
- 
_ -.I_ - , %;y$ -. 

Transitioning to Ada in an Introductory 
Course for Non-Majors 

A.T. Chamillard and William C. Hobart, Jr. 
Deparlment of Computer Science 

U.S. Air Force Academy, CO 80840 
{ ChamtiardAT,HobartWC) .DFCS@usafa.af.mil 

Abstract 
All students attending the U.S. Air Force Academy are required 
to take an introductory course in computer science. Last year we 
transitioned to Ada in this course. In this paper we explain our 
rationale for making this transition and discuss some potential 
(though not significant) concerns for those considering a similar 
transition. 

1 Introduction 
All students attending the U.S. Air Force Academy (called 
USAFA hereafter) are required to take an introductory course in 
computer science. While a number of computer science topics 
are covered in this course, the main focus is on problem solving 
using computers. Last year, we were faced with some major 
challenges in restructuring the course. First, to give the students 
more latitude in managing their time, we were directed to reduce 
by more than a third the classroom/lab time spent with the 
students in the course, from 82 hours to 52 hours. Second. while 
decreasing the total class/lab hours, this course assumed the 
responsibility for introducing the students to standard office 
applications including word processors, spreadsheets. databases, 
and presentation software. Finally, the engineering departments 
wanted assurances that students success~lly completing the 
course would be equipped to use computers to solve problems in 
their follow-on courses. Up to this year, we have raught 
problem-solving using Pascal. Last year, as part of this 
restructuring, we decided to transition to Ada 95 in thii course. 
In this paper we explain our rationale for making this transition, 
how this was by far the easiest and least risky of the changes we 
made to our introductory programming course, and the benefits 
we have reaped from our transition to Ada 95. 

1.1 Course Structure 
Computer Science 110 (CompSci 110) is USAFKs introductory 
course in Computer Science. Because the course is taken by all 
students in either their freshman or sophomore year, it assumes 
no prior knowledge about computers. Our overall objective is to 
enable each student to develop and apply an understanding 6f the 
computer’s capabilities to serve the Air Force’s complex 
problem-solving needs. To this end, the course has been 
designed to cover four basic areas of study: problem solving with 
computers, computing fundamentals, applications of computers 
in the Air Force, and standard office applications. 

Since students need to know how to solve problems before 
they can solve them using computers, we start by helping the 
students develop their problem solving skills. They then learn 
how to use these skills to solve problems using computers and 
Ada. To help students understand computing fundamentals, we 
discuss both the hardware components of their computers and 
other general computing topics (operating systems, networks. and 

1997 ACM O-89791-981-5/97/001 1 

so on). Throughout the course. we introduce the students to 
standard word processing, spreadsheet. database, and 
presentation software because they need to use these applications 
to complete their assignments in their other courses here at 
USAFA. Finally, we discuss ways in which computers are used 
to enhance the Air Force’s capabilities. 

Thus, the course teaches students to take a problem, design a 
solution to that problem, and implement that solution in Ada. 
The course also helps students understand more fully how 
computers work. gives them experience using a variety of 
standard office applications, and enhances their appreciation of 
the effective use of computers in the Air Force. 

1.2 Rationale for Change 
The strongest impetus behind our decision was a desire to 
prepare future Air Force officers for the environment they will be 
entering upon graduation from USAFA. Even non-computer 
science majors are much more likely to be exposed fo Ada 
systems than to systems written in Pascal, so we feel an 
introduction to Ada is more effective and realistic than an 
introduction to Pascal. Also, because Ada is the programming 
language across the computer science curriculum at USAFA. 
including Ada in the introductory course better prepares our 
majors for their later courses in computer science. 

The next section discusses our transition to Ada 9s. and 
Section 3 presents the results of our transition effort. The final 
section provides our conclusions based on this effort. 

2 Potential Transition Concerns 
Despite the reasons cited above, which support a transition to 
Ada, we had a number of concerns about the logistics and 
potential pitfalls of the transition effort. These concerns 
included availability of a suitable environment. faculty 
inexperience with Ada. scoping the number of language features 
taught, specifying appropriate programming style. potential 
diiculties using Ada I/O, and other constraints affecting the 
course concurrently with the transition effort. Despite these 
concerns, we decided to go forward with our transition to Ada. 

2.1 Providing a Suitable Integrated Development 
Environment 

One of the primary obstacles to transitioning our course to Ada 
was the lack of a suitable Integrated Development Environment 
(JDE). We needed an inexpensive, reasonably efficient compiler 
with a Graphical User Interface (GUI) that was intuitive and easy 
for inexperienced programmers to use. Mature IDES meeting 
these requirements are common for Pascal, but are not as readily 
available for Ada. The JDE we used during our first semester 
teaching Ada was provided by the Ada Joint Program Office 
(alleviating our concern about expense. at least somewhat). but 
many students found the interface. which was developed with 
larger projects in mind, difficult to use. We therefore developed 
our own DDE. AdaGlDE, on top of GNAT. which we used during 
our spring course offering [I]. We now have AdaGlDE and 

37 



-’ j 
I 

., 
‘, ., 

_ ,: i 
, 

:. ..! 

! ~. _.< _ . ‘. .I ,..* 
I’ : i :, I -,I ,,. ‘. ,, 

,, I ~ I’ I’ -; -.. 
: .-. - i ,. .‘_. 

I .i 
4 ,_, . . a’ ,- . . : 

‘>. i 
.’ ..,I _” ,.’ :‘; ‘.“ ~ 

‘, ,. . . / 
;. , . ‘-2 .,:: **., ,I’ 

., ~ ., ,: 1 
.I .: ‘, 

1.. :. .. .,- : 
I. --I‘, -,’ 
I ‘. _L ~ : 1 I 
.<2, .:.:;> . 

y,r .~ 
1. 

: ,, -. 
b1 

, : I 
‘,j ‘1 

,.. , ;: ,. 
I 

, 

~1 I : ri 
-I 

‘,, .1 
I_ 

I .1 ;. I 
4 _ I 
8.” . 

.; ;I 
,i 

..’ . .: ._ .L. 
1, * i ,. 
+,, , ; I, .i 

. . . ,i 
.; .‘. 

!_ .‘T, !i 
..’ II I, ,l . c-t 

., ‘, ~.) ., .t. - 
.‘. -e: . - .,,, 
: Z,‘,‘. p A,; -. 

‘. “? \ , < -i*. _ ‘.:.‘;-,,k r 
I. ,.;:q.- ~ ;I 

GNAT pre-installed on the Pentium II@! personal computers 
purchased by all freshmen for this fall seniester at USAFA, and 
the students should be more than happy with the short 
compile/build times for their Ada programs. 

2.2 FacuIty Concerns 
A second concern was faculty inexperience with Ada. Though of 
course all faculty members had heard of the language, only a 
small number had actually programmed in Ada. It was therefore 
not clear to us that we would be able to develop sufficient faculty 
mastery of Ada within the department2 to teach Ada in the 
course. It turns out, however, that Ada is sufficiently simiiar to 
Pascal and other imperative languages that our faculty was able 
to quickly develop a mastery of the language, ai least for the 
subset we deemed appropriate for our course. This is confirmed 
by student critiques ranking the computer science faculty 
expertise in the top 25% of all core courses at USAFA. 

2.3 Scoping the Language Features 
This brings us to our third concern - scoping the number of 
language features taught. Ada is a feature-rich language. and we 
were concerned that covering too many of these features would 
overwhelm the students. Thii is particularly important because 
our goal in the course is to develop probIem solvers, with Ada as 
the tool used to implement those solutions; we are not attempting 
to create expert Ada programmers. Affer careful consideration of 
the types of problems solved in the course, we selected the 
language features listed in Figure 1. This subset gives us 
sufficient variation in data types to allow solving most basic 
probIems, gives us all three control structures (sequential, 
seIection, iteration), gives the students fhe tools to develop 
modular solutions, provides sufficient IO capability to solve the 
probIems we need to solve in the course, and lets the students 
use the standard packages provided with Ada. We note that this 
“Pascal subset” is very similar to the Ada features taught by 
Weiderman and Coulter in their validation of teaching Ada as an 
introductory programming language [2]. We were particularly 
concerned about diculties the students might have with IO, 
since our problems are typicaLLy IO-intensive (rather than 
computation-intensive) and Ada IO seems somewhat more 
complicated than Pascal IO. 

Data Types: 
Integer, Float, Character, Sting, Boolean, 
One-dimensional Arrays 

Statements: 
Assignment 

Control Flow: 
If-Elsif-Else, For Loop, While Loop 

Modularity: 
Packages, Procedures 

Input/output: 
Put, New-Line, Get, Skip-Line. File IO (Open, 
Create, Close) 

Libraries: 
With, Use 

Figure 1. Ada Features Used in the Course 

‘Pentium II is a registered trademark of Intel Corporation 
2Because we typicaliy teach over 500 students in this come 
every semester, almost every member of the department teaches 
at least one section of the course (most teach 2 or 3 sections). 

We teach the use of both packages and procedures lo 
implement modularity. but we do not require the students IO 
write packages. There are two main reasons for this. First. WC 
use Ada as a way to teach problem solving and build the 
students’ confidence in using computer to solve prohlcrns We 
have found that our students are able to grasp the concept d 
breaking a problem into sub-problems and then implementing 
those sub-problems with procedures. We can therefore develop 
essential problem-solving skills without requiring packages In 
the student solulions. 

In addition, we do not require the students to write pnckngcs 
because the problem solutions they implement are too smnll ta 
justify package development. For example, fhe Iargtit problem 
they need to solve in this course is the final comprchensivc 
programming project; an excerpt from the assignment is provided 
in Figure 2. 

Statement of Requirements for an Assignment Trncklnp 
Svstem 

You’ve been tasked to develop a system for tracking jnlormnlh)n 
on up to 100 class assignments. Specifically. your system shall 
allow the following 5 information elements to he rclricvcd, 
displayed, or stored for each assignment: 

Class Name -- a 15 character string (i.e., “Comp Sci 110 “1 
Assignment Name -- a 10 character string 
Point Value -- an integer 
Class Day -- a characfer. only M or T 
Lesson Due -- an integer between 1 and 42 

Your system shall start by displaying a short crverall description 
of its purpose followed by a menu of choices for the user that 
includes the following: 

(R)ead a fiie as input to initialize the database with assignment 
information 
write a file as output to store the current assignment 
information 
(D)isplay all assignment information in the database on the 
screen 
(A)dd a new assignment to the tracking system database 
(F)ind assignments in the database and display them, given the 
clnss name 
(Q)uit the program 

The system shall then prompt the user for 8 one-chnmctcr ckoloo, 
Once the user has entered his or her choice, the program shall 
accomplish the desired action and then reprompl the USW hf 
another choice. If the user enters an invalid chtdce. the syslcrn 
shall display an error message and reprompt the user for a valid 
choice until one is entered. The system shnll ncccpt both 
lowercase and uppercase inputs, i.e., either ‘A’ or ‘8’ to add a 
new assignment to the tracking system database. 

Figure 2. Excerpt from Final Comprehensive Programming 
Project 

We believe a “correct” implementation of a solullon I[) tht 
problem incIudes approximately 6 procedures and Ihe use of 
parallel arrays. Using a package to hide the impiementnlion of 
the database with parallel arrays could result in an imprttvcd 
design, but it is difficutt to rationalize this approach withouf 



presenting an alternative implementation, such as using an array 
of records or some other language feature beyond the scope of 
those taught in the course. 

Although we do not require the students in this course to 
write packages, we do require that they use them. For example, 
students use the standard Input/Output packages for text, floats, 
and integers. We also have the students impIement a smaIl rext- 
based case study in small groups. We then show the students 
how we can convert this to a graphics-based implementation by 
replacing the Withs and Uses on the standard text packages to 
Withs and Uses on a graphics package one of the course 
instructors implemented. We therefore reinforce the value of 
packages as a way to implement modularity without requiring 
that the students actually implement their own packages. While 
we recognize that the ability to conceptuali abstract data types 
and implement them using packages is essential knowledge for 
our computer science majors, we do not have the time to teach 
this to the non-majors in this introductory course. Instead, we 
reserve this topic for our CSl and CS2 courses [3). 

An understanding and ability to use the language features 
discussed above will let students successfully complete the 
course, but we do provide extra credit opportunities for those 
students who would lie to explore the language further. The 
extra credit opportunities are not “open-ended”, rather, we guide 
them toward other interesting topics and offer them a set number 
of points for learning to use other constructs in particular 
assignments. These additional constructs include records. 
exception handlers, and so on. We strongly suggest that students 
complete the “base assignment” first so that they get full credit 
for the assignment before trying the extra credit portions (which 
they turn in as separate programs). If they use this approach, 
students can avoid getting a lower grade if their (mis-)use of the 
extra credit constructs adversely tie&s the functionality of their 
programs. 

2.4 SpeciQing Programming Standards 
After scoping the language features taught, we still needed to 
specify programming standards. Capitalization and indentation 
can be automatically accomplished by the IDE we developed. but 
other issues were not solved so easily. For example, should we 
let the students take advantage of Use clauses? All of the faculty 
agreed that Use clauses can cause difficulty understanding larger 
systems, particularly those with overloaded functions and 
procedures, but these concerns are not applicable to the programs 
students write in this course. In the first semester we did not 
allow Use clauses, whiIe in the second semester we did; results 
are reported in Section 3.3. We also decided that procedure calls 
should be made using named association for the parameters. 
With Pascal we often found errors in number, order, or type in 

procedure calls, and using named association at least removes 
the order problem. 

2.5 Teaching Ada in Half the Time 
Our final concern was not about Ada per se; our course was 
going through a restructuring at the same time we were 
transitioning to Ada. and we were concerned thar this would 
adversely affect our ability to include Ada in the course. 
Specifically, the contact time with students was being reduced 
from a total of 40 hours to a total of 20 hours for the 
programming portion of the course. We believed that cutting the 
programming contact time in half might reduce our ability to 
teach. and the students’ ability to learn, Ada in sufficient detail to 
implement the problem solutions required. 

3 Transition Results 
In general, the students in this course do not appear to have any 
more difficulty learning Ada than they did learning Pascal. 
though there is of course a learning curve in terms of using both 
the IDE and the language itself. To evaluate the students’ 
programming skills. we compared the students’ programming 
performance on the Spring 1996 final exam (using Pascal) with 
that of the students taking the final exam in Spring 1997 (usmg 
Ada). Results of this comparison are provided in Table I. 

Although we note that the exams contained different 
problems and had a different format (closed versus open bouk). 
the mean scores on the two exams are quite close. Thus. not 
only is Ada as easy, if not easier, to learn for those majoring in 
computer science as summarized by Feldman [4]. but it also 
seems to be easily grasped by those who may be much less 
technically oriented. 

3.1 Providing a Suitable Integrated Development 
Environment 

Our IDE seems to be reasonably easy to use for the 
inexperienced programmers in the cIass (though it contains more 
advanced features as welI), but they stil1 have difficulty 
interpreting compiler error messages. We believe this 1s due in 
part to their inexperience with the language. but also is 
indicative of their resistance to actually reading the messages 
carefully to see what they say. We try to use compiler errors to 
develop student analytical skills by having them read the errors 
(sometimes aloud), then having them rephrase these errors in 
their own words and investigate the source of the problem. 

We also pIan to add context-sensitive help to the IDE. which 
should aid the student debugging process. We currently provide 
a help facility that gives descriptions, syntax. and examples of 
the constructs used in the course. as well as an on-line Language 
Reference Manual. We plan to augment these reference 

Comuarison 1 Srnin~ 1996 Pxcal Final Exam 1 &ring. 1997 Ada Final Exam 
Topics Tested Specifying algorithms, De&ring Using -WITH and USE statements, 

constants and variables, Using 
assignment statements. Declaring 

Declaring conStants and variables. 

procedures, Using multiple-altemative- 
Using assignment statemenrs, Declaring 

IF, De&ring and indexing arrays, 
procedures, Evaluating Boolean 

Modifying design for changed problem 
expressions, Evaluating and using 
multiple-alternative-IF, Evaluating 
nested FOR loops, Evaluating and using 
WHILE loops, Declaring arrays, 

Format of Exam Closed book 
Evaluating and using indexing of arrays 
Open book for programming portion 

Students Taking Exam 557 
(Ada 95 text only) 

Mean Score on Programming Portion of 73.2% (estimated from sample of 4 out 
462 {top 5% excused from exam) 
77.1% 

Final Exam of 27 sections) 

Table 1. Comparison of Student Per?r on Pascal and Ada Final Exams 



._ ‘ 

/ 

I 

L 

~ I 
i 

* 1 

b f 

: 
., 

: i .’ 

i 

] 
,: 

r ! 

.’ 1 
I 

I j 

.: . L 
! 

materials with context sensitive help that, given a particular 
syntactic error in the program, will automatically raise a window 
with help on the construct causing the error. 

We recognize that anofher way to hetp the students interpret 
error messages would be to more quickfy build their Ada 
expertise, perhaps using either a new or existing on-lime tutorial. 
We are not currently pursuing this option, however, because our 
main goal is to develop problem solvers, not Ada programmers. 
In addition. surveys indicate that the course currently consumes 
the appropriate amount of student time given that it is a 3 
semester hour course. Because most students taking the course 
are carrying loads of between 16 and 22 semester hours. we do 
not believe that adding tutorial time at the expense of their other 
activities in this course or their other courses is a viabIe 
dternative. 

3.2 Scoping the Language Features 
It also seems that we have properly scoped the subset of Ada 
features taught. Most students are not overwhelmed with the 
features we cover, yet these features provide sufficient 
capabilities for implementation of all the probbm solutions 
required in the course. The extra credit opportunities let 
students get credit for exploring the language furher. and the 
constructs we include in the extra credit opportunities seem to be 
properly scoped. 

3.3 Specifying Programming Standards 
Using named association in parameter calls seems to be working 
well, both when we teach the concept of parameter passing and 
when the students actually implement the code to use 
procedures. Named association eliminates the out-of-order 
problem in parameter calls. one of the most diicult problems for 
our Pascal students to debug in previous years. 

When we disallowed Use clauses in the first semester, 
student tended to believe that much of Ada was a “haze”, 
particularly given the number of times they needed to prepend 
“Ada.TextJO.” to their procedure calls. This propagated the 
myth that Ada is difficult to use and also affected student morale, 
so we decided to allow Use clauses during the second semester. 
This has worked well - students don’t compIain so much about 
the typing and seem to have a more positive attitude about the 
language, while we have not increased instructor diiculty 
understanding what student programs are doing. 

3.4 Teaching Ada in Half the Time 
One of the primary reasons we were able to successfully teach 
Ada (or any programming language) despite our time constraints 
was the availability of course instructors for office hours. A 
typical instructor in this course offers 3 to 5 oft& hours per day, 
with extended office hours provided during the final 
comprehensive programming project. We believe that 15 to 25 
hours per week for one-on-one instruction is somewhat atypical 
in the academic community- 

Another technique we used to help resolve the time problem 
was to allow and encourage collaboration during the first part of 
the course. This let the students Iearn from each other and reap 
the other benefits associated with collaborative learning. 

Through use of the extensive instructor oftice hours and 
collaboration with their classmates, .students in this course were 
able to master the essential programming constructs and were, 
for the most part, successful in individually completing the final 
comprehensive programming project. 

4 Concitsions 
The transition from Pascal to Ada is both easy to make and 
highly beneficial to the students. Faculty members who are 

40 

familiar with other imperative languages can master the subset of 
Ada necessary for an introductory course very quickIy. Efficient 
and easy-to-use IDES for Ada are becoming increasingly 
available, and both AdaGIDE and the GNAT compiler nrc 
available at no cost. Ada very effectively supports n!l esscntinl 
constructs required to teach problem-solving, and there 1s a 
direct cot-respondence between Pascal and Ada for theso 
constructs. Finally. where the two languages do differ, Adn 
provides facilities (like named association) IO make problem- 
solving constructs (such as procedures) easier to undcntancl In 
addition, Ada provides a high level of “compiler safety” (e.g.. 
type checking) that is particuharly important for lhc 
inexperienced programmers in this course. We hclicvc that WL: 
have effectively integrated Ada into our introductory cyturse and 
we will continue to use Ada both in this course and across the 
computer science curriculum. 

References 

111 

(21 

131 

t41 

Martin C. Carlisle and A.T. Chamilfnrd. AdnGIDE : A 
Friendly Introductory Programming Environment For a 
Freshman Computer Science Course, In Prorrerfings 
of fhe Elevenlh Annuul ASEET Sppnsilmm, Monmouth, 
New Jersey, June 1997. 

Nelson Weiderman and Virginia Weiss Coultcr, Using 
Ada as an Introductory Programming Language, 
Jom-nal of Pascal, Ada, and Modala-2. Vol. 6, No. I, 
pp. IO-34,1987. 

John A. Hamilton and David A. Cook, Ada Training 
and Education in the US Army and US Air Force, In 
Proceedings of TRI-Ada ‘96, Philndelphin, 
Pennsylvania. December 1996. 

Michael B. Feldman, Ada Experience in the 
Undergraduate Curriculum, Cotnttr~mirtr~iatrs of (kc 
ACM, Vol. 35, No. 11, Pp- 53-67.1992. 


