
Using Lab Practica to Evaluate Programming Ability

A.T. Chamillard
Department of Computer Science
U.S. Air Force Academy, CO 80840

703-767-6338
achamillard~hq.dcma.mil

Jay K. Joiner
Stone Analytics, Inc.
San Diego, CA 92123

858-503-7540
jkj~stics.com

Abstract

One of the largest challenges facing educators teaching
courses with a significant programming component is
deciding how to evaluate each student's programming
ability. In this paper we discuss how we have addressed this
challenge in an introductory computer science course and
statistically analyze the results to examine potential
inequities in our approach.

Keywords

Programming ability, programming evaluation, introductory
computer science.

1 Introduction
There are obviously numerous approaches for teaching
programming and evaluating programming ability. Each of
these approaches has benefits and drawbacks, so it is
reasonable to combine the approaches in a course that
contains a non-trivial amount of programming [1].
Researchers have found that collaborative learning, where
students are encouraged to discuss concepts and
implementation details with other students during the course
of a project, can be an effective technique [3]. But how do
we then evaluate an individual's ability from a project they
created in collaboration with others? This paper describes
an approach using lab practica to measure individual
programming ability, discusses numerous administrative
issues associated with that approach, and demonstrates,
through statistical analysis, the apparent equity of our
implementation of the approach.

All students attending the U.S. Air Force Academy are
required to take an introductory course in computer science
(CompSci 110). The key topic in this course is problem
solving with computers, so we start by helping the students
develop their problem solving skills. Students then learn
how to use these skills to solve problems using

© 2001 Association for Computing Machinery. ACM
acknowledges that this contribution was authored or
co-authored by a contractor or affiliate of the U.S.
Government. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce
this article, or to allow others to do so, for Government
purposes only.
SIGCSE 2001 2/01 Charlotte, NC, USA
© 2001 ACM ISBN 1-.58113-329-4/01/0002...$5.00

computers by constructing programs using the Ada
programming language.

The next section describes the lab practica we have
incorporated into the course to measure individual
programming skills, while Section 3 presents details and
issues associated with the administration of the practiea.
Section 4 provides statistical analysis of student
performance on the practica to evaluate the equity of our
implementation of this approach. The final section presents
our conclusions and comments on our incorporation of lab
practica into some of our other courses.

2 Lab Practica Description
A lab practicum is an in-class lab that the students are
required to complete within a set period of time (90
minutes). Students must develop and test a complete
program solving a problem that they are presented with at
the beginning of the time period. They are allowed to use a
handout containing syntax for all the programming
constructs covered in the course, a sheet listing common
programming errors (and their solutions), and the course
web site. They are not allowed to use any other materials,
and the instructors will only answer questions about the
problem (rather than helping students correct syntax errors,
for example). In essence, these practica serve as
programming exams that test the students' individual
programming skill.

Students complete two lab practica over the course of the
semester. In the first practicum, held in the middle of the
semester, students use procedures, selection statements, and
condition-controlled iteration. The second practicum, held
approximately three weeks before the end of the semester,
requires that students also use count-controlled iteration,
arrays and file input and output. The problem statement
from one version of the second praeticum is provided in
Figure 1. Since it is sometimes difficult to precisely describe
required graphical output for a program, the practicum
handout also contains an example of the required output.

3 Practicum Administrat ion
Although the previous section describes the technical
content of the lab practica, there are numerous
administrative issues that need to be addressed when we use
praetiea within a course. For clarity of presentation, we
address the preparations required prior to each practicum,

159

Develop an Ada program that will do the following:

1. Display a short introductory message in the text window (do not require the user to press return!).

2. Open a graphics window that is 500 pixels wide and 300 pixels high.

3. Get ten left mouse button dicks from the user. After each mouse click your program should:

a. Write in the text window the number of mouse clicks that have been recorded so far

b. Store the x and y coordinates from each mouse dick in an X array and a Y array

c. After the first mouse dick, draw a line (any color) from the previous mouse click to the current mouse dick

4. Find the maximum value in the X array

5. Find the maximum value in the Y array

6. Create a fde called "A:~raeticum_2a.dat" and write the information described in the format shown below. Note: do NOT
write the string "Max X" in the file; write the value that is the maximum X value

7. Wait 5.0 seconds and close the graphics window.

Figure 1. Problem Statement from Praeticum 2

the administration of the practicum itself, and post-
practicum tasks.

3.1 Pre-Practicum
Before administering a practicum, we accomplish a number
of administrative tasks. The most difficult of these tasks is
developing between four and six versions of each practieum.
Our motivation for using multiple practicum versions is
twofold. First, we want students at adjacent workstations
during a particular practicum to have different problems to
solve. Although we are not concerned that our students will
cheat, we do recognize the temptation presented by the
ability of a student to glance at their neighbors' solution,
especially in a high-stress environment. Second, we do not
want students taking the practicum during a later session to
have an unfair advantage over those students who take it
earlier. Before administering a practieum to any students,
we provide all of them with a list of the programming tasks
from which their solution to that practicum will need to
draw.

Of course, one of the largest concerns we have with using
different practicum versions is ensuring that the different
versions are of approximately equivalent levels of difficulty.
Informally, instructors teaching the course review the
different versions and raise any equity issues before the
practieum is administered to the students. We provide a
more formal statistical comparison in the following section.

For some practica, we also provide the students with a
"checking tool" so they can evaluate their solution's
performance. For example, for the problem statement
provided in Figure 1 we provide the students with a tool
that reads their output file and draws the corresponding
lines, which gives the students an easy way to check their
solution. We have found that these tools are particularly
use~l when the student programs are required to create file
output, because students can then test their solutions
graphically rather than examining a text file. These tools
must obviously be developed before the practicum so that
students can use them during the practicum.

Finally, because our students use blank floppies during the
practicum (see the following sub-section), we need to
ensure we have a sufficient number of floppies to distribute
and that these floppies are blank. We use office
administrative support rather than instructor time to meet
this requirement, but it is clearly a consideration that needs
to be addressed before the praeticum is administered.

3.2 Practieum
Administering the practicum itself is straightforward, since
the course instructors are only present to solve system
problems and start and stop the practicum. We have
implemented a number of rules for practicum administration
that support the validity of our claim that the practica
measure individual programming ability, however, and these
rules merit some discussion.

For example, students are not allowed to reference any
notes, books, or previous programs while they develop their
practicum solutions. This nile clearly reflects the view that a
practicum is a programming exam, though we have
considered letting our students use previous programs they
have developed as sources of help during the practica.
These programs would certainly be a reasonable source of
help, since many programmers use their earlier work as they
develop new programs, but it leads to two critical problems.
The first problem is ensuring that students only bring in
their old programs rather than the programs of others or
other materials. Verifying this by having each student bring
one floppy and checking all the floppies manually (for
example) would be an administrative nightmare. The second
issue is even more important to us. Our main goal in the lab
practica is to evaluate individual programming ability.
Students develop their other programs in the course
collaboratively, though, so letting them use programs they
developed with others to help them as we try to evaluate
their individual abilities seems inconsistent. For these
reasons, we do not let the students bring any materials into
the lab practica.

160

We do recognize, however, that requiring our students to
solve the practicum problems without any references
whatsoever might inhibit our ability to accurately measure
their programming ability. Therefore, we provide each
student with a booklet containing the syntax and an example
of each Ada programming construct used in the course, as
well as a sheet listing common Ada errors and their most
common causes. In addition, students are allowed to access
the course web site, which contains a program template
builder, sample calls to numerous graphics procedures, and
example code from the Ada textbook.

The students are not allowed to bring any of their own
materials into the lab, and we also prohibit them from
accessing their n~work drives or any e-mail systems during
the practica. We are convinced that, given our academic
environment, the students follow our instructions, but this
rule could be strictly enforced by manually disconnecting
the computers in our lab from the network. This could be
accomplished fairly easily, with no impact to the students if
the course web page is also hosted on each hard drive
during the administration of each praeticum

Another rule that we have implemented to treat the practica
as programming exams is that instructors are only allowed
to provide their students with minimal help during the
praetica. Instructors can answer questions about the
problem statements, but provide no other help as the
students try to develop their solutions. Instructors can step
in to solve system problems or to address compilation
problems that reflect a bug in the compiler or in the system
configuration, but they cannot provide any other help to the
students. This is a difficult rule for the students, and even
for some instructors, but we feel the resulting solutions
more accurately reflect each student's individual skills.

Finally, we note that students are not allowed to save any of
their work to the hard drive while they complete their
practicum; they must save their work exclusively on the
floppy disk we provide to them. This ensures that their
solution can be easily collected at the end of the practicum,
and also ensures there are no practicum solutions left on the
hard drives when the later sessions of the practicum are
administered. Requiring that all development be
accomplished on a floppy could cause slower compilation,
so we have configured the lab machines to place
intermediate files on the hard drive even though the source
code is located on the floppy. We also encourage our
students to save regularly during the course of the
practicum so they do not lose their work in case system
problems occur. At the conclusion of the practicum, most
instructors copy student solutions on a separate floppy as
well, so instructors leave the lab with two copies of each
student solution. This approach helps avoid the requirement
to have a student retake the practicum if their floppy is no

longer readable when the instructor is ready to grade the
student solutions.

3.3 Post-Practicum
After the students have completed their practicum solutions
(or time has expired), the instructors must of course grade
the student solutions. Typically, instructors copy all the
student solutions to a single folder on their hard drive, then
execute batch files we have developed to compile, build,
and print each student's solution. At that point, instructors
simply need to run and grade each student's program just as
they grade other programs in the course. To ease the
grading load, particularly for graphical programs, we have
developed some automated tools to help with the grading of
both the practica and other programs the students generate
during the course. Essentially, these tools run each program
with a given set of inputs, generating textual outputs in a
separate file. This file can then be checked for correct
program performance, which can be quicker than manually
running each student program and examining the graphical
output.

4 Statistical Analysis
In the previous section, we mentioned that one of our
largest concerns with the lab practica is ensuring that the
different versions of each practicum are of comparable
difficulty. We would like to assume that this is the case
based on our informal instructor review of each practicum
before it is administered. In this section, we use statistical
analysis to check whether or not this is a valid assumption.
Specifically, for each practicum, we compare the
distributions of student performance on each version to
determine whether any differences in the means of those
distributions are statistically significant.

Our dataset includes scores for 509 students from the
Spring 2000 semester (507 scores for the first practicum).
We used four different versions (a, g, q, and s) of Practicum
1 and six different versions (a, f, k, n, s, and w) of
Practicum 2.

First, we examine the summary statistics (see Figure 2.) for
the different practicum versions. Most obviously, we note
that the scores on the second practicum were lower than the
scores on the first practicum We believe this was caused by
the more advanced constructs required on the second
practicum, as well as the students' workloads in their other
courses near the end of the semester. We also note that, for
each practicum, the means appear to differ somewhat across
the different versions, but the standard deviations are
relatively large as well. We therefore need to defer making
any judgements about differences between the means until
alter we have completed a more formal statistical analysis.

161

M e a n

Std Dev

Count

Practicura 1

a g q s
r

63.65 60.96 62.04 60.89

12.81 13.17 12.64 12.92

129 135 129 114

Practicum 2

a f k i n

53.75 55.57 54.18 57.23

15.66 15.46 17.60 13.90

88 84 82 84

S

53.69

15.37

87

W'
54.89

16.87

84

Figure 2. Practicum Summary Statistics

Before we begin the comparison of means for the different
practicum versions, we note that the majority of statistical
analysis techniques are based on the assumption that a
particular population has been sampled. The statistical tests
then help us quantify the strength of our hypotheses based
on the characteristics of the sampling process and the
resulting distributions. In our case, we have scores for the
entire population of students completing each praeticum, so
in a sense we have not sampled at all. We choose, however,
to treat each such distribution as a sample &the population
of all students who could have taken that version of the
practicum, either in the current semester or in the future.
Based on this perspective, applying standard statistical tests
to conduct our comparison is an appropriate approach.

A four-way Analysis of Variance (ANOVA) for Practicum 1
or a six-way ANOVA for Practicum 2 would be common
methods for comparing the means of the various score
distributions. One of the underlying assumptions of
ANOVA, however, is that the distributions being compared
were drawn from normal distributions [2]. To check this
assumption, we check the normality of the distributions
being compared; if those distributions are not normal, we
are unwilling to assume they were drawn from normal
distributions. To formally check the normality assumption,
we conduct the Kolmogorov-Smirnov test for normality on
each distribution [4]. The Kolmogorov-Smirnov test tries to
reject a null hypothesis that a particular distribution is
normal (thereby strongly implying that it is non-normal).
When we apply the Kolmogorov-Smirnov test to the
distributions, we are able to reject the null hypothesis for all
of the Practicum 1 distributions, implying that each of the
distributions is non-normal. We are not able to reject the
null hypothesis for any of the Practicum 2 distributions, so
we cannot infer non-normality of the distributions. Because
we come close to rejecting the null hypothesis for several of
these distributions, however, and because we already need
to .use a test other than ANOVA for the Practicum 1 data,
we choose to be conservative and select a statistical test
that does not assume normality. Although ANOVA tests are
very robust against violations of the normality assumption,
there are other, more suitable statistical tests for the
distributions we want to compare.

One such test for comparing multiple distributions is the
non-parametric Kruskal-Wallis test. This test does assume
that the distributions are independent of each other

(certainly a valid assumption since the distributions
represent the performance of different sets of students), but
makes no assumptions about the normality of the
distributions. The test uses the null hypothesis that the
samples (e.g., distributions) come from identical populations
and the alternative hypothesis that they come from different
populations [5]. If the test statistic exceeds its critical value
for a particular statistical significance (we used the common
0.05 level), the null hypothesis can be rejected.

When we perform the Kruskal-Wallis test on the Practieum
1 data, the resulting p value is 0.208, far too high for us to
reject the null hypothesis. We take this result as strong
statistical evidence that the different versions ofPracticum 1
are of equivalent difficulty. When we perform the test on
the Practicum 2 data, our p value is 0.788, leading us to
infer that the multiple versions for Practicum 2 are also of
equivalent difficulty.

Although the above Kruskal-Wallis test results indicate that
the different versions for each practicurn are of comparable
difficulty when examined as a group, we would also like to
determine whether or not there are statistically significant
differences between pairs of praetieum versions. While
statistically significant results from the Kruskal-Wallis test
would more strongly indicate the need for this pairwise
comparison, our approach is off some interest, particularly
for those pursuing similar analyses. To investigate further,
we conduct palrwise comparisons between the distributions.
This results in six comparisons for the Practicum 1 data and
15 comparisons for the Practicum 2 data.

Unfortunately, there are well-known problems with
conducting large numbers of pairwise comparisons within a
set of distributions; the more such comparisons we conduct,
the higher the probability that we will incorrectly reject the
null hypothesis in one of the comparisons [2]. Fortunately,
numerous statistical tests have been developed to avoid this
problem, including the Scheff6 test. This test allows large
numbers of pairwise comparisons while removing the risks
of spurious rejection of the null hypothesis. We used the
Scheff6 test to conduct pairwise comparisons for both the
Practicum 1 and Practieum 2 data, and did not find any
statistically significant differences between pairs. This is of
course not surprising based on the Kruskal-Wallis results.

There is still further analysis required, however. Although
the analysis results above imply that the practicum versions

162

are of comparable difficulty, it could be the case that one of
the versions is harder than the others, but was by chance
administered to a stronger group of students overall. To
examine this possibility further, we take a closer look at the
groups of students who took each version. Although the
versions are in essence randomly distributed to students, it
is still possible that the population of students taking a
particular version could consist of stronger students in the
course than the populations for the other versions. We can
check this by examining the results of other evaluation
techniques in the eourse. Since student performance on the
practica is most strongly correlated with their performance
on tests and the final examination [1], we selected those
evaluation techniques for further study.

To perform this investigation, we partition the results of
each of the evaluation techniques by practicum version (one
partitioning for Practicum 1 and another for Praeticum 2).
We then perform either the Kruskal-Wallis test to check for
differences across all versions, or the Scheff6 test to check
between specific pairs, on the resulting partitioned
distributions. If we found that the population of students for
a particular practicum version had a higher final examination
mean, for example, we would have some support for the
claim that the versions were not of equivalent difficulty in
spite of the comparable means for those versions. We
partitioned the evaluation methods mentioned above for
each practicum and conducted both Kruskal-Wallis and
Scheff6 tests on the resulting distributions. None of these
tests yielded statistically significant results, again implying
that the different practicum versions were of comparable
difficulty.

5 Conclusions
Instructors teaching courses with a significant programming
component are faced with the difficult task of evaluating the
individual programming ability of each student. In this
paper, we described how we have incorporated lab practica
into an introductory computer science course to help us
accomplish this task. We provided details about our
administration of these practica and discussed specific issues
that need to be addressed when implementing such an
evaluation method. We showed through a statistical
comparison that the different versions of each practicum
were of comparable difficulty, and we presented a sound
comparison approach for conducting more in-depth
analyses.

Our approach to the lab practica is continually evolving. In
the Fall 2000 semester, for example, we will be
administering 3 practica (two 45 minute practica and one 90
minute practicum). Our motivation for doing this is to
lessen the impact of a student doing poorly on a single
practicum while also reducing the stress associated with
taking each practicum. In addkion, we recognize that many
programmers reuse their old code when developing new
programs, an approach we specifically prohibit in our
administration of the lab practica. While we believe this

decision better supports our ability to evaluate each
individual's programming ability, we are looking for an
effective way to let students use their old code without
diminishing our ability to perform the evaluation.

We will also be faced with a difficult practicum
administration problem in the near future. Our institution is
fikely to move to laptops for all our students in the next few
years, with the probable loss of the dedicated labs we
currently use to administer our practica. In an environment
in which each student carries their laptop into the practica,
it is not clear how we can control the materials they use on
the practica as we can now.

We have been pleased with the effectiveness of the lab
practicum approach, to the point of incorporating lab
practica into other courses. Our simulation course now
includes a practicum using ProModel, and our information
warfare course includes a "hackticum" where students
attempt to identify security holes in a particular operating
system configuration. Both of these courses use a timed,
dosed environment with administration rules similar to
those described above. Lab praetica seem to provide an
effective method for evaluating each student's individual
skills, and the approach is general enough to be appficable
to a wide variety of courses.

6 Acknowledgments
Many thanks are due to Larry Merkle for his insightful
comments, which strengthened this paper considerably.

References
[1] Chamillard, A.T. and Braun, K.A., Evaluating

Programming Abifity in an Introductory Computer
Science Course, In Proceedings of the Thirty-First
SIGCSE Technical Symposium on Computer Science
Education, Austin, Texas, March 2000.

[2] Cohen, Paul R., Empirical Methods for Artificial
lntelhgence, The M1T Press, MA, 1995.

[3] Davis, B.G., Tools for Teaching, Jossey-Bass
Publishers, San Francisco, CA, 1993.

[4] Neter, J., Wasserrnan, W., and Whitmore, G.A.,
Applied Statistics, Allyn and Bacon, Inc., Boston, MA,
1978.

[5] TexaSott's Statistics Tutorial - Kruskal-Walfis Test,
http://www.texasoft.com/winkkrus.html

163

