states of one or more processes, so
PROMELA provides syntax to check the state of a given process. For example, the string
reader__ 1[reader 1 pid]@state 2 checks whether the reader_1 processisin state 2.
PROMELA also provides a skip statement, which is ssmply anull statement.

The FSA for the never claim for no_rlw staysin theinitial state until either some
writer writes or reader_1 reads (and goes to s2). We keep track of whether or not awriter
has written with an additional variable, called wrote, in the PROMELA input. Thewrote
variableisinitialized to false, and set to true whenever awriter writes. If some writer
writes, the FSA can never exit the second do loop, and the FSA for the never claim can
never reach the accept state. If reader_1 reads, the FSA for the never claim goes to the
accept state (and never leavesit), and SPIN reports the violation of the never clam. The
FSA for the never claim for no_wi1w2 stays in the initial state until both writer_1 and

writer_2 are at s2; in other words, both writers are writing. If this occurs, the FSA for the
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never claim goes to the accept state (and never leavesit), and SPIN reports the violation

of the never claim.

no_riw
never {
do
:: (wrote ==true) -> break -- if any writer writes, exit loop
reader__ 1freader 1 pid]@state 2 -> goto accept-- if reader_1 reads, go to accept state
;s else-> skip -- if neither of above, loop back
od;
do
;o skip -- infinite loop; property is not possible
od;
accept: -- accept state of FSA
do
;o skip -- infinite loop; reader_1 reading before
od -- some writer writes has been found
}
no_wilw?2
never {
do
writer__1[writer_1 pid]@state 2 & -- if writer_1 and writer_2 are both writing,
writer__ 2[writer_2 pid] @state 2 -> goto accept -- go to accept state
;s else-> skip -- otherwise, loop back
od;
accept: -- accept state of FSA
do
;o skip -- infinite loop; writer_1 and writer_2 both
od -- writing has been found
}

Figure 3.6. Never Claimsfor no_rlw and no_wlw?2

We have discovered several occasions on which we have found it necessary to add
additional variablesto the PROMELA input to check properties of interest. In many
cases, the properties are specified in terms of events (i.e., rendezvous) rather than states
of the processes. While it is sometimes possible to infer the event occurrences from the
sequence of states one or more of the processes pass through, this can be difficult for non-
trivial programs. We have found it effective to use variables (such as the wrote variable
above) to keep track of the occurrence of events of interest. For instance, when awriter
writes, we set the wrote variable to true as the writer transitions from one state to the

next. We have also found it necessary to add additional variables when one task needs to
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know the state of another task in the system, which often occurs when we use assertions.
Because tasks are prohibited from querying the status of other tasks in the system, we
have found it to be effective to add additional variablesto keep track of this status
information.

To use assertions to check if reader_1 reads before some writer writes, we modify the
PROMELA input as shown in Figure 3.7. Basically, we set the wr ote variable when any

writer writes and assert that the variable has been set when reader 1 reads.

reader 1 control
:: control_start_read!synch -> :: control_start__ write?synch -> atomic { wrote =
true;
atomic { assert (wrote == true); goto state 9}
goto state 2}

Figure 3.7. Assertionsfor no_riw

The assertions to check for writer_1 and writer_2 concurrently writing are somewhat
more complicated. When writer_1 starts to write, the assertion that writer_2 is not
writing is checked and the flag indicating that writer_1 iswriting is set. Beforewriter_1
stops writing, the flag indicating that writer_1 iswriting is cleared. We note that the flag
can not be cleared after writer_1 stops writing, because SPIN then finds a violation of the
assertion by having writer_2 start to write before the flag is cleared. Similar assertions
are embedded in the writer_2 process. The required changes are shown in Figure 3.8.

We specify properties using both never claims and assertions to ensure that our
choice of property specification technigue does not bias our results against SPIN. Since
SPIN+PO (discussed below) requires the use of assertions, we use assertionsin SPIN to
allow comparison of the results. It may be the case that using never claims yields better
performance by SPIN, however, so we specify properties using never claims as well.

Modeling of the Writer variable is controlled by the FSAs generated for the program.
When the FSAs are built without considering the Writer variable, the generated

PROMELA code does not incorporate information about the Writer variable in the
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anaysis. When the FSAs are built taking the Writer variable into account, the generated

PROMELA code incorporates this information as well.

writer_1 writer_2
proctype writer_1() proctype writer_2()
{ {
state 1: state 1:
if if
:: control_start_writelsynch -> :: control_start_writelsynch ->
atomic { writer_1 writing = true; atomic { writer_2 writing = true;
assert (writer_2 writing == false); assert (writer_1 writing == false);
goto state 2} goto state 2}
fi; fi;
state 2: state 2:
writer_1 writing = false; writer_2 writing = false;
if if
:: control_stop_writelsynch -> goto state 1 :: control_stop_writelsynch -> goto
state 1
fi fi
} }

Figure 3.8. Assertionsfor the no_wlw?2

Converting the canonical Ada representation of the readers/writers problem into a
PROMELA program was straightforward, and most of this processis automated. To
provide afair comparison, we specified the second and third properties using both never
claims and assertions. Specifying the properties as never claims was relatively straight-
forward, but required an understanding of the internal operation of the tool to achieve the
proper behavior. Specifically, we needed to realize that "execution” of the program and
never claim are interleaved during the analysis and that evaluation of aguard is distinct
from the execution of the guarded statement. This problem might be avoided by
specifying the property in Linear Temporal Logic (LTL). Specifying the property in LTL
isprovided as a SPIN option, but we have yet to investigate it. Using assertions was
straightforward for the second property, but the third property required some non-intuitive
mani pul ations to specify the property correctly. Again, specifying this properly required
the recognition that evaluation of a guard is distinct from the execution of the guarded

statement.
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3.2.1.2 SPIN + Partial Orders

The partial orders approach of Godefroid and Wolper (described in Section 2.1.1.2)
has been implemented as an addition to SPIN; we refer to the resulting tool as SPIN+PO.
The SPIN+PO tool takes input in the form of PROMELA, so the SPIN+PO input for the
readers/writers program is as shown in Figure 3.5. Like SPIN, the SPIN+PO tool checks
for deadlock automatically. The current version of SPIN+PO does not support the use of
never claims for the specification of the property of interest, so the other two properties
are specified as assertions embedded in the PROMELA input as shown in Figures 3.7 and
3.8. SPIN+PO checks those assertions, just as SPIN does during state space generation,
and reports aviolation and terminates if an assertion evaluates to false.

We note that other Partial Order additionsto SPIN have been implemented, and
using these additions could yield different empirical results. At the time we conducted
this experiment, these additions did not support the use of rendezvous channels, while the
SPIN+PO tool allows using these channels.
3.2.1.3 TRACC

To combat the state space explosion, Godefroid and Wolper try to reduce the size of
the reachable state space asit is generated. An alternative approach is to reduce the size
of the model from which the reachable state space is generated. Thisisthe approach
taken in the TPN-based Reachability Analysis for Concurrent Code (TRACC) tool.

The TRACC tool accepts the set of CFGs generated from the canonical Ada program
as the program specification. A property of interest is not explicitly specified; rather, a
specialized program must be written to check the property. For state properties (freedom
from deadlock, no writer 1 and writer 2 writing concurrently), the property checking
program examines each state in the reachability graph. For path properties (no reader 1
before any writer), the property checking program solves a dataflow problem on the

reachability graph to check the property.
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The TRACC tool uses avariety of representations of a concurrent program to capture
information about the program. The CFG for each task isfirst converted into a Task
Interaction Graph (TIG) [LC89], where each node represents a sequential region of
control flow and each edge represents a possible interaction (entry calls/accepts) between
that task and other tasksin the program. Thisis basically an optimization that greatly
reduces the number of nodes in the flow graph. These TIGs are then combined into a
single Petri net, which is used to generate areachability graph. Preliminary experimental
results [DCN94] show that using TIGs rather than CFGs as the basis for the Petri net can
greatly reduce the size of the resulting reachability graph. The algorithm to check for
deadlock on the reachability graph generated by the TRACC tool isgivenin [DCN94].
To check for writer 1 and writer 2 writing concurrently, each node in the reachability
graph isexamined. If anodeisfound where both writer 1 and writer 2 are writing, the
property checking program reports the violation and terminates. To check for reader 1
reading before some writer writes, the property checking program solves a dataflow
problem on the reachability graph. Each time some writer writes, awrite flag is set to
true. After the dataflow problem reaches a fixed point, each state in the reachability
graph isexamined to seeif reader 1 isreading when the writeflag isfalse. If so, the
property checking program reports the violation and terminates.

Because the TRACC tool uses a set of CFGs as input, the accuracy improvements we
make to FSAs have no affect on TRACC analysis accuracy. The TRACC tool includes
several ways to improve analysis accuracy [CC96], including the capability to model
some types of variables as variable subnets. We use a variable subnet to model the Writer
variable in our experiment.

While the generation of the reachability graph is fully automated in the TRACC tool,
the requirement to write a special program to check each property isinconvenient. We
would not expect atypical analyst to undertake this effort. In addition, the TRACC tool

can only be applied to very small versions of the readers/writers program.
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3.2.2 Symbolic Moddl Checking

Symbolic Model Checking was described in Section 2.1.2. In our experiment, we
used an implementation of a symbolic model checker called the Symbolic Model Verifier
(SMV) [McM93]. Although SMV was originally designed as a hardware verification
tool, it can also be used for analysis of concurrent software. A program specification is
provided to the tool, which encodes the possible variable values for each variable and
generates an OBDD for the program from those variables. The property of interest is
specified in CTL and aleast fixed point algorithm is used to check the property as
described above. If the property is ever false, SMV reports the violation and terminates.

The usual method for specifying a program for SMV involves specifying a set of
processes and a next state function for each process, but a capability for explicitly
specifying the system transitions is also provided by SMV. Wewould have liked to
specify the SMV input with the usual specification style, but were unable to impose
rendezvous semantics with this style. This style changes asingle state variable at atime
for a state transition, but we need to change two state variables concurrently to represent a
rendezvous. Using the style that explicitly specifies the transition relation also facilitates
our translation from the canonical Ada program into the SMV input. For these reasons
we use the latter specification style. Using this style, the input to SMV consists of four
parts. The VAR declaration defines avariable to represent each process, with the number
of variable values given by the number of states for the corresponding process. The INIT
declaration sets the initial values (states) for the process variables. The TRANS
declaration fully specifies the transition relation for the system, which determines which
variable values change on each state transition of the program. For example, rendezvous
semantics are explicitly incorporated in the transition relation by changing the two
variables associated with the calling and accepting tasks on each transition. The SPEC

declaration is a specification of a property in the temporal logic CTL.
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To generate the SMV input for our readers/writers problem, we convert each of the
tasksin our canonical Adarepresentation into a CFG and then convert each of the CFGs
into an FSA as described in Section 2. We then automatically trans ate the set of FSAs
into the SMV input, where the FSAsfor the reader_1 and writer_1 tasks are as shown in
Figure 3.3 and the FSA for the control task is as shown in Figure 3.4. A variablefor each
task is defined in the VAR declaration and initialized in the INIT declaration as described
above. The TRANS declaration is generated by matching entry calls and accepts on the
transitionsin the set of FSAs. For each matching entry call and accept, a transition that
changes the values of the variables representing the calling and accepting tasks is added
to the transition relation. The resulting SMV input is shown in Figure 3.9. Our
specification of the SMV input closely follows that of Corbett [Cor94]. We note that this
may bias our results against SMV somewhat, since techniques that organize the OBDDs
to efficiently represent the multiple, duplicate, processes can not be used.

MODULE main
VAR
writer_1:{sl,2};
reader_1:{sl,2};
control : { s1,82, 3,4, 5};
INIT
((writer_1=s1)& (reader_1=sl)& (control =s1))
TRANS
(((control =s1) & ( next(control) = s3) & (next(writer 1) =writer_ 1) &
(next(reader__1) =reader 1))
|
((control =s1) & ( next(control) =s2) & ( next(writer__1) = writer_ 1) &
(next(reader__ 1) =reader 1))
|
((control =s2) & ( next(control) =s2) & (writer_1=s2) & (next(writer_1)=sl) &
(next(reader__1) =reader 1))
|
((control =s2) & ( next(control) =s3) & (reader__1=s2) & (next(reader__1)=sl) &
( next(writer__ 1) =writer 1))
|
((control =s2) & (next(control) =s2) & (reader__1=s2) & (next(reader__1)=sl) &
( next(writer__ 1) =writer 1))
|
Figure 3.9. Example SMV Input

Continued, next page
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Figure 3.9, continued

((control =s2) & ( next(control) =s3) & (reader__1=s1) & (next(reader__1)=s2) &
( next(writer 1) =writer 1))

|

((control =s2) & (next(control) =s2) & (reader _1=s1) & (next(reader_1)=2)&
( next(writer 1) =writer 1))

|

((control =s3) & ( next(control) =s3) & (writer_1=s2) & (next(writer_1)=sl) &
(next(reader__1) =reader 1))

|

((control =s3) & ( next(control) =s4) & (writer_1=s1) & (next(writer_1)=s2) &
(next(reader__ 1) =reader 1))

|

((control =s3) & (next(control) =s3) & (reader__ 1=s2) & (next(reader__1)=sl) &
( next(writer__ 1) =writer 1))

|

((control =s3) & (next(control) =s2) & (reader__1=s2) & (next(reader__1)=sl) &
( next(writer__ 1) =writer 1))

|

((control =s3) & (next(control) =s3) & (reader__1=s1) & (next(reader 1) =s2) &
(next(writer__1) =writer__ 1))

|

((control =s3) & (next(control) =s2) & (reader__1=s1) & (next(reader 1) =s2) &
( next(writer__ 1) =writer 1))

|

((control =s4) & ( next(control) =s3) & (writer_1=s2) & (next(writer_1)=sl) &
(next(reader__1) =reader 1))

|

((control =s4) & (next(control) =s4) & (reader__ 1=52) & (next(reader__1)=sl) &
( next(writer__ 1) =writer 1))

|

((control =s4) & (next(control) =s5) & (reader__1=s2) & (next(reader__1)=sl) &
(next(writer__1) =writer__ 1))

|

((control =s5) & ( next(control) =s2) & (writer_1=s2) & (next(writer_1)=sl) &
(next(reader__1) =reader 1))

|

((control =s5) & (next(control) =s4) & (reader__ 1=s2) & (next(reader__1)=sl) &
( next(writer__ 1) =writer 1))

I

((control =s5) & (next(control) =s5) & (reader__ 1=s2) & (next(reader__1)=sl) &
( next(writer__ 1) =writer_1)))

SPEC
AG(EX 1)

The SPEC declaration in Figure 3.9 specifies a check for deadlock. The specification
states Always, Globally, there exists an enabled state transition; in other words, the

system does not deadlock.



To check no_rlw, we need to include additional variables in the system to keep track
of when reader_1 has read and when any writer has written. Each transition in the
transition relation must also be revised to modify these variables as appropriate.
Transitions in which reader_1 moves from sl to s2 changethereader _1 read variableto
true, and transitions in which any writer moves from sl to s2 change the
any_writer_wrote variable to true. The SMV specification for no_rlw isshownin
Figure 3.10. The specification states Always, Globally, if reader_1 read then
any_writer_wrote. If the system can reach an execution state in which reader_1 has read
but no writers have written yet, the implication isfalse and SMV reports the violation and
terminates.

While we found it intuitive to check no_rlw by including variables that keep track of
the occurrence of events of interest, it isalso possiblein SMV to avoid including these
additional variables by specifying the property as amore complicated CTL formula.
Because adding variables could increase the size of the state space, thereby adversely
affecting SMV's analysis times, we have also checked no_rl1w using the specification
shown in Figure 3.11. The specification states that reader 1 will not enter state 2 (will
not read) until writer_1 has gone to state 2 (has written).

SPEC
AG (reader_1 read ->any_writer_wrote)

Figure 3.10. SMV Specification for no_rlw

SPEC
Al!l(reader__1=s2) U (writer_ 1=52)]

Figure 3.11. Alternate SMV Specification for no_riw
To check no_wiw2, we usethe VAR, INIT, and TRANS declarations from Figure
3.9 to describe the program. No additional variables are needed, since the property can be
checked by examining the values of the writer_1 and writer_2 variables. The SMV
specification can be found in Figure 3.12. The specification states Always, Globally, if

writer_1isin state 2 (i.e., iswriting) then writer_2 isnot in state 2 (i.e., is not writing)
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and that if writer_2isin state 2 then writer_1 isnot in state 2. If the system can reach an
execution state in which both writer_1 and writer_2 are writing, both implications are
false and SMV reports the violation and terminates.

Asfor the PROMELA input, modeling of the Writer variable is controlled by the
FSAs used to generate the SMV input.

SPEC
AG (((writer 1=s2)->I(writer 2=52)) &
((writer 2=82) ->I(writer_1=52)))
Figure 3.12. SMV Specification for no_wlw2

Specifying the program in the VAR, INIT, and TRANS declarations was
straightforward and mostly automated. Generating the SPEC declarations for our three
properties of interest was also not difficult, but modifying the entire transition relation for
the second property was tedious, though we quickly developed atool to automate this as

well.

3.2.3 Inequality Necessary Condition Analysis

The Inequality Necessary Condition Analysis technique (described in Section 2.1.3)
has been implemented in atool called INCA. The INCA tool accepts a specification of
the program in an Ada-like language or in the SEDL discussed in Section 3.1.2.2.
Properties of interest are formulated as INCA queries, which specify the properties as
sequences of event symbols.

INCA converts the program specification into a set of communicating finite state
automata for the tasks in the program. Communication equations and restriction
inequalities are generated based on Adarendezvous semantics. The INCA query is
converted into a set of property inequalities. A commercial integer linear programming
package (CPLEX) is then used to search for a solution to the set of flow equations,
communication equations, restriction inequalities and property inequalities for the system.

A program specification is provided to the INCA tool in an Ada-like language or in

SEDL. We use a set of (mostly) automated tools to convert the canonical Ada program
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into SEDL. An INCA query consists of a definition of the query name, whether or not
fairness constraints should be applied, and the query itself, which iswritten in terms of a
set of sequences of intervals. None of our properties require fairness constraints, so we
simply specify "nofair” in the queriesbelow. The query is expressed as an w-star-less
expression [CA95], which issimilar to aregular expression. The query can contain
several sequences of intervals, though for our properties a single sequence of intervalsis
sufficient.

The query to check for deadlock can be found in Figure 3.13. For this query, we
consider asingleinterval starting at the beginning of the program (":initial t") and enforce
the constraint that progress in the program is aways possible (":progresst").

(defquery "deadlock™ "nofair"
(omega-star-less (sequence
(interval :initial t

progresst
:costs " connect-arc-unit"))))

Figure 3.13. INCA Query for Deadlock

For more complicated properties, such asno_r1lw and no_wlwz2, we can specify
more complicated constraints on intervals in the program execution. We specify a set of
start (with ":initial") and end (with ":ends-with") points for each interval in the execution,
aswell asthe events that are forbidden within each interval (with ":forbid"). We use
"rend <caller>;<acceptor>.<entry>" to check for the occurrence of a specific rendezvous
inaninterval. When arendezvousisincluded in the":ends-with" portion of the query,
the rendezvousis alowed but neither of the tasks participating in the rendezvous is
allowed to progress further. We use "call(<caller>;<acceptor>.<entry>)" if we want to
check the occurrence of arendezvous but also need to let the accepting task progress past
the rendezvous point. Queriesfor no_rlw and no_wlw?2 are shown in Figure 3.14.

Recall that an INCA query specifies the negation of the property we would like to
prove. For no_rlw, to show that reader_1 can not read before some writer has written,

we specify the necessary conditions for reader_1 to read before any writer has written. To
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do so, we specify an interval that begins at the initial state of the program and ends when
reader_1 reads. Within thisinterval, none of the writers are alowed to write. If such an
interval exists, it is possible for reader_1 to read before some writer has written. For
no_wlw2, we specify an interval starting at the initial state of the program, ending after
both writer_1 and writer_2 have started to write an arbitrary number of times (without the
":opent" flag, the property would be checked for the first time both writers start to write).
Because neither writer_1 nor writer_2 isallowed to progress past their last calls on
start_write, if such an interval exists, it is possible for writer_1 and writer_2 to be writing
concurrently.
no_riw
(defquery "no_reader 1 _before_some write" "nofair"

(omega-star-less (sequence

(interva :initial t :ends-with '((rend "reader_1;control.start_read"))
:forbid '((rend "writer_1;control .start_write")
(rend "writer_2;control .start_write"))))))

no_wilw?2
(defquery "no_wlw?2" "nofair"

(omega-star-less (sequence

(interval :initial t
opent
:ends-with '("call(writer_1;control.start_write)"
"call(writer_2;control.start_write)")))))
Figure 3.14. INCA Queriesfor no_rlw and no_wlw?2
As discussed above, control over the variables that are modeled in the analysisis

provided in the conversion from CFGsto SEDL. The conversion from the canonical Ada
program to SEDL is amost fully automated and thus was straightforward, but proper
specification of the queries required several discussions with the INCA developers.

3.2.4 DataFlow Analysis

The Dwyer and Clarke technique for dataflow analysis (discussed in Section 2.1.4)
has been implemented in atool called FLow Analysis VERIfier for Software
(FLAVERS). The FLAVERS tool accepts a set of CFGs as the specification of the

program to be analyzed. The property of interest is specified as a Quantified Regular
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Expression (QRE), which contains three parts. Thefirst part of a QRE is the alphabet of
events that are included in the property. The second part of a QRE is a quantifier, which
specifies whether the tool should check if the property holds on al paths or whether the
tool should look for the existence of apath on which the property holds. The final part of
aQRE is a specification of a sequence of events as aregular expression.

The concurrent program is modeled as a Trace Flow Graph (TFG), which is a set of
CFGs with additional edges to capture program events that may immediately precede the
program event at each node. The QRE isthen converted to adeterministic finite
automaton called the Property Automaton (PA). To solve the dataflow problem, states of
the PA are propagated through the TFG using an iterative worklist algorithm. To check
whether the property holds, the PA statesthat are possible at program termination are
compared to the accepting states of the PA.

Checking for deadlock using FLAVERS is not currently supported. The QRES for
no_rlw and no_wlw?2 are shown in Figure 3.15. For no_rlw, the events of interest are
when reader_1 reads and when any writer writes. The tool should check for the existence
of apath in which reader_1 reads before some writer writes, so the quantifier is"exist".
The sequence of eventsin the property is specified (informally) as: "Any event except the
events of interest occurs 0 or more times, then reader 1 reads, then any event, including
the events of interest, occurs O or moretimes'. For no_wiw?2 the events of interest are
when writer_1 and writer_2 start and stop writing. The tool should check that the
specified sequence occurs on all paths. The sequenceis (informally) specified as"Any
event but writer_1 or writer_2 starting to write occurs O or more times, then either
writer_1 startsto write and stops writing without an intervening writer_2 start write, or
writer_2 starts to write and stops writing without an intervening writer_1 start write, then
anything but writer_1 or writer_2 starting to write occurs O or more times".

Because the FLAVERS tool uses aset of CFGs as input, the accuracy improvements

we make to FSAs are not incorporated into the FLAVERS analysis. The FLAVERS tool
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includes a variety of refinement techniques that can be used to improve analysis accuracy,
including the capability to model some types of variables as variable automata. When we
use the variable automata technique to model the Writer variable, FLAVERS uses a
representation that incorporates the same information as the FSAs used for the

PROMELA, SMV, and INCA inputs and the variable subnet for TRACC.

no_riw
{reader_1 read, any writer_wrote} exist

[-any_writer_wrote, reader_1 read]*;
reader 1 read;
[any_writer_wrote, reader_1 read]*

no_wlw?2
{writer_1 start write, writer_1 stop write,
writer_2 start write, writer_2 stop_write} all

[-writer_1 start write, writer_2_start write]*;
(((writer_1_start_write;
[-writer_2_start writewriter 1 stop_write]*;
writer_1 stop_write)
|
(writer_2_start write;
[-writer_1 start writewriter 2 _stop_write]*;
writer_2_stop_write));
[-writer_1 start write,writer 2 _start_write]*)*

Figure 3.15. QREsfor no_rlw and no_wlw?2
The conversion from the canonical Ada program to FLAVERS input isfully
automated. Specifying properties as QRES seemed natural, but it was sometimes difficult
to write the QRE correctly.

3.3 Comparison Methodology

To ensure our comparisons are as unbiased as possible, we must consider many
separate issues. We must try to make sure each tool is analyzing the same program and
property of interest. We must follow a methodology that tries not to bias our results
against one or more of the tools. We must carefully select which programs and properties
to include in the experiment. Finally, we must decide what measurements to compare

after we have collected our experimental data.
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3.3.1 Program Representations

To try to ensure the analysis tools are eval uating the same program, we used an Ada
program as the canonical model of the program and translated that program into each
tool'sinput language. For al the tools, the Ada program was first converted to a set of
CFGs, which were then converted, when necessary, to the input language of each of the
tools. The FLAVERS tool uses CFGs asinput directly, so no further conversion was
required for FLAVERS. For SPIN, SPIN+PO, and SMV, we converted the set of CFGs
to a set of Finite State Automata, which we then used to generate the PROMELA and
SMV inputs. For INCA, the SEDL generated when converting from CFGs to FSAs
served as the input language.

There is some question, however, about whether it is even possible to have each of
the tools analyze the exact same program. For example, PROMELA semantics are not
exactly the same as Ada semantics, so specifying a PROMELA program to behave
exactly as the corresponding Ada program would behave may not be possible. Similarly,
standard SMV input specifications cannot represent rendezvous semantics, so we have
used an aternate SMV specification form that aso does not exactly match Ada
semantics. We have applied extensive effort to try to ensure the tools are analyzing the
same program, but because of differing tool semantics we may not have been completely
successful. While we believe our approach to this problem is reasonable, there may be
other approaches that are more successful at providing equivalent programs to each of the
tools.

We note that the CFGs that are automatically generated from the canonical Ada
program are a general abstraction of program control flow and were not explicitly
devel oped to support one or more of the analysistools evaluated. Similarly, the FSAs
that are created to represent the program are a general abstraction and were not tuned to

one or more of the analysistools. While we know that the CFGs and FSAs are valid

61



representations of the program, using these representations could introduce bias in the
experiment in some unknown manner.

Asdiscussed in Section 3.1.2.2, when we convert a CFG to an FSA we decide which
variables to consider during the conversion. To quantify the effect of modeling variables,
we generated the inputs for al the tools with three different variable combinations - not
modeling any variables, modeling the Writer variable only, and modeling both the Writer
and Readers variables. For SPIN, SPIN+PO, SMV, and INCA, we controlled which
variables were model ed during the conversion from CFGs to SEDL, and for FLAVERS
we included a variable automaton in the analysis.

By modeling different combinations of the variables rather than simply modeling
both variables, we may be introducing bias against some of the tools. For example, SPIN,
SPIN+PO, SMV, and INCA all run faster when both variables are modeled. However, in
general we believe an analyst will add accuracy to the program representations
incrementally, rather than adding al variable information initially. For a program that
contains alarge number of variables, trying to model all those variables might make
building the program representations or performing the analysis on those representations
intractable. We therefore believe an analyst would start without modeling variables, and
would incrementally model additiona variables until the analysis results meet their
accuracy requirements. Thefirst two properties do not require any variable modeling for
the tools to produce accurate results and, for the third property, the tools can produce
accurate results when we model only the Writer variable. Thus for these properties, we
believe an analyst would be unlikely to run the analysis modeling the Reader s variable if
they were using the incremental approach described above. Of course, checking some
properties accurately, such as whether or not areader and awriter can be accessing the
document concurrently, requires modeling both variables, in which case we would expect

an analyst to add both variables to the analysis.
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Other empirical work [Cor94] has assumed that all or aimost al variablesin the
program will be modeled. This approach seemsto reflect a different analysis process, in
which an analyst would start modeling information about al variables in the program, or
at least all variablesthat affect inter-task communications. If the analyst discovered that
this variable modeling led to intractable analyses, they could then incrementally remove
variable modeling until the analysis was tractable. While this approach is often feasible
for the example programs from the concurrency analysis literature, it is not clear to us that
this assumption will hold for real programs that contain hundreds or thousands of
variables, particularly since determining which variables affect inter-task communication
isanon-trivial task. Since we plan to use the methodol ogy presented here to build
predictive models for the performance of the analysis tools on larger, more realistic
programs, we work from the assumption that we believe is more likely to scale up. Of
course, only extensive practical experience applying the analysis toolsto realistic
programs will indicate which assumption holds in general.

3.3.2 Property Representations

Guaranteeing that the tools are evaluating the same property on a given program is
also difficult. Because each tool uses a different specification technique, and often a
different logic, automatic translation between the property representationsis not
straightforward. FLAVERS can, however, generate an FSA from the QRE for a property
of interest. When the QRE specifies an exists property this FSA can then be used to
create anever claim for SPIN or an INCA query, and when the QRE specifies an all paths
property this FSA can be used to generate the SMV SPEC declaration. These transations
must be carefully performed, since QREs are in terms of events while SPIN never claims
and SMV SPECs are in terms of process states. The SPIN assertions and TRACC
property checking program were hand crafted for each of the three properties. In these

cases, the only assurance of comparable properties of interest is a careful, manual
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tranglation from the property to the appropriate SPIN assertions and TRACC property

checker.



3.3.3 Checking for Bias

We must also try to ensure that our methodology avoids bias against one or more of
the tools as much as possible.

For example, the sizes of the OBDDs used by SMV are sensitive to the order of the
variablesin the SMV input. To account for this, we checked the tool's performance using
the variable ordering that results from our automatic translation and also ran the tool with
the REORDER option, which applies a heuristic reordering al gorithm before generating
the OBDDs for the system. Similarly, SMV tends to be more efficient when processes
are used rather than an explicit specification of the global transition relation. Modeling
the semantics of the Ada rendezvous using the semantics of the SMV processes is not
possible, however, and would have precluded our using the FSAs generated from our
canonical CFGs for the SMV input. We set a higher priority on the requirement that the
programs be the same for each tool, at the risk of a potential degradation in tool
efficiency. We aso noted in Section 3.2.2 that we found adding additional variablesto
the SMV input and embedding operations on those variables in the system transitions to
be an intuitive approach to checking properties. Since this could degrade SMV's
performance by growing the state space, we a so specified the second property using an
alternate CTL specification that did not require additional variables. We note that, in
general, these alternate CTL specifications seem more complicated (i.e., contain more
terms and temporal 1ogic operators) than those using additional variables, but thisis not
always the case.

We noted in Section 3.2.1.1 that SPIN can use either never claims or assertionsto
check properties. We chose to use assertions to alow comparison with SPIN+PO, but
this could introduce abias against SPIN if the use of never claimsis more efficient. We
therefore ran SPIN with both the never claims and the assertions and compared the

execution times.
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In our implementation of the readers/writers problem, none of the accept statements
have bodies. This does not affect the tools using inputs based on FSAs because the
accept bodies are collapsed into single FSA states. Similarly, it does not affect
FLAVERS, since thistool optimizes the accept bodies away (for the readers/writers
problem). It isnot clear, however, whether this affects the performance of INCA, since
the INCA input used in [Cor94] for the readers/writers problem used accept bodies.
Therefore, for INCA we ran the analysis cases on our version of the program with no
accept bodies and on aversion of the program containing accept bodies. We also note
that most examples of INCA input that we have seen represent sets of identical tasks as
arrays of task types, while the Ada program we use as a canonical model contains each
reader and writer task specified uniquely. Sinceit is unclear how this affects INCA
performance, we ran the analysis cases on INCA with a conversion from the canonical
Ada program and also with arrays of reader and writer tasks. Finaly, for some of the
properties described in Chapter 4, we found it intuitive to specify the INCA query using
two intervals, which can cause a significant growth in the size of the inequality system.
In these cases, we also specified the queries using single intervals and adding additional
constraints to the system. We ran the analysis cases using both types of queries.

3.3.4 Input Domain

From an empirical point of view, we would have liked to randomly select the
programs for our experiment from the population of all concurrent Ada programs. Thisis
not feasible, however, since the population of concurrent Ada programs available for
public accessisfairly limited in size and is certainly not complete. Unfortunately, there
is no evidence that the programs we have selected are representative of the population of
"rea" Adaprograms. In addition, the properties we tend to specify are relatively
straightforward and may not be representative of the properties analysts specify in
practice. Our uncertainty about the representativeness of both the programs and

properties we are likely to include in our dataset means that our ability to make general
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inferences from our empirical resultsislimited. On the other hand, we can use the
relationships discovered in our experiment as a point of comparison when we do gain
access to other, more realistic, concurrent programs.

A comparison of analysistimes for a specific program and property can be useful.
Since the size of the programs included in the experiment can be increased by including
more tasks into the system, it is also interesting to consider how the analysis times for the
tools grow asthe problem sizeisincreased. Toward this end, we collected experimental
datafor arange of program sizes.

We determined this range by finding the maximum size the LEAST effective tool on
that program could accomplish in less than five hours and without exhausting memory.
We then used an arithmetic progression of six sizes, with the maximum size mentioned
above asthefifth or sixth size in the progression. While this may introduce some bias
against tools that can scale to much larger sizes for this program, our rationaleis that the
comparison between the analysis tool s should be made on the same input domain of
programs, properties, and sizes.

3.3.5 Data Comparison

There are a number of measurements we can use for comparison. For example,
Corbett [Cor94] uses a calculated growth rate to compare the performance of concurrency
anaysistools. We suggest using analysis times and information about tool failures and
analysis accuracy for comparison purposes.

In an effort to ensure afair comparison of the tools, we propose using the time each
tool takes to generate the analysis results from its native input as the analysistime. This
time does not include the cost of translating the Ada programs into each tool's input
language as part of the analysis time for that tool. Because this trandlation is a cost of our
methodology rather than of each of the tools, we do not believe it would be fair to

"charge" each tool for the cost of using our translation tools. On the other hand, the
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tranglation times are often much larger than the actual analysis times, so using this
measure of analysistime may not give a clear picture of the true cost of using each tool.

In apractical sense our real interest isin how long each of the tools takes to analyze
Adaprograms. To gain moreinsight into this practical issue, we propose an aternative
definition of analysistime that uses the total analysistime for comparison, including
timing information for all the trandlation stepsin the analysis process and for the
compilation of the C programs generated by SPIN and SPIN+PO. This comparison
probably gives better insight into the true cost of analysis, at least for Ada programs, but
the times a so include potential inefficienciesin our conversion tools.

Once we have selected which analysistime to use and collected our data, we need to
compare the resulting analysis times. One way to do the comparison would be to
compare the mean analysis times for each tool; the tools with the lower mean times
would fare best the comparison. Unfortunately, outliers can have a significant effect on
the mean. For example, atool with consistently small analysis times but one (or afew)
very large analysis times could easily have alarger mean analysis time than atool that has
consistently larger analysis times but no outliers. The median can be used to give arough
idea about the effects of the outliers, but we still do not believe the mean analysistimes
are the best choice for comparison.

Another way to do the comparison would be to count the number of cases for which
each tool has the fastest analysis time; tools with the largest numbers of "fastest cases"
would fare best in the comparison. This measure aso has problems, however.
Specifically, atool that consistently had the second or third fastest analysis times, but
seldom had the fastest, would do worse in the comparison than atool that had the fastest
analysis times more often than the first tool, but generally had the slowest analysis times.
We would like a measure that not only captures how well atool comparesto the others

for each case, but also includes some (indirect) measure of consistency.
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We believe areasonable summary statistic to use for comparison of analysistimesis
the average ranking for each tool. For each case, we rank thetools (1 = fastest, 2 =
second fastest, etc.) based on analysistime. For each tool, we then average these rankings
across all cases and use this average for comparison; tools with the smallest average
ranking would fare best in the comparison. This average can still be affected by outliers,
but because the worst ranking atool can have on agiven case is given by the number of
tools in the experiment, the effect of outliersis not of much concern. Becauseit isan
average, this measure also (indirectly) includes consistency. The choice of what to
compare for analysis timesis adifficult one, but we believe the average ranking isa
reasonable summary statistic for analysis time comparisons.

Another useful measurement for comparison is the failure rate for each tool. In our
methodology, any analysis that takes over 5 hoursis classified as afailed analysis. The
selection of 5 hoursis somewhat arbitrary, but in an experimental environment we need
to choose alimit to ensure the experiments run in areasonable period of time. The
analysis can aso fail because the tool exhausts available memory, terminates with some
internal error, or can not be compiled (for SPIN and SPIN+PO).. Whether or not each
analysisfails (takes more than 5 hours or terminates because of exhausted memory or an
internal error) istherefore measured and used for comparison. One way to compare
failures would be to compare the counts of failure cases for each tool; the tools with the
lowest number of failed cases would fare best in the comparison. For this comparison to
be meaningful, all the tools would need to be run on the same number of analysis case.
Whilethisistypically the case in an experiment using our methodology, it is not required.
We therefore propose a comparison of percentage failures. For each tool, we calculate
the percentage of analysis cases (for that tool) on which the tool failed. We can then
compare these percentages across the tool s without being concerned about the number of
cases run for each tool; the tools with the lowest failure percentages would fare best in the

comparison.
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The utility of the tools is also determined by the accuracy of their analysis results.
Given the relative smplicity of the programs included in most experiments, we can
determine the correct answer for each of the analyses, and can therefore recognize
spurious results reported by an analysistool. Whether or not each analysisyields
spurious results is considered to be a good indicator of accuracy, SO we measure Spurious
results and use them for comparison. Asfor failures, we could use counts of the spurious
results for comparisons. Because a spurious result would only be counted for a non-
failure case, however, and because the tools are unlikely to fail on the exact same number
of cases, comparing spurious result counts is problematic. We instead use percentages of
spurious results for comparison. For each tool, we calculate the percentage of analysis
cases (for that tool) on which the tool yielded spurious results. We can then compare
these percentages across the tools without being concerned about the number of cases on
which each tool failed; the tools with the lowest failure percentages would fare best in the

comparison.
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CHAPTER 4
PROGRAMS AND PROPERTIES FOR THE EXPERIMENT

This chapter describes the programs and properties that were included in the
experiment. The programs that were included provide a diverse range of program
structures and functionalities and were all readily available. Some of the programs, such
as readers/writers and dining philosophers, had aready been developed by the Arcadia
consortium. For the other programs, we acquired the INCA inputs used by Corbett
[Cor94] and converted them to Ada programs. For a given program, properties were
selected to check key aspects of the functional behavior of the program. The program and
property specifications included in the experiment can be obtained from
ftp://1aser.cs.umass.edu/pub/.

In all the programs in the experiment, we checked each property without including
any variable modeling information in the FSAs. In some cases, we needed to include
some variable modeling information to accurately check certain properties. Those cases
are explicitly indicated below.

With the small, academic programs in the experiment, we knew which properties
should be violated for each program, property, and modeled variables. If we specified a
property that we knew should not be violated and the analysis reported that the property
was violated, we iteratively modified our property specification until we achieved the
"correct” analysis result given the program, property, and modeled variables (or could no
longer see reasonable ways to modify the property specification). In some cases,
specifying the property was very difficult and reaching a correct property specification
required many iterations. We used this iterative process to try to factor out our
inexperience using the tools, since the original spurious results were caused by our
incorrect property specifications rather than by weaknessesin the tools. We believe that

the spurious results measured in the experiment therefore more accurately represent the
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strengths and weaknesses of the tools rather than our skill (or lack of it) specifying
properties. It can be argued, of course, that our original property specifications should be
used, since they may better reflect how a"typical” user would specify the properties and
also informally include ease of use for each specification formalism in the results.
Additionally, an analyst analyzing area concurrent program probably does not know the
"correct" analysis result, so the analyst would not know when to iteratively modify the
property specification. It would therefore also be interesting to design a different
experiment that used the original property specifications and tried to measure how easy or
difficult it was to properly specify the properties on the first attempt with each formalism.
4.1 Cyclic

The cyclic program provides aloosely synchronized ring of processes, where the
processes start in order asthering is traversed, but each process can complete its task at
any time [Mil80]. The program thus enforces the start order for each process, but not the
stop order. Our implementation of asize N cyclic program consists of N customer tasks
and N scheduler tasks. Each customer task executes a simple loop, first accepting a start
from its scheduler then signaling the scheduler that it isfinished. Each scheduler loops
through the following actions - signaling its customer to start, signaling the next
scheduler to begin, then waiting until both its customer has finished and the previous
scheduler has signaled it to begin.

We have selected three properties to check for the cyclic program. Thefirst of these
isdeadlock. The second property can be phrased as"On any iteration, can customer_3
start before customer_2 starts?* This checksto seeif the start ordering is enforced as
required. For ease of reference, we call this property no_c3c2. The third property can be
phrased as "On any iteration, can customer_2 accept start twice without an intervening
cal to finish?' This property can be checked by considering only the control flow in
customer_2, but it isinteresting because it ensures that the customer task completesits

current processing before starting again. If we can prove this for an arbitrarily selected

72



customer task, we have shown it for al customer tasks. For ease of reference, we cal this
property no_c2ss. The never claim for no_c3c2 isshown in Figure 4.1. The FSA for the
never claim staysin theinitia state until scheduler_3 has started customer_3 and
customer_2 was hot started on thisiteration. If this occurs, the FSA for the never claim

goes to the accept state (and never leavesit), and SPIN reports the violation of the never

clam.
never {
do
;- cyclic_sched_3[sched 3 pid|@s3 & -- if scheduler 3 hasjust started customer 3 and
cust 2 started ==false -> goto accept -- customer 1 was not started on this iteration, accept
;s else-> skip -- otherwise, loop back
od;
accept: -- accept state of FSA
do
;o skip -- invalid sequence of customer_3 starting without
od -- customer_1 starting was found

}

Figure4.1. Never Claim for no_c3c2

To check this property, we needed to add an additional variable to the PROMELA
program to keep track of whether or not customer_2 had been started on the current
iteration. Thiswas necessary because we needed to recognize certain events that occur
during program execution, specifically customer_2 being started. Since customer_2 can
start and finish before we reach the point at which customer_3 is started, it is not possible
to check the state of the customer_2 task to determine if it was started on the current
iteration. Thecust 2 started variableis set to true when customer_2 is started and set to
false when customer_3 is started (to reset it for the next iteration).

The assertions to check no_c3c2 are shown in Figure 4.2. Whenever customer_2is
started, the cust_2_started flag isset. Whenever customer_3 is started, the assertion that
customer_2 was started is checked and the flag is cleared. If the assertion isfalse,
customer_3 has started before customer_2, and SPIN reports the violation and terminates.

The SMV specification for no_c3c2 isshownin Figure 4.3. Essentidly, the

specification states that Always, Globally, if customer_3 has been started then
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customer_2 has also been started. The transition that starts customer 2 was modified to
set the cust_2_started flag to true and the transition that starts customer_3 was modified
to set the cust_3 started flag to true. The transition on which scheduler_3 signals
scheduler_4 was modified to clear both flags. A violation of the property will thus only
be found if customer 3 is started on some iteration before customer 2 is started.
scheduler_2

ecust 2 start!'synch -> atomic { cust_2 started = true;
goto state 3}

scheduler_3
cust_ 3 start!synch -> atomic {
assert (cust_2_started == true);
cust 2 started = falseg;
goto state 3}
Figure4.2. Assertionsfor no_c3c2

SPEC
AG (cust_3 started -> cust_2_started )

Figure 4.3. SMV Specification for no_c3c2

It isalso possible to check no_c3c2 with SMV without modifying the transitionsin
the transition relation to model the cust_2 started and cust_3 started variables.
Alternatively, we can specify the property using the alternate CTL formula shown in
Figure4.4. Theformulastates that Always, Globally, if scheduler_2 isin state 2 (just
prior to starting customer_2), then on All execution paths from this point, scheduler_3is
not in state 3 (has not started customer_3) until scheduler_2 isin state 3 (has started
customer_2).

SPEC
AG ((sched 2=s2)->A[!(sched_3=s3) U (sched 2=s3)])

Figure4.4. Alternate SMV Specification for no_c3c2
The INCA query for no_c3c2 is shown in Figure 4.5. We specify an interval, starting

at theinitial state of the program and ending with some occurrence of the rendezvous
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between scheduler_1 and scheduler_2 on the next entry and some occurrence of the
rendezvous in which scheduler 3 starts customer_3. The rendezvous between
scheduler_1 and scheduler_2 represents the start of a cycle around the ring, and because
theinterval ends with this rendezvous, scheduler_2 is not allowed to progress further (i.e.,
cannot start customer_2). If such an interval exists, it is possible for customer_3 to start
before customer_2 on some cycle around the ring of schedulers.
(defquery "no_c3c2" "nofair"
(omega-star-less (sequence
(interval :initial t
opent
:ends-with '((rend "sched_1;sched 2.next")
(rend "sched_3;cust_3.start"))))))
Figure4.5. INCA Query for no_c3c2
Because the query above was somewhat difficult to formulate properly, we also
formulated the property by adding an additional constraint to the system of inequalities;
the resulting query is shown in Figure 4.6. The query specifies an interval, starting at the
initial state of the program, in which the number of times scheduler_3 has started
customer_3is greater than the number of times scheduler_2 has started customer_2. If
such an interval exists, it is possible for customer_3 to start before customer_2 on some
cycle around the ring of schedulers.
(defquery "no_c3c2_con" "nofair"
(omega-star-less (sequence
(interval :initial t
:constraints '((>= (- "call(sched_3;cust_3.start)"

"call(sched_2;cust_2.start)")
)

Figure 4.6. Alternate INCA Query for no_c3c2
The FLAVERS QRE for no_c3c2 isshown in Figure 4.7. The events of interest are
when customer_2 and customer_3 are started. The tool should check if the specified
sequence occurs on some path in the program. The sequenceisinformally specified as"0
or more valid sequences of customer_2 then customer_3 starting are followed by

customer_3 starting before customer_2 starts.”

75



{cust_ 2 start,cust 3 start} none

[-cust_2 start,cust 3 start]*;

(cust_2_dtart;

[-cust_3 start]*;

cust_3 start;

[-cust_2_start,cust 3 start]*)*;

cust_3 start;

[cust 2 start,cust 3 start]*

Figure4.7. QRE for no_c3c2

The third property we check on the cyclic program isno_c2ss. The never claim
for no_c2ssisshownin Figure 8. The FSA for the never claim staysin theinitial state
until scheduler 2 has started customer_2 before customer 2 was finished. To check this
property, we added a variable to the PROMELA program to keep track of whether or not
customer_2 has finished the previous processing. We set this variable to false when

customer_2 is started and true when customer_2 is finished.

never
{
do
:: sched__2[sched_2 pid]@state 3 & -- if scheduler_2 has started customer_2 and
cust_2_ finished == false -> goto accept -- customer_2 has not finished, accept
i else-> skip -- otherwise, loop back
od;
accept: -- accept state of FSA
do
;o skip -- customer_2 started before finishing previous
od -- processing

}

Figure 4.8. Never Claim for no_c2ss
The assertions to check no_c2ss are shown in Figure 4.9. Whenever customer_2 is
started, the assertion that customer_2 finished is checked and the flag is set to false.
When customer_2 finishes, the flag is cleared. If the assertion is violated, customer_2
can be started without finishing the previous processing.
The SMV specification for no_c2ssis shown in Figure 4.10. The specification states
that Always, Globally, the error flag is never set to true. We use aflag for customer_2

finishing as described above, and set the error flag to true if customer_2 is started when
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cust_2 finished isfase. The specification isthusonly falseif customer 2 is started
before it has finished the previous processing.
scheduler_2
:: cus.t;z_start!synch -> gtomic {

assert (cust_2 finished == true);

cust 2 finished =fase;

goto state 3}

Figure 4.9. Assertionsfor no_c2ss

SPEC
AG ('error)

Figure 4.10. SMV Specification for no_c2ss

Alternatively, we can avoid modeling the additional variablesin SMV by using the
alternate CTL specification shown in Figure 4.11. The specification states that Always,
Globally, if scheduler_2 isin state 3 (hasjust started customer_2), then scheduler_2 does
not reach state_2 again (ready to start customer_2 again) until scheduler_2 has reached
either state 5 or 8 (i.e., has received finished notification from customer_2). The
specification is thus only false if customer_2 is started before it has finished the previous
processing.

SPEC
AG ((sched_2=s3)->A[!(sched_2=s2) U ((sched_2=55)]|
(sched_2=s8))])
Figure 411. Alternate SMV Specification for no_c2ss

The INCA query for no_c2ssis shown in Figure 4.12. We specify oneinterval
starting at the initial state of the program and ending when the customer_2 task is started.
Thefirst interval thus skips an arbitrary number of cycles around the ring of schedulers
before checking the second interval. The second interval specifiesthat customer_2is
started without customer_2 finishing. Since thefirst interval ends with customer_2

starting, the combination of the two intervals specifies the no_c2sf property.
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(defquery "no_c2ss" "nofair"
(omega-star-less (sequence
(interval :initial t
:opent
:ends-with '((rend "sched_2;cust_2.start")))
(interval
:ends-with '((rend "sched_2;cust_2.start"))
forbid '((rend "cust_2;sched_2.finished"))))))
Figure4.12. INCA Query for no_c2ss
Alternatively, because using multiple intervals can increase INCA analysis times,
rather than using two intervals to specify no_c2ss we can add an additional constraint as
shown in Figure 4.13. The query specifies an interval, starting at theinitial program state,
in which the number of times that customer_2 has been started is two greater than the
number of times customer_2 hasfinished. Notethat it isvalid for the number of times
customer_2 is started to be one greater than the number of times it has finished; this
occurs on each cycle, after customer_2 has been started but before it has finished.
(defquery "no_c2ss _con" "nofair"
(omega-star-less (sequence
(interval :initial t
:constraints '((>= (- "call(sched_2;cust_2.start)"

"call(cust_2;sched_2.finished)")
2))))))

Figure 4.13. Alternate INCA Query for no_c2ss

The FLAVERS QRE for no_c2ssis shown in Figure 4.14. The events of interest
are when customer_2 is started and finished. Customer_2 finishing is specified with the
scheduler_2_finished event, since FLAVERS annotates rendezvous with the name of the
accepting task and entry name. The tool should check if the specified sequence occurs on
all pathsin the program. The sequenceisinformally specified as"Any time customer_2
is started, customer_2 finishes beforeiit is started again.”

The inputs to the tools contained sufficient information to check the deadlock and

no_c2ss properties without modeling any variablesin the program. However, our
anaysis of the no_c3c2 property indicated that customer_3 could be started before

customer_2 on some iterations around the ring of processes, violating the start order
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requirement. To prove that the no_c3c2 property holds, we needed to model two
variablesin each scheduler task - avariable that indicates when the corresponding
customer has finished and a variable that indicates when the scheduler has been signaled
by the preceding scheduler in the ring.

{customer_2_start,scheduler_2_finished} al

[-customer_2_start]*;

(customer_2_start;

[-customer_2 start,scheduler_2_finished]*;

scheduler_2_finished;

[-customer_2_start]*)*

Figure 4.14. QRE for no_c2ss
4.2 Divide and Conquer (DAC)

The divide and conquer program [ACD+94] provides a set of solvers that can
cooperatively solve a problem. Each solverj can be activated by afork from solverj.1 or
simply terminate if it is not activated by solverj_1. If solverj isforked, it usesan internal
condition to either (conceptually) solve the problem and join solverj.q (indicating that it
is done) or fork solverj4+q and wait for solverj_1 tojoin it before joining solverj.1. Our
implementation of asize N divide and conquer program consists of N solver tasks and a
single main task that activates (forks) solver_1.

We have selected three properties to check for the cyclic program. Thefirst of these
isdeadlock. The second property can be phrased as"If solver_3isforked, isit possible
for solver_1to join the main task before solver_3 hasjoined solver_2?" This checksto
seeif thejoin ordering is enforced as required. For ease of reference, we call this
property no_s1js3j. Note that we could have aso checked the (more intuitive) property
no_sljs2j, but no_sl1js2j could be checked by examining the control flow in asingle task
(solver_1), and we preferred the more challenging no_s1js3j. The third property can be
phrased as "Is solver_3 forked on every execution of the program?' This property is
interesting because it checksto seeif there are instances in which solver_1 or solver_2

decide NOT to fork additional solvers. Itis"legal behavior” for the program to execute
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without forking solver_3, but an analyst may still want to know if thisis possible. For
ease of reference, we call this property no_s3f.

The never claim for no_s1js3j isshown in Figure 4.15. The FSA for the never claim
staysin theinitial state until either solver_3isforked (when solver_2 movesto s4) or
solver_1 joinsthe master task. If solver_3isforked, it must join solver_2 before solver_1
joins the master task for no_s1js3j to hold. If solver_3joinssolver_2, the FSA movesto
the ok state, and the property holds. If solver_1 joins the main task before solver_3joins

solver_2, the FSA moves to the accept state and SPIN reports the violation of the never

clam.
never {
do
o solver__2[solver_2 pid]@state 4 -> goto solver_3 forked -- solver_2 forked solver_3
- solver__1[solver_1 pid]@endstate 2 -> goto ok -- solver_1 joined main task
;s else-> skip -- otherwise, loop back
od;
ok: -- ok state, property not violated
do
;o skip -- infinite loop
od;
solver_3 forked: -- solver 3 was forked
do
o solver_ 2[solver_2 pid]@state 5 -> goto ok -- solver_3 joined solver 2
solver__1[solver_1 pid]@endstate 2 -> goto accept -- solver_1 joined main task
;s else-> skip -- otherwise, loop back
od;
accept: -- accept state of FSA
do
i skip -- infinite loop; solver_3 was forked but
od -- solver_1 joined main task before solver_3
} -- joined solver_2

Figure 4.15. Never Claim for no_sljs3j
The assertions to check no_s1js3j are shown in Figure 4.16. To check this property
using assertions, we needed to add two additional variables, called solver_3 forked and
solver_3 joined, to keep track of whether or not solver_3 had been forked and joined.
When solver_3isforked, solver_3 forked is set to true and when solver_3joins,
solver_3 joined is set to true. When solver_1 joins the main task, the assertion that

either solver_3 both forked and joined or solver_3 was not forked at all is checked. If the
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assertion isfalse, solver_3 was forked but solver_1 joined the main task before solver 3
joined solver_2, violating no_s1js3;.
solver_1
State 5:

if

o solver__1 join?synch -> atomic {

assert (((solver_3 forked == true) & (solver_3 joined == true))
| (solver_3 forked == falsg) );
goto endstate 2}

fi
solver_2
state 3:

if

:: solver__3 forklsynch -> atomic { solver_3_forked = true;

goto state 4}

fi;
State 4:

if

;> solver__3 joinlsynch -> atomic { solver_3_joined = true;

goto state 5}

fi;

Figure 4.16. Assertionsfor no_sljs3j
The SMV specification for no_s1js3j isshown in Figure 4.17. We use
solver_3 forked and solver_3 joined variables as described above to keep track of
when solver_3 has been forked and joined. The specification states that Always,
Globally, when solver_1 has joined the main task, either solver_3 both forked and joined
or solver_3 was not forked.
SPEC
AG ((solver_1=3s3) ->((solver_3 forked & solver_3 joined)
| 'solver_3 forked))
Figure4.17. SMV Specification for no_sl1js3j
Alternatively, we can avoid adding the solver_3 forked and solver_3 joined

variables by using the alternate CTL specification shown in Figure 4.18. The

specification checks to seeif there Exists an execution path on which, in the Future,
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solver_1 hasjoined the master task and solver_3isin state 3 or 5 (has been forked but has
not joined). If this specification istrue, no_s1js3j can be violated.
SPEC
EF((solver_1=s2)& ((solver_3=s3)|
(solver_3=55)))
Figure 4.18. Alternate SMV Specification for no_s1js3;

The INCA query for no_s1js3j is shown in Figure 4.19. We specify an interval
starting at the initial state of the program in which solver_1 joins the main task and
solver_3isforked but doesnot join solver_2. If such aninterval exists, it is possible for

solver_3to be forked and solver_1 to join the main task before solver_3 joins solver_2.

(defquery "no_s1js3j" "nofair"
(omega-star-less (sequence
(interval :initial t
:ends-with '((rend "main;solver_1.join"))
:require '((rend "solver_2;solver_3.fork"))
:forbid '((rend "solver_2;solver_3.join"))))))

Figure 4.19. INCA Query for no_sljs3j
The FLAVERS QRE for no_s1js3j is shown in Figure 4.20. The events of interest
are when solver_1 joins and when solver_3isforked and joins. The tool should check
that the specified sequence occurs on al paths. The sequenceisinformally specified as
"Either solver_3 isforked and joins before solver_1 joinsor solver_1 joins(i.e., solver_3

is not forked)."
{solver_1 join, solver_3 fork, solver_3 join} al

[-solver_1_join, solver_3 fork, solver_3 join]*;
((solver_3 fork;

[-solver_1_join, solver_3 join]*;

solver_3 join;

[-solver_1_join]*;

solver_1 join)

I

solver_1 join);

[solver_1 join, solver_3 fork, solver_3 join]*

Figure 4.20. QRE for no_s1js3;
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The third property we check for the divide and conquer program isno_s3f. The
never claim for no_s3f isshown in Figure 4.21. The FSA for the never claim staysin the
initial state until either solver_3 isforked (when solver_2 movesto $4) or solver_2 joins
solver_1. If solver_3isforked, the FSA enters an infinite loop. If solver_2 joins
solver_1 (without forking solver_3), the FSA moves to the accept state and SPIN reports

the violation of the never claim.

never {
do
o solver_ 2[solver_2 pid]@state 4 -> break -- solver_3 was forked
- solver__1[solver_1 pid]@state 5 -> goto accept -- solver_3 was not forked
;s else-> skip -- otherwise, loop back
od;
do
;o skip -- infinite loop
od;
accept: -- accept state of FSA
do
;o skip -- infinite loop; solver_3 was not forked
od

}
Figure4.21. Never Claim for no_s3f

The assertions to check no_s3f are shown in Figure 4.22. When solver_3 isforked,
solver_3 forked isset to true. After solver_1 joins, the assertion that solver_3 was
forked is checked. If the assertion isfalse, solver_3 was never forked, violating no_s3f.
main

> solver__1 joinlsynch -> atomic { assert (solver_3 forked == true);
goto endstate 3}

solver_2
:: soi\}e.r_B_fork!synch -> atomic { solver_3 forked = true;
goto state 4}
Figure 4.22. Assertionsfor no_s3f
The SMV specification for no_s3f is shown in Figure 4.23. We use

solver_3 forked as described above to keep track of when solver_3 has been forked.
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The specification states that Always, Globally, when solver_1 hasjoined the main task,
solver 3 was forked.

SPEC
AG ((solver_ 1=s2) ->solver_3 forked)

Figure 4.23. SMV Specification for no_s3f
Alternatively, we can avoid adding the solver _3 forked variable by using the
alternate CTL specification shown in Figure 4.24. The specification states that Always,
the main task is not in state 3 (has not terminated) until solver_3isin state 3 or 5 (has
been forked). If this specification isfalse, it is possible for the program to execute
without forking solver_3, violating no_s3f.
SPEC
A[!(main=s3) U ((solver_3=s3)|
(solver_3=s5))]
Figure 4.24. Alternate SMV Specification for no_s3f
The INCA query for no_s3f isshown in Figure 4.25. We specify an interval starting
at theinitial state of the program in which solver_1 joins the main task but solver_2 is not
allowed to fork solver_3. If such aninterval exists, it is possible for solver_1to join the
master task without solver_3 being forked, violating no_s3f.
(defquery "no_s3f" "nofair"
(omega-star-less (sequence
(interval :initial t
:ends-with '((rend "main;solver_1.join"))
:forbid '((rend "solver_2;solver_3.fork"))))))
Figure 4.25. INCA Query for no_s3f
The FLAVERS QRE for no_s3f is shown in Figure 4.26. The events of interest are
when solver_1 joins and when solver_3 isforked. Thetool should check that the
specified sequence occurs on all paths. The sequence isinformally specified as "Solver_3
isforked before solver_1joins."

{solver_1 join, solver_3 fork} all

[-solver_1 join, solver_3 fork]*;
solver_3 fork;



[solver_1 join, solver_3 fork]*
Figure 4.26. QRE for no_s3f

4.3 Dining Philosophers

The dining philosophers problem has been analyzed extensively in the literature. We
included the standard problem and three variations of it in our experiment.

4.3.1 Standard Problem (dp)

In the standard dining philosophers problem, a certain number of philosophers sit
around atable, with asingle fork between a philosopher and the neighbor to itsleft. Each
philosopher thinks for awhile, then picks up both forks (one at atime, left fork first) to
eat, then puts the forks back down and thinks some more. Because the forks between the
philosophers are shared, it is not possible for al the philosophers to ezt at the same time.
Our solution for the dining philosophers problem uses atask for each fork and atask for
each philosopher. Because all the philosophers can pick up their left forks and wait to
pick up their right forks, deadlock is possible in this program.

We have selected two properties to check for the standard dining philosophers
program. Thefirst of theseis deadlock. The second property can be phrased as "Can two
adjacent philosophers ever be eating at the sametime?' If we can prove that an arbitrarily
selected pair of adjacent philosophers can not be eating concurrently, we can show that it
isnot possible for all the philosophers to be eating concurrently. By symmetry, checking
two specific adjacent philosophersis sufficient; if these two philosophers can not be
eating concurrently, no two adjacent philosophers can. In our experiment, we check this
property for philosopher 1 and philosopher 2. For ease of reference, we call this property
no_plp2. We note that the property specifications for no_plp2 are essentially the same
as the property specifications to check for two writers writing concurrently in the
readers/writers problem.

The never claim for no_plp2 is shown in Figure 4.27. The FSA for the never claim

staysintheinitial state until both philosopher_1 and philosopher_2 are at s3; in other
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words, both philosophers are eating. If this occurs, the FSA for the never claim goesto

the accept state (and never leavesit), and SPIN reports the violation of the never claim.

never {
do
;2 phil_1[phil_1_pid] @state 3 & -- if philosophers 1 and 2 are both eating,
phil__2[phil_2_pid] @state_3 -> goto accept -- go to accept state
;s else-> skip -- otherwise, loop back
od;
accept: -- accept state of FSA
do
;o skip -- infinite loop; philosophers 1 and 2 both
od -- eating has been found
}

Figure 4.27. Never Claim for no_plp2
The assertions to check no_p1p2 are shown in Figure 4.28. When philosopher_1
startsto eat, the flag indicating that philosopher_1 is eating is set and the assertion that
philosopher_2 isnot eating is checked. Before philosopher_1 stops eating, the flag
indicating that philosopher_1 iseatingis cleared. We note that the flag can not be cleared
after philosopher_1 stops eating, because SPIN then finds a violation of the assertion by
having philosopher_2 start to eat before theflag is cleared. Similar assertions are

embedded in the philosopher_2 process.

philosopher_1 philosopher_2
2. if 2 if
:: fork__1 uplsynch -> :: fork__2 uplsynch ->
atomic { phil_1 eating = true; atomic { phil_2_eating = true;
assert (phil_2_eating == false); assert (phil_1_eating == false);
goto s3} goto 2}
fi; fi;
s3:  phil_1 eating = falsg; S3: phil_2_eating = false;
if if
:: fork_2_down!synch -> goto s4 :: fork_3_down!synch -> goto s4
fi fi

Figure 4.28. Assertionsfor no_plp2
The SMV specification for no_plp2 isshown in Figure 4.29. Essentialy, the
specification states that Always, Globally, if philosopher_1 is eating philosopher_2 is not

eating and if philosopher_2 is eating philosopher_1 is not eating.
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SPEC
AG (((phil_1=s3)->!(phil_2=s3))&
((phil_2=s3)->1(phil_1=s3)))
Figure4.29. SMV Specification for no_plp2
The INCA query for no_pl1p2 is shown in Figure 4.30. We specify an interval,
starting at the initial state of the program, that ends after philosopher_1 and
philosopher_2 have both started eating an arbitrary number of times. If such an interval
exists, it is possible for philosopher_1 and philosopher_2 to be eating concurrently.
(defquery "no_p1p2" "nofair"
(omega-star-less (sequence
(interval :initial t
opent
:ends-with '((rend "phil_1;fork_1.up")
(rend "phil_2;fork_2.up™))))))
Figure 4.30. INCA Query for no_plp2
The FLAVERS QRE for no_p1p2 isshown in Figure 4.31. The events of interest are
when philosopher_1 and philosopher_2 start and stop eating. The tool should check that
the specified sequence occurs on all paths. The sequence isinformally specified as"Any
event but philosopher_1 or philosopher_2 starting to eat occurs O or more times, then
either philosopher_1 starts eating and stops eating without an intervening philosopher_2
starting to eat, or philosopher_2 starts eating and stops eating without an intervening
philosopher_1 starting to eat, then any events but philosopher_1 or philosopher_2 starting
to eat occurs O or more times'.

{phil_1_start_eating, phil_1_stop_eating,
phil_2_start_eating, phil_2_stop_eating} al

[-phil_1_start_eating, phil_2_start_eating]*;
(((phil_1_start_eating;
[-phil_2_start_eating, phil_1_stop_eating]*;
phil_1_stop_eating)
I
(phil_2_start_eating;
[-phil_1 start_eating, phil_2_stop_eating]*;
phil_2_stop_eating));
[-phil_1 start_eating, phil_2 start eating]*)*

Figure 4.31. QRE for no_plp2
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4.3.2 Dining Philosophers with Dictionary (dpd)

In this variation of the standard dining philosophers problem, the philosophers eat
and think as described above, but also pass adictionary around the table. The
philosopher currently holding the dictionary can not be eating, since it can not pick up
any forks until it passes the dictionary to the next philosopher. Thisremovesthe
possibility of deadlock in the system.

Aswith the standard version, we check for deadlock and for philosopher_1 and
philosopher_2 eating concurrently. We aso check athird property, which can be stated
"Can philosopher i ever start eating while holding the dictionary?' By symmetry we can
check this for a single philosopher and generalize the results to most of the philosophers
in the system (all philosophers but philosopher_1), so we check this property for
philosopher 2. Because philosopher_1 starts out holding the dictionary, and all other
philosophers start out not holding the dictionary, our symmetry argument only appliesto
philosophers 2 through N for asize N version of this program For notational
convenience we call this property no_p2d.

The property specifications for deadlock and no_p1p2 are as described for dp, with
the minor change that philosopher_1 is eating in state 5 and philosopher_2 iseating in
state 4 in this variation of the problem. The property specifications for no_p2d are
provided below.

The never claim for no_p2d is shown in Figure 4.32. To check this property, we
needed to add an additional variable to keep track of whether or not philosopher_2 was
holding the dictionary. The holding_dictionary variable is set to false when
philosopher_2 hands off the dictionary and set to true when philosopher_2 accepts the
dictionary. The FSA for the never claim staysin the initial state until philosopher_2isin
state 4 (eating) and philosopher_2 is holding the dictionary (holding_dictionary == true).
If this occurs, the FSA for the never claim goes to the accept state (and never leavesit),

and SPIN reports the violation of the never claim.
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never {

do
;2 phil_2[phil_2_pid] @state 4 & -- if philosopher 2 is eating and holding
(holding_dictionary == true) -> goto accept -- the dictionary, go to accept state
i else-> skip -- otherwise, loop back
od;
accept: -- accept state of FSA
do
i skip
od

}

Figure 4.32. Never Claim for no_p2d
The assertions to check for philosopher_2 eating while holding the dictionary are
shown in Figure 4.33. When philosopher_2 starts to esat, the assertion that philosopher_2
isnot holding the dictionary is checked. Asfor the never claim, we use the
holding_dictionary variable to recognize whether or not philosopher_2 is holding the
dictionary.
philosopher_2
. ;:.phil_2_dictionary?synch -> atomic { holding_dictionary = true;
goto state 6}

fi;
state 3:

if

:: fork__2 up'synch -> atomic { assert (holding_dictionary == false);

goto state 4}
fi;
:: pHi I”_3_dictionary!synch -> atomic { holding_dictionary = false;
goto state 1}
Figure 4.33. Assertionsfor no_p2d
The SMV specification for no_p2d is shown in Figure 4.34. Essentidly, the

specification states that Always, Globally, if philosopher_2 is eating then philosopher_2
isnot holding the dictionary. Asfor the PROMELA programs, the holding_dictionary
variable is set to false when philosopher_2 hands off the dictionary and set to true when

philosopher_2 accepts the dictionary.
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SPEC
AG ((phil_2=s3)->!holding_dictionary)

Figure 4.34. SMV Specification for no_p2d

Alternatively, we can avoid using the holding_dictionary variable by using the
alternate CTL specification shown in Figure 4.35. The specification states that Always,
Globally, if philosopher_2 isin state 6 (holding the dictionary), philosopher_2 can not go
to state 4 (eating) until it has gone to state 1 (handed off the dictionary). An interesting
side effect of using this specification is that we had to add a fairness constraint to check
the property. The semantics of the Until operator requirethat ( phil_2 =s1) betrue at
some time in the future, otherwise the formula evaluatesto false. Since there are
executions in which philosopher_2 accepts the dictionary but never passesit off again
(essentially, philosopher_2 "starves' holding the dictionary), the specification evaluates to
false without the fairness constraint. The fairness constraint specifies that philosopher_2
enters state 1 (passes off the dictionary) infinitely often, at which point we can
successfully check the property.

FAIRNESS
(phil__2=1s1)
SPEC
AG ((phil_2=86)->A[!(phil_2=s4)U (phil_2=s1)])
Figure 4.35. Alternate SMV Specification for no_p2d

It isimportant to note that, by adding the fairness constraint, we have changed the
property, at least in some sense. The specification still checks whether or not
philosopher_2 can eat while holding the dictionary, but including the constraint may have
eliminated alarge number of program executions that SMV would have had to consider
without the constraint. Although we were unable to formulate the property without the
fairness constraint (and without additional variables), it may be possible to do so, with the
resulting property equivalent to no_p2d.

The INCA query for no_p2d is shown in Figure 4.36. We specify an interval starting
at theinitial state of the program that ends after philosopher_1 has handed the dictionary
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to philosopher_2 an arbitrary number of times. We then specify a second interval in
which philosopher_2 starts to eat, but does not hand off the dictionary in the interval. If
such apair of intervals exists, it is possible for philosopher_2 to be eating while holding
the dictionary.
(defquery "no_p2d" "nofair"
(omega-star-less (sequence
(interval :initial t
opent
:ends-with '((rend "phil_1;phil_2.dictionary")))
(interval :ends-with '((rend "phil_2;fork_2.up"))
:forbid '((rend "phil_2;phil_3.dictionary"))))))
Figure 4.36. INCA Query for no_p2d
Alternatively, we can avoid using multiple intervals in the query by adding an
additional constraint to the query as shown in Figure 4.37. The query specifies an
interval, starting at theinitial program state, ending after philosopher_2 has started eating
an arbitrary number of times, in which philosopher_2 has accepted the dictionary more
times than it has passed off the dictionary. If such aninterval exists, philosopher_2 can
eat while holding the dictionary.
(defquery "no_p2d_con" "nofair"
(omega-star-less (sequence
(interval :initial t
opent
:ends-with '((rend "phil_2;fork_2.up"))
:congtraints '((<= (- "call(phil_2;phil_3.dictionary)"

"call(phil_1;phil_2.dictionary)")
-D)N))

Figure 4.37. Alternate INCA Query for no_p2d
The FLAVERS QRE for no_p2d is shown in Figure 4.38. The events of interest are
when philosopher_2 and philosopher_3 accept the dictionary and when philosopher_2
starts eating. The tool should check that the specified sequence occurs on al paths. The
sequence isinformally specified as"The first event of interest to occur is philosopher_2

accepting the dictionary (philosopher_1 hands off the dictionary to philosopher_2), then
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philosopher_2 hands off the dictionary without eating in the interim, then events other
than philosopher_2 accepting the dictionary occur O or more times'.

{phil_2_dictionary, phil_3_dictionary, phil_2_eating} all

[-phil_2_dictionary]*;

(phil_2_dictionary;

[-phil_2_eating,phil_3_dictionary]*;

phil_3_dictionary;

[-phil_2_dictionary]*)*

Figure 4.38. QRE for no_p2d

4.3.3 Dining Philosophers with Fork Manager (dpfm)

In this variation of the dining philosophers problem we replace the fork tasks with a
single fork manager that keeps track of the status of all the forksin the system. To start
eating, a philosopher calls asingle entry in the fork manager task, and to stop eating the
philosopher calls a different entry in the fork manger task. The possibility of deadlock is
removed, and the fork manager task enforces the constraint that no two adjacent
philosophers can be eating concurrently.

The property specifications for deadlock and no_p1p2 are as described above, with
the minor change that the philosophers are now eating in state 2 rather than in state 3 for
the standard problem.

To accurately check no_plp2 we need information about the fork shared between
philosopher_1 and philosopher_2. To include thisinformation in the analysis, we model
the status of the fork (fork 2) between philosopher_1 and philosopher_2.

4.3.4 Dining Philosophers with Host (dph)

In this variation of the standard dining philosophers problem, the philosophers eat
and think as described for the standard problem, but also must get permission from a host
task to "enter the dining room" before starting to eat and to "exit the room™ after finishing
eating. The host task admits no more than one philosopher fewer than the number of

forks in the system into the dining room, thereby avoiding deadl ock.
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For this variation we check for deadlock and philosopher_1 and philosopher_2 eating
concurrently (no_plp2). The property specifications are as described above, with the
minor change that the philosophers are now eating in state 4 rather than in state 3 for the
standard problem.

We can accurately check no_plp2 using simply the structure of the program, but to
check for deadlock we need information about the number of philosophers currently in
the dining room. To include thisinformation in the analysis, we model the philosopher
count variable maintained in the host task to keep track of the number of philosophersin
the dining room.

4.4 Elevator

The elevator program provides a simulation of a set of elevators; the version we use
was devel oped by the Arcadia consortium. The elevators can be called to certain floors,
sent to certain floors from within the elevator, set to idle if no requests are pending, or
shut down. Our implementation of asize N elevator program consists of asimulation
driver, acontroller task to handle requests for the elevator to go to certain floors, an
elevator task to provide an interface to the elevators, N elevator simulation tasksto
simulate the N elevators, and N doorman tasks to simulate doormen for the N elevators.
Because of certain limitationsin the current version of the CFG to SEDL translation tool,
the elevator program was not included in our experiment. We include the property
specifications below for future reference.

We have selected three properties to check for the elevator program. The first of
these is deadlock. The second property can be phrased as "Can an elevator ever be
moved while its doors are open?' The significance of this property should be clear, since
aviolation could lead to severeinjury. By symmetry, we can check this property on an
arbitrary elevator - for our experiment, we check the property for elevator_1. For ease of
reference, we call this property no_omc (for no open doors, move elevator, close doors).

The third property can be phrased as "Can an elevator ever be shut down whileit has
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pending requests?’ If this can occur, either someone will be left waiting for the elevator
or, even worse, someone will be trapped within the elevator. Again by symmetry we can
check this property on asingle elevator, so we check it for elevator_1. When an elevator
has no pending requests, its direction of motion is set to idle. For ease of reference, we
call this property no_sdni (for no shut down elevator when it isnot idle).

The never claim for no_omc is shown in Figure 4.39. The FSA for the never claim
staysintheinitial state until the error flag is set to true (which occursif elevator_1 moves
while its doors are open). If thisoccurs, the FSA for the never claim goes to the accept
state (and never leavesit), and SPIN reports the violation of the never claim.

We added two variables to help us check this property. One variable, called
door_open, was set to true when the doors of elevator_1 were opened and false when the
doors of elevator_1 were closed. The other variable, caled error, wasinitialized to false
and set to door_open when elevator_1 moved. Thus, error was only set to true if

elevator_1 moved while its doors were open, violating no_omc.

never {
do
:: error == true -> goto accept -- if elevator_1 moved while door open, go to accept
;s else-> skip -- otherwise, loop back
od;
accept: -- accept state
do
;o skip -- infinite loop; elevator_1 moved with the doors open
od

}

Figure 4.39. Never Claim for no_omc
The assertions to check no_omc are shown in Figure 4.40. When the doors of
elevator_1 are opened, door_open is set to true. Door_open isthen set to falsein the
next state, just before the doors are closed again (for the same reason as for no_wi1w2 for
the readers/writers problem). When elevator_1 moves, at which point it notifies the
controller that it is at a certain floor, the assertion that the doors are closed (i.e., not open)

ischecked. If the assertion isever false, elevator_1 can move whileits doors are open.
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doorman_1

s3:
if
:: elevator_open_door_1!synch -> atomic {
door_open = true;
goto 4}
fi;
A

.d.oor_open =falsg
]Icf elevator_close_door_1!synch -> goto s5
i;
e evat.o.r._l
" co.n.tr.oller_at_floor!synch -> gtomic {
assert(door_open == false);
goto 4 }
Figure 4.40. Assertionsfor no_omc
The SMV specification for no_omc is shown in Figure 4.41. We use adoor_open
variable and an error variable as described for the never claim, and specify that Always,
Globally, the error does not occur.

SPEC
AG ('error)

Figure4.41. SMV Specification for no_omc

The INCA query for no_omc is shown in Figure 4.42. We specify an interval,
starting at the initial state of the program, that ends after the door of elevator_1 has been
opened an arbitrary number of times. We specify a second interval in which elevator_1
moves but does not close its doors before moving. We can infer that elevator_1 has
moved by the call on the controller.at_floor entry, since thiscall only occursif the
elevator moves. If theinterval exists, it is possible for elevator_1 to move while its doors
are open, violating no_omc.

Alternatively, we can avoid using two intervals by adding a constraint to the query as

shown in Figure 4.43. The query specifies an interval, starting at theinitial program state,
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that ends with elevator_1 moving, and the doors of elevator_1 have been opened more
times than they have been closed.

(defquery "no_omc" "nofair"
(omega-star-less (sequence
(interval :initial t
:opent
:ends-with '((rend "doorman_1;elevator.open_door_1")))
(interval

:ends-with '((rend "elevator_1;controller.at_floor"))
:forbid '((rend "doorman_1;elevator.close_door_1"))))))
Figure 4.42. INCA Query for no_omc
(defquery "no_omc_con" "nofair"
(omega-star-less (sequence
(interval : initial t
:ends-with '((rend "elevator_1;controller.at_floor"))
:congtraints '((>= (- "call(doorman_1;elevator.open_door_1)"
"call(doorman_1;elevator.close_door_1)")

)
Figure 4.43. Alternate INCA Query for no_omc
The FLAVERS QRE for no_omc is shown in Figure 4.44. The events of interest are

when the doors of elevator_1 are opened and closed and when elevator_1 moves. The
tool should check that the specified sequence occurs on all paths. The sequenceis
informally specified as"Any event but the doors of elevator_1 being opened occurs O or
more times, followed by the doors of elevator_1 being opened and closed without an
intervening movement of elevator_1, followed by any event but the doors of elevator_1
being opened occurs 0 or more times.”

{elevator_open_door_1, elevator_close door_1, elevator_1 moved} all

[-elevator_open_door_1]*;

(elevator_open_door_1;

[-elevator_close door_1, elevator_1 _moved]*;

elevator_close door 1;

[-elevator_open_door_1]*)*;

Figure 4.44. QRE for no_omc

We note that we could not use a rendezvous on controller.at_floor to check for

elevator_1 moving, because any of the elevators can call that entry. We therefore
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embedded an interna event in the elevator_1 task to reflect when it was making acall on
that entry.

The third property we check on the elevator program isno_sdni. The never claim for
no_sdni is shown in Figure 4.45. The FSA for the never claim staysin theinitia state
until elevator_1 is shut down (goes to state 3) whileitisnotidle. Weusetheelev_1 idle
flag to keep track of when elevator_1isidle. Thisflagisinitialized to false, set to true
when elevator_1 isinitialized (to idle), and set to false when the direction of movement

for elevator_1isset.

never {
do
- elevator__1[elev_1 pid]@endstate 3 & -- if elevator_1 is shut down while
elev_1 idle == fase-> goto accept -- itisnot idle, go to accept state
;s else-> skip -- otherwise, loop back
od;
accept: -- accept state
do
;o skip -- infinite loop; elevator_1 shut down
od -- whilenot idle

}

Figure 4.45. Never Claim for no_sdni

The assertions to check no_sdni are shown in Figure 4.46. When the elevator_1is
initialize, elev_1 idleisset to true, and when the direction for elevator_1 is set,
elev_1 idleissettofase. When elevator 1 is shut down, the assertion that itisidleis
checked; if this assertion isfalse, elevator_1 can be shut down whileit still has pending
requests.

The SMV specification for no_sdni isshown in Figure 4.47. Weusean elev_1 idle
variable as described above, and specify that Always, Globaly, if elevator_1 is shut down
thenitisidle.

The INCA query for no_sdni is shown in Figure 4.48. We specify an interval starting
at theinitia state of the program and ending after the direction for elevator_1 has been set

(i.e., elevator_1isnotidle) an arbitrary number of times. We specify a second interval in
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which the system is shut down and elevator_1 isnot set toidle. If such aninterval exists,
itis possible for the system to shut down while elevator_1 isnot idle, violating no_sdni.

elevator_1
sl:
if
;s elevator_1 init?synch -> atomic { elev_1 idle =true;
goto 2 }
fi;
2
if
;s elevator_1 set direction?synch -> atomic {
edev 1 idle=falseg
goto 2 }
;s elevator_1 shut_down?synch -> atomic {
assert (elev_1 idle==true);
gotoend s3}
:: controller_at_floor!synch -> goto s2
fi;

Figure 4.46. Assertionsfor no_sdni

SPEC
AG ((€elevator 1=s3)->€eev_1 idle)

Figure 4.47. SMV Specification for no_sdni
(defquery "no_sdni" "nofair"
(omega-star-less (sequence
(interval :initial t
:ends-with '((rend "elevator;elevator_1.set_direction"))
(interval
:ends-with '((rend "driver;controller.shut_down"))
:forbid '((rend "elevator-task;elevator_1-task.set_idle"))))))
Figure 4.48. INCA Query for no_sdni
The FLAVERS QRE for no_sdni is shown in Figure 4.49. The events of interest are
when elevator_1 is madeidle, when elevator_1 is given adirection to move, and when
the system is shut down. The tool should check that the specified sequence occurs on al
paths. The sequenceisinformally specified as"Any event but elevator_1 given a
direction to move or system shut down, followed by the sequence
elevator_1 set direction; elevator_1 set_idle occurring O or more times, followed by

system shut down."
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{elevator_1 set idle, elevator_1 set direction, controller_shut_down} all
[-elevator_1 set direction, controller_shut_down]*;
(elevator_1_set_direction;

[-elevator_1 set idle, controller_shut_down]*;

elevator 1 set idle;

[-elevator_1 set direction, controller_shut_down]*)*;
controller_shut_down

Figure 4.49. QRE for no_sdni
4.5 Gas Station

The gas station program, originally described in [HL85], provides a simulation of a
self-service gas station. Customers prepay the operator for a specific pump, at which
point the operator queues the customer and activates the pump. The customer then starts
and stops pumping on the selected pump. The pump reports the charge to the operator,
who then provides change to the customer. Our implementation of asize N gas station
program consists of an operator task, 2 pump tasks, and N customer tasks.

We have selected three properties to check for the gas station program. Thefirst of
these is deadlock. The second property can be phrased as " Can two customers ever be
pumping on the same pump at the same time?* By symmetry, we can check this property
on an arbitrary pair of customers and an arbitrary pump - for our experiment, we check
the property for customer_1, customer_2, and pump_1. For ease of reference, we call this
property no_clc2. Thethird property can be phrased as "Can a customer ever prepay on
one pump and get change based on the charge from the other pump?' Again by symmetry
we can check this property on an arbitrary customer and pump, so we check it for
customer_1, prepaid on pump_1, getting change based on the charge from pump_2. For
ease of reference, we call this property no_clp2.

The never claim for no_c1c2 is shown in Figure 4.50. The FSA for the never claim
staysin theinitial state until customer_1 and customer_2 are in state 5 (pumping on
pump_1) at the sametime. If the two customers are ever pumping on pump_1 at the
same time, the FSA moves to the accept state and SPIN reports the violation of the never

claim and terminates.
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never {

do

o customer__1[cust_1 pid]@state 5 & -- if customer_1 and customer_2 are both
customer__ 2[cust_2 pid]@state 5 -> goto accept -- pumping on pump_1, go to accept state

;s else-> skip -- otherwise, loop back

od;

accept: -- accept state

do
;o skip -- infinite loop; customer_1 and customer_2

od -- were both pumping on pump_1

}

Figure 4.50. Never Claim for no_c1c2
The assertions to check no_cl1c2 are shown in Figure 4.51. When customer_1 starts
pumping on pump_1, the flag indicating that customer_1 is pumping is set and the
assertion that customer_2 is not pumping is checked. Before customer_1 stops pumping,
the flag indicating that customer_1 ispumping is cleared. We clear the flag before
customer_1 stops pumping for the same reason as no_w1w2 in the readers/writers

problem. Similar assertions are embedded in the customer_2 process.

customer_1 customer_2
State 4: State 4:
if if
pump__1 start _pumping!synch -> pump__1 start pumping!synch ->
atomic { cust_1 pumping = true; atomic { cust_2_pumping = true;
assert (cust_2 pumping == false); assert (cust_1 pumping == false);
goto state 5} goto state 5}
fi; fi;
State 5: State 5:

cust_ 1 pumping = false; cust_ 2 pumping = false;

Figure4.51. Assertionsfor no_clc2
The SMV specification for no_clc2 is shown in Figure 4.52. The specification states
that Always, Globally, if customer_1 is pumping on pump_1 then customer_2 isnot and
if customer_2 is pumping on pump_1 then customer_1 is not.
The INCA query for no_c1c2 is shown in Figure 4.53. We specify an interval,
starting at the initial state of the program, which ends when both customer_1 and

customer_2 have started pumping on pump_1 an arbitrary number of times. If such an
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interval exists, it is possible for customer_1 and customer_2 to be pumping on pump_1
concurrently.
SPEC
AG (((customer_1=s5)->!(customer 2=5s5))
&( (customer 2=s5) ->I(customer_ 1=s5)))
Figure4.52. SMV Specification for no_clc2
(defquery "no_cl1c2" "nofair"
(omega-star-less (sequence
(interval :initial t
:opent
:ends-with '("call(cust_1-task;pump_1-task.start_pumping)"
"call(cust_2-task;pump_1-task.start_pumping)")))))
Figure 4.53. INCA Query for no_clc2

The FLAVERS QRE for no_c1c2 is shown in Figure 4.54. The events of interest are
when customer_1 and customer_2 start and stop pumping. Thetool should check if the
specified sequence occurs on any path. The sequenceisinformally specified as
"Customer_1 and customer_2 start and stop pumping (without the other customer starting
to pump in the interim) an arbitrary number of times, followed by either customer_1
starting to pump then customer_2 starting to pump before customer_1 stops pumping or
customer_2 starting to pump then customer_1 starting to pump before customer_2 stops
pumping".

We initially formulated this query as an al paths property, but the structure of the
graphical representation FLAVERS generates for this program and property precluded
accurately checking the all paths property. Specifically, the graph has a path from the
point at which customer_1 (or customer_2) starts pumping to the terminal node for the
program. Since the origina property specified that the customers had to start and stop
pumping on all paths, FLAVERS responded that the property did not hold. Because there
does not exist a path on which the property specified above is violated, the above property

can be accurately checked by FLAVERS. While one could argue that the original
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specification should have been used, we followed the process described at the beginning
of this chapter instead.

{cust_1 start pumping,cust_1 stop_pumping,
cust_2_ start_pumping,cust_2_stop_pumping} none

[-cust_1 start pumping,cust_2 start pumping]*;
(((cust_1_start_pumping;
[-cust_2_start pumping,cust_1 stop _pumping]*;
cust_1 stop_pumping)
|
(cust_2_start_pumping;
[-cust_1 start pumping,cust_2 stop_pumping]*;
cust_2_stop_pumping));
[-cust_1 start pumping,cust_2 start pumping]*)*;
((cust_1_start_pumping;
[-cust_2 start pumping,cust_1 stop pumping]*;
cust_2_start pumping)
I

(cust_2_start_pumping;
[-cust_1 start pumping,cust 2 stop _pumping]*;
cust_1 start pumping));
[cust_1 start pumping,cust 1 stop_pumping,
cust 2 start_pumping,cust_2_stop_pumping]*
Figure 4.54. QRE for no_clc2

The third property we check on the gas station program isno_c1p2. The never clam
for no_clp2isshown in Figure 4.55. The FSA for the never claim staysin theinitial
state until customer_1 has prepaid on pump_1 and received change based on the charge
for pump_2. If thisever occurs, the FSA movesto the accept state and SPIN reports the
violation of the never claim and terminates.

We use some additional variablesin the PROMELA to keep track of when
customer_1 has prepaid on pump_1 (prepay_1 pump_1) and received change based on
the charge for pump_2 (cust_1 pump_2 _change). When customer_1 prepays on
pump_1, prepay_1 pump_lissettotrueand cust_1 pump_2 changeisset to false.
When customer_1 receives change based on the charge for pump_1, the
prepay_1 pump_1flagisset to false. When customer_2 receives change based on the

chargefor pump_2, cust_1 pump_2 changeisset totrue. Therefore, if customer_1
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prepays on pump_1 and receives change based on the charge for pump_2, both variables

are set to true and the never claim catches the property violation.

never
{
do
o prepay_1 pump 1 ==true & -- if customer_1 prepaid on pump_1 but
cust_1 pump_2 change == true -> goto accept -- got change for pump_2, go to accept
;s else-> skip -- otherwise, loop back
od;
accept: -- accept state
do
skip -- infinite loop; customer_1 got the wrong
change
od

}
Figure 4.55. Never Claim for no_c1p2
The assertions to check no_c1p2 are included at a number of statesin the operator

task; an example is shown in Figure 4.56. We usethe prepay_1 pump_1variableas
described above. When customer_1 receives change based on the charge from pump_2
(asin state_22), the assertion that customer_1 did not prepay on pump_1 is checked. If
this assertion is ever false, customer_1 prepaid on pump_1 but received change based on
the charge for pump_2.
operator
state_22:

if

::customer__ 1 task changelsynch -> atomic {

assert (prepay_1_pump_1 == false);
goto state 2}
fi;
Figure 4.56. Assertionsfor no_clp2
The SMV specification for no_c1p2 is shown in Figure 4.57. The variables

prepay 1 pump_1andcust_1 pump_2 change are used as described for the never
clam above. The specification states that Always, Globally, if customer_1 has just
received change based on the charge for pump_2 then customer_1 did not prepay on

pump_1.
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SPEC
AG (cust_1 pump_2 change->Iprepay 1_pump_ 1)

Figure 4.57. SMV Specification for no_clp2
Alternatively, we can avoid modeling the additional variablesin SMV by using the
aternate CTL specification shown in Figure 4.58. The specification states that if
customer_1 enters state 4 (has prepaid on pump 1), customer_1 can not enter state 1 (just
received change) until the operator has entered states 14, 20, 24, or 29 (received charge
from pump_1). We also had to add afairness constraint to ensure the customer_1 task
does not "starve" waiting for its change. We note that adding the fairness constraint
changes the property somewhat.
FAIRNESS
(customer__ 1 task=sl)
SPEC
AG ((customer__1 task=s4)->A[!(customer 1 task=sl)U
( (operator_task =s29) |
(operator_task =24 ) |
(operator_task =s14) |
(operator_task =s20))1])
Figure 4.58. Alternate SMV Specification for no_c1p2
The INCA query for no_cl1p2 isshown in Figure 4.59. We specify an interval,
starting at the initial state of the program, that ends after customer_1 has prepaid on
pump_1 an arbitrary number of times. We specify a second interval that ends with the
operator giving customer_1 its change, contains pump_2 providing the charge to the
operator, and forbids pump_1 providing a charge to the operator. If such apair of
intervalsexigt, it is possible for customer_1 to receive change based on the charge for
pump_2 after prepaying on pump_1, violating no_c1p2.
Alternatively, we can avoid using multiple intervals by adding a constraint as shown
in Figure 4.60. The query specifies an interval, starting at the initial state of the program,
ending after the operator has given customer_1 change an arbitrary number of times, in

which the number of times customer_1 has prepaid on pump_1 is at least 2 greater than

the number of times pump_1 has provided a charge for customer_1 to the operator. Note
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that it isvalid for the number of prepays to be one greater, which occurs when
customer_1 has prepaid on pump_1 but has not yet finished pumping.

(defquery "no_cl1p2" "nofair"
(omega-star-less (sequence

(interval :initial t
:opent
:ends-with '((rend " operator-task;customer_1-task.operator-prepay_1_pump_1-end")))

(interval
:ends-with '((rend "operator-task;customer_1-task.change"))
:require '((rend "pump_2-task;operator-task.charge 1 _pump_2"))
:forbid '((rend "pump_1-task;operator-task.charge 1 pump_1"))))))

Figure 4.59. INCA Query for no_c1p2

(defquery "no_cl1p2_con" "nofair"
(omega-star-less (sequence
(interval :initial t

:opent

:ends-with '((rend "operator-task;customer_1-task.change"))

:congtraints '((>= (- "call(operator-task;customer_1-task.operator-prepay_1 pump_1-end)"

"call (pump_1-task;operator-task.charge 1 pump_1)")
2)))

Figure 4.60. Alternate INCA Query for no_cl1p2
The FLAVERS QRE for no_c1p2 isshown in Figure 4.61. The events of interest are

when customer_1 prepays on pump_1, when customer_1 receives change based on the
charge for pump_1, and when customer_1 receives change based on the charge for
pump_2. Thetool should check that the specified sequence occurs on all paths. The
sequence isinformally specified as "Whenever customer_1 prepays on pump_1,
customer_1 receives change based on the charge for pump_1 without an intervening event
where customer_1 receives change based on the charge for pump_2.

{ operator_prepay 1 pump_1l,cust 1 pump_1 change,cust 1 pump_2 change} al

[-operator_prepay 1 pump_1]*;

(operator_prepay 1 pump_1;

[-cust_ 1 pump 1 change,cust_1 pump_2 change]*;

cust_ 1 pump_1 change;

[-operator_prepay 1 pump_1]*)*

Figure 4.61. QRE for no_cl1p2
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We can check no_c1c2 and no_c1p2 accurately without modeling any of the
variablesin the program. Without modeling variables, however, we receive spurious
results saying that deadlock is possible. To remove these spurious results, we need to
model the variables that keep track of the numbers of active customers on pump_1 and
pump_2.

4.6 Hartstone

The hartstone problem is based on the hartstone benchmark program, which
iteratively starts and stops a series of tasks, collecting information about whether or not
each of the tasks meets certain timing deadlines. The problem commonly analyzed in the
literature (and here as well) abstracts away the timing information, retaining the iterative
start/stop communication structure. Our implementation of asize N hartstone program
consists of aset of N tasks, each of which iteratively accepts a start/stop sequence or
terminates, and amain task that iteratively starts and then stops the N tasks using for
loops.

We have selected two properties to check for the hartstone program. The first of
these is deadlock. The second property can be phrased as "On any iteration in the main
task, can task_3 be started before task_2?" This property checks to see if the start
ordering is preserved in the main task. For ease of reference, we call this property
no_t3t2.

The never claim for no_t3t2 isshown in Figure 4.62. The FSA for the never claim
staysintheinitial state until the error condition (task_3 starting before task_2 on some
iteration) istrue. If thisever occurs, the FSA movesto the accept state and SPIN reports
the violation of the never claim and terminates.

We have used two additional PROMELA variables to keep track of the status of
task_2 and the error condition. When task_2 is started, the variablet_2_started is set to
true and when task_2 is stopped, t_2_started is set to false (clearing the flag for the next

iteration). If task_3isstarted and thet_2 started variableisfase, theerror variableis
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set totrue. Thisindicates that task 3 has started before task 2 on some iteration, and

SPIN reports the violation of the never claim and terminates.

never {
do
:: error == true -> goto accept -- if the error condition occurs, go to accept state
;s else-> skip -- otherwise, loop back
od;
accept: -- accept state
do
;o skip -- infinite loop; task_3 started before task_2 on some iteration
od

}

Figure 4.62. Never Claim for no_t3t2
The assertions to check no_t3t2 are shown in Figure 4.63. When task_2 is started,
weset thet_2 started variableto true. Whentask_3 is started, we check the assertion
that task_2 was started and set thet_2 started variableto false to clear it for the next
iteration. If the assertion is ever false, task_3 can start before task_2 on some iteration,
and SPIN reports the violation and terminates.
main
state 2
if
it 2 sartlsynch ->atomic { t_2_ started = true;
goto state 3}
fi;
state 3:
if
it 3 start!synch -> atomic { assert (t_2_started == true);
t 2 started = falsg;
goto state 4}
fi;
Figure 4.63. Assertionsfor no_t3t2
The SMV specification for no_t3t2 is shown in Figure 4.64. The specification states
that Always, Globally, task_2 goesfirst (i.e., beforetask_3). We use two variables to
keep track of the status of task_2 and the fact that task_2 went first. Whentask 2 is
started, thet_2 started variableis set to true. When task_3 is started, thet_2 first

variableissettot 2 started andthet 2 started variableisset tofalse. If task_3isever
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started whent_2_started isfase (task_2 has not been started yet), t_2 firstissetto
false, and the SMV specification isthen false.

SPEC
AG (t 2 firgt)

Figure 4.64. SMV Specification for no_t3t2
Alternatively, we can avoid modeling the additional variablesin SMV by using the
alternate CTL specification shown in Figure 4.65. The specification states that Always,
Globally, if t__1isin state 3 (just been started), indicating the start of an iteration starting
and stopping the tasks, thent__3isnot in state 3 (started) until t__ 2 isin state 3 (started).

SPEC
AG((t_1=s3)>A[!(t_3=s3)U(t_2=s3)])

Figure 4.65. Alternate SMV Specification for no_t3t2
The INCA query for no_t3t1 is shown in Figure 4.66. We specify aninitial interval
starting at the initial state of the program and ending, after an arbitrary number of
iterations, at the beginning of the loop in the main task. The second interval ends with
task_3 starting, but task_2 is not allowed to start within the interval. If such apair of
intervals exists, it is possible for task_3 to start before task_2 on some iteration of the
loop, violating no_t3t2.
(defquery "no_t3t2" "nofair"
(omega-star-less (sequence
(interval :initial t
opent
:ends-with '((rend "main;t_1.start")))
(interval :ends-with '((rend "main;t_3.start"))
forbid '((rend "main;t_2.start"))))))
Figure 4.66. INCA Query for no_t3t2
Alternatively, we can avoid using a query with multiple intervals by adding a
constraint as shown in Figure 4.67. We specify an interval, starting at the initial program
state, in which the number of timest_3 has been started is greater than the number of

timest_2 has been started.
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(defquery "no_t3t2_con" "nofair"
(omega-star-less (sequence
(interval :initial t
:congtraints '((>= (- "call(main;t_3.start)"
"call(main;t_2.start)")
M)

Figure 4.67. Alternate INCA Query for no_t3t2
The FLAVERS QRE for no_t3t1 isshown in Figure 4.68. The events of interest are

when task_1 starts and when task_3 starts. The tool should check that the specified
sequence could occur on some path. The sequenceisinformally specified as"The
sequence task_1 starting; task_3 starting occurs O or more times, followed by task_3
starting beforetask_1." The set of tasks that are started and stopped in this programis
specified as an array of task types. FLAVERS does not currently support using elements
of arrays of task types as communicating tasks, so FLAVERS was not used to check
no_t3t2 in the experiment.

{task_1 start, task 3 start} none

[-task_1 starttask 3 start]*;

(task_1 start;

[-task_3_start]*;

task_3 start;

[-task 1 starttask 3 start]*)*;

task_3 start;

[task_1_starttask_3 start]*

Figure 4.68. QRE for no_t3t2

4.7 Memory Management

The memory management problem is based on the conservative release and allocate
memory management algorithmsin [For88]. The problem consists of a set of user tasks,
an allocation procedure that allocates memory to the users from three memory sources, a
release procedure that frees memory no longer required by the users, and a mechanism for
enforcing critical sections and atomic actions. Our implementation of asize N memory
management problem consists of N user tasks, an allocate procedure with three additional
procedures to support allocation, arelease procedure with two additional procedures to

support releasing memory, atask to enforce critical sections, atask to enforce atomic
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actions, atask to monitor when all users are done, a procedure to shut down the system,
and adriver task to start and stop the system.

We have selected three properties to check for the memory management program.
Thefirst of these is deadlock. The second property can be phrased as "Can two users ever
bein the critical section at the sametime?' If we can prove that an arbitrarily selected
pair of users can not be in the critical section concurrently, we can show that mutual
exclusion is enforced for the critical section. By symmetry, checking two specific usersis
sufficient; if these two users can not be using the resource concurrently, no two users can.
In our experiment, we check this property for user_1 and user_2. For ease of reference,
we call this property no_ulu2. The third property can be phrased as "Can the system ever
be shut down while auser is allocating memory?" If this property is possible, the system
could shut down before al users were done. By symmetry, checking this property for an
arbitrary user is sufficient. In our experiment, we check this property for user_1. For
ease of reference, we call this property no_sdula (for no shut down while user 1
allocating).

The never claim for no_ulu2 is shown in Figure 4.69. The FSA for the never claim
staysintheinitial state until both user_1 and user_2 arein the critical section. If this
occurs, the FSA for the never claim goes to the accept state (and never leavesit), and
SPIN reports the violation of the never claim.

The assertions to check no_ulu2 are shown in Figure 4.70. When user_1 entersthe
critical section, user_1 in_crit_sect is set to true and the assertion that user_2 isnot in
the critical section is checked. Before user 1 leavesthe critical section, the
user 1 in_crit_sect variableis set to false. Similar assertions are embedded in the
user_2 process. There are actually several placesin each user task where the user enters
or leaves the critical section, so we have shown a representative example of the

assertions.
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never {

do

(user__1user 1 pid|@state 3 |user__1Juser_1 pid|@state 5| user__1[user_1 pid]@state 6 |
user__ 1fuser 1 pid|@state 7 |user__ 1user 1 pid|@state 8 |user__1[user_1 pid]@state 9 |
user__ 1fuser 1 pid|@state 11 |user__1Juser_1 pid]@state 13 |user__ 1user 1 pid|@state 14 |
user__ 1fuser 1 pid|@state 15| user__1[user_1 pid]@state 16 |user__1user 1 pid|@state 17 |
user__ 1fuser 1 pid|@state 18 |user__1[user_1 pid]@state 19 |user__ 1user 1 pid]@state 20 |
user__ 1fuser 1 pid|@state 22 |user__1[user_1 pid]@state 23 |user__1user 1 pid]@state 24 |
user__ 1fuser 1 pid|@state 25| user__1[user_1 pid]@state 26 |user__1user 1 pid]@state 31 |
user__ 1fuser 1 pid|@state 32 |user__1[user_1 pid]@state 33 |user__1user 1 pid|@state 34 |
user__ 1fuser 1 pid|@state 35| user__1[user_1 pid]@state 36 |user__1user 1 pid]@state 37 |
user__1fuser 1 pid]|@state 38) &

(user__ 2[user 2 pid|@state 3 |user__2[user_2 pid|@state 5| user__2[user_2 pid] @state 6 |
user_ 2user 2 pid|@state 7 |user_ 2[user 2 pid|@state 8 |user__ 2[user_2 pid]@state 9 |
user_ 2user_2 pid|@state 11 |user__2[user_2 pid]@state 13 |user__ 2[user 2 pid]@state 14 |
user_ 2user_2 pid]|@state 15| user__2[user_2 pid]@state 16 |user__ 2[user 2 pid]@state 17 |
user_ 2user_2 pid|@state 18 |user__ 2[user_2 pid]@state 19 |user__ 2[user 2 pid]@state 20 |
user_ 2user_2 pid]|@state 22 |user__ 2[user_2 pid]@state 23 |user__ 2[user 2 pid]@state 24 |
user_ 2user_2 pid]@state 25 |user__2[user_2 pid]@state 26 |user_ 2[user 2 pid]@state 31 |
user_ 2user_2 pid]|@state 32 |user__ 2[user_2 pid]@state 33 |user__ 2[user 2 pid]@state 34 |
user_ 2user_2 pid]@state 35| user__2[user_2 pid]@state 36 | user__ 2[user 2 pid]@state 37 |

user__ 2[user 2 pid]@state 38) -> goto accept -- go to accept state
;s else-> skip -- otherwise, loop back
od;
accept: -- accept state
do
skip; -- infinite loop
od
}
Figure 4.69. Never Claim for no_ulu2
user 1 user 2
;o crit_sect_cs gart!synch -> atomic { : crit_sect_cs_start!synch -> atomic {
user_1 in_crit_sect = true; user_2 in_crit_sect = true;
assert(user_2 in_crit_sect == false); assert(user_1 in_crit_sect == false);
goto state 21} goto state 21}
state 25: state 25:
user_1 in_crit_sect =fase; user_2 in_crit_sect =false;
if if
;o crit_sect_cs_end!synch -> goto state 48 ;o crit_sect_cs end_synchlsynch -> goto state 48

fi;

fi;

Figure 4.70. Assertionsfor no_ulu2

The SMV specification for no_ulu2 isshown in Figure 4.71. The specification

states that Always, Globally, if user_1 isnot out of the critical section (i.e, itisinthe
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critical section) then user_2 isout of the critical section and if user_2 is not out of the
critical section then user_1 isout of the critical section.
SPEC
AG(((Wuser_1=s1)& '(user_1=s2)& (user_1=sA4)& !(user_1=s512)&
l(user__1=s21)& !(user_1=927) & I(user__1=s28)) ->
((user_2=sl)|(user_2=2)|(user_2=s4)|
(user_2=s512)|(user_2=521)|(user_2=327)|
(user_2=1528)))
&
((Wuser_2=s1l)&(user_2=52)& (user_2=A)& !(user_2=512) &
I(user_2=s21)& !(user_2=927)& !(user__2=s28))->
((user_1=sl)|(user_1=s2)|(user_1=s4)|
(user__1=s12)|(user__1=s21)|(user__1=527)|
(user_1=s28))))
Figure4.71. SMV Specification for no_ulu2
The INCA query for no_ulu2 is shown in Figure 4.72. We specify an interval
starting at the initial state of the program in which both user_1 and user_2 enter the
critical section, and neither one is allowed to leave the critical section. If such aninterval
exists, it ispossible for user_1 and user_2 to be in the critical section concurrently.
(defquery "no_ulu2" "nofair"
(omega-star-less (sequence
(interval :initial t
opent
:ends-with '("call(user_1-task;crit_sect-task.cs_start)"
"call(user_2-task;crit_sect-task.cs_start)")))))
Figure4.72. INCA Query for no_ulu2
The FLAVERS QRE for no_ulu2 isshownin Figure4.73. The events of interest
arewhen user_1 and user_2 enter and leave the critical section. Thetool should check if
the specified sequence occurs on any path. The sequenceisinformally specified as
"User_1 and user_2 enter and leave the critical section (without the other user entering
the critical section in the interim) an arbitrary number of times, followed by either user_1
entering the critical section then user_2 entering the critical section before user_1 leaves
the critical section or user_2 entering the critical section then user_1 entering the critical

section before user_2 leaves the critical section”.
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{user_1 in crit_sect,user_1 not_in_crit_sect,
user_2 in_crit_sect,user_2 not_in_crit_sect} none

[-user_1 in_crit_sect,user 2 in_crit_sect]*;
(((user_1 in_crit_sect;
[-user_2 in_crit_sect,user_1 not_in_crit_sect]*;
user_1 not_in_crit_sect)
|
(user_2_in_crit_sect;
[-user_1 in_crit_sect,user_2 not_in_crit_sect]*;
user_2 not_in_crit_sect));
[-user_1 in_crit_sect,user_2 in_crit_sect]*)*;
((user_1_in_crit_sect;
[-user_2 in_crit_sect,user 1 not_in crit_sect]*;
user_2 in_crit_sect)
I
(user_2_in_crit_sect;
[-user_1 in_crit_sect,user 2 not_in crit_sect]*;
user_1 in_crit_sect));
[user_1 in crit_sect,user_1 not_in_crit_sect,
user_2 in_crit_sect,user_2 not_in_crit_sect]*

Figure 4.73. QRE for no_ulu2
The third property we check on the memory management program isno_sdula. The
never claim for no_sdulais shown in Figure 4.74. The FSA for the never claim staysin
theinitial state until the system has shut down and user_1 is still in the process of
allocating memory. If this occurs, the FSA for the never claim goes to the accept state
(and never leavesit), and SPIN reports the violation of the never claim. We set the
user_1 allocating variable to true when user_1 starts allocating and to false when user_1

stops allocating.

never {
do
:: final[final_pid] @endstate 4 & -- if the system has shut down and
user_1 allocating == true -> goto accept -- user_1 isalocating, go to accept
s else-> skip -- otherwise, loop back
od;
accept: -- accept state
do
;o skip -- infinite loop; system shut down while
od -- user_1 was dlocating
}

Figure4.74. Never Claim for no_sdula
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The assertions to check no_sdulaare shown in Figure 4.75. When user_1 starts
allocating memory user_1 allocating is set to true and when user_1 stops allocating
memory user_1 allocating is set to false. The system shuts down when the task named
final goesto state end_s3. If the assertion is ever false, the system has shut down while
user_1 was allocating, violating no_sdula.
final

" mér.n._dri ver_final_go_end!synch ->
atomic { assert(user_1_allocating == false);
goto endstate 4}
Figure 4.75. Assertionsfor no_sdula

The SMV specification for no_sdulais shown in Figure 4.76. The specification
states that Always, Globally, if the system has been shut down (final = s3) thenuser_1is
not allocating. Theuser_1 allocating variableis set and cleared as described above.

SPEC
AG ((final =s3) ->luser_1 allocating)

Figure4.76. SMV Specification for no_sdula
Alternatively, we can avoid using theuser_1_allocating variablein SMV by using
the alternate CTL specification shown in Figure 4.77. The specification states that
Always, Globaly, if user_1isin state 2 (just started allocating), final can not go to state 4
(terminate) until user_1 goesto state 4 or 27 (stops allocating). Note that we had to also
add afairness constraint to ensure user_1 doesn't "starve" waiting to stop allocating,
which changes the property somewhat.
FAIRNESS
(user__1=1s27)
SPEC
AG((user_1=s2)->A[!(finAl=sA)U ((user_1=44)|
(user_1=s27))1)
Figure4.77. Alternate SMV Specification for no_sdula
The INCA query for no_sdulais shown in Figure 4.78. We specify an interval,

starting at the initial state of the program, that ends after user_1 has started allocating an
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arbitrary number of times. We specify a second interval in which the system is shut down
(at the end of the go entry) and user_1 is not allowed to stop allocating. If such an
interval exists, it is possible for the system to shut down while user_1 is allocating,
violating no_sdlua
(defquery "no_sdula' "nofair"
(omega-star-less (sequence
(interval :initial t
:opent
:ends-with '("internal (user-task_1;user_1 alocating)"))
(interval
:ends-with ‘((rend "final;driver.final-go-end"))
:forbid '("internal (user-task_1;user_1 not_allocating)")))))
Figure 4.78. INCA Query for no_sdula
Alternatively, we can avoid using multiple intervals by adding a constraint as shown
in Figure 4.79. We specify an interval, starting at the initia state of the program, that
ends with system shut down, and include a constraint that user_1 has started allocating
more times than it has stopped allocating (and is thus allocating at the end of the interval).
(defquery "no_sdula con" "nofair"
(omega-star-less (sequence
(interval :initial t
:ends-with '((rend "final;driver.final-go-end"))
:congstraints '((>= (- "internal (user-task_1;user_1 allocating)"

"internal (user-task_1;user_1 not_allocating)")
M)

Figure 4.79. Alternate INCA Query for no_sdula

The FLAVERS QRE for no_sdulais shown in Figure 4.80. The events of interest
are when user_1 starts and stops allocating memory and when the system shuts down.
The tool should check that the specified sequence could occur on some path. The
sequence isinformally specified as "The sequence user_1 allocating; user_1 not
allocating occurs 0 or more times, followed by user_1 allocating and the system shutting
down before user_1 stops allocating."

We can accurately check all the properties without modeling any variables in the

program. We also analyzed the properties while modeling a variable in each user task
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that keeps track of whether or not memory has been allocated to determine impact on
anaysistime.

{user_1 allocating,user_1 not_allocating,mmgt_crit_sect whoa} none

[-user_1 allocating,user_1 not_allocating,mmgt_crit_sect whoa]*;

(user_1 dllocating;

[-user_1 not_allocating,mmgt_crit_sect_whoa]*;

user_1 not_allocating;

[-user_1 alocating,user_1 not_allocating,mmgt_crit_sect_whoa]*)*;

user_1 allocating;

[-user_1 not_allocating,mmgt_crit_sect whoa]*;

mmgt_crit_sect whog;

[user_1 allocating,user_1 not_allocating,mmgt_crit_sect whoa]*

Figure 4.80. QRE for no_sdula
4.8 Ring
Thering problem [Cor94] is based on asimulation of token ring access to a resource.
The problem contains aring of servers, each of which has an associated master. Each
master iteratively requests and then releases the resource. When a master requests the
resource, the associated server checksiif it is holding the token. If itis, the requestis
granted, otherwise the server tells the next server in thering that it needs the token and
walits to grant the request until it has received the token. When the master rel eases the
resource, the server will pass the token along if the previous server in thering needsit. If
the previous server needs the token and the server is not holding the token, the server tells
the next server in the ring that it needs the token, and passes it to the previous token when
it hasreceived it. Our implementation of asize N ring program consists of N server tasks
and N master tasks. Each server task uses atoken variable to indicate if it holding the
token or not and ausing variable to indicate whether the associated master is using the
resource or not.
We have selected two properties to check for the ring program. The first of theseis

deadlock. The second property can be phrased as "Can two masters ever be using the
resource at the sametime?' Because there may be a difference between two adjacent

masters, two masters with another master between them, and so on, we can not use a
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symmetry argument to say that checking any two mastersis sufficient. For our purposes,
however, we check the property for master_1 and master_2, and view a proof that the
property holds as one piece of evidence needed to show that the more genera property
holds. For ease of reference, we call this property no_mimz2.

The never claim for no_m1m2 is shown in Figure 4.81. The FSA for the never claim
staysintheinitial state until both master_1 and master_2 are using the resource. If this
occurs, the FSA for the never claim goes to the accept state (and never leavesit), and

SPIN reports the violation of the never claim.

never {
do
o master__1[master_1_pid] @state 3 & -- if master_1 and master_2 are both using
master__ 2[master_2_pid]@state 3 -> goto accept -- the resource, go to accept state
i else-> skip -- otherwise, loop back
od;
accept: -- accept state
do
i skip
od

}

Figure 4.81. Never Claim for no_m1m?2

While this was an intuitive property to specify, we had to use the "atomic"
PROMELA construct to force the release of the resource and the transition of the
releasing master to its new state to occur as an atomic action. Otherwise, when SPIN
performs the analysis it would be possible for the resource to be released by master_1 (for
instance), and then for master_2 to acquire the token and enter state 3 before master_1
executed its transition out of state 3.

The assertions to check no_m1m?2 are shown in Figure 4.82. When master_1 starts
using the resource, the master _1 using variableis set to true and the assertion that
master_2 is not using the resource is checked. Before master_1 stops using the resource,
themaster_1 using variableis set to false. Similar assertions are embedded in the
master_2 process. If either of the assertionsis ever false, master_1 and master_2 are

using the resource at the same time, and no_m1m2 is violated.
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master_1
state 2:
if
- master_1 server 1 request_end?synch -> atomic { master_1 using = true;
assert(master_2_using == false);
goto state 3}
fi;
state 3:
master_1_using = falsg;
Figure 4.82. Assertionsfor no_mim2
The SMV specification for no_m1m2 is shown in Figure 4.83. The specification
states that Always, Globally, if master_1 is using the resource then master_2 isnot and if
master_2 is using the resource master_1 is not.
SPEC
AG (((master_1=s3)->!(master 2=53)) &
((master_2=53) ->!(master_1=s3)))
Figure 4.83. SMV Specification for no_mim2
The INCA query for no_m1mz2 is shown in Figure 4.84. We specify an interval
starting at the initial state of the program ending after master_1 and master_2 have started
using the resource an arbitrary number of times. If such aninterval exists, it is possible
for master_1 and master_2 to be using the resource concurrently.
(defquery "no_m1m2" "nofair"
(omega-star-less (sequence
(interval :initial t
:ends-with '((rend "server_1;master_1.server_1-request-end")
(rend "server_2;master_2.server_2-request-end"))))))
Figure 4.84. INCA Query for no_m1m?2
The FLAVERS QRE for no_mlm2 isshownin Figure 4.85. The events of interest
are when master_1 and master_2 start using the resource and release the resource. The
tool should check that the specified sequence occurs on all paths. The sequenceis
informally specified as"Any event but master_1 or master_2 starting to use the resource
occurs 0 or more times, then either master_1 starts using the resource and releases it

without an intervening master_2 starting to use it, or master_2 starts using the resource
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and releases it without an intervening master_1 starting to use it, then any events but
master_1 or master_2 starting to use the resource occurs 0 or more times".

{master_1 start using, server_1 release,
master_2_start_using, server_2 release} all

[-master_1 start using, master_2_start_using]*;
(((master_1_start_using;
[-master_2_start using, server_1 release]*;
server_1 release)

I
(master_2_start_using;
[-master_1 start using, server_2 release]*;
server 2 release));
[-master 1 start using, master_2_start_using]*)*
Figure 4.85. QRE for no_ml1m?2
We cannot accurately check no_m1m2 when we do not model any variablesin the
program, but we can check it accurately by modeling the token and using variable for
each server task. We therefore include analysis runs modeling these variablesin the

experiment.
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CHAPTER S5
METRICS AND MEASUREMENTS

This chapter describes the metrics used as predictor variables and the measurements
used as response variablesin our experiment. We hypothesize that there are certain
characteristics of programs that affect the feasibility of analysis and the accuracy of the
anaysis results for those programs. In addition, we believe that certain characteristics of
aproperty being checked may also affect feasibility and analysis accuracy for that
property on agiven program. Our goal isto use statistical regression techniques to
determine how well each of the program and property characteristics predicts the values
of the response variables. The resulting regression equations can then be used as
predictive models to predict each tool's analysis performance given a specific program
and property.

5.1 Metrics

For our purposes, ametric is defined as a measurement of some characteristic of the
program or property of interest. We divide our metrics into three categories: program
metrics, internal representation metrics, and property metrics. The program metrics are
used to capture characteristics of the Ada programs being analyzed. The internal
representation metrics are used to capture characteristics of the set of FSAs for that
program, the set of TIGs for that program, and the state space and transition relation for
SMV. The property metrics are used to capture characteristics of the SPIN never claim
and assertions, INCA query, and FLAVERS Property Automaton for each property. We
treat the program, internal representation, and property metrics as predictor variablesin
the experiment.

The metrics have been selected in a number of ways. Characteristics that affect

analysis feasibility based on the theoretical bounds of the techniques are included, as are
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other characteristics that we believe may have an effect on analysis performance. Metrics
that have been proposed in the concurrency analysis literature are also included.

5.1.1 Program Metrics

The program metrics are used to capture certain characteristics of the Ada program
being analyzed. These characteristics include several measures of the size of the
program, various measures of nondeterminism in the program and other characteristics of
the program structure, and a metric indicating how many variables are modeled in the
representations.

The theoretical upper bound on the number of possible program states for a
concurrent program is exponential in the number of tasksin that program. We therefore
include the number of tasksin the program (T) as one of the program metrics.

We suspect that the number of possible communications in a program affects the
number of reachable states for that program. To calculate the number of
communications, Cj, for atask Tj, we add the number of accept statementsin the task to
the number of entry callsin the task. We use two measures of communication size as
metrics - the average number of communications for the set of tasksin the program, given

by C= % &Q é and the maximum number of communications in the set of tasks for the

i1
program, given by MaxC = max(C,).

One of the characteristics of concurrent Ada programs that makes them particularly
difficult to analyze is nondeterminism. None of the metrics above try to account for
nondeterminism in the program being analyzed. Damerla and Shatz [DS92] propose
several metrics that we aso include in our experiment; the metrics are intended to
guantify the nondeterminism in Ada programs. A metric called Alphais used to account
for the nondeterminism in entries when several tasks can make entry calls on those entries

(entry nondeterminism). Alphaisgiven by fl(callsI -1), where eisthe number of entries
| =

not contained in selects and Calls; is the number of callson entry i. The oneis subtracted
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because an entry with only one caller is deterministic. A metric caled Alpha issimilar to
Alpha, but also takes into account the clustering and spreading of entry calls. Entry calls
on agiven accept are clustered when they occur in asingle task; entry calls on agiven
accept are spread when they occur in multiple tasks. For example, if al the entry calls on
agiven accept are clustered in the same task, the entry nondeterminism for this accept

should be 0. Alpha for a particular accept ais given by Alpha'a:ni (xi)* (2" = (T +1)),

where X; is the sum of entry callsin task i on the accept aand T is the number of tasks
e '
making calls on the accept. Alpha isgiven by ZlAIphaa. The metric Betaisused to
a=

account for the nondeterministic selection of rendezvous within select statements (sel ect
nondeterminism). Betaisgiven by ,il(Callsl -1), where sisthe number of selects and

1=
Calls; is the number of calls on entries within select i. The one is subtracted because a
select with only one call on an entry within the select is deterministic. Similarly to Alpha
, ametric Betd is defined to account for entry call spreading and clustering. Beta for a

particular select ais given by Betaia: M. (xi)* (2" - (T +1), where xj is the sum of entry

calsintask i on aternatives in the select antzl T isthe number of tasks making calls on
alternativesin the select. Beta isgiven by a§1 Beta{a. The metrics Gamma (Alpha +
Beta) and Gamma (Alpha + Beta) are used to account for total nondeterminism.
Levineand Taylor [LT93] proposee E metric ssimilar to Gamma called Cnd to account
for nondeterminism. Cnd is given by igl(CaIlsI -1)+ él(ca”edi -1), where Cadlls; isthe
number of entry calls on entry i and Called isthe number of select aternatives with one
or more calers. The difference between Cnd and Gammais that Cnd includes entry
nondeterminism for all entries (as opposed to excluding those in selects) and counts the
number of select alternatives with one or more callers when cal culating select
nondeterminism. To account for clustering and spreading, Cnd' is defined as

ets Tj

S (i * (@7 = (T + D) + 3, (T 2 * (2% - (R + D)
=1 j=1 =1 j=1
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Tj isthe number of task with calls on entry or select statement i, X; i is the number of entry
calsintask j onentry i, Rj isthe smaller of T and the number of alternatives of select
statement i with one or more callers, and zjj is the number of entry callsin task j on entry
aternativesin select statement i (if Rj = Tj) or the number of alternativesin select
statement i with one or more callsin task j.

Levine and Taylor also propose a metric, Cif, for capturing the communication

structure or information flow for the tasks comprising the program. Cif is given by

g(in ~ edges; ) (out — edges; )g,

where T is the number of tasksin the program, in-edges; is the sum of task entries and
shared variables read in task i, and out-edges; is the sum of entry calls and shared
variables written by task i. Cnd, Cnd', and Cif are also included in our experiment.

As discussed earlier, we sometimes choose to model certain variables to try to
improve the accuracy of the analysis. When we do so, both the accuracy and the time to
complete the analysis are almost always affected. While we capture some of the effects
of this modeling indirectly through the metrics described above, we also explicitly
include ametric, Vars, that specifies the number of variables that are modeled in the
program.

5.1.2 Internal Representation Metrics

The interna representation metrics are used to capture characteristics of the set of
FSAsfor agiven program, the set of TIGs for that program, and the state space and
transition relation for the SMV representation of the program. These characteristics
include several measures of the sizes of the representations and a measure of the graph
theoretic complexity of the program in terms of TIGs.

As noted above, the upper bound for the number of statesin a concurrent program is

exponential in the number of tasks, T. When the program is represented by a set of FSAS,
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the upper bound is given by NT, where N is given by % &ni é and nj is the number of

i1
statesin task i. Wethereforeinclude N as a predictor variable. We also include the
maximum number of statesin an FSA, MaxN = max(n,), as a predictor variable, because
alarge number of statesin an FSA for one of the tasks could significantly affect N.
Wampler has proposed the metric NT/2asa good predictor of reachability graph size, at
least for some programs [Wam85] and we include the WFSA (for Wampler, FSAS)
metric in our experiment as well.

Because we believe the communications between the FSAs will affect the analysis,
we include two measures of communication size for the FSAS, noting that in general
transitions in the FSAs represent accepts or entry callsin the original program. We
include the average number of transitions in the set of FSAs for the program, given by

TRANS= % &Trans1 é and the maximum number of transitionsin the set of FSAsfor

i=1
the program, given by MaxTRANS = max(Trans,).

The above metrics can also be calculated for the set of TIGs for agiven program
(rather than the set of FSAS). We call the average number of nodesin the set of TIGSTN,
the maximum number of nodes MaxTN, the average number of edges TE, the maximum
number of edges MaxTE, and the Wampler metric WTIG (for Wampler, TIGs). We
calculate these metrics for TIGs as well because a TIG is a conceptually different
representation of atask than an FSA. The key difference is that the FSAsinclude
information about choices in the task based on variable values, while TI1Gs abstract that
information away. We note that the elision of variable information tendsto yield TIGs
that are smaller, in some cases much smaller, than the FSAs for the same tasks.

Levineand Taylor [LT93] propose ametric, called Cgt, intended to capture the
graph theoretic complexity of the program. Cgtisgivenby E-N + T + 1, whereE isthe

number of entry calls and accepts in the program, N is the number of TIG nodesin the
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program, and T is the number of tasks in the program. Cgt isincluded as a predictor
variable.

In addition to the metrics above, we a'so include two characteristics of the SMV
system as predictor variables. We include the total number of task states (SMV St)
because this number is related to the total number of sequential regionsin the program.
We also include the number of transitionsin the transition relation (SMV Tr) asa
predictor variable, because each transition represents a possible communication in the
program.

5.1.3 Property Metrics

We believe that characteristics of the property being analyzed might affect the
feasibility and accuracy of analysis of that property on agiven program. We therefore
attempt to capture characteristics of these properties through certain metrics on the
property specifications for the tools. The property metrics are used to capture
characteristics of the SPIN never claim and assertions, INCA query, and FLAVERS
Property Automaton for each property.

Since expressing a property as an FSA seemsto be ageneral and intuitive technique,
we include three metrics on FLAVERS Property Automata to capture the size of the
property. We include the size of the event a phabets (i.e., number of events of interest)
and the number of states in the automaton as predictor variables. We include the number
of transitions in the automaton that do not directly lead to a violation of the property,
which gives us another measure of the size of the property.

We can capture the number of events of interest in the property by considering the
INCA query as well, so we include the number of distinct eventsin the INCA query asa
predictor variable. We also include the number of intervalsin the INCA query, since
multiple intervalsin the query can significantly increase the size of the system of

inequalities.
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While FLAVERS QREs and INCA queries tend to be in terms of events, checking a
property in SPIN entails specifying the property in terms of states. The SPIN never claim
isessentially an FSA for the property, so we include the number of states and transitions
in the never claim as predictor variables. We also include the number of assertions and
the number of assignments to variables used in the assertions as measures of the amount
of information needed to check the property.

5.2 Measurements

We consider avariety of measurements as response variables in the experiment.
These measurements have been chosen as indicators of the feasibility and utility of using
aparticular tool to analyze a given program and property. The measurements can be
broken into two categories: feasibility measurements and accuracy measurements.

The feasibility measurements are used to indicate whether each tool could be used to
analyze agiven program and property. The total analysistime for the program and
property isagood indicator of feasibility, so we include analysis time as a response
variable. Whether or not each analysis fails (takes more than 5 hours or terminates
because of exhausted memory, an internal error, or inability to compile) is considered to
be agood indicator of feasibility, so we include a boolean measure of failed/not failed as
aresponse variable.

While the feasibility of using an analysis tool on a given program and property is
clearly an important consideration, the utility of the tool is aso determined by the
accuracy of the analysis results. Whether or not each analysisyields spurious resultsis
considered to be agood indicator of accuracy, so we include a boolean measure of

spurious/not spurious as aresponse variable.
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CHAPTER 6
STATISTICAL ANALY SIS TECHNIQUES

This chapter describes the statistical analysis techniques we use to analyze our
experimental data and to generate our predictive models. We present our data collection
strategy, discuss the statistical tests we apply to check for bias, explain the preprocessing
required before applying the regression techniques, discuss our techniques for generating
the predictive models from the data, and describe our analysis of the resulting models and
thelr associated parameters.

All statistical analysisis performed using SPSS from SPSS Inc. and CLASP from the
University of Massachusetts, Amherst.

6.1 Data Collection Strateqy

To collect the data for the experiment, we attempted five analysis runs for each
analysis case; each analysis case represents a certain tool/configuration/size/property
combination. With the exception of INCA, which must be run in a Lisp environment, the
set of analysis cases for al the tools were run in arandom order. The run order was
randomized to reduce caching effects, which could cause runs 2 through 5 to run more
quickly than thefirst run for agiven analysis case. For INCA, we randomized the order
of INCA analysis cases, though INCA runs are not interspersed with runs of other tools
since INCA isthe only tool that must be run in aLisp environment.

For each analysis case, we took the mean of the five runs as the analysistime. We
also calculated confidence intervals for each of these means to ensure that we are using an
analysistime that is a reasonabl e estimate of the "true”" analysistime. Large variationsin
the measurement times for a given analysis case lead to wide confidence intervals,
showing that we are "less sure" of the accuracy of our time measurement. Since the tools

are deterministic, large confidence intervals may indicate that other factors (such as
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system loading) are impacting the analysis times. In extreme cases, large confidence
intervalsled usto rerun the set of analysis cases.
To calculate the confidence intervals, we took the mean, X, of the fiverunsasan

estimate of the analysistime. We used the standard deviation, s, of the set of five times
to calcul ate the estimated standard error of the mean, given by &, = > Wethen

J5
calculated the confidence interval as X +2.776* 0,. The2.776 valueisfrom at-
distribution with 4 degrees of freedom for confidence at the 0.05 level for atwo-tailed
test. Because we do not know if our mean analysis timeis higher or lower than the true
population mean, atwo-tailed test is appropriate.
6.2 Checking for Bias Statistically

Running each tool/configuration/size/property five times also provides data for
statistically checking for biasin our experiment. To explain our technique, we discuss
checking to see whether using assertions rather than never claims introduces bias against
SPIN, but the methodology for the checking the other biasesisidentical.

To check whether using assertions adversely impacted SPIN analysis times, we
perform a standard form of hypothesis testing. In hypothesis testing, a null hypothesis
(Hp) and an alternative hypothesis (H1) are formed, aset of datais collected, and the
probability of collecting that set of data given the null hypothesisis calculated. Note that
H1 does not have to be the exact opposite of Hp. If this probability is very small (less
than 0.05 is typically considered significant), we can reject the null hypothesis (and
accept the alternative hypothesis) with a small probability of doing so incorrectly. If we
do not reject the null hypothesis, we have not proved it - we have ssimply been unable to
reject it given the data at hand.

The null hypothesis for our example isthat analysis times using assertions are equal
to analysis times using never claims. For our aternative hypothesis, we check whether

the analysistimes are different. Thisiscalled atwo-tailed test, since our alternative
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hypothesis considers both ends of the distribution of possible data samples given by the
null hypothesis. Strictly speaking, our hypotheses are actually concerned with the means
of setsof analysis times (sets of 5, given our data collection strategy), which givesus a
standard test for our hypotheses - the two sample ttest.

Xy — X - .
To use the two sample t-test, we calculate t = —N—*, where X is the mean of the
a)_<N_)_<A

analysis times using never claims, Xa isthe mean of the analysis times using assertions,
and gy %, is caculated from the standard deviations of the two samples and the sample
size (5). Essentiadly, thet value quantifies the probability that both samples were drawn
from popul ations with equal means.

Given at value, we reference atable (or let our software reference atable) of t-values
and probabilities given the sample size. We can determine the probability of the t value
given the null hypothesis, and if that probability is less than 0.05, we reject the null
hypothesis and accept the alternative hypothesis that the analysis times are actually
different. If this occurs, we then conduct a one-tailed test to check the aternative
hypothesis that assertion analysistimes are actually faster than never claim analysis times.
If we can reject the null hypothesis for this case, thiswill imply that we have not
introduced bias against SPIN by using assertions.

As described above, we use atwo sample t-test to check the possibility of biasfor a
given tool/configuration/size/property. We aso would like to know whether bias has
been introduced over all the programs, sizes, and properties. To do this, we can usea
paired-sample t-test.

In a paired sample t-test, both the never claim and assertion analyses are run on the
same set of programs, sizes, and properties. For each such program/size/property, the
difference between the two analysistimesis calculated. The mean of the resulting

distribution of differencesis called x; and the standard deviation of the distribution is
X5~ Hs

called ¢;. Thetvaueisgivenb ,
J g y SJ/\/N

with ;=0 given our null hypothesis that the
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means are equal (so the mean of the differences will be 0). Thet valueis checked as
before, and we reject the null hypothesis at the 0.05 level when possible. If we rgject the
null hypothesis, we should then determine whether or not using assertions yields smaller
analysis times by conducting a one-tailed test.

6.3 Preprocessing the Data

It has been noted in the literature that high linear correlations between several (or
many) of our predictor variables can cause problems [Bla70, HL89] in both of the
regression techniques that we use. It istherefore necessary for us to preprocess our
experimental data, removing predictor variables that are highly correlated to other
predictors.

One relatively straightforward way to detect multicollinearity isto consider the
pairwise Pearson correlation coefficients for the predictor variables [NWK85]. Pearson's
correlation coefficient provides an estimate of the linear relationship between two
variablesx and y. The coefficient ranges from -1.0 to 1.0, with a coefficient magnitude
close to 1.0 indicating a strong relationship and a magnitude close to 0.0 indicating no
linear relationship. We note that alow correlation only indicates that the variables are not
linearly associated; they could still be related in some non-linear way. If wefind ahigh
correlation coefficient between two predictor variables, this provides strong evidence that
the variables are collinear, implying that we should elide one of them from the model.

Before omitting certain variables from the model, we would like some assurance that
the correlation coefficients represent a systematic linear relationship and did not simply
occur by chance. Standard statistical tests are not applicable, since our concern is about
distributions of the correlation coefficients rather than distributions of the mean.
However, we can use randomization tests, in conjunction with correlation, to test the
hypothesis that two samples are linearly dependent [ Coh95].

To conduct the randomization test, we randomly pair up values of the first and

second variables and calcul ate the correlation coefficient. Thisgivesusasingle point in
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the distribution of correlation coefficients that are possible for our set of data, given the
null hypothesis that the two variables are in fact linearly independent. We then repeat the
random pairing and coefficient cal culation many times (in our case, 1000) to build a
distribution of possible correlation coefficients. We then take the correlation coefficient
with the true pairing (i.e., matching variable values for the same analysis cases) and
determine where this correlation coefficient falls on the generated distribution. If the
coefficient falls below the 5th value in the distribution or above the 995th value
(conceptualy, p < 0.05), we can reject the null hypothesis with high confidence, i.e., we
can state that thereis alinear dependence between the two variables with only a small
probability that we are wrong. We conduct the randomization test on all variable pairs
that have a correlation coefficient magnitude greater than 0.75. We note that
randomization tests do not provide results that are generalizable to populations, so the
two variables could in fact be linearly independent over the set of al possible data. The
tests do, however, provide sufficient power given our specific data set.

When we discover a set of variables that are collinear to each other, we remove all
but one of those variables from the regression analysis. The decision about which
collinear variablesto elide is not critical from the standpoint of thefit of the model we
create, since the reason we're omitting the variables is because they provide the same
influence as the variables we include in the model. In an effort to make the predictive
models more intuitive, however, our tendency isto prefer variables representing the
program metrics over those representing the internal representation metrics, and to prefer
simpler internal representation metrics over more complicated ones.

6.4 Building the Models

One of the goals of our experiment is to provide a set of data on which we can apply
statistical analysis techniques to generate predictive models. These predictive models can
then be used by an analyst to select an appropriate analysis tool given a specific program

and property. We have selected our response variables to let us predict analysistime,
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whether or not an analysis will fail, and whether or not an analysisislikely to yield
spurious results. We note that standard linear regression techniques are appropriate for
building the predictive models of analysis time, while logistic regression is a sounder
choice for predicting the dichotomous failure and spurious result responses.

6.4.1 Linear Regression

Linear regression models can be used as approximations of the functional
relationship between aresponse variable and a set of predictor variables [MP82]. We use
linear regression to build our predictive models of analysis time based on the set of
metrics selected for inclusion using the preprocessing discussed above.

In linear regression, the form of the predictivemodel isy = 5,+ G xi+...+ B x + &,
wherey isthe predicted value, each x; is ametric, each B3j is a coefficient calculated using
linear regression, and € isan error term. The regression coefficients are calculated using
alinear least squaresfit to the data. To make the regression coefficients comparable
among the metrics, we use standardized variables, which in essence puts each xj on the
same scale. The magnitudes of the resulting standardized regression coefficients can then
be used to consider the relative predictive powers of each metric. Note that larger
coefficients (positive or negative) indicate stronger predictive power.

To select which variablesto include in the linear model, we first check for
multicollinearity as described above. We then have a choice of a number of methods for
selecting from the remaining variables [DS66]. One alternative isto include al the
remaining variablesin the linear regression. Another method, called backward
elimination, starts with all the variables and iteratively removes variables that have a
small effect on the predictive model. A third method, called forward selection, starts with
asingle variable and iteratively adds variables until the remaining variables have an
insignificant effect on the predictive model. Finally, stepwise regression, an improved
version of forward selection, can be used to iteratively add variables and reconsider those

included in the model at each step.
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The idea behind careful variable selection is to generate a parsimonious model that
still captures alarge amount of the variance in the data. Because our metrics are
automatically calculated, we are not concerned with the cost of collecting variable
information for use in the predictive model. It is possible, however, to overfit the model
to the data by using more variables than are necessary. In an overfitted model, the
coefficients can be numerically unstable and can change significantly with the inclusion
of additional data points. The overfitted model is thus very good for predicting the
relationships in the data from which it is built, but may not be as useful as a general
predictive model. We therefore apply all of the above model building techniquesto try to
build areasonable model. For the backward elimination technique, we use a probability
of 0.10 for removal from the model; for forward selection and stepwise regression, we
use a probability of 0.05 for inclusion in the model.

6.4.2 Loqistic Regression

While linear regression isawidely used for predicting continuous response variables,
it is not appropriate for predicting dichotomous response variables [Agr84]. Because
linear regression assumes that the response variable has a continuous range of values, it
can not be applied when the response variable can only have two values (true and false,
for instance). Logistic regression isthe proper technique for these variables, so we use
logistic regression to build our predictive models for failure and presence of spurious

results. The description below islargely based on information in [HL89].

In logistic regression, thelogitisgiven by g(x) = 5, + B, xi+...+ . x«. Thelogitis
(x)

transformed into 74x) = T4ai0

which isused for coefficient calculation. To caculate

the coefficients in the equation, a maximum likelihood function is used to calcul ate the
effect of each data point and iterative methods are used to solve the resulting nonlinear

equations. The form of the resulting predictive model isy = 7(x) + £.
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To select the variables for inclusion in the logistic regression model, we preprocess
the data as described above. Some statistical analysis philosophies claim that all
variables that have scientific significance should be included in the model. Sinceitis
unclear at this time which of the predictor variables (i.e., metrics) are important, we build
our logistic regression models starting with all the (preprocessed) predictor variables. We
build these models using three techniques: forcing all variablesto be included, using
backward stepwise elimination of variables, and using forward stepwise selection of
variables. The stepwise techniques are anal ogous to those described above for linear
regression. Again, we use p=0.10 for elimination and p=0.05 for inclusion. We then
compare the resulting model s to each other and select a reasonable model based on the
criteriadiscussed in Section 6.5.

6.5 Anayzing the Models

After using linear or logistic regression to generate our predictive models, we
examine those modelsin several ways. We consider goodness of fit to determine how
well the model fits the data, we examine the residual s to check our assumptions about
errors in the model, and we check for outliers using the residuals.

6.5.1 Goodness of Fit

To determine how well a predictive model fits the data used, we need some measure
of how well the model captures the variance in the data. For linear regression, the
standard measure of thisis the Multiple Correlation Coefficient Squared, or R2. R2is

E

N
given by R? :1—%. The residual sum of squares, SS., isgivenby Y.(¥j = ¥;)°, which
i=1

squares the difference between the actual and predicted value of the response variable
(caled theresidual) at each datapoint. S, isameasure of the tota variability in the
response variable. Thus, RZ measures how much of the variance in the response variable
is captured by the predictive model. R2 ranges from 0 to 1, with a magnitude near 1

indicating that the model explains most of the variance in the data.
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In logistic regression, the deviance can be used to measure the amount of deviation

captured by the fitted model. Devianceis given by

. -2 . \\17 = Ny
ot G T
Y i =Y

with the observed value at data point i given by y,, and the estimated value of Ttfor that
point given by 7;. The deviance in logistic regression is analogous to the residual sum of
sguares in linear regression. Because the deviance quantifies how much of the variance
in the data is captured by a specific model (with asmaller deviance indicating a better fit),
we use this value as one of our considerations when choosing between the models. We
believe the percent of the predictions by the model that are correct to be an even more
important consideration, so we use these values as our primary consideration when
selecting alogistic regression model.

For both of the regression techniques, unrealistically large coefficients or standard
errors of the coefficients are indicative of numerical problemsin the analysis. They can
indicate multicollinearity that was not removed by our preprocessing, and they can also
support the inference that the model has been overfit to the data.

6.5.2 Residua Analysis

The above regression techniques assume that the errors (i.e., residuals) in the model
are independent, have zero mean, constant variance, and follow a normal distribution
[DS66]. These assumptions can be checkedNusi ng plots of the standardized residuals
against the predicted response values (y; = Elyi ).

The structure we would expect to find in these plots, given our assumptions about the
errorsin the model, is essentially a horizontal line with residual values scattered
randomly above and below zero. If wefind that the "spread” of the residuals increases (or
decreases) as the value of the response or predictor variable increases, we should suspect

that the variance is not constant. Techniques exist to account for this problem - for
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instance, using aweighted least squares fit rather than the standard least squaresfit. If we
find structure in the residua plots, such as an obvious quadratic component, additional
guadratic or cross-product terms in the model can be used to remove this structure. Our
analysis stops at recognition of such problems - we do not apply the more advanced
regression techniques.

We note that visual inspection of the residual plotsis a somewhat informal technique
for checking our assumptions. While more formal statistical techniques have been
proposed for checking these assumptions, the informal techniques are generally sufficient
for recognizing serious violations of the assumptions [DS66].

6.5.3 Identifying Outliers

Outliersin our data can have a significant effect on the resulting model, particularly
for linear regression. We would therefore like to recognize such outliers so we can
investigate them further. It isnot generally prudent to eliminate an outlier simply for
statistical reasons, and we are unlikely to eliminate any outliers from the data since we
don't know if the outliers are in fact more representative of "real” concurrent programs
than the more normal pointsin our data. We do, however, want to recognize the outliers
in our data to further examine them to gain insight into why these particular points are
outliers.

One method for recognizing outliersis by doing so visualy on the residua plots
described above. Points that are significantly separated from the other points are
indications of outliers, and should be investigated further. Another, more formal method,
uses studentized residuals. A studentized residual is aresidua that has basically been
standardized by dividing by the square root of the variance of the residual. Given a
studentized residual, we can check atable of threshold values (for a given probability) to
determine if the point should be considered an outlier [DW80]. We apply both these

methods to try to identify outliersin our data.
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6.6 Summary of Statistical Analysis

Statistical analysis techniques are thus used in a variety of ways to process the data
gathered from the experiment. Two sample and paired-sample t-tests are used to check
for biases that might have been introduced by our methodology. Randomization tests are
used to preprocess the data, removing extraneous collinear variables from the regressions.
Linear regression is used to build predictive models for analysis time and logistic
regression is used to build predictive models for failure and spurious results. The
resulting models are analyzed for goodness of fit, and the residuals from the models are
examined to check the assumptions of the regression techniques and to identify outliersin

the data.
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CHAPTER 7
EMPIRICAL RESULTS

This chapter describes the results of our experiment. We describe our experimental
environment, provide the empirical comparisons of the toolsin terms of analysis time,
failures, and accuracy, and present the results of the statistical analysis described in
Chapter 6. We close with remarks about the validity of our predictive models and the
practical significance of our results.

7.1 Experimenta Environment

Thetools used in the experiment were SPIN version 2.7.3, SPIN+PO version 3.1
(with SPIN version 1.6.5), TRACC dated 11/29/95, SMV version 2.4.4 (with upgrade for
Alphas, dated 10/11/95), INCA version 3.2, and FLAVERS dated 11/10/95.

SPIN, SPIN+PO, and SMV accept command line options that can affect the
performance of thesetools. In SPIN and SPIN+PO, the default depth of the reachability
graph generation can be increased with the -m option. We needed to increase this depth
for some of the larger problem sizes. To select avalue for a given program, we selected
the smallest value (within 100,000) that would let us check al properties on that program.
SPIN+PO also provides a-DDEADLOCK flag that can be used when freedom from
deadlock is being checked. We used thisflag for al SPIN+PO runs that were checking
for freedom from deadlock. For those programs with more than 32 tasks, we needed to
modify avariablein one of the SPIN+PO files to allow more than 32 processes, we set
this variable to 64 for those programs.  When using assertions to check no_wi1w?2 in the
presence of deadlock, we used the -cO flag for SPIN and SPIN+PO. This forces the tools
to search the entire state space; without this flag, the tools terminate on detection of the
deadlock. Unfortunately, this also means the tools do not terminate on an assertion
violation, but there is no way to instruct the tools to ignore deadlocks and terminate on

assertion violations. Because SMV version 2.4.4 automatically enforces weak fairness,
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the specification "EX 1" is aways true; with CMU's assistance, we removed one line
from the SMV code to allow checking "EX 1". We used the revised version of SMV for
all SMV runs. We also used the SMV -f option, which cal cul ates the reachabl e states of
the system before checking the SPEC formula, for al SMV runs.

The experimental platform was an AlphaStation 200 4/233 with 128 MB of real
memory. Virtua memory limits were set to 131072 KB for data, 2048 KB for the stack,
and 121800 KB for program memory. Weran SPIN, TRACC, SMV, INCA, and
FLAVERS on this platform. We were unable to build SPIN+PO on the Alpha, so we ran
SPIN+PO on a SPARCstation 10 Model 40 with 32 MB of memory. Total virtual
memory on the Sparc was set to 2105343, with 8192 KB for the stack and "unlimited"
memory for data and program memory.

To alow comparison of SPIN+PO with the other tools, we calculated a
multiplication factor for the SPARC analysis times relative to the Alpha analysis times
and multiplied all SPIN+PO analysis times by this factor. To calculate the factor, we ran
the first three sizes of SPIN and SMV (without -REORDER) and al sizes of SPIN+PO
on the SPARC; we could not build the other tools on the SPARC. For each
configuration/size/property for these tools, we calculated the ratio (Alpha Time)/(SPARC
Time). We then averaged these ratios and used the result (0.376) as the multiplication
factor. We use the original SPARC times when we build the predictive models and
convert to Alphatime after using the models to generate a predicted (SPARC) analysis
time. We also note that, because the SPARC has |ess memory than the Alpha, SPIN+PO
could run out of memory on the SPARC on an analysis run for which the Alphawould
have had sufficient memory.

7.2 Checking for Bias Statistically

Recall that we identified a number of ways in which we could inadvertently bias the
experimental results based on the program representation or property specifications we

used as input to thetools. Specifically, we suspected that the variable ordering in the
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SMYV input could introduce bias, that adding variables to check properties could introduce
bias against SMV, that modeling properties as assertions rather than never clamsin
PROMELA could bias the results for SPIN, and that the INCA input might introduce bias
because there are no accept bodies, because the tasks are uniquely specified, or because
the query was specified with two intervals rather than with additional inequalities. To
check for these biases, we executed the t-tests described in Section 6.2. Specifically, we
executed two sample t-tests to check the possibility of bias for each program/size/property
and paired sample t-tests to check for bias over al the programs, sizes and properties.

The symbolic model checking method implemented in SMV is sensitive to the size
of the OBDDs generated, which isin turn sensitive to the variable ordering presented in
the SMV input. To check if weintroduced bias against SMV with the variable ordering
inour SMV input, we ran the analysis cases both with and without the REORDER
option. Our null hypothesisis that analysis times without using the REORDER option
are equal to analysistimes using the REORDER option. For our aternative hypothesis,
we check whether analysis times using the REORDER option are smaller, because it
seems to us that this option should provide a performance improvement. Theresultisa
one-tailed test. For the two sample t-tests, in 146 cases we could reject the null
hypothesis (implying that using REORDER was significantly faster than not using
REORDER), in 99 cases the difference was not significant, and in 28 cases there was
statistically significant evidence that not using the REORDER option was faster than
using the REORDER option. For the paired sample t-test, the difference in analysistimes
using REORDER and not using REORDER were not statistically significant. This result
was surprising, but further investigation indicated that, on programs with aring structure
(such as cyclic, dining philosophers, and so on), using the REORDER option led to larger
anaysistimes. These larger analysis times reduced the significance of the other (smaller)
analysis times enough that we do not have sufficient statistical evidence to reject the null

hypothesis. Because the analysistimes are not significantly different, however, and
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because the two sample t-tests indicate that there are many cases in which using the
REORDER option yields smaller analysis times, the analysis timesincluded in the
models below are for SMV runs using the REORDER option.

We used two different styles for specifying and checking SMV properties -
embedding additional variables in the transition relation and checking properties based on
those values, and developing an aternate CTL specification (without adding additional
variables). We note that this choice only applies to some of the properties; many of the
properties can be checked without using additional variables. The properties for which
we use both styles are presented in Chapter 4. We only execute the t-tests for these
properties. Our null hypothesisis that analysis times using the additional variables are
equal to analysistimes using the alternate CTL specification. For our alternative
hypothesis, we check whether analysis times are statistically different (i.e., that they are
unegual). We selected this alternative because we did not have any preliminary insight
about which style would yield better performance. Theresult is atwo-tailed test, since
we are ssmply checking for adifference in analysistimes. For the two sample t-tests, in
42 cases we had statistically significant evidence that using the additional variables was
faster, in 14 cases the difference was not significant, and in 24 cases there was
statistically significant evidence that using the alternate CTL specification was faster than
using additional variables. For the paired sample t-test, we had statistically significant
evidence (p < 0.04) that using the additional variablesled to smaller analysis times.
These t-test results indicate that for these programs, sizes and properties using additional
variablesis faster than using the alternate CTL specifications. All SMV analysistimes
included in the models below are for SMV runs using additional variables (for those
properties on which this style is appropriate).

SPIN allows the user to specify properties as never claims or as assertions embedded
in the PROMELA program. We specified the properties as assertions to allow

comparison with the SPIN+PO results and as never claims to ensure we were not biasing
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our results against SPIN by using assertions. Our null hypothesisis that analysis times
using assertions are equal to analysistimes using never claims. For our alternative
hypothesis, we check whether analysis times are statistically different (i.e., that they are
unegual). We selected this alternative because we did not have any preliminary insight
about which form of property specification would yield better performance. Theresultis
atwo-tailed test. For the two sample t-tests, in 83 cases we had statistically significant
evidence that using assertions was faster, in 52 cases the difference was not significant,
and in three cases we had statistical evidence that using never clams was faster. For the
paired sample t-test, the difference between using never claims and assertions was not
statistically significant. Although using assertions was not statistically better than using
never claims, it was also not statistically worse. Thisindicates that we have not
introduced bias against SPIN by using assertions, but we must treat these results with
caution. Examination of the data indicates that, for some properties, using assertions to
check the property can yield significantly larger analysis times than using never clams.
Thisisaresult of our use of the -cO flag as described above. We therefore build
predictive models for both SPIN using never claims and SPIN using assertions.

There are several areas where our methodology could introduce bias against INCA.
To check for these biases, we executed anaysis runs for inputs with and without accept
bodies, for inputs consisting of unique tasks and aso with arrays of tasks, and, for some
properties, with both a query with multiple intervals and a query with asingle interval and
an additional inequality.

For the two sample t-test for inputs with and without accept bodies, in 13 cases we
had statistically significant evidence that inputs without accept bodies yield smaller
analysistimes, in 123 cases the difference was not statistically significant, and in 11 cases
we had statistical evidence that using accept bodies was faster. For the paired samplet-
test, the difference between the analysis times with and without accept bodies was not

statistically significant. These results indicate that we have not introduced bias against
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INCA by not using accept bodies. For the two sample t-test for inputs containing unique
tasks compared to inputs containing arrays of tasks, in 66 cases we had statistically
significant evidence that using unique tasks was faster, in 160 cases the difference was
not statistically significant, and in four cases we had statistically significant evidence that
using arrays was faster. For the paired sample t-test, the difference between the analysis
times using the unique tasks and the times including these tasks in the array was not
statistically significant. These results indicate that we have not introduced bias against
INCA by specifying unique tasks rather than arrays of task. For the two sample t-test for
inputs using multiple intervals as opposed to an additional inequality, in 23 cases we had
statistically significant evidence that using multiple intervals was faster, in 3 cases the
difference was not statistically significant, and in 32 cases we had statistical evidence that
using the additional inequality was faster. For the paired sample t-test, the difference
between the analysis times using multiple intervals as opposed to an additional inequality
was not statistically significant. These results indicate that we have not introduced bias
against INCA by using multipleintervals. The analysistimesincluded in the models
below are for INCA input with no accept bodies, unique tasks, and properties specified
using multiple intervals rather than additional inequalities (where appropriate).

7.3 Experimental Data

The data from our experiment is too voluminous to provide here; it is, however,
available from the author. Analysis times ranged from hundredths of seconds to several
hours. All thetools failed on someruns, and all the tools generated some spurious
results. Counts of failure and spurious results are provided explicitly in Sections 7.6 and
7.7, respectively.

It isinstructive to consider briefly the input domain in terms of the metrics described
in Chapter 5. The predictive models are likely to provide more predictive power within
the domain in which they were developed. A user of the predictive models may thus be

able to gain additional insight into the accuracy of the predictions through comparison of
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the metrics for the program and property to be analyzed and the input domain of the

experiment. Statistical summaries of the program and property metrics are provided in

Tables 7.1 and 7.2. In the tables, we provide the minimum and maximum values for each

metric to indicate the range of that metric's values. We provide the median, which isthe

middle value in the data, the mean, and the standard deviation to provide insight into the

shape of the distribution of the metric's values.

Table 7.1. Program Metric Data for Experiment

Mimimum Maximum Median Mean Std. Deviation

T 3 61 9 13.03 11.08
C 2.08 19.00 35 5.19 4,23
MaxC 4 120 6 14.22 19.24
Alpha 0 87 0 9.10 17.72
Alpha 0 5.72E+07 0 1.00E+06 7.36E+06
Beta 0 84 9 15.57 17.83
Beta 0 2.81E+14 44 7.06E+12 4 41E+13
Gamma 0 171 13 24.67 32.79
Gamma 0 2.81E+14 44 7.06E+12 4 41E+13
Cnd 0 171 13 24.67 32.79
Cnd' 0 1.85E+08 32 6.92E+06 3.22E+07
Cif 0 5.69E+09 0 5.74E+07 5.27E+08
N 2.33 212.22 4.39 14.79 33.90
MaxN 3 1814 11 82.97 273.06
TRANS 3.00 1129.67 10.04 54.61 135.83
MaxTRANS 4 10045 40.50 532.87 1466.43
WFSA 3.56 1.39E+21 6118.33 2.21E+19 1.71E+20
TN 3.08 20.78 475 6.87 5.00
MaxTN 5 121 7.50 16.32 20.25
TE 3.68 89.78 7.43 14.62 16.71
MaxTE 5 672 20 61.73 114.25
WTIG 7.02 1.39E+21 5156.35 2.32E+19 1.79E+20
Cgt 5 631 40 76.22 104.02
SMV St 7 1910 57 140.01 285.12
SMVTr 5 10087 98 580.58 1457.09
Vars 0 24 0 2.05 4,37

Table 7.2. Property Metric Data for Experiment
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Mimimum Maximum Median Mean Std. Deviation
QRE Alphabet 3 89 5 11.68 14.87
QRE States 3 5 4 3.87 0.66
QRE Trans 1 265 13 27.32 37.83
Query Events 2 13 2 2.81 2.08
Query Intervals 1 2 1 1.16 0.37
Never States 3 6 3 3.23 0.61
Never Trans 4 10 4 4.45 1.22
Assertions 1 20 2 3.19 4.82
Assignments 1 34 4 5.39 7.67
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7.4 Anaysis Time Comparisons

In this section we present the results of the analysis time comparisons, both when
analysis time is measured from the native input of each tool and when total analysistime
IS measured.

7.4.1 Native Input Analysis Times

In this section, we provide a comparison of the analysis times starting with the native
input specification for each tool. We begin with a comparison of the mean analysis times
for the tools, shownin Table 7.3. We also provide standard deviations to show how
much the data varies and medians to give some insight into how much outliers affect the
mean.

Table 7.3. Mean Native Input Analysis Times

Deadlock Other Properties
Mean Std Dev Median Mean Std Dev Median
SPIN, Never Claims 37.95 255.93 0.33 65.34 342.29 0.87
SPIN, Assertions - - - 55.58 304.71 0.85
SPIN+PO 10.65 51.11 0.18 37.13 155.11 0.51
TRACC 13.12 13.38 6.88 18.94 37.20 4.51
SMV 106.31 534.08 0.75 46.09 202.47 1.02
INCA 40.97 209.39 2.86 11.40 30.29 2.56
FLAVERS - - - 333.68 1006.66 45.58

For checking deadlock, SPIN+PO has the smallest mean analysis time, followed by
TRACC. We must use this result with caution, however, because TRACC detects
spurious deadl ocks much more often than the other tools. Because TRACC terminates
the analysis on detection of the spurious deadlock, the TRACC analysis times are reduced
because of the inaccurate results. SPIN and INCA provide approximately equivalent
mean analysis times checking for deadlock. For checking other properties, INCA,
TRACC, and SPIN+PO have the lowest mean analysistimes. Aswith deadlock, the
TRACC anaysistimes are small due to detection of spurious property violations. In
addition, because TRACC failson relatively small sizes of all the programs, there are no

large analysis times that act as outliers.
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We note that many of the standard deviationsin the table are very large. This
indicates that there are large amounts of variability in the analysis times for most of the
tools. We aso note that the median values are significantly |ess than the means, in some
cases severa orders of magnitude smaller. We view this as an indication that outliers are
having a significant effect on the mean analysis times. We therefore consider an alternate
approach for analysis time comparison.

Another way to compare the analysis timesis by counting the number of cases for
which each tool had the fastest analysis time and comparing these counts. The results are
provided in Table 7.4.

Table 7.4. Fastest Case Counts, Native Input Analysis Time

Deadlock Other Properties
SPIN, Never Claims 28 23
SPIN, Assertions - 24
SPIN+PO 47 25
TRACC 0 0
SMV 40 66
INCA 9 49
FLAVERS - 2

For checking deadlock, SPIN+PO and SMV provide the largest number of cases for
which they yield the fastest analysis times. We note that SMV had the largest mean
analysistime for checking deadlock, so this comparison technique yields significantly
different results from a mean analysis time comparison. For checking other properties,
SMV and INCA provide the largest number of cases for which they yield the fastest
analysis times.

These results must be considered with care, however. Because we restricted the
maximum size of each program based on the tool that performs worst on that program,
some of the other tools may be able to scale to much larger sizes of that program. The
above table a so does not show the magnitude of differencein analysistimes. For
example, atool might not have the fastest analysistime for a particular case, but the

analysis time for that tool on that case might only be 0.01 seconds longer than the fastest
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time. Thisdifferenceis probably not significant to the anayst, but is reflected in the
countsin the table.

Asdiscussed in Chapter 3, we believe that smply counting the fastest cases for each
tool might bias the results against atool that consistently does well but is seldom the
fastest. We propose using the average ranking for each tool for the comparison; these
average rankings are provided in Table 7.5.

Table 7.5. Average Rankings, Native Input Analysis Time

Deadlock Other Properties
SPIN, Never Claims 211 3.07
SPIN, Assertions - 2.59
SPIN+PO 1.85 2.73
TRACC 4.60 6.00
SMV 2.23 2.15
INCA 3.31 3.27
FLAVERS - 4.99

For checking deadlock, SPIN+PO, SPIN, and SMV have the best average rankings.
Note that SPIN had significantly fewer fastest analysis cases than SMV, but it hasa
slightly better average ranking than SMV. For checking other properties, SMV, SPIN
using assertions, and SPIN+PO have the best average rankings. Although INCA hasthe
second largest number of fastest analysis cases, it has the fifth best average ranking.
7.4.2 Tota Analysis Times

To gain more insight into the true cost of using these tools to analyze Ada programs,
we aso collected timing information for all the trandlation steps in the analysis process
and for the compilation of the PROMELA programs. We then recalcul ated the total
analysis times for each tool, including al times from input of the Ada program to output
of the analysis results.

We first compare the mean analysis times for each tool. Thesetimes are provided in
Table 7.6. For checking deadlock, TRACC has the smallest mean analysistime, followed
by SPIN+PO and INCA. We note (again) that the mean analysistimesfor TRACC are

low because of its detection of spurious deadlocks. For checking other properties,
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TRACC, INCA, and SMV have the lowest mean analysistimes. As discussed above,
TRACC anaysistimes are small because spurious results and a large number of failures.

Table 7.6. Mean Total Analysis Times

Deadlock Other Properties
Mean Std Dev Median Mean Std Dev Median
SPIN, Never Claims 71.35 282.03 25.95 101.86 365.47 27.67
SPIN, Assertions - - - 89.34 326.72 27.37
SPIN+PO 57.49 66.33 35.22 84.79 161.38 40.86
TRACC 23.33 18.56 14.67 25.17 37.65 11.03
SMV 133.23 537.63 21.72 76.00 208.89 26.56
INCA 60.48 211.32 20.92 31.94 33.69 21.90
FLAVERS - - - 344.82 1010.50 55.25

When we use the means from the total analysis times rather than from the native
input analysis times, we find that SPIN and SPIN+PO do not provide as good
performance relative to the other tools. The analysistimesfor SPIN and SPIN+PO are
increased both by the conversion of the Ada program to PROMELA and by the
compilation of the generated C program.

Aswith the native input analysis times, the standard deviations in the table are very
large. Thisindicates that there are large amounts of variability in the analysis times for
most of the tools. We also note that the median values are significantly less than the
means, though this difference is not nearly as pronounced as it isfor native input analysis
times. The difference still provides evidence, however, that outliers are having a
significant effect on the mean analysis times.

Because we believe that a comparison of average rankings provides a more
meaningful comparison than counts of the fastest cases for each tool, we next consider
these rankings. The average rankings are provided in Table 7.7.

For checking deadlock, INCA, TRACC, and SMV provide the best average rankings.
For checking other properties, these same three tools provide the best average rankings.
TRACC rankings are better than we would expect because of the large numbers of

spurious results and failures for TRACC.
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Table 7.7. Average Rankings, Total Analysis Time

Deadlock Other Properties
SPIN, Never Claims 3.21 4.16
SPIN, Assertions - 3.43
SPIN+PO 4.08 5.15
TRACC 1.89 3.17
SMV 1.99 211
INCA 1.71 1.43
FLAVERS - 4.28

The most noticeable difference between these results and those for native input
anaysistimesisthat INCA moves from the fourth best average ranking to the best
average ranking for checking deadlock and from the fifth best average ranking to the best
average ranking for checking other properties. One reason for thisisthat the time for
building the FSAs for the program isincluded in INCA's native input analysis time but is
not included in the SPIN, SPIN+PO, or SMV native input analysis times, even though the
FSAs must be built to generate the input for these tools. Because this time is often non-
trivial, including it in the total analysistime for all the tools has a noticeable effect. Also,
the time to compile the C programs generated by SPIN and SPIN+PO has an adverse
affect on the average rankings for these tools.

7.5 Failure Comparisons

The counts and percentages of failures for each tool are provided in Table 7.8. Note
that the total number of cases for TRACC islessthan for the other tools. Because the
current implementation of TRACC only alows modeling boolean variables, we could not
model the variablesin 48 of the cases. Also, because it is necessary to write a separate
program for each property TRACC checks and because we had preliminary indications
that TRACC isnot aviable static analysis tool, at least compared to the othersin the
experiment, we only checked some of the non-deadlock properties using TRACC.

Asthe table indicates, the TRACC tool had the worst failure percentages by far,
followed by SPIN+PO, which seemed to do better checking for deadlock as opposed to

checking other properties. This may be duein part to our use of the -c0 to check some of
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these propertiesin the presence of deadlock. The SPIN tool using assertions may have
experienced alarge number of failures for the same reason; using never claims seemed to
be more effective, at least in the context of failures. SMV and FLAVERS had a small
number of failures, and INCA was the best tool for avoiding failures, with only 1 failure
out of 300 cases.

Table 7.8. Counts for Failures

Not Failure Failure Total % Failures

SPIN, Never Claims

Deadlock 105 15 120 125

Other Properties 149 31 180 17.2
SPIN, Assertions

Other Properties 141 39 180 21.7
SPIN+PO

Deadlock 110 10 120 8.3

Other Properties 146 34 180 18.9
TRACC

Deadlock 45 27 72 375

Other Properties 18 30 48 62.5
SMV

Deadlock 109 11 120 9.2

Other Properties 167 13 180 7.2
INCA

Deadlock 119 1 120 0.8

Other Properties 180 0 180 0.0
FLAVERS

Other Properties 167 13 180 7.2

7.6 Spurious Result Comparisons

We provide the counts and percentages of spurious results for each tool in Table 7.9.
We note that the table only includes analysis runs that did not fail, since these runs do not
provide any results.

Asthetable indicates, TRACC analyses clearly yield the largest percentage of
spurious results, followed by FLAVERS and INCA checking for deadlock. SPIN,
SPIN+PO, and SMV provide nearly equivalent percentages of spurious results checking
for deadlock. Using SPIN with assertions or SPIN+PO provides the smallest percentage

of spurious results for checking properties other than deadl ock.
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Table7.9. Countsfor Spurious Results

Not Spurious Spurious Total % Spurious

SPIN, Never Claims

Deadlock 70 35 105 333

Other Properties 128 20 148 13.5
SPIN, Assertions

Other Properties 130 11 141 7.8
SPIN+PO

Deadlock 72 38 110 345

Other Properties 134 12 146 8.2
TRACC

Deadlock 6 39 45 86.7

Other Properties 13 5 18 27.8
SMV

Deadlock 75 34 109 31.2

Other Properties 150 17 167 10.2
INCA

Deadlock 65 54 119 454

Other Properties 157 23 180 12.8
FLAVERS

Other Properties 78 83 161 51.6

Because the table includes all analysis runs that do not fail, it also includes cases for
which aspurious result isimpossible. For example, if aproperty isin fact violated in a
given program (no_rlw in our readers/writers program, for example), a spurious result is
not possible. If atool answers that the property is violated, thisis an accurate result. If a
tool answers that the property is not violated, thisis not a spurious result, it is an
indication that the analysisis not conservative. We did not have any cases for which a
tool was not conservative, but in 18 of the 300 cases (6%) a property violation occurs and
spurious results are therefore not possible. These cases are counted as accurate resultsin
the table above and the logistic regressions that follow.

7.7 Successful Analysis Case Comparisons

Because the failure and spurious result percentages are calculated for a different
number of cases for each tool, it is difficult to immediately discern the percentage of
successful analysis cases for each tool. We define a successful analysis cases as a case
that runs to completion (does not fail) and yields the correct answer (does not give a

spurious result). The results of these calculations are provided in Table 7.10.
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Table 7.10. Successful Analysis Percentages

Failure Spurious | Successful Tota % Successful

SPIN, Never Claims

Deadlock 15 35 70 120 58.3

Other Properties 31 20 129 180 71.7
SPIN, Assertions

Other Properties 39 11 130 180 72.2
SPIN+PO

Deadlock 10 38 72 120 60.0

Other Properties 34 12 134 180 74.4
TRACC

Deadlock 27 39 6 72 8.3

Other Properties 30 5 13 48 27.1
SMV

Deadlock 11 34 75 120 62.5

Other Properties 13 17 150 180 83.3
INCA

Deadlock 1 54 65 120 54.2

Other Properties 0 23 157 180 87.2
FLAVERS

Other Properties 13 83 84 180 46.7

For checking deadlock, SMV and SPIN+PO have the highest successful analysis
percentages, though all of the tools except TRACC arein afairly small (8%) range. For
checking other properties, INCA and SMV have significantly better successful analysis
percentages than the rest of the tools. The percentages for SPIN using never claims, SPIN
using assertions, and SPIN+PO are within 3% of each other. The percentage for
FLAVERS issignificantly lower than most of the other tools, and TRACC has the worst
percentage by far.

7.8 Preprocessing the Data

High linear correlation between our predictor variables (i.e., the metrics) can cause
numerical stability problemsin both linear and logistic regression. Before applying these
regressions, we preprocess our data to remove collinear variables. To gain some
assurance that we are not removing too many variables, we conduct randomization tests
to check the null hypothesis that variable pairs are collinear by chance. We then select
which variables to elide from the models based on collinearity, and use the remaining

variablesin the regressions.
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We begin the preprocessing of the data by cal cul ating the pairwise Pearson's
correlation coefficient for each pair of program metrics and for each pair of property
metrics. For metrics pairsin which the magnitude of the coefficient is greater than 0.75,
we run arandomization test on that pair as described in Section 6.3. In al such cases, we
can reject the null hypothesis (with p < 0.001) that the two metrics are actually not
linearly correlated.

Based on these results, we build sets of collinear variables and select which variables
to elide from the regression models. The selection of the single variable to include from
each set is somewhat arbitrary and should not affect the results of the regressions, but we
tend to select variables that are measures of the program rather than the internal
representations, or internal representation measures that correspond to the FSASs rather
than the TIGs. We believe that this guideline for variable selection will lead to more
intuitive predictive models. The resulting sets of collinear variables, and the variables we
select for inclusion in the regression models, are shown in Table 7.11.

Table 7.11. Collinear Sets of Metrics

Set of Collinear Metrics Selected Metric
{ N, MaxN, TRANS, TE, MaxTE, Cgt } N
{C, Alpha, Gamma, Cnd, TN } C
{ Cnd', Beta, Gamma } Cnd'
{ Cnd, Beta, Gamma} Beta
{ TRANS, MaxTRANS, SMV Trans} MaxTRANS
{ MaxC, MaxTN } MaxC
{ WFSA, WTIG } WFSA
{T} T
{ Vars} Vars
{ Alpha' } Alpha
{ Cif} Cif
{ QRE Alphabet, QRE Trans} ORE Alphabet
{ Never States, Never Trans} Never States
{ Assertions, Assignments } Assertions
{ QRE States} ORE States
{ Query Events} Query Events
{ Query Intervals} Query Intervals
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7.9 Predictive Models for Analysis Time

We use linear regression to build the predictive models for analysis time, where
anaysis time is measured from the native input for each tool. Because analysistimeis
not meaningful for those analysis cases that failed, the regression only includes analysis
cases that did not fail. We would expect an analyst to use the predictive models for
failure first to check whether or not the analysis will fail, then use the predictive models
for analysistimeif the analysisis not predicted to fail. Because most of the tools provide
automatic checking for deadlock (or, for INCA, a"pre-canned” query), the property
metrics are not meaningful for checking deadlock. We therefore generate two models for
each tool - one for deadlock, using only the program metrics as independent variables,
and one for the other properties, using both the program and property metrics as
independent variables.

As described in Chapter 6, we use four different linear regression methods for each
model. The methods are the enter method, backward elimination, forward selection, and
stepwise regression. Because the R2 value quantifies how much of the variance in the
datais captured by a specific model (with an R2 greater than 0.800 indicating a good fit),
we use this value as one of our primary considerations when choosing between the
models. The R2 values for each of the linear regressions are provided in Table 7.12.
More detailed examination of each model is provided in the following sections. The
selected models for analysis time, failures, and spurious results are provided in the
Appendix.

7.9.1 SPIN, Never Claims

This section provides the results of our linear regressions for analysis runs using
SPIN with properties specified using never claims. Although checking for deadlock does
not actually require a never claim, we include it here rather than with the assertions; this

choiceis arbitrary, since assertions are not used to check for deadlock either.
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Table7.12. R2 Vauesfor Analysis Time Models

Enter Backward Forward Stepwise
Method Elimination Selection Regression

SPIN, Never Claims

Deadlock 0.415 0.387 0.387 0.387

Other Properties 0.350 0.333 0.333 0.333
SPIN, Assertions

Other Properties 0.468 0.452 0.426 0.426
SPIN+PO

Deadlock 0.218 0.178 0.156 0.156

Other Properties 0.128 0.052 0.052 0.052
TRACC

Deadlock 0.955 0.951 0.951 0.951

Other Properties 0.999 0.998 0.996 0.996
SMV

Deadlock 0.176 0.109 0.109 0.109

Other Properties 0.223 0.178 0.076 0.076
INCA

Deadlock 0.572 0.537 0.537 0.537

Other Properties 0.902 0.897 0.897 0.897
FLAVERS

Other Properties 0.960 0.958 0.959 0.957

7.9.1.1 Predictive Model for Deadlock

The results of the linear regressions indicate that for SPIN checking for deadlock, the
Cnd' (a measure of nondeterminism in the program) and MaxTRANS (the maximum
number of transitions in the set of FSAs for the program) metrics have the largest effect
on analysistime. We see evidence of this both in the coefficients from the enter method,
where these two metrics have the largest coefficients, and from the fact that the other
methods excluded all but these two metrics from their models. We aso note that the
backward elimination, forward selection, and stepwise regression methods all generated
the same model. Thisis not aways the case, but is not uncommon.

Although there are no indications of numerical instability or overfitting (i.e.,
extremely large coefficients or standard errors) in the enter method model, we select the
model generated by the other methods instead. The RZ value for these modelsis only
slightly smaller than the R2 for the enter method model (representing a 7% reduction),

and the inclusion of significantly fewer variables may make the model slightly more

157



general. The R2 value of 0.387 indicates that the model does not fit the experimental data
very well, which in turn impliesthat it probably will not provide much predictive power
for real programs either.

Aswe reviewed the selected model, we noted that the predicted values of analysis
time can be negative; this occurs because the regression ssmply performs aleast-squares
fit to the data without considering the "meaning” of time. While a negative predicted
time has no practical meaning, it could still be used for comparison to the (potentially
negative) predicted analysis times for the other tools. Unfortunately, once atool was
selected, a negative predicted anaysis time would give no insight into how long the
analysis might actually take.

To check our assumptions about the errors (i.e., residuals) in the model (see Section
6.5.2), we plot the standardized residuals against the predicted analysis times. Example

plots are shown in Figures 7.1 and 7.2.

2000
104
o

1000 ¥

105
[l nnﬁju o
o o

ms—d

103
o
-1000

-100000000

100000000 200000000

o

CndPRIME
Figure 7.1. Plot of Standardized Cnd' Residuals vs Predicted Time
The plot of standardized MaxTRANS residuals seems to support our assumptions
about the residuals, because the residual s appear to be scattered randomly about the O line
(with the exception of the outliers, discussed below). The plot of standardized Cnd'
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residuals, however, seems to indicate that thereis an additional linear effect of Cnd' that
has not been included in the model. This could occur because of an error in the analysis
software (unlikely, given the maturity of the SPSS software) or, more likely, an indication
that additional cross-product terms (i.e., terms of the form xixJ') would lead to a better
model. Asstated in Chapter 6, our analysis stops at recognition of this problem - we do

not add cross-product terms or use other more advanced regression techniques.

2000
104
a

1000 o

ot h:—-nu og

E 105 103
o

-1000 - - - -
-6000 -4000 -2000 0 2000 4000

MaxTRANS
Figure 7.2. Plot of Standardized MaxTRANS Residuals vs Predicted Time

We have identified several outliersin the residual plots above. These are marked as
analysis cases 103, 104, and 105. These cases correspond to checking for deadlock on the
readers/writers program with 12 readers and writers, modeling no variables (103), the
Writer variable (104), and both the Writer and Readers variables (105). These cases
include the largest values of Cnd' in the dataset, and the MaxTRANS values are well into
the upper quartile for the dataset. The analysistime for case 103 isin the upper quartile
of analysis times, case 104 yields the largest analysis time in the dataset, but the analysis
time for case 105 isfairly small. We do not exclude these outliers from our analysis,
since they may be more representative of real program properties than the other data

points, but believe thereis still some value in identifying them.
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Another technique for identifying outliersisto use the studentized residuals.
Threshold values for studentized residuals for various p values, numbers of observations
(casesin the dataset), and independent variables are included in [DW80]. The threshold
value for p < 0.05, 105 cases, and 11 independent variables is 3.42; any studentized
residual magnitude above this value represents an outlier. The only analysis cases in our
dataset with values above this threshold are cases 103 (-6.45), 104 (9.70), and 105 (-
4.08). We have therefore identified the same outliers using both informal examination of
the residual plots and the more formal studentized residual method.

7.9.1.2 Predictive Model for Other Properties

The results of the four regressions indicate that for SPIN using never claims and
checking properties other than deadlock, the MaxTRANS and Query Events (number of
eventsin the INCA query) metrics have the largest effect on analysistime.

The backward elimination, forward selection, and stepwise regression models are all
equivalent. We select the backward elimination model over the enter method model
because 13 variables are removed from the model at the cost of a 5% reduction in the R2
value. We note that the RZ value of 0.333 islow, and the model is therefore unlikely to
provide good predictive power.

In the interest of brevity, we do not provide the standardized residuals plots for any
of the remaining linear regressions; our technique for visually identifying higher order
trends and outliersis as demonstrated above. The plots for this model do not indicate any
problems with our assumptions about the distribution of the residuals.

From the plots of standardized residuals against predicted analysis times and the
studentized residuals, we identify cases 143 and 144 as outliers. These cases are for the
readers/writers program with 12 readers and writers, no variables (143) and the Writer
variable (144) modeled, checking the no_wi1w2 property. For case 143, the model
significantly overestimates the analysis time, since a (spurious) property violation is

found. For case 144, the model significantly underestimates the analysis time; we
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believe thisis ssimply aresult of a poor fit of the model to this point, which represents the
largest analysis time in the dataset.
7.9.2 SPIN, Assertions

This section provides the results of our linear regressions for analysis runs using
SPIN with properties specified using assertions. Because the regressions for checking for
deadlock were included in the previous section, we only include regressions for checking
other propertiesin this section.

The results of the four regressions indicate that for SPIN using assertions and
checking properties other than deadlock, the MaxTRANS and Query Events metrics have
the largest effect on analysis time.

We select the backward elimination model over the enter method model, since the
removal of 10 variables from the model only results in a3% reduction in the RZ value.
We do not select the forward selection or stepwise regression models because the
reduction in RZ is 9%, while only 4 more variables are removed than for the backward
elimination model. The RZ value of 0.452 indicates that the model is not likely to
provide much predictive power.

The plots of standardized residuals against predicted analysis times do not indicate
any higher-order effects; the residuals seem randomly scattered around the O line. From
these plots and the studentized residuals, we identify cases 137, 138, 139, and 140 as
outliers. These cases correspond to the readers/writers program with 12 readers and
writers. Case 137 checks no_wi1w?2 with only the Writer variable modeled; this case
yields the largest analysis time for SPIN using assertions. Case 138 checks no_wiw?2
with both variables modeled; despite the small value of MaxTRANS for this case, it takes
significantly longer than predicted. Cases 139 and 140 check no_r1w with the no
variables (139) and only the Writer variable (140) modeled. The value of MaxTRANS
for these casesis very large, but the actual analysistime is small because a property

violation is quickly detected.
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7.9.3 SPIN+PO

This section provides the results of our linear regressions for analysis runs using
SPIN+PO. The section includes a model for checking for deadlock and a model for
checking other properties.

7.9.3.1 Predictive Model for Deadlock

The results of the four regressions indicate that for SPIN+PO, checking deadlock, the
C (average number of communications per task), Alpha (a measure of nondeterminism),
Beta (another measure of nondeterminism), Cnd', and MaxTRANS metrics have the most
significant effect on analysistime. It isinteresting to note that, while the Cnd' metric has
arelatively large coefficient for the enter method model, it is not selected by any of the
more advanced regression techniques.

Again, there are no indications of numerical instability in the enter method mode!.
Because using the next best model (generated by the backward elimination method)
results in a reduction of almost 20% in the R2 value, we select the enter method model as
our predictive model. The reduction in the R2 valueis caused by the fact that, once the
backward elimination model contains three variables, none of the remaining variables has
asufficient effect on the predictions to be included in the model (recall our significance
threshold for adding additional variables to the model is 0.10). However, including all
these remaining variables, as the enter method model does, apparently allows the model
to capture more of the variance in the data. We note that we again have avery low RZ;
for SPIN+PO checking deadlock, our predictive model only accounts for slightly more
than 20% of the variance in our experimental data. Such aweak model is not likely to be
of practical use for predicting analysistimes for real programs.

The standardized residuals plots seem to indicate a missing linear term for both Cnd'
and MaxTRANS. We suspect that adding cross-product terms might help with this

problem.
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Analysis cases 59 and 105 appear to be outliers. The threshold value for the
studentized residuals in this dataset is 3.44. Only case 105 has a studentized residual
(9.23) above this threshold (the studentized residual for case 59 is2.94). Case 105isfor
the readers/writers program with 8 readers and writers and only the Writer variable
modeled. This generates avery large state space (with no deadlock possible), which in
turn yields the largest analysis time in the dataset.
7.9.3.2 Predictive Model for Other Properties

The results of the four regressions indicate that for SPIN+PO, checking properties
other than deadlock, the Beta, Vars, and QRE Alphabet (number of eventsin the QRE
alphabet) metrics have the largest effect on analysistime.

The backward elimination, forward selection, and stepwise regression models are all
equivaent. We select the enter method model as our predictive model, since using the
more advanced techniques results in areduction of 59% in the R2 value. This occurs
because all the variables but Alpha’ are eliminated from the backward elimination model
because the significance of their effectsisless than 0.10 when they are considered
individually. Similarly, Alpha isthefirst variable selected for inclusion by the forward
selection and stepwise regression techniques, and none of the other variables have
sufficient effect individually (threshold for adding variables is 0.05) to be included in the
model. Including all the variablesin the enter method model, despite the minimal
individual effects of each of them, resultsin amodel that captures a much larger (though
still small) portion of the variancein the data. The RZ value of 0.128 is very low,
indicating that thisis probably a very weak predictive model.

From the studentized residuals and plots of standardized residuals, we identify cases
8, 33, and 133 as outliers. All these cases have large analysis times (including the largest
for this dataset), and in all these cases we had to use the -c0 option to check the property
in the presence of deadlock. We believe this"unusual" configuration (we did not have to

use the -cO option most of the time) leads to the poor fit of the model to these points.
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7.9.4 TRACC

This section provides the results of our linear regressions for analysis runs using
TRACC. The section includes amodel for checking for deadlock and a model for
checking other properties. We point out that, because TRACC had such a high number of
failures and because we did not write custom property checkers for the majority of the
other properties, the datasets in this section are much smaller than those for the other
tools.

7.9.4.1 Predictive Model for Deadlock

The results of the four regressionsindicate that for TRACC, checking deadlock, the
T (number of tasks) and C metrics have the most significant effect on analysistime.

We select the backward elimination model as our predictive model, since it yields
only aslight reduction (less than 1%) in RZ over the enter method model while removing
six variables from the model. The forward selection and stepwise regression models are
equivalent to the backward elimination model. We note that our RZ value (0.951) is
much higher than we are typically finding in our regressions, and such a high value
implies that the model may provide good predictive power.

There appears to be amild linear component in the plot of the standardized T
residuals, but the other plots look like the random distribution of points around the O line
that we expect.

Analysis cases 17, 35, and 39 appear to be outliers. The threshold value for the
studentized residualsin this dataset is 3.11. Only case 17 has a studentized residual
(3.84) above thisthreshold. Case 17 isfor the dining philosophers with dictionary
program with six philosophers. For this case, the value of T isrelatively small, but the
analysistimeislarge.

7.9.4.2 Predictive Model for Other Properties

The results of the four regression indicate that for TRACC, checking properties other

than deadlock, the Wampler (FSA) metric has the greatest effect on analysistime. Itis
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interesting to note that the enter method model excludes some of the variables. These
variables are excluded because they are constant (or nearly so); essentially, they do not
have sufficient variance, given the size of the dataset (18 cases), to have an effect on the
regression.

We select the forward selection model (the stepwise regression model is equivalent)
as our predictive model. The reduction in RZ over the enter method model is less than
1%, and 12 variables are removed from the model. The RZ valueis very high (0.996),
indicating that this model may provide good predictive power.

There appears to be amild negative linear component in the plot of the standardized
Cnd' residuals and a stronger positive linear component in the plot of the standardized
Wampler (FSA) residuals. The other plots do not indicate any problems.

Using the studentized residuals and standardized residuals plots, we identify case 11
asthe only outlier. Some of the plots indicated that cases 2 or 6 might also be outliers,
but the studentized residuals for these cases were significantly less than the threshold.
Case 11 isfor the dining philosophers with host program with 3 philosophers and no
variables modeled. Both values of the Wampler (FSA) metric and the analysis time for
this case are relatively large, but only just in the top quartile, so it is not clear why this
case is not predicted well by the model.

7.95 SMV

This section provides the results of our linear regressions for analysis runs using
SMV. The section includes amodel for checking for deadlock and a model for checking
other properties. Because our statistical analysis above indicates that whether or not we
use the REORDER option has no statistically significant effect on analysis time, we build
the models below for runs using the REORDER option.
7.9.5.1 Predictive Moddl for Deadlock

The results of the four regressionsindicate that for SMV, checking for deadlock, the

C, Beta, N, and Vars variables have the largest effect on analysis time.
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We select the enter method model as our predictive model, because choosing any of
the other models would results in areduction of 38% in the R2 value. This reduction
occurs because only the Vars metric has a sufficient individual effect to be retained
(backward elimination) or added to (forward selection, stepwise regression) the model.
The combination of the effects of al the variables in the enter method model allowsiit to
capture more of the variance in the data. We note, however, that the RZ value for the
enter method model is very low, so the model is not likely to provide significant
predictive power.

From the studentized residuals and plots of the standardized residuals, we identify
cases 90 and 93 as outliers. We also initiadly identified case 21 as a potential outlier from
the plots, but the studentized residual for this caseiswell below the threshold. Case90is
for the ring program with 6 servers and masters and no variables modeled. Case 93 isfor
the ring program with 10 servers and masters and all 20 variables modeled. The values
for Cand N arefairly small for these cases, but the analysistimes are large. We believe
this occurs because the ring problem has the ring structure for which the REORDER
option does not tend to work well.

7.9.5.2 Predictive Model for Other Properties

The results of the four regressions indicate that for SMV, checking properties other
than deadlock, the N, MaxC, and Beta metrics have the largest effect on analysistime.

We select the enter method model as our predictive model; using the backward
elimination model would result in areduction of 20% in the R2 value, and using the
forward selection of stepwise regression models would result in areduction of 66% in
R2. The reduction for the backward elimination model occurs because the technique
eliminates 10 of the variables from the model because of their small individual effects.
The forward selection and stepwise regression techniques both select the N metric for
inclusion in the model, then do not include any other variables because they do not have

sufficient individual effects. The combination of all the variables in the enter method

166



model, however, captures more of the variance in the data. The R2 value of 0.223
implies that the model is unlikely to provide much predictive power.

The plots of the standardized residual s do not indicate any problems. From these
plots and the studentized residuals, we identify cases 16 and 135 asoutliers. Case 16is
for the cyclic program with 10 customer and scheduler tasks and no variables model ed,
checking no_c2ss. Thevalueof T for this caseisin the upper quartile but the value of n
isnot large, so the model significantly underestimates the analysistime. This case
represents the longest analysistime for SMV. Case 135 isfor the ring program with 10
servers and masters and al variables modeled, checking no_m1m2. This case represents
the second largest analysis time for SMV, and again the model significantly
underestimates the analysis time.

7.9.6 INCA

This section provides the results of our linear regressions for analysis runs using
INCA. The section includes amodel for checking for deadlock and amodel for checking
other properties. Our statistical analysis above indicates that whether we use arrays or
unique tasksis not statistically significant, whether or not accepts have bodies is not
statistically significant, and whether we use multiple intervals or use additional
constraintsis not statistically significant. We therefore build the models below for runs
using unigue tasks, no accept bodies (except where required by the program), and
multiple interval queries (where necessary).

7.9.6.1 Predictive Model for Deadlock

The results of the four regressionsindicate that for INCA, checking for deadlock, the
C and N metrics have the largest effect on analysis time.

We select the backward elimination model as our predictive model, sinceit yieldsa
fairly small reduction (6%) in R2 over the enter method model while removing nine

variables from the model. The forward selection and stepwise regression models are
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equivalent to the backward elimination model. We note that the RZ value (0.537) is
lower than our informal threshold for a good fit.

The plots of the standardized residual s do not indicate any problems. From these
plots and the studentized residuals, we identify cases 69 and 70 as outliers. We also
identified case 71 as an outlier from the plots, but the standardized residual for this caseis
well below the threshold. Cases 69 and 70 are for the gas station problem with 5
customers, without variables modeled (69) and with all variables modeled (70). The
valuesfor C and N are large for these cases. Case 69 detects a spurious deadlock, so the
observed analysistimeis significantly less than predicted. Case 70 represents the largest
INCA analysis time, and the effect of the other 118 cases causes the model to under-
predict this analysis time.
7.9.6.2 Predictive Model for Other Properties

The results of the four regressions indicate that for INCA, checking properties other
than deadlock, the MaxTRANS metric has the largest effect on analysistime.

The backward elimination, forward selection, and stepwise regression models are
equivalent. We select the backward elimination model over the enter method model as
our predictive model, because it removes 11 variables from the model and resultsin a
reduction of only 1% in the R2 value. The R2 value of 0.897 indicates that the model
may have strong predictive power.

The plot of the standardized MaxTRANS residuals demonstrates a moderate linear
component that is not accounted for by the model. The other plots did not provide any
evidence of problems.

From the studentized residuals and plots of standardized residuals, we identify cases
101 and 103 as outliers. These cases are for the gas station program with 6 customers and
no variables modeled, checking no_c1c2 (101) and no_c1p2 (103). The vauesfor
MaxTRANS are very large for these cases, as are the analysis times, but the effects of the

other 178 points in the regression cause the model to significantly overestimate the
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anaysistime for case 101 and to significantly underestimate the analysis time for case
103.
7.9.7 FLAVERS

This section provides the results of our linear regressions using FLAVERS. Because
FLAVERS does not currently support checking for deadlock, we only include regressions
for checking other propertiesin this section.

The results of the four regressions indicate that for FLAV ERS, checking properties
other than deadlock, the C, MaxC, and Alpha metrics have the largest effect on analysis
time.

We select the stepwise regression model over the others as our predictive model. It
removes the most variables (9) from the model, and has an R2 value less than 1% smaller
than the R2 value for the enter method. The R2 value of 0.957 implies that this model
may provide strong predictive power.

The plot of the standardized C residuals indicates a moderate linear component not
accounted for by the model and the plot of the standardized Alpha residualsindicates a
stronger linear component. The other plots do not indicate any problems.

Using the studentized residuals and plots of standardized residuals, we identify cases
112, 114, and 116 as outliers. Cases 112 and 114 are for the memory management
program with 5 users and all variables modeled, checking no_ulu2 (112) and no_sdula
(114). Case 116 isfor the memory management program with 6 users and all variables
modeled, checking no_ulu2. The values of the C and Alpha metrics are very high for
these cases, as are the analysis times, but the effect of the other 158 cases cause a poor fit
to these cases.

7.10 Predictive Models for Failures

We use logistic regression to build the predictive models for failure. The regression
(obvioudly) includes all analysis cases, both those that did and did not fail. As discussed

above, the property metrics are not meaningful for checking deadlock. We therefore
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generate two models for each tool - one for deadlock, using only the program metrics as
independent variables, and one for the other properties, using both the program and
property metrics as independent variables.

As described in Chapter 6, we use three different logistic regression methods for each
model. The methods are the enter method, backward elimination, and forward selection.
Because the deviance quantifies how much of the variance in the datais captured by a
specific model (with asmaller deviance indicating a better fit), we use this value as one of
our considerations when choosing between the models. We believe the percent of the
predictions by the model that are correct to be an even more important consideration, so
we provide these values aswell. The deviance and percent correct values for each of the
logistic regressions are provided in Table 7.13. More detailed examination of each model
is provided in the following sections.

Table 7.13. Deviances and Percents Correct for Failure Models

Enter Method Backward Elimination Forward Selection
Deviance | % Correct | Deviance | % Correct | Deviance | % Correct

SPIN, Never Claims

Deadlock - - - - 33.993 95.83

Other Properties 50.093 95.56 51.535 94.44 57.540 94.44
SPIN, Assertions

Other Properties 81.298 89.44 82.311 90.00 63.634 91.67
SPIN+PO

Deadlock 6.819 98.33 6.819 98.33 22.565 97.50

Other Properties 24.719 98.89 25.493 98.33 48.404 94.44
TRACC

Deadlock - - - - 64.567 84.72

Other Properties - - - - - -
SMV

Deadlock 25.614 95.83 25.765 95.83 59.654 93.33

Other Properties - - - - 65.580 96.11
INCA

Deadlock - - - - 3.450 98.33

Other Properties - - - - - -
FLAVERS

Other Properties - - - - 3.450 99.44

Aswe tried to run these regressions, we often encountered numerical problems,

especialy with the enter and backward elimination methods. We do not have sufficient
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statistical analysis experience to determine what caused these numerical problems, but we
developed a process that worked around them in most cases. When we encountered
numerical problems as we were building amodel for deadlock, we simply selected one of
the models that was successfully created. When we encountered numerical problems as
we were building amodel for the other properties, we removed the property metrics from
the regression; this often solved the problem.

7.10.1 SPIN, Never Claims

This section provides the results of our logistic regressions to predict failure of
anaysisrunsusing SPIN with never claims. Asfor the predictive models for analysis
times, we include deadlock in this section as well.

7.10.1.1 Predictive Model for Deadlock

We had numerical problems using the enter and backward elimination methods on
this dataset. The results of the forward selection regression indicate that, while the Alpha
and Cif (information flow) metrics are included in the model, the N (average number of
FSA states) metric has the strongest influence.

Although the coefficients and deviance for the predictive model are of statistical
interest, more insight about the predictive power of the model can be gained through
consideration of aclassification table of predicted vs observed failures. Such atableis
provided in Table 7.14. A "0" row or column in the table indicates no failure, and a"1"
row or column indicates afailure. This table shows that, for the 105 anaysis cases that
did not fail, the predictive model predicts that 104 will not fail and 1 will fail. Of the 15
analysis cases that did fail, the predictive model predictsthat 4 will not fail and that 11
will fail. Overall, the predictive model predicts 95.83% of the analysis cases correctly,
and thus will hopefully provide good predictive power for real programs as well.

For our residua analysis, we plot the standardized residuals against the failure

variable; the resulting plot is shown in Figure 7.3. We originally plotted the standardized
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residuals against the predicted failures, but it was more difficult to detect potential
outliersin the resulting plot.

Table 7.14. SPIN Failure Classification Table for Deadlock

Predicted Percent
0 1 Correct
Observed
0 104 1 99.05 %
1 4 11 73.33%

Overdll : 95.83 %
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Figure 7.3. Plot of Standardized Residuals vs Failures
We identify the residuals associated with analysis cases 43, 46, 47, and 102 as
outliers. The SPSS software also identifies these four points as outliers, using a threshold
value of 2.00 on the studentized residuals. These cases are for the dining philosophers
with fork manager program with: 6 philosophers, no variables modeled (43), 7
philosophers, no variables modeled (46), and 7 philosophers with only fork_2 modeled
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(47), and for the size 12 ring program with all variables modeled (102). These casesal
have afairly low value of n, but all 4 casesfailed.

7.10.1.2 Predictive Model for Other Properties

We had numerical problems with the enter method and backward elimination
regressions when we included the property metrics, so we perform these regressions
including only the program metrics. The results of the three regressions indicate that for
SPIN using never claims and checking properties other than deadlock, theCand T
metrics have the largest effect on whether or not the analysis will fail.

We select the enter method model as our predictive model because it provides the
highest percent correct value; the classification table for this model is shown in Table
7.15.

Table 7.15. SPIN, Never Claims, Failure Classification Table

Predicted Percent
0 1 Correct
Observed
0 147 2 98.66 %
1 6 25 80.65 %

Overal : 95.56 %

In the interest of brevity, we do not provide the plots of the standardized residuals
against failures for this or any of the following logistic regressions; our outlier analysisis
as described above. From the standardized residuals plot, we identify cases 9, 13, and 17
as outliers; SPSS identifies the same set of cases. These cases are for the cyclic program
checking no_c2ss with no variables modeled for sizes 6 (9), 8 (13), and 10 (17). For
these cases, C and T are close to their mean values, but all three casesfail. We note that
we had to use the -c0 option for these cases to check no_c2ss in the presence of deadlock,

and suspect this contributed to the failures.
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7.10.2 SPIN, Assertions

This section provides the results of our logistic regressions to predict failure of
analysisruns using SPIN with assertions. Because the regressions for checking for
deadlock were included in the previous section, we only include regressions for checking
other propertiesin this section.

We had numerical problems with the enter method and backward elimination
regressions when we included the property metrics, so we perform these regressions
including only the program metrics. The results of the three regressions indicate that for
SPIN using assertions and checking properties other than deadlock, the C and
NeverStates (the number of states in the never claim) have the largest effect on whether
or not the analysis will fail.

We select the forward selection model as our predictive model, since it provides the
best percent correct value. The classification table for thismodel is shown in Table 7.16.
Degspite the fairly high overall percent correct, this model incorrectly predicts successful
anaysisrunsfor 10 of the cases that actualy fail.

Table 7.16. SPIN, Assertions, Failure Classification Table

Predicted Percent
0 1 Correct
Observed
0 136 5 96.45 %
1 10 29 74.36 %

Overal : 91.67 %

Examination of the standardized residuals plot indicates that cases 30 and 65 are
outliers. The SPSS software also identifies cases 31 and 144 as outliers. Case 30 isfor
the dac program with 40 solvers, checking no_s3f. The NeverStates valueis large enough
that the predictive model predicts failure, but the case actually completes successfully,

Case 31 isfor the dac program with 50 solvers, checking no_s1js3j. The values of C and
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NeverStates are small, so the model predicts successful completion, but the case fails
because the generated C program can not be compiled. Case 65 isfor the dining
philosophers with fork manager program with 6 philosophers and no variables model ed,
checking no_p1p2, and case 144 isfor the ring program with 12 servers and masters and
all variables modeled, checking no_m1m2. For both these cases, the values of C and
NeverStates are small enough that the model predicts successful completion, but the cases
actualy fail.
7.10.3 SPIN+PO

This section provides the results of our logistic regressions to predict failure of
anaysis runs using SPIN+PO. The section includes amodel for checking for deadlock
and amodel for checking other properties.

7.10.3.1 Predictive Model for Deadlock

The results of the three regressions indicate that for SPIN+PO, checking for
deadlock, the Betaand N metrics have the largest effect on whether the analysis case will
fail.

Because some of the coefficients are very large in the enter and backward elimination
models, we need to investigate further for numerical problems. Specifically, these
coefficients may indicate an overfitting of the model to the data. Thisinferenceis
supported by the fact that the standard error of several of the coefficientsis very large.
We therefore regject the enter and backward elimination models as overfitted, and select
the forward selection model as our predictive model.

The classification table of predicted against observed failuresis shown in Table 7.17.
Although the classification tables for the other models indicate 98.33% correct
predictions, we accept the slight decrease in predictive accuracy to gain numerical
stability in the model.

In our examination of the plot of the standardized residuals we identify cases 46, 116,

and 118 as outliers. The SPSS software identifies cases 46 and 118 as outliers. Case 46
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isfor the dining philosophers with fork manager problem with 7 philosophers and no
variables modeled. The predictive model does not predict failure for this case because N
and Beta are small, but the case actually fails. Case 118 isfor the readers/writers problem
with 12 readers and writers and no variables modeled. The predictive model predicts
failure for this case because Betais large, but the case does not fail (deadlock is detected).

Table 7.17. SPIN+PO Failure Classification Table for Deadlock

Predicted Percent
0 1 Correct
Observed
0 109 1 99.09 %
1 2 8 80.00 %

Overadll : 97.50 %

7.10.3.2 Predictive Moddl for Other Properties

The results of the three regressions indicate that for SPIN+PO, checking properties
other than deadlock, the C and QREAIpha (number of eventsin the QRE a phabet)
metrics have the largest effect on whether the analysis case will fail.

We again discover evidence (i.e., large coefficients and standard errors) of overfitting
in the enter and backward elimination models. We therefore regject the enter and backward
elimination models as overfitted, and select the forward selection model as our predictive
model.

The classification table of predicted against observed failuresis shown in Table 7.18.
Asfor predicting deadlock failures, we accept a slight decrease in predictive accuracy to
gain numerical stability in the model.

In our outlier analysis we identify cases 81 and 163 from the plot of the standardized
residuals. The SPSS software a so identifies cases 157 as an outlier. Case 81 isfor the
dining philosophers with host program with 7 philosophers and no variables modeled,

checking no_plp2. The C and QREAIpha metrics are close to their means for this case,
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but the case fails because the state space istoo large. Cases 157 and 163 are for the
readers/writers program with 6 (157) and 8 (163) readers and writers and no variables
modeled, checking no_w1w?2. The model predicts failure for these two cases, but
because the Writer variable is not modeled, SPIN+PO detects a (spurious) property
violation and successfully completes the analysis.

Table 7.18. SPIN+PO Failure Classification Table for Other Properties

Predicted Percent
0 1 Correct
Observed
0 142 4 97.26 %
1 6 28 82.35%

Overal : 94.44 %
7.10.4 TRACC
This section provides the results of our logistic regressions to predict failure of
analysisrunsusing TRACC. The section includes amodel for checking for deadlock and
amodel for checking other properties.

7.10.4.1 Predictive Model for Deadlock

We had numerical problems with the enter method and backward elimination
regressions, so we select the forward selection model as our predictive model. This
model indicates that the Beta variable has the most effect on whether or not the analysis
will fail; in fact, the other variables do not have large enough individual effectsto be
included in the model.

The classification table for thismodel is provided in Table 7.19. Note that the
percent correct percentage for predicting cases that actually fail islow, leading to an
overall percent correct value smaller than those for our other predictive models for

failure.
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Our outlier analysis and the SPSS software indicate that cases 22, 23, 24, 30, and 83
areoutliers. Cases 22, 23, and 24 are for the standard dining philosophers program with
8 (22), 10 (23), and 12 (24) philosophers. The value of the Betametricis O for these
cases, so the model predicts that the analysis will not fail, but the cases actualy do fail.
Case 30 isfor the dining philosophers with dictionary program with 7 philosophers.
Again, Betais 0 so the model does not predict failure, but the case actually does fail.
Case 83 isfor the memory management program with 3 users and no variables model ed.
The value of the Betametric is 42 for this case, so the model predicts that the analysis
will fail, but the case actually does not fail.

Table 7.19. TRACC Failure Classification Table for Deadl ock

Predicted Percent
0 1 Correct
Observed
0 43 2 95.56 %
1 9 18 66.67 %

Overdll : 84.72%

7.10.4.2 Predictive Moddl for Other Properties

We had numerical problems with all three regression methods when we included the
property metrics, so we performed these regressions including only the program metrics.
Although we could get al three regression methods to build models using only the
program metrics, al of the models had several terms with very high coefficients and
standard errors. Because all three models appear to be overfitted to the dataand are
therefore probably not general enough for use as predictive models, we do not select any
of them. We thus do not provide a predictive model for failures of TRACC checking
properties other than deadl ock.

7.10.5 SMV
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This section provides the results of our logistic regressions to predict failure of
anaysisrunsusing SMV. The section includes amodel for checking for deadlock and a
model for checking other properties.

7.10.5.1 Predictive Model for Deadlock

The results of the three regressions indicate that, for SMV, checking for deadlock,
the C and MaxC metrics have the largest effect on whether or not the analysis will fail.

We select the enter method model because it provides the lowest deviance and the
highest percent correct; the backward elimination model is equivalent. The classification
table for thismodel is provided in Table 7.20. We note that, despite the high overall
percent correct value, the model is not as accurate as we would like for predicting failed
cases.

Table 7.20. SMV Failure Classification Table for Deadlock

Predicted Percent
0 1 Correct
Observed
0 107 2 98.17 %
1 3 8 72.73%

Overal : 95.83 %

In our analysis of the plot of the standardized residuals we identify cases 7, 9, 14, and
120 as outliers. The SPSS software does not identify case 9 as an outlier, but since this
caseis not predicted correctly, weinclude it asan outlier. Cases 7 and 9 are for the cyclic
program with 8 (7) and 10 (9) customers and schedul ers with no variables modeled. The
values of C and MaxC are small enough that the model does not predict failure for these
cases, but the cases actually fail. Case 14 isfor the dac program with 20 solvers; the
model predicts failure for this case, but the case actually compl etes successfully. Case

120 isfor the readers/writers program with 12 readers and writers and all variables
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modeled. The predicted probability of failureis 0.516, which is rounded up to a predicted

failure, but the case actually completes successfully.
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7.10.5.2 Predictive Model for Other Properties

We had numerical problems with the enter method and backward elimination
regressions when we included the property metrics, so we performed these regressions
including only the program metrics. We again had numerical problems with these
methods; only the forward selection method generated a model (using both program and
property metrics). The results of the this regression indicate that, for SMV, checking
properties other than deadlock, the T and MaxTRANS metrics have the strongest effect
on whether or not the analysis will fail.

The classification table for the forward selection model is provided in Table 7.21.
Although the overall percent correct value is over 96%, the model does a poor job
predicting cases that failed. It seems more important to us to accurately predict cases that
will fail rather than cases that will not fail, so thismodel is not as good in our view as the
overall percent correct value implies.

Table7.21. SMV Failure Classification Table for Other Properties

Predicted

Percent
0 1 Correct
Observed
0 167 0 100.00 %
1 7 6 46.15 %

Overal : 96.11 %

Our outlier analysis indicates that cases 15, 19, 21, 139, 141, 143, and 144 are
outliers. Case 15isfor the cyclic program with 10 customers and schedulers and no
variables modeled, checking no_c3c2. Cases 19 and 21 are for cyclic program with 12
customers and schedulers and no variables modeled, checking no_c3c2 (19) and no_c2ss
(21). For these three cases, the T values are in the top quartile of T values, but the
MaxTRANS values are just above the bottom quartile of MaxTRANS values. This

causes the model to predict success for these cases, all of which actually fail. Cases 139,
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141, and 143 are for the ring program with 8 (139), 10 (141), and 12 (143) customers and
no variables modeled, checking no_m1m2. Case 144 isfor the ring program with al
variables modeled, checking no_m1m2. In all these cases, the T values are in the top
guartile but the MaxTRANS values are in the second quartile. The model predict that
these cases will not fail, but in fact they do.
7.10.6 INCA

This section provides the results of our logistic regressions to predict failure of
anaysisrunsusing INCA. The section includes amodel for checking for deadlock and a
model for checking other properties.

7.10.6.1 Predictive Model for Deadlock

We had numerical problems using the enter and backward elimination methods on
thisdataset. The results of the forward selection regression indicate that for INCA,
checking for deadlock, the value of N has the strongest influence on whether or not the
anaysis case will fail.

The classification table for the forward selection model is provided in Table 7.22.
Despite the high overall percent correct value, the model does not predict the single
failure case correctly. Because thereis only one failure in the dataset used to generate the
model, we are unsure how useful this model would bein practice.

Table7.22. INCA Failure Classification Table for Deadlock

Predicted Percent
0 1 Correct
Observed
0 118 1 99.16 %
1 1 0 0.00 %

Overal : 98.33%
Our examination of the plot of the standardized residual s indicates that cases 71 and

72 are outliers. The SPSS software does not classify these (or any) cases as outliers, but
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since they represent the two cases for which the model does not predict failure accurately,
we include them as outliers. The cases are for the gas station program with 6 customers
and no variables (71) and al variables (72) modeled. Thevalue of N islarger for case 71
and the model predicts failure, but INCA detects a (spurious) deadlock for this case and
terminates successfully. The value of N issmaller for case 72 and the model does not
predict failure, but for this case the INCA analysisfails.

7.10.6.2 Predictive Model for Other Properties

INCA did not fail on any of the cases for which we checked properties other than
deadlock. It istherefore not possible to use logistic regression to build a predictive model
for failure of these analysis cases. The ssimplest model we could use, of course, would be
one that ignored all the metrics and predicted that al analysis cases would not fail, but we
suspect this aresult of our input domain, rather than an indication than INCA never fails
checking properties other than deadlock. Experimental data over awider input domain,
leading to at least some INCA failures, would be required to build a predictive model.
7.10.7 FLAVERS

This section provides the results of our logistic regressions to predict failure of
analysisrunsusing FLAVERS. Because FLAVERS does not currently support checking
for deadlock, we only include regressions for checking other propertiesin this section.

We had numerical problems with the enter method and backward elimination
regressions when we included the property metrics, so we performed these regressions
including only the program metrics. We again had numerical problems with these
methods; only the forward selection method generated a model (using both program and
property metrics). The results of the this regression indicate that for FLAVERS, checking
properties other than deadlock, the Vars metric has the strongest influence on whether or
not the analysiswill fail. Further investigation of the model, however, showsthat al the
terms in the model have very high coefficients and standard errors. Because the model

therefore appears to be overfitted to the data and is probably not genera enough for use as
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apredictive model. We therefore do not provide a predictive model for failures of
FLAVERS checking properties other than deadl ock.
7.11 Predictive Models for Spurious Results

We use logistic regression to build the predictive models for spurious results.
Because aresult can not be spurious in an analysis case that fails, the regression only
includes analysis cases that did not fail. As discussed above, the property metrics are not
meaningful for checking deadlock. We therefore generate two models for each tool - one
for deadlock, using only the program metrics as independent variables, and one for the
other properties, using both the program and property metrics as independent variables.

As described in Chapter 6, we use three different logistic regression methods for each
model. The methods are the enter method, backward elimination, and forward selection.
Because the deviance quantifies how much of the variance in the datais captured by a
specific model (with asmaller deviance indicating a better fit), we use this value as one of
our considerations when choosing between the models. We believe the percent of the
predictions by the model that are correct to be an even more important consideration, so
we provide these values aswell. The deviance and percent correct values for each of the
logistic regressions are provided in Table 7.23. More detailed examination of each model
is provided in the following sections. We experienced the same numerical problemsasin
the failure regressions, and we followed the same approach to resolve them.

7.11.1 SPIN, Never Claims

This section provides the results of our logistic regressions to predict spurious results
for analysis runs using SPIN with never claims. Asfor the predictive models for anaysis
times, we include deadlock in this section as well.

7.11.1.1 Predictive Model for Deadlock

The results of the three regressions indicate that for SPIN, checking for deadlock, the

Vars metric has the most significant effect on whether or not analysis results are spurious.
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Thisis not particularly surprising, since in the presence of spurious results we modeled
additional variablesto improve analysis accuracy.

Table 7.23. Deviances and Percents Correct for Spurious Result Models

Enter Method Backward Elimination Forward Selection
Deviance | % Correct | Deviance | % Correct Deviance | % Correct

SPIN, Never Claims

Deadlock 45.814 87.62 46.600 88.57 50.335 89.52

Other Properties 46.635 91.22 47.643 91.22 51.862 91.22
SPIN, Assertions

Other Properties 27.636 96.45 30.560 96.45 77.238 92.20
SPIN+PO

Deadlock 48.391 87.27 49.388 86.36 57.427 84.55

Other Properties 18.314 97.26 - - 28.240 95.89
TRACC

Deadlock - - - - 29.150 88.89

Other Properties 2.773 94.44 2.773 94.44 5.407 94.44
SMV

Deadlock - - - - 50.272 87.16

Other Properties 32.774 95.21 37.502 93.41 51.176 92.81
INCA

Deadlock - - - - 43.974 94.96

Other Properties 58.770 92.78 61.153 92.22 78.265 87.78
FLAVERS

Other Properties 158.229 72.05 163.609 73.29 36.078 95.65

Although the enter method model has the smallest deviance (by 2%), we select the
backward elimination model as our predictive model. Consideration of the classification
tables indicates that the enter method predicts that accurate results will be provided from
7 of the cases that actually yield spurious results, while the backward elimination model
only (incorrectly) predicts 5 such accurate results. We believe this to be amore important
consideration than asmall increase in deviance. The classification table for the selected
model is provided in Table 7.24.

From the plot of the standardized residuals, we identify cases 17, 30, 33, and 36 as
outliers. The SPSS software only identifies case 17 as an outlier, since the studentized
residuals for cases 30, 33, and 36 are below 2.00. Case 17 isthe standard dining
philosophers problem with 2 philosophers (and no variables). The model predicts a

spurious result for this case, but the actual analysis results are accurate. Cases 30, 33, and
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36 are al for the dining philosophers with fork manager problem with only fork_2
modeled. The model does not predict spurious results for these cases, but SPIN does
detect (spurious) deadlock for these cases.

Table 7.24. SPIN Spurious Results Classification Table for Deadlock

Predicted Percent
0 1 Correct
Observed
0 63 7 90.00 %
1 5 30 85.71 %

Overdll : 88.57 %

7.11.1.2 Predictive Moddl for Other Properties

We had numerical problems with all three regression methods when we included the
property metrics, so we performed these regressions including only the program metrics.
The results of the three regressions indicate that for SPIN using never claims and
checking properties other than deadlock, the Vars metric has the strongest effect on
whether or not the analysis results will be spurious, followed by the C metric.

All three regression methods yield the same percent correct values, but we select the
forward selection model as our predictive model, despite the fact that it has the largest
deviance. We make this selection because this model contains the fewest metrics, and
thus may be dlightly more general than the other models.

The classification table for the selected model is provided in Table 7.25. Despite the
fairly high overall percent correct value, the incorrect predictions for 40% of the cases
yielding spurious results is somewhat larger than we would like.

Our examination of the plot of the standardized residuals identifies cases 3, 7, 10, 13,
122, and 128 as outliers. The SPSS software does not identify any outliers (based on the
studentized residuals), but since the above 6 cases are also predicted incorrectly by the

model, we include them as outliers. Cases 3, 7, 10, and 13 are for the cyclic program
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with 4 (3), 6 (7), 8 (10), and 10 (13) customers and schedulers with no variables model ed,
checking no_c3c2. The effect of the C metric causes the model to predict accurate results
for these case, but in fact they actually yield spurious results. Cases 122 and 128 are for
the readers/writers program with 4 (122) and 6 (128) readers and writers and no variables
modeled, checking no_rlw. The model predicts spurious results for these two cases, but
they actually yield accurate identification of the property violation.

Table7.25. SPIN, Never Claims, Spurious Results Classification Table

Predicted

Percent
0 1 Correct
Observed
0 123 5 96.09 %
1 8 12 60.00 %

Overdll : 91.22 %

7.11.2 SPIN, Assertions

This section provides the results of our logistic regressions to predict spurious results
for analysis runs using SPIN with assertions. Because the regressions for checking for
deadlock were included in the previous section, we only include regressions for checking
other propertiesin this section.

We had numerical problems with the enter method and backward elimination
regressions when we included the property metrics, so we perform these regressions
including only the program metrics. The results of the three regressions indicate that, as
usual, the Vars metric has the strongest effect on whether or not the analysis will yield
spurious results, followed by the C metric.

We select the backward elimination model as our predictive model because it
provides the highest percent correct value. Although the deviance for this model is
dlightly higher than for the enter method model (the percent correct values are identical),

we accept this growth to reduce the metrics in the model to four.
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The classification table for the selected model is shown in Table 7.26. The accuracy
of the model for predicting cases yielding spurious results is somewhat low, but the
overall percent correct valueis high.

Table 7.26. SPIN, Assertions, Spurious Results Classification Table

Predicted Percent
0 1 Correct
Observed
0 128 2 98.46 %
1 3 8 72.73%

Overal : 96.45 %

Our examination of the plot of the standardized residuals identifies cases 3, 7, 112,
and 118 as outliers. The SPSS software only identifies cases 3 and 7 as outliers; the
studentized residuals for the other two cases are bel ow the threshold. Cases3 and 7 are
for the cyclic program with 4 (3) and 6 (7) customers and schedulers with no variables
modeled, checking no_c3c2. The effect of the C metric causes the model to predict
accurate results for these case, but in fact they actually yield spurious results.

7.11.3 SPIN+PO

This section provides the results of our logistic regressions to predict spurious results
for analysis runs using SPIN+PO. The section includes a model for checking for
deadlock and amodel for checking other properties.
7.11.3.1 Predictive Model for Deadlock

The results of the three regression indicate that for SPIN+PO, checking for deadlock,
the Vars metric has the largest effect on whether or not an analysis will yield spurious
results, followed by the C metric.

We select the enter method model as our predictive model because it provides the
highest percent correct value and the lowest deviance. The classification table for this

model is provided in Table 7.27. The overall percent correct value for this model is lower
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than we have typically found, but it is still high enough to indicate a good fit for the
model.
Table 7.27. SPIN+PO Spurious Results Classification Table for Deadlock

Predicted Percent
0 1 Correct
Observed
0 65 7 90.28 %
1 7 31 81.58 %

Overal : 87.27 %

We identify case 19 as an outlier from our examination of the plot of the
standardized residuals. The SPSS software also identifies cases 17 and 66 as outliers, but
since accurate results are correctly predicted for these cases, we do not include them as
outliers. Case 19 isfor the standard dining philosophers program with 2 philosophers.
The model predicts a spurious result for this case, while SPIN+PO actually correctly
identifies the possibility of deadlock.
7.11.3.2 Predictive Model for Other Properties

We had numerical problems with all three regression methods when we included the
property metrics, so we performed these regressions including only the program metrics.
The backward elimination method still had numerical problems, but we were able to
complete the other two regressions. The results of these regressions indicate that for
SPIN+PO, checking properties other than deadlock, the Vars metric has the largest effect
on whether or not an analysis will yield spurious results, followed by the C metric.

Despite the fact that the enter method model has a higher percent correct value, we
select the forward selection model as our predictive model. The coefficient and standard
error for the Vars metric in the enter method is extremely high, and we select the forward

selection model to avoid choosing amodel that is probably overfitted to the data.
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The classification table for the selected model is provided in Table 7.28. The
accuracy for predicting cases that yield spurious results is somewhat low, but the overall
percent correct valueisfairly high.

Our examination of the plot of the standardized residuals indicates that cases 3, 121,
and 127 are outliers. The SPSS software only identifies cases 3 and 121 as outliers, but
since case 127 is not predicted correctly by the model, we include it as an outlier as well.
Case 3isfor the cyclic program with 4 customers and schedulers and no variables
modeled, checking no_c3c2. Aswe have seen in the other spurious result models, the C
metric has sufficient effect to cause the model to predict an accurate result, but the case
actually yields a spurious result. Cases 121 and 127 are for the readers/writers program
with 2 (121) and 4 (127) readers and writers and no variable modeled, checking no_rlw.
The model predicts spurious results for these cases, but SPIN+PO accurately detects the
property violation.

Table 7.28. SPIN+PO Spurious Results Classification Table for Other Properties

Predicted Percent
0 1 Correct
Observed
0 131 3 97.76 %
1 3 9 75.00 %

Overal : 95.89 %
7.11.4 TRACC
This section provides the results of our logistic regressions to predict spurious results
for analysis runs using TRACC. The section includes a model for checking for deadlock
and amodel for checking other properties.

7.11.4.1 Predictive Model for Deadlock

We had numerical problems with the enter method and backward elimination

regressions. The results of the forward selection regression indicate that for TRACC,
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checking for deadlock, the C metric has the strongest effect on whether or not the analysis
will yield spurious results.

The classification table for the forward selection model is provided in Table 7.29.
The overall percent correct value for this model is lower than we typically find, but is still
high enough to provide a good fit to the data.

Table 7.29. TRACC Spurious Results Classification Table for Deadlock

Predicted Percent
0 1 Correct
Observed
0 2 4 33.33%
1 1 38 92.44 %

Overall : 88.89 %

Our examination of the plot of the standardized residuals indicates that cases 10, 11,
and 12 are outliers. The SPSS software also identifies these cases as outliers. These
cases are for the standard dining philosophers program with 2 (10), 4 (11), and 6 (12)
philosophers. The model predicts that these three cases will yield spurious results, but
TRACC actually correctly detects the possibility of deadlock.
7.11.4.2 Predictive Model for Other Properties

We had numerical problems with all three regression methods when we included the
property metrics, so we performed these regressions including only the program metrics.
Although we could get al three regression methods to build models using only the
program metrics, al of the models had several terms with very high coefficients and
standard errors. Because all three models appear to be overfitted to the dataand are
therefore probably not general enough for use as predictive models, we do not select any
of them. We thus do not provide a predictive model for spurious results for TRACC

checking properties other than deadl ock.
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7.11.5 SMV

This section provides the results of our logistic regressions to predict spurious results
for analysis runs using SMV. The section includes amodel for checking for deadlock and
amodel for checking other properties.

7.11.5.1 Predictive Model for Deadlock

We had numerical problems with the enter method and backward elimination
regressions. The results of the forward selection regression indicate that for SMV,
checking for deadlock, the Vars metric has the largest effect on whether or not an analysis
will yield spurious results, followed by the C metric.

The classification table for the forward selection model is provided in Table 7.30.
The accuracy for the mode!'s predictions for case that yield spurious results is somewhat
low, but the overall percent correct value is high enough to indicate a reasonably good fit.

Table 7.30. SMV Spurious Results Classification Table for Deadlock

Predicted Percent
0 1 Correct
Observed
0 69 6 92.00 %
1 8 26 76.47 %

Overal : 87.16 %

Our examination of the plot of the standardized residual s indicates that case 16 is an
outlier. The SPSS software also indicates case 67 is an outlier, but because this case is
predicted correctly by the model, we do not include it as an outlier. Case 16 isfor the
standard dining philosophers programs with 2 philosophers. The model predicts a
spurious result for this case, but SMV correctly detects the possibility of deadlock.
7.11.5.2 Predictive Model for Other Properties

We had numerical problems with al three regression methods when we included the

property metrics, so we performed these regressions including only the program metrics.
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The results of these regressions indicate that for SMV, checking properties other than
deadlock, the Vars metric has the largest effect on whether or not an analysiswill yield
spurious results, followed by the C metric.

Degspite the fact that it has the lowest overall percent correct value, we select the
forward selection model as our predictive model. In both the enter method and backward
elimination models, the coefficient and standard error for the Vars metric are very large,
providing evidence of overfitting.

The classification table for the selected model is provided in Table 7.31. Whilethe
overall percent correct valueisfairly high, the model incorrectly predicts accurate results
for 41% of the cases that yield spurious results. This model may thus not be as useful for
predicting spurious results as the overall percent correct value implies.

Table 7.31. SMV Spurious Results Classification Table for Other Properties

Predicted

Percent
0 1 Correct
Observed
0 145 5 96.67 %
1 7 10 58.82 %

Overal : 92.81 %

We identify case 11 as an outlier in the plot of the standardized residuals; the SPSS
software identifies case 11 asthe only outlier. Case 11 isfor the cyclic program with 8
customers and schedulers and no variables modeled, checking no_c3c2. The model
predicts an accurate analysis result for this case, but SMV actually detects a spurious
property violation.

7.11.6 INCA

This section provides the results of our logistic regressions to predict spurious results

for analysis runs using INCA. The section includes a model for checking for deadlock

and amodel for checking other properties.
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7.11.6.1 Predictive Model for Deadlock

We had numerical problems with the enter method and backward elimination
regressions. The results of the forward selection regression indicate that for INCA,
checking for deadlock, the Vars metric has the largest effect on whether or not an analysis
will yield spurious results, followed by the C metric.

The classification table for the forward selection model is provided in Table 7.32.

All of the percent correct values in the table are high, indicating a good fit.
Table 7.32. INCA Spurious Results Classification Table for Deadlock

Predicted Percent
0 1 Correct
Observed
0 63 2 96.92 %
1 4 50 92.59 %

Overall : 94.96 %

Examination of the plot of the standardized residual s indicates that cases 19, 61, and
63 are outliers. The SPSS software a so identifies case 70 as an outlier, but because this
caseis predicted correctly by the model, we do not classify it asan outlier. Case 19 isfor
the standard dining philosophers program with 2 philosophers. The model predicts a
spurious result, but INCA correctly detects the possibility of deadlock. Cases 61 and 63
are for the gas station program with 1 (61) and 2 (63) customers and no variables
modeled. The model predicts accurate results for these two cases, but INCA detects a
(spurious) deadlock.
7.11.6.2 Predictive Model for Other Properties

We had numerical problems with all three regression methods when we included the
property metrics, so we performed these regressions including only the program metrics.

The results of these regressions indicate that for INCA, checking properties other than
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deadlock, the Vars metric has the largest effect on whether or not an analysis will yield
spurious results, followed by the C metric.

We select the enter method model as our predictive model because it provides the
highest percent correct value and the lowest deviance. The classification table for this
model is provided in Table 7.33. Despite the high overall percent correct value, the
accuracy of the model predictions for cases that yield spurious results is somewhat low.

Table 7.33. INCA Spurious Results Classification Table for Other Properties

Predicted Percent
0 1 Correct
Observed
0 152 5 96.82 %
1 8 15 65.22 %

Overal : 92.78 %

Examination of the plot of the standardized residuals indicates that cases 154 and
160 are outliers. The SPSS software also indicates that these two cases are the only
outliers. Cases 154 and 160 are for the readers/writers program with 4 (154) and 6 (160)
readers and writers and no variables modeled, checking no_rlw. The model predicts that
these cases will yield spurious results, but INCA correctly detects the property violation.
7.11.7 FLAVERS

This section provides the results of our logistic regressions to predict spurious results
for analysisruns using FLAVERS. Because FLAVERS does not currently support
checking for deadlock, we only include regressions for checking other propertiesin this
section.

We had numerical problems with the enter method and backward elimination
regressions when we included the property metrics, so we perform these regressions

including only the program metrics. The results of the three regressions indicate that, as
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usual, the QRE States metric has the strongest effect on whether or not the analysis will
yield spurious results, followed by the C metric.

We select the forward regression model as our predictive model becauseit provides a
significantly higher percent correct value and significantly lower deviance than the other
models. The classification table for the selected model is provided in Table 7.34. All the
percent correct values in the table are high.

Table 7.34. FLAVERS Spurious Results Classification Table for Other Properties

Predicted Percent
0 1 Correct
Observed
0 74 4 94.87 %
1 3 80 96.39 %

Overal : 95.65 %

Examination f the plot of standardized residuals indicates that cases 71, 73, and 119
areoutliers. The SPSS software a so indicates that case 78 is an outlier, but because the
model predicts this case accurately, we do not include it as an outlier. Cases 71 and 73
are for the dining philosophers with host program with 6 (71) and 7 (73) philosophers and
no variables modeled, checking no_plp2. The model predicts spurious results for these
cases, but FLAVERS accurately checks the property. Case 119 isfor the ring program
with 2 servers and masters and no variables modeled, checking no_mlm?2. The model
predicts and accurate analysis result, but FLAVERS detects a (spurious) property
violation.

7.12 Validating the Moddls

We require two characteristics of good predictive models - the models must be
correctly generated from valid experimental data, and the models must prove to be useful
in actual practice. We have carefully developed a sound empirical methodol ogy to ensure

our experimental datais valid, and we have rigorously applied standard statistical analysis
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techniques to ensure that the models have been correctly generated from that data.
Showing that the models will be useful in practice, however, is much more difficult.

We believe the best way to find out whether the models are useful in practiceisto
use them on real programs and properties, and determine whether they provide good
predictive power. We have begun this effort with the case study programs discussed in
Chapter 8.

Another way to try to validate the models (i.e., show that they are correct and useful)
isto use them for larger sizes of the academic programs included in the experiment.
While this seems intuitively attractive, it will not yield any insight about the predictive
power of the models for real programs and properties. The predictive models we generate
essentially represent n-dimensional vectors, where n is the number of metricsincluded in
themodel. Our hopeis that the combination of the academic programs and propertiesin
the experiment will yield a vector that approximates the direction in which the n metrics
grow in rea programs. None of the academic programsin the experiment follow this n-
dimensional vector. We would therefore not expect good predictions for larger sizes of
these programs. The best we could learn from such a study is how well the predictive
models work for larger academic programs, and since predicting performance on large
academic programsis not the goal of our predictive models, the results would not be of
practical interest.

The predictive models we have built for failure and spurious results seem to provide
reasonable predictive power within the dataset. Of course, these models still need to be
validated on real programs. Unfortunately, the predictive models we have built for
analysis times generally only capture a small amount of the variance in the dataset. Given
that the predictive models will not even work very well within the dataset, it would be
unreasonabl e to expect that they will have good predictive power outside this domain,
whether on real programs or larger academic programs. We therefore limit our discussion

to the validity of the predictive models within the input domain of the experiment.
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We first provide a comparison of the tools based on analysistime. Table 7.35 lists
the number of times each tool had the fastest analysis time for an analysis case, aswell as
the number of times the predictive models predict each tool will have the fastest analysis
time. Asusual, we separate checking for deadlock from checking the other properties. In

cases where two tools had the (same) fastest analysis time, both tools were credited with

the fastest time.
Table 7.35. Counts of Fastest Analysis Times
Deadlock Other Properties
Observed Predicted Observed Predicted
SPIN, Never Claims 28 43 23 13
SPIN, Assertions - - 23 12
SPIN+PO 47 10 24 11
TRACC 0 0 0 1
SMV 40 40 67 28
INCA 9 26 49 73
FLAVERS - - 2 36

For predicting analysis times checking for deadlock, the predictive models yield
optimistic predicted counts for SPIN and INCA and pessimistic predicted counts for
SPIN+PO. For predicting analysis times checking other properties, the predictive models
yield optimistic predicted counts for INCA, FLAVERS, and TRACC and pessimistic
predicted counts for SPIN and SPIN+PO. When we calcul ate the average magnitude of
the optimistic or pessimistic predictions (expressed as a percentage), we find that the
average error magnitude is over 250% (ignoring TRACC). We note that alarge part of
this error is caused by the significant overestimate for FLAVERS, but when we exclude
this estimate the average error magnitude is still almost 72%. This result indicates that
the predictive models do not provide good predictive power, even in the input domain of
the experiment.

The analysis above still excludes an important consideration, however. For instance,
for checking deadlock, the observed and predicted counts for SMV are both 40. This

does not indicate, however, which cases are observed to be the fastest and which cases are
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predicted to be the fastest. The 40 cases predicted to be the fastest by the predictive
models may not include any of the 40 cases for which SMV actually provides the fastest
anaysistime. It isasoimportant, therefore, to consider the correspondence between
specific observed and predicted fastest cases.

Toward this end, we have examined the data to determine the number of casesin
which the predictive models select the fastest tool. The results are provided in Table
7.36. We have also included the number of times the predictive models select the second
and third fastest tools. The total number of analysis casesis 299; 119 for deadlock, and
180 for other properties.

Table 7.36. Specific Case Predictions

Deadlock Other Properties
Fastest Tool 30 62
Second Fastest Tool 47 30
Third Fastest Tool 29 24

For checking deadlock, the predictive models select the fastest tool in 25% of the
cases, the second fastest tool in 40% of the cases, and the third fastest tool in 24% of the
cases. For checking other properties, the predictive models select the fastest tool in 34%
of the cases, the second fastest tool in 17% of the cases, and the third fastest tool in 13%
of the cases. While the predictive models do not select the fastest tool as often as we had
hoped, they do select one of the fastest three tools 89% of the time for deadlock and 64%
of the time for other properties. The experiment includes 5 analysis tools that check for
deadlock, so arandom tool selection would pick one of the three fastest tools 60% of the
time. The experiment includes 7 analysistools for checking other properties (using two
property specification styles for SPIN), so arandom selection would pick one of the three
fastest tools 43% of the time. These results indicate that the predictive models may be
able to provide some useful guidance to an analyst trying to select an analysistool,

despite the weaknesses in the models discussed above.
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Asafinal examination of the validity of the predictive models over the input domain
of the experiment, we quantify the effect of using the predictive models. To do so, we
use the average ranking measure we use to compare the tools in Section 7.4. We
originally considered using mean analysis time for comparison, but the cases requiring
significant analysis time overwhelmed the much more numerous cases requiring less
time.

Theresults are provided in Table 7.37. For comparison purposes, we have aso
included the effect of randomly selecting atool for each case and the effect of using each
tool for al the cases.

Table 7.37. Effect of Using Predictive Models

Deadlock Other Properties
Predictive Moddls 2.21 2.92
Random Selection 2.40 3.11
SPIN, Never Claims 211 3.07
SPIN, Assertions - 2.59
SPIN+PO 1.85 2.73
TRACC 4.60 6.00
SMV 2.23 2.15
INCA 3.31 3.27
FLAVERS - 4,99

As always, the results in the table must be considered with care. Comparison
between using the predictive models and randomly selecting atool for each caseis
straightforward, and this comparison indicates that at |east the predictive models provide
better tool selection than random selection does. When we compare using the predictive
models to using specific tools for all cases, however, the comparison is not as
straightforward. The predictive models never select atool that fails (in the experiment),
but all the toolsfail on at least one case. For checking deadlock, using SPIN+PO or SPIN
for al cases provides better performance than using the predictive models (ignoring
failures). For the other properties, using SPIN (with assertions), SPIN+PO, or SMV

provides better performance than using the predictive models, again ignoring failures.
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7.13 Summary

We use avariety of statistical techniques to analyze our experimental data. In this
section, we summarize the results presented above.

We use two sample t-tests and paired sample t-tests to statistically test for biases we
may have introduced by our methodology. Of the six areas of potential bias identified,
we find that in five of those areas there was no statistical evidence that our methodol ogy
introduced bias. For specifying SMV properties, we discover that, when appropriate, it is
generally better to specify properties using additiona variables in the transition relation
than to use an alternate CTL specification. All the datain the dataset therefore represents
using additiona variables (when necessary).

We preprocess our data to remove metrics that are collinear with others, since this
collinearity can cause problemsin both the linear and logistic regression techniques. This
preprocessing reduces the number of program metrics included from 26 to 11, and
reduces the number of property metrics from 9 to 6. We conduct randomization teststo
ensure we have not removed metrics with apparent (but not real) collinearity; the results
of these tests indicate that we have only removed metrics that are truly collinear in this
dataset.

The results of our linear regressions are disappointing. We use threshold of 0.800 for
the R2 value to indicate a good fit, and 8 out of the 12 linear models we build have R2
valuesless than 0.54. Because these models do not capture much of the variance in the
experimental data, they are unlikely to provide good predictive power for real programs.
We also check to seeif one or more of the metrics commonly appear in the models,
indicating that there are certain characteristics of the program or property that affect the
anaysistimesfor al thetools. We find no such common characteristicsin the linear
regression models.

The results of our logistic regressions to predict failure of analysis runs are more

encouraging. For al our selected predictive models for failure, the overall percent correct
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valueis greater than 90%. Thisindicates that these models may provide reasonable
predictive power for real programs. We again do not find any common characteristics
that appear in all the models.

The results of our logistic regressions to predict spurious results for analysis runs are
also encouraging, with all our selected predictive models having overall percent correct
values greater than 87%. Again, thisimplies that these models may provide reasonable
predictive power for real programs. All but one of these models had the strongest effect
on the results from the number of variables modeled. Thisis not surprisingly, because
when an analysis run yielded a spurious result, we added additional variable modeling to
try to improve the accuracy of the analysis. The average number of communicationsin
the tasks in the program also had a noticeable effect in al these models.

We discuss severa approaches for validating the models, but because the linear
regression models appear to be weak, we restrict our attention to the validity of these
models over the input domain of the experiment. The models do not predict the fastest
tool for agiven program and property very well (24% of the time for deadlock, 34% of
the time for other properties). They do, however, select one of the three fastest tools a
significant percentage of the time, which may be somewhat useful. We quantify the
impact of using the predictive models, comparing to random tool selection and selecting
one tool to usefor all programs and properties. Using the predictive models was better
than random tool selection, but was worse than selecting certain tools for all the analyses.

Finally, because our real interest isin how long each of the tools takes to analyze
Ada programs, we aso analyze timing data that includes all times from input of the Ada

program to output of the analysis results.
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CHAPTER 8
CASE STUDIES

In this chapter we describe the results of our preliminary examination of severa
programs we have acquired from government and academic sources. To be most useful,
concurrency analysis tools need to be applicable to programs of redlistic size, containing
realistic communication structures. In amost all cases, including the experiment we have
conducted, static concurrency analysis tools have been demonstrated using programs from
the concurrency analysis literature. It isnot clear that these academic programs are
representative of concurrent programsin general. Most tasks in these programs are
relatively small, and the program constructs used in these programs are relatively smple.

To begin gathering information about how the concurrency analysistools will fare
when applied to real concurrent programs, we have acquired several real concurrent
programs and examined various characteristics of those programs. Our examination
includes discussion of the program constructs and language features used in the programs
and observations about program characteristics that are likely to affect the applicability of
static concurrency analysis tools to these programs. The programs and the results of our
examination are described below.

8.1 Programs Considered

The programs we examined were acquired from academic and government sources.
To find these programs, we monitored the newsgroup comp.lang.ada, discussed our need
for real programs at conferences and demonstrations, and reviewed the concurrency
analysis literature for previous work with real concurrent programs.

We actually had a surprising amount of difficulty gaining access to real concurrent
programs. Our sample therefore does not represent a careful selection from alarge set of
programs, rather, it consists of al the real programs to which we could gain access. We

believe our difficulties arose for a number of reasons. For example, we believe alarge
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number of concurrent programs are written under government contract, and our access to
this group of programs was severely curtailed for contractual and security reasons. In
addition, we require source code to perform the static concurrency anaysis. Many
commercia and government agencies are hesitant to provide source code for their
products. Of course, there are potentially many other factors that also make it difficult for
the academic community to gain access to real concurrent programs.

8.1.1 Border Defense System (BDS)

The Border Defense System (BDS) code was written by T. Griest and M. Sperry of
LabTek Corporation in 1988/89. The code was designed to simulate a system in which
incoming targets are detected and tracked, rockets are assigned to those targets and
launched, and damage assessment is carried out to determine whether the rockets destroy
thelir targets.

The system consists of approximately 4K lines of code, contained in 58 files (25
package specifications and 33 package and procedure bodies). After appropriate inlining
has been accomplished (see Section 8.2.1), the system consists of 14 tasks.

8.1.2 Train Control Program

Thetrain control code was written by a group of students at SUNY /Plattsburgh for a
real-time class; it was provided to us by John McCormick. The code was designed to
control amodel railroad train system, in which the system senses the locations of multiple
trains on the track, provides access to sections of track in a manner that avoids collisions,
and processes commands for the trains on the track.

The system consists of approximately 5K lines of code, contained in 31 files (17
package specifications and 14 package and procedure bodies). After appropriate inlining

has been accomplished, the system consists of 46 tasks.
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8.1.3 ALSP Common Module (ACM)

The ALSP Common Module (ACM) code was written by a group at Mitre
Corporation; it was provided to us by Richard Weatherly. The code was designed to
coordinate multiple interacting simulations, providing communication between the
simulations and management of the simulation objects.

The system consists of approximately 30K lines of code, contained in 262 files (50
package specifications and 212 package and procedure bodies). We have not yet
attempted inlining on this system, so we do not know exactly how many tasks will bein
the system, but we are estimating approximately 59 tasks.

8.2 Conversion to Control Flow Graphs

Asthefirst step in our experimental methodol ogy, we convert the Ada program to be
analyzed into a set of CFGs. There are anumber of characteristics of the programs
considered here that adversely affect this conversion. These "problem areas’ include task
interactions in called procedures, separate packages, generic definitions and
instantiations, use of Ada attributes, use of pragmas, use of compiler-dependent packages,
use of discriminated types, and use of exception handlers for control flow.

8.2.1 Task Interactionsin Called Procedures

When an Ada program is converted to a set of CFGs, a CFG is created for each
function, procedure, task, and exception handler in the system. This approach causes
problems, however, when one procedure calls another and the called procedure contains a
task interaction. For analysis purposes, the calling procedure needs to include this
interaction, and simply using the set of CFGs created for the program does not explicitly
provide this information. This problem can occur through an arbitrary number of
procedure cals, so it isnot limited to the simple "one call level” example given above.
Ensuring that task interactions contained in called procedures are considered by the
anaysisimplies that some sort of interprocedural analysis needs to be performed to

gather thisinformation. We discuss several aternatives for solving this problem below,
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but examine the scope of this problem for the three programs examined here before we do
0.

In the BDS code, 17 procedures and tasks contain task interactions, either directly or
through procedure calls. Of these, three are procedures that are called by other
procedures and tasks. One call is the maximum depth of procedure calls required to reach
aprocedure containing an interaction. In the train control code, 85 procedures and tasks
contain task interactions, either directly or through procedure calls. Of these, 39 are
procedures that are called by other procedures and tasks. Four callsisthe maximum
depth of procedure calls required to reach a procedure containing an interaction. In the
ACM code, 404 procedures and tasks contain task interactions, either directly or through
procedure calls. Of these, 298 are procedures that are called by other procedures and
tasks. We have not yet determined the maximum depth of procedure calls required to
reach a procedure containing an interaction. Clearly, the above data indicates that the
problem of called procedures containing task interactionsis a pervasive one, and must be
addressed.

There are several ways to handle the requirement for interprocedural analysisto
address this problem. We have implemented a rudimentary inlining tool that performs
structural inlining on the CFGs. Essentially, a CFG node representing acall on a
procedure to be inlined is replaced by the CFG of the inlined procedure. Thisis
essentially a brute-force approach to the interprocedural analysis, and it is easy to see that
this approach can explode the size of the CFGs for the system. The largest CFG we have
produced using this technique (on the train code) contains 2,887 nodes and 3,508 edges.
We have not yet attempted to inline procedures in the ACM code.

We believe there are much more elegant solutions to this problem than structural
inlining; certainly, the compiler community uses more advanced techniques. We are
currently working to develop a more elegant solution that will provide the necessary

interprocedural analysis without incurring the size explosion of structural inlining.
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We aso note that we originally tried to identify the procedures that needed to be
inlined (because they contained task interactions) manually on the BDS code. We then
developed atool to identify these procedures automatically when we started to generate
the CFGs for the train control code. As part of our testing of this new tool, we used it to
check our manual inlining results for the BDS code. Even for thisrelatively smple
system, we had overlooked one procedure call to a procedure containing a task
interaction. It therefore seemsto us that extensive automated tool support is absolutely
critical when we undertake analysis of real programs.

8.2.2 Separate Packages

One of the language features provided by Adais the ability to declare procedure and
package bodies as separate. These separate bodies represent distinct compilation units,
allowing iterative large-scale devel opment of systems. Certainly, none of the programsin
the concurrency analysis literature use this language feature.

We have discovered, however, that this feature is commonly used in our real
programs. The BDS code contains 10 compilation units that are declared to be separate,
the ACM code contains 127 such compilation units; the train control code does not
contain any. While not every real program uses this language feature, it isclear that it is
certainly not uncommon in real programs.

Our tools were not originally robust enough to handle alarge number of the separate
compilation units. We have made modifications to our tools to make them more robust,
but there are still several separate compilation units we can not process correctly.
Unfortunately, we have not yet found a standard way to identify "problematic" separates,
S0 the processing of separate compilation unitsisstill atrial-and-error process. Our
current workaround for the separate compilation units we can not process correctly isto
manually modify the code to include the separate unit in its parent unit. This defeats the

original purpose of the separate unit, but lets us build the CFGs for the programs.
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8.2.3 Generics

Another feature provided by Adaisthe generic. A genericisapackage or procedure
that performs specified functions on whatever types and/or procedures are provided in an
instantiation of that generic.

The BDS code does not use any generics. Thetrain control code uses two very
simple generics, we had no trouble processing these with our tools. The ACM code
makes extensive use of generics, including nested generic instantiations (i.e., instantiation
of ageneric that instantiates another generic). Our tools were originally unable to handle
nested generic instantiations, but we have since modified them to process these structures
correctly.

8.2.4 Use of Attributes

Ada provides a set of attributes that let the user discover or set properties of certain
types and variables. For example, the storage_size attribute can be used to specify how
much storage is allocated for variables declared to be of acertain type. The BDS code
uses severa attributes that caused problems for our tools. Our workaround in these cases
was to delete the use of the attribute. We feel that this workaround is reasonable,
especially since the attributes are used to specify characteristics of the operational
environment, which weignore in our static analysis anyway.

8.2.5 Use of Pragmas

Adaallows pragmas as another means of giving the compiler instructions for the
compilation. The BDS code, train control code, and ACM code al use pragmas that
caused problems for our tools. Our workaround for these was to remove the troublesome
pragmas, using the same rationale as for attributes.

8.2.6 Use of Compiler-Dependent Packages

Both the BDS code and the train control code use compiler-dependent packages.
These packages were not provided with the code for licensing reasons, so these uses can

not be processed correctly by our tools. Our workaround for these was to build shell
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packages to provide the interface to the missing package without providing the actual
functionality. While we recognize that this changes the semantics of the program, we do
not believe tasking-related operations are included in these packages. Our changes
should therefore not affect the results of static concurrency analysis.

8.2.7 Use of Discriminated Types

Like many high-level languages, Ada provides the capability to declare variant
records; in Adathisis accomplished using discriminated types. The ACM code contains
several uses of discriminated types that caused problems for our tools. In one case, our
tools could not correctly process an implicit dereference of a pointer to a discriminated
type. Theworkaround for thiswas to explicitly dereference the pointer before using it.
In another case, our tools could not correctly process a derivation of a discriminated type,
where the discriminated type was defined in a separate compilation unit. This problem
has been corrected by a modification to our tools.

8.2.8 Use of Exception Handlers for Control Flow

Exception handlers are an Ada construct designed to provide specia processing in
the event of unusual program behavior. For example, if adivide by zero occursin the
program, Ada raises the Constraint_Error exception. An exception handler that traps this
exception can provide special processing to recover from the error or to allow graceful
degradation of the program behavior.

The ACM code contains three procedures in which exception handlers are used to
detect the exit condition for aloop. Thisis problematic, since the exception can be raised
at any statement within the loop. Our workaround for this was to add a conditional exit
statement after every statement in the loop (based on a dummy condition), but this does
not seem to be afeasible approach if exception handlers are used to detect normal (for
instance, loop exit) conditions. In fact, determining how to sensibly model exceptions
and exception handlers and their effect on control flow in a program appearsto berich

topic for extensive research.
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8.3 Characteristics Affecting Analysis

After we have converted the Ada code for a program into a set of CFGs, we then
either apply an analysistool directly (FLAVERS, for instance) or convert to a set of FSAs
and from there to the input language of an analysistool. Through our examination of the
BDS code, train control code, and ACM code, we have discovered several characteristics
of these programs that are likely to affect our ability to perform static analysis on them.
These characteristics include dynamic alocation of tasks in the system, exception
handlers that contain task interactions, complex individua tasks, and inclusion of task
types in complicated data structures.

8.3.1 Dynamic Task Allocation

Ada provides the capability to declare task types and then to declare variables of
those types or pointers to those types. Pointers to atask type can be allocated at run time,
which essentially creates a new task during execution of the program. Because the static
concurrency analysis techniques examined here use a static (i.e., constant) model of the
tasks in the system, these techniques can not analyze programs containing dynamic task
allocation.

Severa of the tasksin the ACM code are dynamically alocated, so thisisarea
barrier to our ability to analyze this code. It turns out, however, that there is a static
bound on the number of tasks present at any given time, so we can model the dynamically
allocated tasks with static tasks. To do so, we replace the points of allocation with acall
on a(new) start entry in the static tasks, and replace points of deallocation with callson a
(new) stop entry in the static tasks. This does not exactly capture the semantics of the
dynamic task allocation, since the pointer could be deallocated when the task pointed tois
at any point in its execution, while accepts can only occur at set pointsin the task. We
believe, however, that this approach may provide sufficiently close semantics to allow

useful analysis of the modified code.
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The dynamic allocation of a statically bounded number of tasks brings up an
interesting design question - why would a developer dynamically allocate tasks whose
number is bounded (in some casesin the ACM code, the pointer is simply for alocal
variable that is allocated once)? A task that isinactive does not get atime slicein the
Adarun-time environments we are familiar with, so there does not appear to be avalid
time concern. We asked the developer of the ACM code about this, and were told that
they needed to use task types so they could abort those tasks if necessary. This explains
why task types were used, but does not explain why the devel opers used dynamically
allocated pointers to those task types rather than variables of those task types. Given the
problems that it causes, dynamic task allocation should be avoided whenever possible if
the programsis to be subjected to static concurrency analysis.

8.3.2 Task Interactions Within Exception Handlers

We mentioned above that exception handlers are problematic for static analysis
techniques. This problem is exacerbated when the exception handlers contain task
interactions. If we ignore the exception handlers, we could miss potential program
behaviors, implying that our analysisis no longer conservative. On the other hand, itis
difficult to see how to sensibly model exceptions and exception handling so that the size
of the graph structure of the program does not increase drastically.

The BDS code does not contain any exception handlers with task interactions, but the
train control code does contain one such exception handler. The ACM code contains 442
exception handlers that contain task interactions. Clearly, thisis aproblem that will need
to be addressed if we are to perform analysis of real code. Our current approach is to
ignore the exception handlersin a program, but we would like to eventually capture the
full semantics of the program in our analysis.

8.3.3 Complexity of Individual Tasks

One of the reasons that we believe the concurrent programs from the concurrency

analysis literature may not be representative of real concurrent programsis that the tasks
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in the academic programs tend to be fairly simple. We have noted that, in the three real
programs we have examined, the number of tasksin agiven real program may not be
much larger than the number of tasks in a program from the literature, but the individual
tasks can be much more complex. For example, the ACM code contains atask with 58
entries; we have yet to discover atask with this complexity in the set of programs
typicaly analyzed in the literature.

8.3.4 Task Typesin Complicated Data Structures

Because Ada alows the definition of task types, pointersto task types can be
contained in arbitrarily complicated data structures. This does not appear to be a
significant problem in the BDS or train control code. The ACM code, however, contains
pointers to task typesin complicated data structures. The worst caseinthe ACM code is
avariable that is apointer to an array of records, where two of the fields of the record are
pointers to task types. Because in many cases the possible interactions in the system are
determined by matching fully qualified entry names, building the entry names for tasksin
such astructure is difficult but necessary.

8.4 Discussion

Our examination of the BDS code, train control code, and ACM code has led to the
identification of a number of issues that arise when we try to analyze real code rather than
the academic code from the concurrency analysis literature.

The real concurrent programs discussed above tend to use more advanced Ada
features than the academic programs. Use of these features often causes problems for our
tools, even those tools that have been extensively used for a number of years. Real
concurrent programs also seem to have certain characteristics that will make them
difficult to analyze. The most notable of these is the dynamic allocation of tasks, but
other constructs, such as exception handlers that contain task interactions, may also have

asignificant impact.
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It isdifficult to draw general conclusions about real programs based on the three
programs considered in this chapter, especialy since we can not make any claims about
how well these programs represent real concurrent programs in general. Even within this
very limited dataset we see wide variations in the usage of language features and the
characteristics that are likely to make the programs difficult to analyze. The BDS code
and train control code have several troublesome areas, but seem like they should be
amenable to analysis given some minor changes. The ACM code, on the other hand, has
alarge number of characteristics that will make this code extremely difficult to analyze.
Because we do not know which of these programs are more like real concurrent codein
general, we are unwilling to ignore any of them in our observations. We caution,
however, that the observations above may give bleaker predictions about how amenable
real concurrent code will be to analysis than is actually the case, especially if the ACM
code represents an outlier. Further examination of alarger number of real concurrent
programs will be required before we start getting a sense of what atypical concurrent
program "looks like".

We have suggested workarounds for most of the problems we have encountered, and
believe we are approaching the point where we will be able to attempt to prove properties
on at least some of these real programs. Given the differences between the real programs
and academic programs, analysis of these real programsisliableto yield significant

insight into the applicability of static concurrency anaysisin practice.
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CHAPTER 9
IMPROVING PETRI NET-BASED STATIC ANALY SISACCURACY

This chapter presents an approach for improving the accuracy of Petri net-based
static analysis methods by eliminating some spurious results from the analysis report.
Usually, an analysis method produces a spurious result as a consequence of considering
paths that can never be executed in the program (commonly called infeasible paths) or of
considering aliasing that can never occur in the program. For an example of an infeasible
path, consider the program in Figure 9.1. In the caler2 task, the path through the true
branch of the first conditional and the false branch of the second conditional isinfeasible,
assuming the value of BranchCond does not change between the two conditionals.
Infeasible paths are natural phenomena of the internal representations we use for anaysis

and are usually not indicative of afault in the code.

task body callerl is task body accepter is task body caller2 is
begi n begin BranchCond : bool ean;
acceIJt er.entry2; accept entryl; begi n
end cal lerl; accept entry2; .
end accepter; i f BranchCond t hen
accepter.entryl;
el se
nul |
end if

i f BranchCond then
nul | ;
el se
accepter.entry2;
end if;
end call er2;

Figure 9.1. Example Program
We conjecture a scenario in which an analyst submits a program and property to a
static analysis tool and then examines the anomaly report that results from the analysis.
Since some of the reported anomalies might be spurious, due to consideration of
infeasible paths or imprecise alias resolution, the analyst must examine each anomaly to
determine if it isaspurious result or not. If alarge number of the results are spurious,

weeding these out might overwhelm the analyst, causing results that actually do
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correspond to erroneous program behavior to be discarded. If the number of spurious
resultsis extremely large, the analyst may lose confidence in the analysis tool atogether
and forego using it.

It has been our experience that, after looking at an anomaly report, an analyst easily
recognizes certain infeasible paths that are the cause of at least some of the spurious
results. Early experience with static analysis tools indicated that analysts identified
impossible pairs of statements after examining anomaly reports. Using information about
these impossible pairs to recognize spurious results was shown to be intractable for
analyses based on control flow graph representations of a program [GMO76]. The
approach presented in this chapter for improving accuracy is based on a Petri net model
of aconcurrent program. We describe how certain kinds of infeasible path information
can be effectively captured in this model, improving the accuracy of the analysis results
without degrading the performance of the analysis.

Thus, the basic ideais that an analyst would apply the static analysis method to the
Petri net model of the program. Through examination of the anomaly report, certain
infeasible paths that are causing spurious results to be reported become apparent. The
analyst, using our approach, refines the Petri net model of the program with this
information and reapplies the analysis. Of course, if the analyst knew of infeasible paths
before running the initial analysis, that information could be incorporated immediately.
In our experience, however, analysts do not tend to think about infeasible paths until after
examining an anomaly report with some obvious spurious results. The new anomaly
report typically contains fewer spurious results than the previous report, since the
additional information should have eliminated the cause of some inaccuracies.
Frequently, the new report is significantly smaller since additional, as yet undetected,
spurious results are eliminated aswell. This smaller report may not be so overwhelming
to evaluate, perhaps alowing the analyst to recognize additional spurious results more

easily. The effect is an iterative process in which the analyst examines an anomaly report,
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adds additional information to the analysis, and reapplies the analysis repeatedly until the
desired accuracy is achieved.

Our approach allows the analyst to include selected control and/or data information
in the Petri net model of the program. The basic ideais to introduce information about
the states that the program being analyzed can enter during execution; this information
may be in the form of sequences of program statements or in the form of variable values.
Petri nets are used because including additional program state information in the net and
using that information to control the transitionsin the net is relatively straightforward.
We hypothesize that, by including additional program state information in the Petri net,
we can generate a more accurate estimate of the program state space. Analysis of this
more accurate state space considers fewer infeasible paths, potentially reducing the
number of spurious results reported by the analysis and increasing the value of the
anaysis results.

The following section describes the program representations we use to analyze
concurrent programs with our approach, and Section 9.2 explains how we represent
certain state information to improve the accuracy of those representations. Section 9.3
presents our empirical results, and Section 9.4 offers some conclusions based on those
results and some pointers to future work.

9.1 Program Representations

Because Adais one of the few commonly used languages supporting concurrency,
we use Ada examples to explain our static analysis method and our accuracy-improving
approach. The approach, however, is applicable to any language using rendezvous-style
communication, and could be extended to most other communication stylesaswell. In
Ada programs, potentially concurrent activities occur in tasks’. Adataskstypically

communicate with each other using arendezvous. In arendezvous, the calling task

3Concurrent activities in Ada programs can also occur in procedures; for simplicity, we call them tasks in this paper.
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makes an entry call on a specific entry in the called task; the calling task then suspends
execution until the called task terminates the rendezvous. The called task executes any
statements contained in the accept body for the entry, then terminates the rendezvous and
continues execution.

Our static analysis method builds upon a variety of internal representations of a
concurrent Ada program to capture information about the program. First, we represent
each task with a Task Interaction Graph (TIG) [LC89], which abstracts sequential regions
of control flow into single nodes. The nodesin the TIG for atask are connected by edges
representing possible interactions (entry calls/accepts) between that task and other tasks
in the program. We then combine the set of TIGs for all the tasksin a program into a
Petri net [DCN95] to model the system as awhole. Finally, we use the Petri net to
generate a reachability graph to represent an estimate of al states the program can enter
when started in theinitial program state. Petri nets and reachability graphs are central to
the techniques we use for improving accuracy, so these representations are described
more fully below.

9.1.1 Petri Nets

Petri nets have been proposed as a natural and powerful model of information flow in
asystem [Pet77]. A Petri net can be represented asa5-tuple (P, T, I, O, M0). Pisthe set
of placesin the Petri net, where a place can hold zero or more tokens. If aplace holds
one or more tokens, the placeis said to be marked. T isthe set of transitionsin the Petri
net. Tokens are moved between places in the net by the firing of transitions. A transition
can only befired if it is enabled; for atransition to be enabled, each of the input places
for the transition must contain at least one token. | isafunction mapping placesin P to
inputs of transitionsin T. When atransition fires, atoken is removed from each of the
places that are inputs to the transition, and a token is deposited in each of the output
places of the transition; O is a function mapping placesin P to outputs of transitionsin T.

MOisalist of al the placesin the net that are initially marked.
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Petri nets appear to be a valuable representation for modeling concurrent software
[SC88]. In our analysis method, we use a Petri net representation generated from the set
of TIGs for the concurrent program. Each placein the Petri net correspondsto a
sequential region of code in one of the tasks in the program, and each transition
represents a possible interaction (entry call/accept) between two tasks in the program.

For an example Petri net, based on the TIGs generated for the program in Figure 9.1, see
Figure 9.2. In Figure 9.2, the places representing atask's states are displayed in a column
under the task name and each transition, which represents an inter-task communication, is
displayed between the two interacting tasks*. Places that represent potential termination
points for atask are represented with double circles. For example, the caller2 task could
potentially terminate at place 6 (by taking the false branch of the first conditional and the
true branch of the second), place 7 (by taking the true branch of both conditionals), or
place 8 (by taking the true branch of the first conditional and the false branch of the
second). We use T1G-based Petri Nets (TPNs) because it has been shown that TPNs
substantially reduce the size of the Petri net, thereby increasing the size of the programs
that can be successfully analyzed [DCN95]. Although this exampleis small, in generd

Petri nets can be extremely complex and are not usually visualized.

callerl accepter caller2

4Because of the optimized representation used in a TIG, two transitions are used to represent the interaction between
the accepter and caller2 tasks for the entry2 entry. Transition 2 represents the interaction occurring after caller2 takes
the false branch in the first conditional and transition 3 represents the interaction occurring after caller2 takes the true
branch in thefirst conditional .
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Figure 9.2. Petri Net
A Petri net is called safe if each place in the Petri net can contain at most one token.
Safety is adesirable property, because safe Petri nets are guaranteed to have afinite
number of reachable states. It has been shown that TPNs are safe [Cha95b].
9.1.2 Reachability Graphs

Often, developers want to determine whether or not the concurrent program being
analyzed could potentially enter a state in which a specified property is violated; for
instance, isit possible for the program to enter a state in which it deadlocks. One method
for answering such questionsis to enumerate all possible program states and check the
property at each state. A reachability graph can be used to represent the program state
space.

A reachability graph for a Petri net consists of a set of nodes, N = {nj}, and a set of
arcs, A ={g}. Nodesin the reachability graph correspond to markings of the Petri net;
the root node of the reachability graph corresponds to the initial marking (MO) of the Petri
net. An arc goesfrom nj to nj if and only if the marking of the Petri net can change from
nj to nj with thefiring of asingle transition. Although in actuality several interactions,
represented by fired transitions, can take place concurrently, we can capture al possible
execution sequences by firing asingle transition at a time; we use this approach, because
the resulting graph is greatly smplified. We note that only markings reachable from the
initial marking by some sequential combination of transition firings are included in the
reachability graph. It is helpful to observe that a marking of a Petri net ssmply represents
the states of all the tasks being modeled by the Petri net; we therefore consider nodes in
the reachability graph as states the program can reach when started from theinitial
program state. Figure 9.3 provides the reachability graph for the Petri net in Figure 9.2.
Each node in the figure is annotated with the Petri net places that are marked in the

corresponding program state.
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Figure 9.3. Reachability Graph

9.2 Improving Accuracy

In this section we examine an approach for improving the accuracy of static analysis
without adding significantly to the cost of such analysis. To improve accuracy, we
include additional program state information in the Petri net. Although we describe the
approach in terms of TPNs, the approach is also applicable to other Petri net
representations, such as those from [SC88]. The reachability graph generated from this
enhanced Petri net representation provides a more accurate estimate of the program state
space than the original reachability graph. Analysis of the revised reachability graph is
thus more accurate, and the number of spurious results reported by the analysis should be
less than or, in the worst case, the same as the number of spurious results reported for the
original reachability graph. Since we propose a scenario where an anayst introduces
additional information in response to discovering spurious results in the anomaly report,
we would expect the number of such results to decrease. Theincreasein cost to gain this
accuracy improvement includes the cost of incorporating the additional program state
information in the Petri net and the cost of analyzing the resulting reachability graph.

Our approach can incorporate additional control flow or data flow information in the
Petri net. Thefirst technique, enforcing impossible pairs, retains information about past
program states to eliminate some infeasible paths from consideration by the analysis; this
technique may be suitable when conditional s are controlled by complicated conditions or
when interactions between certain program statements are easily recognized by the
anayst. The second technique, representing variable values, eliminates some infeasible
paths by modeling variable values. This technique is suitable when conditionals are

controlled by a small number of boolean or enumerated variables. We would expect an
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anayst to select the technique that seems most appropriate or natural for the problem at
hand.

For either technique, it isimportant that the enhanced Petri net continue to be an
accurate representation of the program under analysis; in other words, adding the
additional control or datainformation must not hide errors that would have been exposed
through analysis of the original Petri net. Although not presented here, to ensure our
techniques are error-preserving we have verified that the new Petri net is still an accurate
representation of the program. Since the new Petri net is actually a more accurate
representation than the original Petri net, it can be shown that the only program states
removed from the reachability graph are those that are reached through infeasible paths.

9.2.1 Enforcing Impossible Pairs

Impossible pairs [GMO76] are pairs of program statements that can not both execute
in the same execution of the program. In the mid-seventies, impossible pairs were
recognized as an intuitive concept that devel opers could potentially exploit to improve the
accuracy of their results. It was demonstrated in [GMO76], however, that deciding
whether or not a path exists that does not include any impossible pairsis an NP-complete
problem. Rather than explicitly solving the above problem to improve accuracy, we
implicitly remove some infeasible paths from consideration by adding information about
impossible pairs to the Petri net.

In this chapter, we use aless restrictive definition of impossible pairs than the one
given in [GMQO76], since we believe our definition more accurately captures the
restriction that an analyst would want to include. In our definition, executing the first
member of the impossible pair inhibits execution of the second member, but executing

the second member of the impossible pair has no impact on the executability of the first
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member>. In an extension of our technique, we aso account for casesin which the
second member of an impossible pair should only be disabled temporarily; this can occur
if the condition that causes the second member to be disabled can subsequently change.
Finally, we restrict our attention here to cases in which the impossible pair consists of two
interaction (entry call or accept) statements, since the majority of concurrency analysisis
concerned with communication events.

We observe that statementsin an impossible pair are conceptually different from
statements that Can't Happen Together (CHT) [MR93]. Impossible pairsidentificationis
concerned with identifying invalid sequences of statements, whereas CHT analysisis
concerned with identifying statements that can not execute concurrently.

The technique described below involves representing additional program state
information to eliminate infeasible paths that contain both members of an impossible pair.
For an example of when this technique is useful, consider the program in Figure 9.1, and
assume for the moment that the conditionsin the if statements are much more
complicated than the value of aboolean variable. If the condition in the first conditional
in the caller2 task evaluates to true, leading to the entry call on entryl in the first
conditional, the call on entry2 in the second conditional isimpossible because the truth
value of the condition does not change. Note that, similar to symbolic model checking,
we could try to encode the possible values of the complicated condition in the Petri net.
For general boolean expressions, however, the encoding of the condition in the Petri net
could be quite large. Instead, we use information about thisimpossible pair to improve
the accuracy of the Petri net and the corresponding reachability graph.

There are three distinct activities associated with enforcing impossible pairs:

recognizing the impossible pairs in a program, recognizing which regions in the program

SOf course, using our definition an analyst could represent two statements a and b as an impossible pair as
described in [GMO76] by specifying two impossible pairs, [a,b] and [b,g].
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re-enable second members of the impossible pairs, and including information about the
impossible pairsin the Petri net. Although sophisticated methods, such as symbolic
evauation [CR81], could be used to recognize impossible pairs and regions re-enabling
them, we assume that these are relatively easy for an analyst to manually identify after
examining the anomaly report. We would expect that after discovering several spurious
resultsin the report, the analyst would introduce specific impossible pair information to
improve the accuracy of theresults. In any case, for this presentation we assume that
some method has been used to recognize the impossible pairs and the regions re-enabling
them, so our discussion below focuses on including information about these impossible
pairsin our Petri net.

To simplify our explanation, we assume a single impossible pair in the program but
note that the technigue can be extended to multiple impossible pairs [Cha95b]. Also note
that, using the same basi ¢ technique, more complicated flow constraints than impossible
pairs could be incorporated given Petri net representations of those constraints.

To illustrate the ideas presented here, we modify the Petri net given in Figure 9.2.
Transition 1, which corresponds to the accepter.entryl statement in the caller2 task, isthe
first member of the impossible pair. Transitions 2 and 3, which correspond to the
accepter.entry2 statement in the caller2 task, represent the second member of the

impossible pair. The enhanced Petri net is shown in Figure 9.4.

callerl accepter

Figure 9.4. Petri Net With Impossible Pairs Represented

223



In general, to include impossible pair information in our Petri net we add two new
places that control firing of the transitions corresponding to the second member of the
impossible pair in the program, and also add duplicates of the transitions corresponding to
the first member of the impossible pair. Thefirst new place, called the Enabled place for
the second member, is used to enable execution of the second member; the second new
place, called the Disabled place for the second member, is used to inhibit execution of the
second member. Because we restrict our attention here to impossible pairs of interaction
statements, the first member and second member of the impossible pair are each
represented by one or more transitions in the Petri net. We connect the Enabled place as
an input to all transitions that correspond to the task statement for the second member,
which ensures the statement can only execute when the Enabled place contains a token
(transitions 2 and 3 in Figure 9.4) . We also connect the Enabled place as an output of
these transitions, which lets the task statement execute multiple times. Since executing
the first member of the impossible pair prohibits the second member from executing, we
must ensure that firing the transition corresponding to the first member of the impossible
pair results in an unmarked Enabled place and a marked Disabled place for the second
member of the impossible pair. Because the second member may be enabled or disabled
before executing the first member, we copy the transition corresponding to the first
member, including all inputs and outputs of the transition. We then use the origina
transition (transition 1 in Figure 9.4) to change the second member from enabled to
disabled when the first member is executed and the duplicate transition (transition 5in
Figure 9.4) to keep the second member disabled if it is already disabled when the first
member is executed; we call these disabling transitions.

To ensure that the second member is enabled or disabled (but not both), we have
connected the new places to the net such that exactly one of the Enabled place/Disabled
place pair for the second member is marked at any given time. The Enabled placeis

initially marked, and the Disabled placeisinitially unmarked (see Figure 9.4).
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In an extension of the technique described above, we aso consider the possibility
that the second member of an impossible pair should only be disabled temporarily. For
example, if the first member of an impossible pair is contained within aloop and the
condition is changed at the end of the loop, the second member of the impossible pair
should be re-enabled at the end of the loop. Because the statement changing such a
condition will typically not be an interaction statement, this statement is contained within
the TIG region corresponding to a place in the Petri net; we call this region are-enabling
region, since it re-enables execution of a statement. To re-enable the second member, we
modify transitions into the place corresponding to the re-enabling region. Because the
statement to be re-enabled may be enabled or disabled before we reach the transition to be
modified, we copy the transition, including all inputs and outputs of the transition. We
then use the original transition to change the statement from disabled to enabled and the
duplicate transition to keep the second member enabled if it is aready enabled; we call
these re-enabling transitions. In our example program the second member of the
impossible pair is never re-enabled, so these transition modifications are not required for
the Petri net in Figure 9.4.

In our example, the Petri net without impossible pair information is shown in Figure
9.2, and the corresponding reachability graph is shown in Figure 9.3. Node 4 in the
reachability graph represents a deadlock of the callerl task. Thetransition fired to enter
this node, however, represents an interaction that is not possible, because the true branch
istraversed in the first conditional in the caller2 task to reach node 2, and the condition is
not changed before the second conditional. Therefore, an analysis result that reports
deadlock for this program is a spurious result, since the program can not actually execute
the path required to reach the deadlocked node. Using the technique for impossible pairs
described above, we add impossible pairs information to the Petri net as shown in Figure
9.4; the corresponding reachability graph is shown in Figure 9.5. Note that in Figure 9.5

we have retained the reachability graph node numbering from Figure 9.3 to facilitate
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comparison. For this example the spurious result has been removed by the additional
information included, and thus analysis of the resulting graph can yield more accurate

results.
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1,3,6,9

1,4,7,10
2,5,7,10
Figure 9.5. Reachability Graph With Impossible Pairs Represented

9.2.2 Representing Variable Vaues

When we include representation of impossible pairsinformation in our Petri net, we
eliminate some infeasible paths from consideration by explicitly representing information
about pathsin the program execution. We can also implicitly eliminate some infeasible
paths by representing the values of selected variables in the program. Thistechniqueis
applicable when conditions in the program conditionals are relatively simple and include
asmall number of boolean or enumerated variables whose values can be statically
determined in at |east some regions of the program. As with theimpossible pairs
technique, we modify the Petri net to capture additional information about the program
states. In this case, however, the state information isin the form of variable values. We
can use this additional information to exclude interactions that are infeasible based on
those values, thereby excluding some infeasible paths from our analysis.

For an example of when this technique is useful, consider again the program in
Figure 9.1 and assume that BranchCond is set to true at the beginning of caller2. Thus,
caller2 makes the entry call on entryl1, but the entry call on entry2 isimpossible, based on
the value of BranchCond. If we modify the corresponding Petri net to include
information about values of the variable BranchCond, we can improve the accuracy of the
reachability analysis by eliminating consideration of the entry call on entry2.

There are four activities to be considered when we represent variable values in a Petri
net: recognizing the interactions that are controlled by specific variable values,
recognizing the regions that change the variable's value (and how they change it),
building the representation for the variable, and connecting it to the existing Petri net.

We believe that thisis often straightforward in practice, particularly when a boolean
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variable is used to control communication in the program. For these cases, an analyst
should easily be able to identify such controlling variables and could specify those
variables for inclusion in the Petri net. In this chapter, we assume the first two actions
have been accomplished and focus on the actual representation and inclusion of the
variable value information.

We represent avariable in the program for which we want to maintain value
information with a variable subnet. This subnet contains two kinds of places: value
places and operation places. The subnet includes a value place for each possible value of
the variable, plus an "Unknown" place to account for those occasions on which we can
not statically determine the variable's value. To simplify the presentation, we describe a
variable subnet for a boolean variable. The variable subnet for a Boolean variable would
have a"True" place, a"Fase" place, and an "Unknown" place. When the "Unknown"
place is marked, the variable could be true or false; based on the connections described
below, both possibilities are considered during generation of the reachability graph. The
"Unknown" placeis marked in the initial marking of the Petri net. The variable subnet
also includes operation places for the valid operations on a variable of the given type; for
example, the valid operations on a boolean variable are "Assign True", "Assign False”,
and "Not". For each operation, we connect the corresponding operation placeto
transitions between the appropriate value places. For example, the Boolean variable
subnet contains atransition with "Assign True" and "False" asinputs and "True" as an
output. The variable subnet is effectively afinite state machine for the variable, with
transitions between the states (values) of the variable controlled by operations on the
variable.

To make the resulting subnet safe, we modify the Petri net to ensure the operation
places can never contain more than one token, using transformations similar to those
described by Peterson [Pet81]. For every operation place for the variable, we add an

operation prime place, yielding two places for each possible operation on the variable.
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For each transition with an operation place as an output, we add the corresponding
operation prime place as an input. For each transition with an operation place as an input,
we add the corresponding operation prime place as an output. This transformation yields
a safe subnet, with the additiona property that only one of the operation place/operation
prime place pair for a given operation can be marked at any given time. If none of the
regions corresponding to marked placesin theinitial marking of the original Petri net
modify the modeled variable, all operation prime places are marked in theinitial marking
of the Petri net; otherwise, the appropriate operation places are marked, with the
corresponding operation prime places left unmarked. We also note that, sinceitis
possible for the program to exit aregion in which the value of avariableis statically
determinable into aregion in which the value is not statically determinable, we need to
provide an "Assign Unknown" operation aswell. The resulting variable subnet for a
Boolean variable is as shown in Figure 9.6, but the subnet shown has not yet been

connected to the Petri net for a program.

AssignFalseAssignFalse’ AssignTrue AssignTrue' AssignUnknown AssignUnknown'  Not Not'

Figure 9.6. Boolean Variable Subnet
To use the additional information provided by the variable subnet, we need to
connect the variable subnet to the Petri net. Figure 9.7 illustrates the revisions to the Petri

net using the example shown in Figures 9.1 and 9.2. The variable subnet for the
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BranchCond variable is abstracted to facilitate understanding. In Figure9.7,aT, F, or U
on an arc represents a connection to the True, False, or Unknown value placein the
BranchCond Subnet. Also, connections between transitions and operation prime places
are as described below, but are omitted from this figure for clarity.

A variable subnet is connected to the Petri net for a program in two cases. at
transitions controlled by the variable and at transitions leading into or out of places
corresponding to regions that modify the value of the variable. Inthefirst case, a
transition is controlled by avariableif the transition can only occur if the variable has a
certain value. In this case, we copy the transition. The appropriate value place for the
variableis connected as an input to the origina transition (transitions 1, 2, and 3 in Figure
9.7), and the same value place is connected as an output of the transition to preserve the
value of the variable. We add the Unknown value place as an input and output for the
duplicated transition (transitions 5, 6, and 7 in Figure 9.7) to represent the fact that the
interaction may be possible in the case where the variable's valueis currently
undetermined. In addition, we add all operation prime places for the variable as inputs
and outputs for the origina and duplicate transitions to ensure any required modifications
to the variable have been completed before we use the variable's value. In this manner,
we exclude all markings from the reachability graph that include firing this transition
when the variable does not have the required value, thereby improving the accuracy of the
analysis.

In the second case, to effect changes to the variable values, we need to account for
regions from the program (places in the Petri net) in which the variable is changed (by
assignment, for instance); we call these regions modifying regions. If we assign
BranchCond the value true initially in the caller2 task then the corresponding place (place
6 in Figure 9.7) corresponds to amodifying region. For each of these regions, we add the
appropriate operation place as an output and the corresponding operation prime place as

an input of all transitions leading into the modifying region; this initiates modification of
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the variable on entry into the modifying region. We also add the operation prime place as
an input and output of all transitions exiting the modifying region; because the operation
prime place will not be marked until the operation on the variable is completed, this
ensures the modification is complete before the program exits the modifying region.
Since the operation prime places have already been added to transitions 1 and 5 as
described above, no further changes are required in Figure 9.7.

Note that a single region can potentially modify a given variable in several different
ways. To simplify the description we assume asimpler model here, in which asingle
region modifies agiven variable in one specific way. Note that more complicated
modeling can be used to handle the more genera case. Also note that since the region
represented by place 6 in the Petri net would contain Br anchCond : = true, inour
initial marking the AssignTrue place is marked (and the AssignTrue' place is unmarked).

Using a variable subnet as described above yields the Petri net shown in Figure 9.7.
The corresponding reachability graph is shown in Figure 9.8, where the reachability graph
nodes are annotated with the marked Petri net places as well as the marked value,
operation, and operation prime places in the BranchCond Subnet. Again we see that the

spurious result is no longer reported.

callerl accepter

BranchCond
Subnet

Figure 9.7. Petri Net With Variable Subnet Added

Information about variable values could also be incorporated using an FSM, with
states of the FSM representing variable values and transitions in the FSM representing

operations on the variable. While the FSM would certainly be easier to understand than
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Figure 9.6, the difficulty comes when incorporating the FSM into the model. An FSM
can not be "connected” to the Petri net as our variable subnets are, so the FSM would
need to be used during reachability graph generation, potentially slowing down the
generation process significantly. Representing variables with variable subnets provides
the same accuracy improvements as would be provided with FSMs, while retaining a
standard Petri net as the program model.

1,36,

Unknown,

AssignTrue,

AssignFalse Prime,
AssignUnknown_Prime, Not_Prime

1,36,

True,

AssignTrue_Prime, AssignFalse Prime,
AssignUnknown_Prime, Not_Prime

1,4,7,

True,

AssignTrue_Prime, AssignFalse Prime,
AssignUnknown_Prime, Not_Prime

2,57,

True,

AssignTrue_Prime, AssignFalse Prime,
AssignUnknown_Prime, Not_Prime
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Figure 9.8. Reachability Graph Using Variable Subnet

9.2.3 Choosing Between the Two Techniques

The two techniques described above give the analyst flexibility when determining
what kind of additional information to include to improve analysis accuracy. In general,
we expect the analyst to choose whichever technigque appears more natural given the
program being analyzed and the property of interest.

The impossible pairs technique seems particularly attractive when static information
about the impossible pairsin the program is readily available and transitions correspond
to members of asingle impossible pair. If the control flow decisionsin the program are
complicated, the impossible pairs technique may be more suitable than the variable values

technique. The impossible pairs technigue will tend to be expensive for programs for
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which the Petri net contains transitions that affect multiple members of impossible pairs,
since the number of these transitions grows exponentially in the number of impossible
pairs affected.

In the variable values technique, efficient algorithms for recognizing the regions that
affect avariable€'s value are available. An analyst may aso be ableto easily identify those
variables that are used in the program to control communications. If the control flow
decisions on those variables are not extremely complicated, recognizing the transitions
controlled by the variable values and making the appropriate connections is relatively
straightforward. The additional information added to the Petri net is based on the
variable type, so the variable subnet for a variable with relatively few values (such asa
boolean variable), used in relatively few locations, does not increase the Petri net size
significantly. Limitations of this technique include the requirement to be able to statically
determine variable values to gain accuracy improvement, the difficulties determining the
proper connections to account for complicated conditions, and the rapid growth of the
size of the variable subnet as the number of possible values of the represented variable
grows.

9.3 Empirical Results

We have run experiments on asmall set of programs to gather information about
how the application of our approach affects the sizes of the Petri nets and reachability
graphs for these examples. We hypothesize that our accuracy-improving approach can
improve analysis accuracy without significantly impacting performance.

In each of the techniques presented, the size of the Petri net isincreased by the places
and transitions added to model the additional semantic information. On one hand, we
expect the size of the reachability graph to grow as the size of the Petri net grows, since
the upper bound on the size of the reachability graph is exponentia in the number of Petri
net places. On the other hand, we would expect the additional modeling in the Petri net

to remove some infeasi ble paths from consideration, thereby reducing the size of the
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reachability graph. We perform the experiments to acquire preliminary indications of
which scenario is more common and a so to gain experience applying the approach.

Whenever the approach is applied, the resulting reachability graph more accurately
represents the program state space. However, this does not necessarily guarantee that the
number of spurious resultsin the anomaly report will be reduced. For instance, if the
states removed from the reachability graph are independent of the property being
checked, the number of spurious resultsin the anomaly report will stay the same. For that
reason, we consider our accuracy improvements as improvements in the reachability
graph as arepresentation of the program state space, rather than as reductionsin the
number of spurious results in the anomaly report. While we expect that improving the
accuracy of the reachability graph will commonly reduce the number of spurious results,
whether or not this occurs in practice depends on the property being checked.

To perform the experiments below we modified an existing tool set. Toolsto
convert an Adaprogramto aTIG and a set of TIGs to a Petri net were already available.
We developed a general tool to generate the reachability graph from a Petri net, and also
built several specialized tools to include impossible pair information and variable subnets
in the Petri net.

For the experiments described here, we used various sizes of the readers/writers
problem and the gas station problem. The notation rwXY indicates an instance of the
readers/writers problem with X readersand Y writers. The code for readers/writers
programsis fairly standard, with a Boolean variable WriterPresent used to track the
presence of awriter. The notation gasXY indicates an instance of the standard gas station
problem [HL85] with X customersand Y pumps.

For the impossible pair technique, identifying the impossible pairs in the program to
be analyzed is done manually. Once we have identified which regions correspond to
impossible pairs, we provide this information to atool that scans the transitionsin the

Petri net and automatically modifies the transitions as described in the previous section.

234



When we use the variable subnet technique, we provide the name of the variable to
be modeled to the Petri net toolset. The toolset then automatically generates avariable
subnet with the appropriate value and operation places. Currently, we only automatically
build Boolean variable subnets. We then take the resulting variable subnet and manually
connect it to the origina Petri net by recognizing interactions that are controlled by the
variable value and also identifying regions in which an operation is performed on the
variable. Thisactivity could be automated by scanning for the variable name in branches
and select guards and by collecting information about operations on the variable for each
region.

The effects of using these techniques for the sample programs can be found in Table
9.1. Inthetable, NA meansthat no additional information isincluded in the Petri net for
the program. Imp specifies a Petri net that includes information about impossible pairs
and Var specifies a Petri net that includes one or more variable subnets.

Table 9.1. Effects of Approach on Petri Nets and Reachability Graphs

Petri Net Reachability Graph

Program Refinement Places Transitions Nodes Arcs
rw2l NA 17 48 41 119
Imp 25 183 31 71

Var 28 105 52 94

rw22 NA 20 66 175 692
Imp 28 306 98 276

Var 31 138 166 348

rw23 NA 23 84 609 3,031
Imp 31 429 248 794

Var 34 171 426 978

rw32 NA 23 81 579 2,884
Imp 31 336 308 1,097

Var 34 168 502 1,295

rw25 NA 29 120 6,229 43,571
Imp 37 675 1,320 4,888

Var 40 237 2,330 5,908

rws2 NA 29 111 5,811 40,660
Imp 33 638 2,972 14,955

Var 40 228 4,678 16,665

gas31 NA 39 75 493 987
Imp 45 111 931 1,773

Var 87 224 559 885

gasb1 NA 59 163 9,746 26,785
Imp 64 463 22,841 57,655
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For the Imp version of the Petri net for readers/writers problems, we model the
impossible pairs resulting from whether or not awriter is present. These pairs were easy
to recognize given the simple guards in the control task. Including thisinformation
improves the accuracy of the analysis by eliminating consideration of some infeasible
paths through the program and reduces the size of the reachability graph aswell.

For the Imp version of the gas station problems, we use impossible pairsto reflect the
fact that if acustomer enters an empty pump queue, then that customer gets their change
before any other customer. Including information about impossible pairsin gas31 and
gas51 yields reachability graphs with approximately twice as many nodes and arcs as the
original reachability graph.

Including impossible pairsinformation in the Petri net can cause an increasein the
reachability graph size because we encode not just the current program state, but also
information about the path leading to that state. For example, consider the state in which
customer 1 and customer 2 have both pre-paid the operator. Without impossible pairs
information, this state is represented by a single node in the reachability graph. When we
include impossible pairs information, the reachability graph contains one node for this
state in which customer 1 entered the (empty) queue first, one node in which customer 2
entered the (empty) queue first, and one state in which neither entered an empty queue. In
such cases, the improvement in accuracy comes at the cost of alarger reachability graph
to be analyzed.

For the Var version of readers/writers, we model the WriterPresent variablethat is
included in the guards of the main select statement. Selecting this variable to be modeled
and recognizing the appropriate connection points for the variable subnet were
straightforward because of the basic operations on the variable and the ssmplicity of the
guards containing the variable. We observe that, for instances of readers/writers larger
than rw21, the technique yields two benefits: it improves the accuracy of the analysis by

eliminating consideration of some infeasible paths through the program and it reduces the
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size of the reachability graph. For rw21, this technique increases the size of the
reachability graph. This occurs because of the possible interleavings of firing transitions
that change the variable value and firing transitions that are independent of the variable
value. Astheproblem is scaled, the affect of these interleavings seems to decrease, and
we see reduction in the reachability graph size instead of growth.

For the Var version of gas31, we implement a variable subnet for each element of the
customer queue, in addition to the counter for the number of active customers. Because
our tools don't currently automatically build subnets for enumerated or subrange types, we
manually built the subnets for this version. Modeling the customer queue and number of
active customersyields a slight increase in the number of reachability graph nodes, so
simply checking for a property at each node would take somewhat longer. In addition, we
note that manually building the variable subnets was tedious. Although building the
subnet for each queue element is straightforward, the difficulty comesin recognizing
where the gas31 code moves the queue forward and representing that movement with the
subnets. In any case, the analysisis more accurate, since using the variable subnets
ensures that change is always given to the correct customer. Developing the model of the
customer queue was sufficiently time-consuming that we did not attempt this for the
gas51 program.

For the readers/writers problem, the impossible pairs and variable value techniques
implicitly model the "same" information (the value of the WriterPresent variable). Itis
therefore valid to directly compare the sizes of the resulting reachability graphs (since
they have the same accuracy), and to note that the impossible pairs technique is more
effective at reducing the size of the graph. On the other hand, the Imp Petri nets contain
many more transitions than the Var Petri nets for this problem, so it may take longer to
actually generate the (smaller) Imp reachability graphs. With both techniques, the
accuracy of the reachability graph isimproved; the reduction in sizeisabeneficial side

effect.
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For the gas station problem, our impossible pairs results are not comparable to the
Var version, since we are not capturing the same information in our Petri net. The Var
version captures a significant amount of state information for only aslight increase in
reachability graph size, but manually adding the required variable value modeling was
difficult. The Imp version captures less information than the Var version, and yields a
large increase in reachability graph size, but including the modeling was straightforward.

Table 9.2 lists several properties of each program considered. Entriesis the number
of unique entriesin the program and Entry Calls is the total number of calls on those
entries. Variables provides the number of variables modeled in the Var version of the
Petri net, with the number of possible variable values (including unknown) following in
parentheses. For instance, for the Var version of the gas31 Petri net, we model 3
variables with 4 possible values and 1 variable with 5 possible values. Impossible Pairs
provides the number of impossible pairs modeled in the Imp version of the Petri net. For
the readers/writers programs, the numbers of variables and impossible pairs modeled stay
constant as the problem isscaled. This occurs because the additional modeling is applied
to the control task, which does not change as the problem is scaled. For the gas station
problems, the number of impossible pairs modeled grows as the problem is scaled
because the modeling is applied in the operator task, which grows as the problem size
grows.

Table9.2. Program Properties

. Entry _ Impossible
Program Entries Calls  Variables ars
rw2l 4 6 1(3) 7
rw22 4 8 1(3) 7
rw23 4 10 1(3) 7
rw32 4 10 1(3) 7
rw25 4 14 1(3) 7
rw52 4 14 1(3) 7
gas3l 10 17 3(4),1(5 6
gasbl 14 27 - 20

9.4 Conclusions
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Static analysis can be used to answer questions about properties of concurrent
programs, although often with the inclusion of spurious results. We have identified an
approach that can be used to improve the accuracy of Petri net-based analysis of
concurrent programs. In several cases that we examined, the approach reduced the size of
the reachability graph for the system aswell. The impossible pairs technique retains
additional program state information in the form of the impossible pair transitions that are
currently enabled and disabled, and the variable subnet technique retains additional
program state information in the form of the current values of selected variables.

The cost of using the above techniques can vary considerably from program to
program. To effectively use variable subnets, we must first recognize which variables
affect the control flow of the program and identify the regions in which those variables
aremodified. We must also determine how the represented val ues should be connected
to the transitions of the Petri net to accurately reflect how the values influence the
interactions of the program. The difficulty of doing this ranges from very easy (for
control flow decisions based on a Boolean variable's value only, for example) to very
difficult (for control flow decisions containing complicated conditions). Alternatively,
we can sometimes account for complicated conditions by including impossible pairs
information instead. The complexity of adding the information for the impossible pairsis
linear in the number of original transitionsin the Petri net; the difficulty comesin
recognizing the regions of the program that represent impossible pairs. Ultimately, the
decision about which technique to use will fall on the analyst. For some programs, the
impossible pairs may be easily recognized by the analyst, whereas for other programs,
representing key variables that control communications in the program may seem more
straightforward.

In several of the programs examined, the reachability graph size or complexity was
reduced as a side effect of the improved accuracy. Static analysis models generally

include infeasible as well as feasible paths through the program; the state space which
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needs to be searched for the property is therefore larger than the actual possible state
space of the program. Because our goal was to improve accuracy by eliminating
impossible program states from the reachability graph, it is reasonable to expect a smaller
reachability graph to result. On the other hand, in some cases our modeling of the
additional state information leads to larger graphs, because we add possible interleavings
between activities on our variable subnets or Enabled/Disabled impossible pair places and
the origina Petri net. In al cases, the generated reachability graph represents more
accurately the possible states of the program because of the additional information
modeled.

We have examined how to incorporate accuracy-improving semantic information
into Petri nets. It isnot as easy to modify the semantics of other internal representations
that are commonly used for analysis, such as control flow graphs, abstract syntax trees,
and program dependency graphs. A complementary and somewhat similar approach is
explored in [DC94], but instead of modifying the internal representation, the approach
incorporates the additional semantic constraints in the analysis algorithms. Similarly,
information about impossible pairs or variable values could be incorporated in the
reachability graph generation algorithm rather than in the Petri net representation of the
program. Itisnot clear how this would affect the size of the resulting reachability graph,
but the added complexity in the algorithm might lead to a significant increase in
reachability graph generation time. It istoo early to determine when one approach might
be superior to the other.

Because of various limitations, we have only demonstrated the viability of our
approach on asmall sample of programs. It isdoubtful, however, that these programs are
representative of the population of "real" concurrent programs. To more accurately
quantify how well these techniques work in general, more experiments need to be run on
alarger sample of programs. Our future plans include performing a series of experiments

using this approach on awider range of program sizes and complexities.
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For the programs examined here, we have manually detected variables and
impossible pairs to model, then added them to the Petri net using partially automated
tools. More support could be provided to the analyst through automatic recognition of
variables that control interaction patternsin the program; these variables could then be
automatically included in the Petri net or recommended as useful variables to model.
Automatically detecting impossible pairsin the program may not be feasible except in
simple cases, but further automating the process of modeling variables and impossible
pairsisapotentia areafor future research.

It would aso be interesting to make the tool interactive to determine the effects on
analysis accuracy of representing other user-supplied information. If the analysisyields
spurious results that are not easily eliminated using the above techniques, it may be
possible to include additional information from the user to refine the Petri net to improve
accuracy. Other constraints on the control flow, such as sequences of certain statements
that can never occur or must always occur, can be modeled with subnets and attached
appropriately. More generally, any constraints that can be expressed with a subnet could
be used to improve the accuracy of analysisresults, as long as the analyst or an enhanced
tool could determine how to attach the subnet appropriately. To ensure conservativeness,
the modifications would need to be error-preserving, at least for the property being
checked.

The results above support our hypothesis that modeling specific kinds of program
state information in the Petri net can lead to cost-effective improvements in the accuracy
of the corresponding reachability graph, and for some programs reduce the size of the
reachable state space as well. Further work needs to be done to more accurately quantify
the benefits of these techniques, and the tools should be made more robust to allow
additional investigation of these and other techniques for improving static analysis

accuracy.
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CHAPTER 10
CONCLUSION

Static concurrency analysis techniques can be used to check that the behavior of
concurrent systems meet specified requirements. A variety of these methods have been
proposed, including reachability analysis, symbolic model checking, integer
programming, and data flow analysis. Given the variety of tools available, analysts need
assistance when selecting which tools to use for a specific program and property.
Empirical tool comparisons can provide useful insight into which tool would be most
suitable for a given program and property.

The main contribution of this dissertation is the methodology we have devel oped to
gather experimental data and analyze that data. We believe that this methodology can be
used to conduct sound empirical comparisons of concurrency analysis tools and to
provide valuable assistance to analysts selecting atool for analysis of a concurrent
system. In describing our methodol ogy, we identify many of the concerns and tradeoffs
that must be considered. We believe that the description will be informative to those
considering similar such investigations.

To ensure that an empirical comparison isfair, a careful comparison methodol ogy
must be employed. For the comparison to be fair, the tools should be used on the same
input domain of programs and properties and the methodol ogy should not introduce bias
against one or more of thetools. A valid comparison methodology should therefore
ensure that each tool is analyzing the same program and property, or recognize and
identify cases in which thisis not possible. Such a methodology should also try to
minimize bias introduced by the methodology.

To ensure each tool analyzes the same program, the methodol ogy presented above
uses an Ada program as a canonical model of the concurrent system and carefully

translates this model to the inputs for each of the tools. Thistransation process has been
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carefully devel oped and automated, but because of differences in the semantics of the
analysis tools it may not be possible to force them to analyze identical programs. Instead,
we view our process as (at least close to) the best we can do for this set of analysistools.
To ensure each tool checks the same property, the properties of interest are carefully
created. Thistask can be difficult given the variety of property specification formalisms.
Because we manually convince ourselves that the properties are the same, there is always
some question whether or not we have specified identical properties.

The program and property translations in our methodol ogy can inadvertently
introduce bias against one or more of the tools. This bias can be introduced by the form
of the inputs generated for each tool, by the configuration in which each tool is run, by the
form of the property specification, and by other unknown factors. The methodology
attempts to recognize possible areas of bias and, when possible, executes analysis runs to
ensure such biasis not introduced by the methodol ogy.

We know that our methodology introduces some bias through our selection of
program sizes. Specifically, the sizes for a specific program and property are selected
based on the performance of the tool that does worst (in terms of analysis time and
failure) on that program and property. In many cases, this restricts some of the analysis
toolsto an input domain that is much smaller than they could actually analyze. The
positive effect of this choice isthat the comparison is performed for the same input
domain of programs, sizes, and properties. The negative effect is that some of the tools
areforced to analyze programsin only asmall portion of their domain of applicability.
An alternative would be to select different sizes for each tool, based on the point at which
that tool fails. Thiswould potentially give aclearer picture of each tool's performance,
especialy in terms of failures, but would preclude direct comparison of analysis times
and failure percentages because of the differences in the input domain.

The choice of what to measure for analysis time for the comparison is adifficult one.

Using each tool's native input as the starting point for the time measurement seems the
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fairest, but may not give atrue picture of analysis codt, at least for Ada programs, given
the tranglations required to generate the native input. Starting the analysistime
measurement with the input of the Ada program may give better insight into the true cost
of the analyses, but this time a so includes potential inefficiencies contained in our

trand ation tools.

We also note that the measured analysis timesignore avery interesting, and almost
always significant, time factor - the amount of time it takes an analyst to specify the
property of interest. Our informal observations below indicate problems that we
encountered with each of the tools specifying the properties. While many of these
problems are probably caused by our inexperience with the tools and their specification
formalisms, we believe that the property specification time would be non-trivial even for
experienced users. Developing an experiment to take this time into account, however,
would be a difficult undertaking, because many factors involving human behavior (i.e.,
analysis experience, training effects, and so on) would need to be accounted for in the
experimental design.

A second contribution of this dissertation is the application of the methodology to
conduct an empirical comparison of six concurrency analysistools. Aswe applied this
methodol ogy, we gained val uable experience using each of the toolsin the experiment.
Because we have the perspective of a user, rather than a developer, of these tools, we
believe these experiences provide interesting insights about the tools.

One of the key differences between the tools (from the user's perspective) is whether
they are state-based or event-based. We classify atool as state-based if properties are
typically specified in terms of states of the program being analyzed; SPIN, SPIN+PO,
TRACC, and SMV are state-based tools. We classify atool as event-based if properties
aretypically specified in terms of events that occur during execution of the program being
analyzed; INCA and FLAVERS are event-based tools. We make asimilar distinction

between state properties and path properties. State properties can be checked by
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considering each state of the system inisolation. Freedom from deadlock and no_wiw?2
(from readers/writers) are examples of state properties. Path properties require
consideration of paths through the program, often in terms of events along those paths.
The no_rlw property (from readers/writers) is an example of a path property. We have
found that using state-based tools to check path properties can be somewhat difficult. For
example, in many cases we found it necessary to add additional variablesto the system
specification being analyzed by the state-based tools to let us recognize the events of
interest for the property. We did not seem to experience the same difficulty using event-
based tools to check state properties because it was usually possible to identify the events
leading to the states of interest and to formulate the property in terms of those events. Of
course, we had more experience using event-based tools before conducting the
experiment described here, so this might ssmply be aresult of our prior experience. We
provide more specific comments about the tools below.

SPIN provides two different methods for specifying properties. Never claims
essentially represent a Finite State Automaton representation of the property, while
assertions are embedded in the program being analyzed. Our biggest difficulty with SPIN
was caused by the fact that, even with the processes in the program specified as FSAs, we
do not get a"true" transition on communication events. SPIN evaluates the guards for the
alternatives (typically the guards are communication events) in one step of the evaluation,
but does not execute the action associated with the selected alternative until some later
step. Thiswas particularly problematic when we wanted to check mutual exclusion
properties. Consider the case where one user of aresource releases that resource (through
acommunication), but is not transitioned to its new state because SPIN has not yet
executed the action associated with that communication. If asecond user starts using the
resource, examination of the states of the processes in the system indicates that both users
are using the resource (i.e., mutual exclusionisviolated). The evaluation of an

alternative in one step and execution of the action for that alternativein alater step also
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made it difficult to specify properties as never clams. We were able to work around this
characteristic with careful specification of the never claim or embedding of assertions, but
the resulting properties were often less intuitive than those we originally formul ated.
Because it is based on SPIN, SPIN+PO has this same characteristic.

Because we specify the system for SMV using the transition relation of the system,
we were able to more easily identify events of interest than with the other state-based
tools. Because our events of interest are often communications in the program, which are
represented by transitions in the transition relation, we can identify these events by using
additional variables to identify when certain transitions occur. Adding these variables to
potentially large transition relations was initially a painful, manual process, but we
quickly developed atool that automatically makes most of the changes. We had more
difficulty when we tried to avoid adding additional variables by specifying the properties
as alternate CTL formulae instead, because these formulae are in terms of states rather
than events. On the other hand, because the transition relation provides true state
transitions on the communications, we did not experience the same problems we had with
SPIN.

We included TRACC as an additional reachability analysis tool for comparison, but
its performance, in terms of both analysis time and accuracy, indicates that it is not a
viabletool for static concurrency analysis. In addition, a special program must be written
to check each property, an effort we would not expect an analyst to undertake each time a
new property of interest is devel oped.

INCA isone of the two event-based tool in the experiment, and identification of the
communications in the program is automatically provided by the tool. We initialy had
some difficulty determining when multiple intervals were required to check properties,
but discussions with the devel opers of thetool clarified thisissue. We aso had some

difficulty determining the semantics of certain query constructs (:ends-with, for instance),
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but view this as a documentation problem rather than a weakness of the tool. Finaly, we
found the Lisp syntax of the queries somewhat inconvenient.

FLAVERS s aso an event-based tool, and identification of rendezvous acceptsis
automatically provided. Because the tool does not identify specific communications
(accepts of entry calls from two different tasks are marked with the same event), we
occasionally had to add annotations to capture the events of interest. This characteristic
also led us to manually add annotations to check the mutual exclusion properties, for
which we encountered a problem similar to that for SPIN. FLAVERS annotations can
only be specified to occur just before or just after acommunication, while we wanted the
annotations to be exactly at certain communications. Our workaround for this was
similar to the one used for SPIN. Propertiesin FLAVERS are specified as Quantified
Regular Expressions (QREs). Given our familiarity with regular expressions, we found
this an intuitive way to specify properties. We note, however, that we developed a
process in which we created a QRE for our property of interest and then converted it to an
FSA to confirm that it specified the property we intended. On several occasions, this
process indicated that our property was not quite specified correctly, so we made
modifications to the QRE one or more times before achieving the property we wanted to
check. Thisexperienceimpliesthat, for FLAVERS, FSAs may be amore useful property
specification formalism than QRESs.

To allow the use of statistical tests to check for bias and to gain confidencein the
analysis times collected, we ran each analysis case fivetimes. In an effort to remove
caching effects from these runs, we randomized the order in which the analysis cases
were run. While we believe this approach is reasonable, there are some practical
difficultieswith it. For example, a change to one tool's input requires that the entire set of
analysis cases be rerun, since the analysis cases are randomized across multiple tools. An
alternative would be to somehow clear the cache before each analysis case. We would

still run each analysis case five times to allow the statistical testing for bias, but would no
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longer need to randomize the order of those runs. We could then run the analysis cases
for each tool as they became available, and would no longer have to rerun the entire set of
cases when one tool's input changed. Because al of these tools are regularly updated, an
additional benefit of using the new approach would be that we could run the analysis
cases for anew version of one of the tools without having to rerun the analysis cases for
the other tools as well.

A third contribution of this dissertation is the demonstration of careful statistical
analysis to check for bias and to develop predictive models for analysis time, failures, and
spurious results. Unfortunately, the linear regression models for analysistime did not
generally capture much of the variance in the experimental data, so they are not likely to
provide much predictive power for real programs. For some of the metrics, we
occasionally identified additional linear components that were not accounted for by the
regression model. It ispossible that adding additional cross-product terms to the model
or using more sophisticated regression techniques will yield better predictive models, but
we stopped our analysis at identification of these problems. It is also possible that the
metrics we have chosen do not capture those characteristics that actually do affect
anaysistime, and that a different set of metrics would yield better predictive models. Of
course, it may also be the case that there does not exist a set of metrics that will yield
good predictive models, but we believe additiona experimentation should be performed
before we reach this conclusion. We note that the results of the logistic regressions for
failure and spurious result predictive models yielded much better results than the linear
regressions, though these models still need to be validated on real programs.

We have a'so noticed that minor changes in the Ada source can have significant
effects on analysis performance. For example, the Ada program we used for
readers/writers contained several unguarded select aternatives. INCA yielded spurious
results when checking for freedom from deadlock because of this. However, guards can

be added to these alternatives without changing the semantics of the program. When we
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included these guards and modeled both the Writer and Reader s variables we were able
to eliminate the spurious results from INCA. Thus, even differences in programming
style in the Ada program can lead to variations in analysis tool performance. These style
differences do not affect the values of the metrics we use, so the variationsin tool
performance caused by these style differences will not be captured in the predictive
models built using our metrics.

To be most useful, the analysis tools need to be applicable to programs of redlistic
Size, containing realistic communication structures. In amost all cases, including the
experiment conducted for this dissertation, concurrency analysis tools have been
demonstrated using programs from the concurrency analysisliterature. It isnot clear that
these academic programs are representative of concurrent programsin general. Most
tasks in these programs are relatively small, for instance, and the program constructs used
in these programs are relatively smple. A fourth contribution of the work presented here
is the preliminary examination of several "real” programs. The examination includes
quantification of the communication structure of the programs, discussion of the program
constructs used in the programs, and observations about program characteristics that are
likely to affect the applicability of static concurrency analysis tools to these programs.

Performing fair experimental comparisons of concurrency analysis toolsis difficult
given the variety of tool semantics and property specification formalisms. We believe
that the methodology presented in this dissertation can be used as abasis for such
comparisons. The methodology attempts to ensure the tools are analyzing the same
programs and properties, and it provides a method for statistically checking various
assumptions about biases that may be introduced by the methodology. The methodology
has been developed so it can be used on real programs as well as those from the
concurrency analysis literature, so it is applicable to case studies as well as experiments.
Through continued use of this methodology, we should be able to conduct additional

experiments that broaden our understanding of various static concurrency analysis
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techniques and provide analysts with useful insights about which tools would be most
appropriate for specific programs and properties of interest.
APPENDIX
PREDICTIVE MODELS

This appendix provides the equations for the predictive models we selected to predict
analysistime, failures, and spurious results for each of the tools.

A.1 Anaysis Time Predictive Models

This section provides the equations for the predictive models we selected to predict

anaysistime. The equation for SPIN checking deadlock is
Analysis Time = -5.285194 + 2.58366E-06* Cnd' + 0.085944* MaxTRANS.
The equation for SPIN using never claimsto check other propertiesis

Analysis Time = 1.99480E-04* Alpha + 2.52515E-06* Cnd' +
0.104129* MaxTRANS - 54.090492* Query Events + 140.704582.

The equation for SPIN using assertions to check other propertiesis

Analysis Time = 28.023946 + 4.470356* T - 2.808051* MaxC + 2.809042* Beta +
2.07503E-06*Cnd' + 0.156220* Max TRANS - 83.595626* Query Events +
119.416482* Query Intervals.

The equation for SPIN+PO checking deadlock is

Analysis Time = 5.561660 + 0.957373* T - 6.444770*C - 0.290362* MaxC +
1.17370E-04* Alpha + 2.579100* Beta - 1.29418E-06* Cnd' - 3.17055E-09* Cif -
0.044143*N + 0.031457* MaxTRANS - 2.43181E-21*WFSA + 0.245484*V ars.

The equation for SPIN+PO checking other propertiesis

Analysis Time = 122.064648 +7.021475* T - 13.844693* C - 6.028394* MaxC +
1.86244E-04* Alpha + 7.899061* Beta - 3.16718E-06* Cnd' - 9.83386E-08* Cif +
1.893762* N + 0.033242* MaxTRANS + 1.57110E-19*WFSA +
25.766125* Vars -11.576069* QRE Alphabet + 1.910704* QRE States -
0.761156* Query Events + 134.807495* Query Intervals -

49.258551* Never States - 6.273414* Assertions.
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The equation for TRACC checking deadlock is

Anaysis Time = 0.397474 + 0.541131* T + 0.135893* MaxC + 0.008972* Alpha +
0.181751*N + 4.58857E-21* WFSA.

The equation for TRACC checking other propertiesis

Analysis Time = 18.987413 - 1.852495* T - 3.345392* C - 0.007447*Cnd' -
0.043212* Cif + 0.216304* WFSA.

The equation for SMV checking deadlock is
Anaysis Time=-11.131395 + 10.712972* T - 41.659575* C - 4.234177*MaxC +

2.65252E-06* Alpha + 9.744026* Beta - 3.75022E-06* Cnd' - 1.08421E-07* Cif +
9.161629*N - 0.096725* MaxTRANS + 4.89367E-20* WFSA + 30.185195* Vars

The equation for SMV checking other propertiesis
Analysis Time = -110.172226 + 6.936632* T - 13.241819*C - 4.913227*MaxC +
8.70360E-07* Alpha + 4.326865* Beta - 1.29216E-06* Cnd' - 7.25095E-08* Cif +
4.075190*N - 0.040636* MaxTRANS + 9.98048E-20* WFSA - 4.940134*Vars

+1.995971* QRE Alphabet + 19.152749* QRE States - 9.523060* Query Events
+ 157.192641* Query Intervals - 41.925466* Never States - 1.473770* Assertions

The equation for INCA checking deadlock is
Analysis Time = 4.592838 -7.889957* C + 5.806953* N.
The equation for INCA checking other propertiesis
Analysis Time = 21.303073 + 7.24986E-08* Cnd' + 0.017519* MaxTRANS -
6.985987* QRE States - 2.814540* Query Events + 3.342872* Never States +
0.577033* Assertions.
The equation for FLAVERS checking other propertiesis
Analysis Time = -343.063823 + 130.849429* C - 48.007135* MaxC +

7.39592E-05* Alpha + 7.344377* Beta + 8.29521E-07* Cif + 5.960648* N -
2.33986E-18*WFSA + 16.000030* QRE Alphabet
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A.2 Failure Predictive Models

This section provides the equations for the predictive models we selected to predict
()

faillures. Theform of the predictive equationsis Pr(Failure) = %; for readability,
€

we provide equations for g(x) below. The equation for SPIN checking deadlock is
g(x) =-4.0399 + 1.26E-07* Alpha + 7.95E-09* Cif + 0.0830* N.
The equation for SPIN using never claimsto check other propertiesis
g(x) =-4.4229 + 0.1321*T - 0.3799*C - 0.0721*MaxC + 0.0012* Alpha +
0.0805* Beta - 0.0006* Cnd' + 1.92E-09* Cif + 0.0397*N + 0.0090* MaxTRANS
- 2.6E-21*WFSA + 0.0102* Vars.

The equation for SPIN using assertions to check other propertiesis

g(x) = 6.6110 + 0.2749% T - 1.4242*C - 0.1312* MaxC + 5.92E-07* Alpha! -
1.8E-08*Cnd' + 0.3675*N - 0.2309* Vars - 2.8209* Never States.

The equation for SPIN+PO checking deadlock is
g(x) = -6.7785 + 0.0710* Beta + 0.0459* N + 0.0007* MaxTRANS.
The equation for SPIN+PO checking other propertiesis

g(x) = 7.3872 - 1.4322* C + 7.34E-07* Alpha + 0.2331*Beta+ 0.2134*N -
1.3656* QRE Alphabet - 0.8042* Query Events.

The equation for TRACC checking deadlock is
g(x) = -2.0140 + 0.1147* Beta.

Because we had indications that all the failure models we built for TRACC checking
other

properties were overfit to the data, we do not provide an equation for TRACC checking
other properties. The equation for SMV checking deadlock is
g(x) =-14.5847 + 0.4086* T + 3.6889* C - 2.0163* MaxC - 0.0001* Alpha +

0.1014*Beta - 4.1E-09*Cnd' - 6.7E-07*Cif + 0.3898*N +
8.96E-05* MaxTRANS + 1.58E-19*WFSA - 0.1367* Vars.
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The equation for SMV checking other propertiesis
g(x) =-4.2911 + 0.0536* T + 0.0006* MaxTRANS.
The equation for INCA checking deadlock is

g(x) =-11.0889 + 0.0527*N.
INCA did not fail on any of the cases for which it was used to check properties other than
deadlock, so we do not provide an equation for INCA checking other properties. Because
we had indications that all the failure models we built for FLAVERS checking other
properties were overfit to the data, we do not provide an equation for FLAVERS
checking other properties.

A.3 Spurious Result Predictive Models

This section provides the equations for the predictive models we selected to predict

(%)
: for

failures. Theform of the predictive equationsis Pr(Spurious Results) = T3 o000
€

readability, we provide equations for g(x) below. The equation for SPIN checking
deadlock is

g(x) = 8.0896 - 0.2590* T - 1.8541*C - 0.1526* Alpha + 0.2539* Beta +
0.3956*N - 0.0015* MaxTRANS - 5.6727* Vars.

The equation for SPIN using never claimsto check other propertiesis
0(x) = 6.9290 - 3.3254*C + 0.7151*N - 0.0004* MaxTRANS - 10.7109* Vars.
The equation for SPIN using assertions to check other propertiesis
g(x) = 8.1618 - 0.2886* T - 2.9286*C + 0.5816*N - 11.1929*Vars.
The equation for SPIN+PO checking deadlock is
g(x) = 6.6263 - 0.2370*T - 1.0433*C - 0.0980* MaxC - 0.2057* Alpha’ +
0.2141* Beta - 3.5E-09*Cnd' + 2.25E-09* Cif + 0.2264*N - 0.0010* MaxTRANS
- 84E-18*WFSA - 4.7549*Vars.

The equation for SPIN+PO checking other propertiesis

g(x) = 10.1997 - 0.2419*T - 3.5706*C + 0.4826*N - 12.2021*Vars.
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The equation for TRACC checking deadlock is

g(x) = 3.6589 - 0.3487*C.
Because we had indications that all the spurious result models we built for TRACC
checking other properties were overfit to the data, we do not provide an equation for

TRACC checking other properties. The equation for SMV checking deadlock is
0(x) =8.3817 - 0.4975*T - 1.2482*C + 0.1847* Beta+ 0.1081*N - 4.1590* Vars.
The equation for SMV checking other propertiesis
g(x) = 7.1481 - 0.1515* T - 2.1992*C + 0.1435* N - 10.3828*Vars.
The equation for INCA checking deadlock is

g(x) =9.1374 - 0.2867*T - 1.9769* C + 0.3537*Beta + 0.0095* MaxTRANS -
3.2146*Vars.

The equation for INCA checking other propertiesis
g(x) =3.9281 - 0.0991*T - 1.6297*C + 0.0243* MaxC - 1.9E-07* Alpha +
0.1987*Beta + 2.59E-08* Cnd' - 6.1E-09* Cif + 0.1292*N - 0.0019* MaxTRANS
- 6.0E-21*WFSA - 10.7992* Vars.
The equation for FLAVERS checking other propertiesis
g(x) =-31.1782 - 2.7071*C + 0.6871* MaxC + 0.5250* Beta - 0.3649*N +

1.0691* Vars + 10.1329* QRE States - 2.0786* Query Events -
0.4609* Assertions.
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