=

EEAT URE

Using Graphics in an Introductory

Computer Science Course

A. T. Chamillard, Jason A. Moore, and David S. Gibson
U.S. Air Force Academy

Abstract

One of the major obstacles facing tnstructors of introductory compuser

science courses s motivating the students to excel while still covering
the foundational programming topics. This is especially true in courses

taught to both computer science majors and non-majors. We believe

that having students include graphics in their programs can enhance

student motivation, and in this article, we describe how we have

incorporated graphics into an introductory computer science course

taught to both majors and non-majors. We also present anecdotal and
empirical evidence indicating that our efforts have been successful in

motivaring students. Although this work is presented in the context of
an undergraduate freshman-level course, we note that the approach

can also be used to enhance student motivation in high school
programming courses,

ne of the major challenges for instructors of introductory
Ocomputer science courses, both at the high school and
undergraduate levels, is finding ways to motivate students
to excel and to help them enjoy the course. Of course, any
techniques used to provide this motivation and enjoyment must

be selected carefully so that students still learn the foundational
material required as they begin their formal programming

education. The motivation problem is exacerbated in those courses
containing both computer science majors and non-majors. The
approach described here is applicable to high school programming
courses, undergraduare courses for computer science majors and
non-majors, and courses for computer science majors only.

Allstudents attending the U.S. Air Force Academy are required
to take an introductory course in computer science (Computer
Science 110). Because the course is taken by all students in either
their freshman or sophomore year, it assumes no prior knowledge
about compurters. The key topic in this course is problem solving
with computers. Because students need to know how to solve
problems before they can solve them using computers, we start by
helping the students develop their problem-solving skills. They
then learn how to use these skills to solve problems using computers
and the Ada programming language.

To evaluate the students’ programming ability, we use a
number of evaluation tools in the course. Specifically, students
are evaluated on collaborative labs, individual programming

assignments, a group case study, tests, and a final examination. In
the past, all the evaluation techniques except the case study have
been text oriented. For the case study, which typically has been
some form of game-playing program, we have provided all the
graphics required; students have simply written input, processing,
and output subprograms without being concerned with how the
graphics worked. Starting in the fall 1999 semester, we have
incorporated graphics into all our student programming
assignments and other assessment techniques.

One of the primary reasons for doing this is to provide
motivation for students as they try to learn new, sometimes difficult,
concepts. The students have enjoyed the graphical capabilities of
the case study code we have provided to them in the past, so it
seemed reasonable to let them try some of the graphics input and
output on their own. Though we have only recently instituted
this change, anecdotal evidence seems to support the motivational
benefits of incorporating graphics into the course. For example,
some instructors have received applause in class simply by showing
students how to write a program that draws a circle to the screen!
In addition, some students have even written simple graphical
animations on their own because of their excitement about their
ability to generate graphics.

Research has also shown that different people learn new material
in different ways, based on their learning style (Chamillard &
Karolick, 1999). Because some students learn new material
visually rather than verbally, developing graphical solutions to
the problem statements may help those students approach and
learn the material more easily.

Others have also recognized the benefits of using graphics in
early computer science courses. Roberts (1995) points out that
students are much more enchusiastic about writing programs
containing graphic functions, and graphics have been incorporated
into general education computer science courses (Stegink, Pater,
& Vroon, 1999) and more traditional CS1 courses (Astrachan &
Roger, 1998), Panels have been convened to discuss the role of
graphics across the computer science curriculum (Hunkins, 1993),
and educational languages that are primarily based on simple
graphic mechanisms have been developed (Clements 8 Meredith,
1992). This article provides a detailed description of how key

JCSE Annual 2002 15

Table 1. Key Topics for Lab Assignments

Assignment Key Topics
1 Variables, numeric input, graphical input
and output
2 Condition-controlled looping, selection
3 Count-controlled looping, nested

count-controlled looping
4 Subprograms (Ada procedures)
5 Arrays
6 File input/foutput

AR iy

Figure 1. Example Lab 1 output.

Across the top:
n everly spaced points with y coordinate 0
Consider the pointslabeled from 1ton
X 2 3 o n-2 mn-ln

.09 (499269

Down the Ieft side: S
n evenly spaced points with % coordinate 0
Consider the points lakeled from n down to 1:

Figure 2. Examplée Lab 3 output.

programming topics can be covered using graphics and also
provides anecdotal and empirical evidence supporting the assertion
that including graphics improves student motivation.

The next section presents the topics covered in each of our labo
assignments and discusses how we have incorporated graphics to
help teach and evaluate those topics. The section on Risks discusses
some of the risks associated with incorporaring graphics into this
course, and the Performace Comparison section presents a

16 JCSE Annual 2002

comparison between student performance on a text-oriented
assignment from fall 1998 and a graphics-oriented assignment
from fall 1999. The final section presents our conclusions.

Lab Descriptions
There are six lab assignments in this course. Table 1 prévides an
overview of the key topics covered by each of the labs.

Lab 1 introduces the students to variable declarations and
provides them with practice doing both numeric input and
graphical input and output. For this assignment, students read in
a width and height for a graphics window and display a window
of the appropriate size. They then display a text message in the
window and draw different colored ellipses of appropriate sizes
(90%, 60%, and 30% of the window size). Finally, they print an
exit message in the window and wait for the user to press the left
mouse button to exit the program. Figure 1 shows example output
from this assignment.

Despite the simplicity of the assignment, students are exposed
to a number of important concepts. Because they need to store
the dimensions of the window, they learn about variable
declarations and numeric input. They later need to calculate
appropriate ellipse sizes, which introduces them to assignment
statements and the importance of data types. They also gain
experience displaying both text and graphics (the ellipses) in the
graphics window, as well as using graphics inpur to determine
when the left mouse button is pressed.

In Lab 2, students use a condition-controlled loop to ensure
the user enters a valid width for a graphics window. They then
open a graphics window and use another condition-controlled
loop to continuously draw a circle at the current mouse location
until the user presses a key to quit the program. The circle must be
a different color for each quadrant of the graphics window; the
most common implementation is to use a selection (if) statement
to determine the appropriate mouse color.

Students are introduced to count-controlled loops (and nested
count-controlled loops) in Lab 3. In this assignment, they geta
valid number of lines (n) from the user, open a graphics window,
and draw n lines in the window as shown in Figure 2. They then
count the number of non-black pixels in the window, display the
count in a text window, and exit the program when the user presses
the mouse butron.

In addition to requiring students to write their first count-
controlled loop, this assignment provides a requirement that
motivates the use of nested count-controlled loops. In the past,
we have had difficulty providing students with a realistic problem
that required such nesting, but scanning the x and y coordinates
of the graphics window to count non-black pixels is well suited 1o
this construct.

Lab 4 is the first assignment in which the students write their
own subprograms (Ada procedures). Students write a game
program in which a ball randomly bounces in a graphics window
while the user tries to place a box (by dlicking the left mouse button)
in front of the ball as it bounces. Each time the ball passes through

=

the box, the user scores a point. The game ends after approximarely
30 seconds, at which point the user’s score is displayed.

This assignment gives students their first experience creating
an animation while also providing a motivational vehicle for using
subprograms. Many students enjoy playing computer games and
find playing a game they implemented themselves even more
rewarding.

In Lab 5, students create an animation in which lines are
repeatedly drawn between two points that are moving across the
screen in independent directions. The assignment requires that
the points “bounce” off the edges of the window and the number
of lines on the screen never exceed 20. In other words, when the
program is ready to draw the 21st line, it needs to erase the oldest
line first, then draw the new line.

This assignment provides an entertaining animation while also
requiring students to make effective use of arrays and subprograms.
For example, one reasonable use of arrays stores the end points for
20 lines, erasing the oldest line and storing new end poins in that
location when the 21st line needs to be drawn.

Lab 6 integrares file input and output with further use of arrays.
The students write a program that reads in a list of data from a file
and finds numerous data points of interest (high and low darta
points, for example). The program then scales a graphics window
appropriately (so that the high and low values will be displayed
near the top and bottom of the window), displays all the data in
the window, and prints a formatted report to an outpu file.

Risks

Although we believe the lab assignments discussed have include
graphics in a logical manner, there are clearly some risks associated
with incorporating graphics into this course. For example, the
students could become so engrossed with the graphics that they
overlook important programming concepts. Similarly, students
could become entangled in the syntax required to use graphics
routines to the detriment of more general topics. Though the
discussion above and the key topics listed in Table 1 indicate that
we have not missed key concepts by including graphics, the
graphical syntax issue requires further discussion.

Though we would like our students to be able to recognize and
process certain events (e.g., a key being struck, the mouse being
moved, or one of the mouse buttons being clicked), we want to
avoid having the students process low-level hardware events in
their programs. We have therefore added a layer of abstraction
between those hardware events and the interface the students use
to process the events.

For example, rather than having the students try to process
both a left mouse press and a left mouse release to determine where
the mouse was when the left mouse button was clicked, we provide
a subprogram called Get_Mouse_Button. An example call to the

¢ # subprogram appears in Figure 3. In this call, X_Location and

Y_Location will be the coordinates of the mouse when the left
button is clicked (the right button can also be checked, of course).
“We provide similar abstractions for determining the mouse location
(without a burton click), determining whether a particular mouse
button was clicked, determining whether a keyboard key was hir,
and determining which keyboard key was hit. By abstracting these
low-level hardware events to a higher level, we have made it
relatively easy for the students to understand and process these
events without having them deal with the underlying complexity.

Of course, this approach can also be used if the course uses a
programming language other than Ada. For example, Java provides
a package to support graphics processing—the java.awt package—
but using this package requires that the students use more advanced
constructs than we would like to require in an introductory course.
For example, we could certainly teach the students to process low-
level events such as mouse clicks, key strokes, and so on using
event listeners or adapters, but we believe providing a more abstract
interface to mouse and keyboard actions is a better approach for
beginning programmers.

Another risk involves using graphics eatly in the course, because
even the first lab assignment includes graphieal input and output.
The topics of subprograms and parameters historically cause
problems for our students, so some risk is associated with requiring
students to use subprograms and parameters so early in the course.
To help minimize this risk, we give the students access to a Web
page that contains templates for calls to all the graphical
subprograms they would use in the course. Students can simply
copy the appropriate call into their program, then complete the
call by filling in the actual parameters. Though studens clearly do
not have an understanding of how the actual parameter passing
works until later in the course, they are able to correcily use the
subprogram calls given the provided templates.

One way to determine whether the risks mentioned here affect
student performance is to examine student grades on the lab
assignments to determine whether the students do better on text-
oriented or graphics-oriented assignments covering similar key
topics. We provide such a grade comparison in the next section.

Performance Comparison

Because the order of topic presentation has been changed signifi-
cantly in the course, we only compare student grades on Lab 1
from the fall 1998 and 1999 semesters. In both semesters, the key
topics for Lab 1 were (a) variable declarations and use and (b) data
inputand outpur. For Lab 1 in 1998, the students wrote a program
that read in a set of numeric data from the user, converted the data
to the metric system, and outpur the dara; Lab 1 for 1999 was
described earlier. The only significant difference berween the 1998
and 1999 assignments is the addition of graphics in 1999; a com-
parison betwéen the two is therefore reasonable and enlightening,
We begin by comparing the means for the two semesters, then we

Get_Mouse_Button (Left_Button, X_Location,Y_Location);

Figure 3.

JCSE Annual 2002 17

an.
U

76.0 200 300 40.0 50.0 60.0 70.0 80.0 90.0 1000
Fall 98

300

200

100

0700 100 20,0 30,0 40.0 50.0 60.0 70.0 800 90.0 100.0
Fall 99

Figure 3. Grade histograms.

consider another measure that may provide some insight into the
motivational effects of using graphics in the assignments.

The meah score on Lab 1 in fall 1998 was 75.7%, with a
standard deviation of 23.2%. The mean in fall 1999 was 87.8 %,
with a standard deviation of 19.7%. Though these means are clearly
different, we would have liked to run an independent-samples
#test to quantify the significance of the difference. However,
Kolmogorov-Smirnov tests and graphs of the grade distributions
(Figure 3) indicate that the distributions are not normal; therefore,
a #test would not be an appropriate comparison statistic for the
means. Informally, however, it is clear that the students performed
much better on the graphics-oriented assignment (1999) than on
the text-oriented assignment (1998). Although it would be
interesting to determine whether 1998 Lab 1 data represent “typical
text-oriented dara,” Lab 1 data from preceding years is not available
for comparison.

Though the grade comparison presented here shows that

18 JCSE Annual 2002

incorporating graphics has improved student performance on Lab
1, we would still like to quantify the motivational benefits we are
reaping by including graphics. To do this, we suggest that, if
graphics-oriented labs are more motivational than text-oriented
labs, fewer students will “give up” as they try to complete the
assignment. o

We therefore counted the number of students who received a
grade of less than 33.3% in each semester. We recognize that this
may also caprure students who did not give up and were simply
unable to master the material, but we suspect this was a small
percentage of the students who received such low grades on the
assignment. We also note that choosing 33.3% for our threshold
is somewhar arbitrary, because we could have also used 25%, 50%,
or some other percentage as our threshold; we simply chose a
threshold that seemed reasonable.

In fall 1998, 39 of 528 students (7.39%) scored lower than a
33.3% on the assignment. In contrast, in fall 1999, only 14 of
467 students (3.00 %) scored lower than 33.3%. Though we
recognize that this metric is at best an indirect measure of
motivation, we do believe that the difference between the text-
oriented and graphics-oriented assignment grades provides furcher
support for our conclusion that incorporating graphics is beneficial.

Conclusions

Incorporating graphics into our introductory course has led to
significant changes in the lab assignments in the course, though
the assignments continue to cover the same set of key programming
concepts. The preliminary empirical evidence presented in this
article indicates that these changes have led to improved student
performance and motivation.

This approach is not without risk, however, as we discussed
earlier. It is not surprising, therefore, thatbefore fall 1999, numerous
faculty members expressed concerns about incorporating graphics
into this course. What is surprising is that most of those faculty
members have since approached the director of the course and
expressed enthusiasm for the effects of that change.

Including graphics in the student programming assignments
also helps students better understand the operation of other
software. For example, most students understood before enrolling
in this course thar clicking an icon in Windows will start the
appropriate program. With the inclusion of graphics input,
specifically processing mouse clicks, we can now explain how such
actions can be taken using operations they have already included
in their own programs. This serves to help demystify the operation
and implementation of graphical user interfaces.

Though the discussion and empirical results presented in this
article address a course that uses Ada as its programming language,
the approach and the motivational benefits that can be achieved
from using the approach are clearly language independent. In
addition, the approach can be applied to high school and
undergraduate courses because the interfaces to the graphical
routines do not require student use and understanding of more
advanced programming constructs. The students effectively use

graphics in their first assignment, then continue to develop more
complicated graphics-based programs as they learn more advanced
programming constructs. The approach described in this article,
therefore, represents a general approach that can be used
independent of the programming language and the grade level of
the students in the course.

References

Astrachan, O., & Roger, S. H. (1998). Animation, visualization, and
interaction in CS 1 assignments. In J. Lewis, J. Prey, & D. Joyee (Eds.),
Proceedings of the 29th SIGCSE Technical Symposium on Computer Science
Education (pp. 317-321). New York: Association for Computing Machinery.

Chamillard, A. T., & Karolick, D. (1999). Using learning style data
in an introductory computer science course, In R. E. Noonan, J. Prey, &
D. Joyce (Eds.), Proceedings of the 30th SIGCSE Technical Symposium on
Computer Science Education (pp. 291-295). New York: Association for
Computing Machinery.

Clements, D. H., & Meredith, J. 8. (1992). Research on Logo: Effects
and efficacy [Online document]. Available: http://el.www.media.mit.edu/
groups/logo-foundation/pubs/papers/research_logo.heml.

Hunkins, D. R. (Moderator). (1993). Computer graphics across the
CS curriculum. In Papers of the 24th SIGCSE Technical Symposium on
Computer Science Education (p. 295). New York: Association for
Computing Machinery.

Roberts, E. S. (1995). A C-based graphics library for CS1. In C. White
(Ed.), Papers of the 26th SIGCSE Technical Symposium on Computer Science
Edycation (pp. 163-167). New York: Association for Computing Machinery.

Stegink, G., Pater, J., & Vroon, D. (1999). Computer science and
general education: Java, graphics, and the Web. In R. E. Noonan, J. Prey,
& D. Joyee (Eds.), Proceedings of the 30¢th SIGCSE Technical Symposium
on Computer Science Education (pp. 146-149) New York: Association for
Computing Machinery.

Contributors

Dr. A. T. Chamillard is an associate professor of computer science (currently on
sabbatical) at the U.S. Air Force Acarlemy. His research interests include computer
science education, the relasionships beaween learning styles and computer science
assessment performance, and the use of Ada in introductory computer science
courses and courses for non-majors.

A. T Chamillard

PO Box 384

Fort Belvoir, VA 22060
achamillard@hg. dema.mil

Dr. Jason A. Moore, formerly an associate proféssor of computer science at the U.S,
Air Force Academy, now manages information technology projects for the NATO
Early Warning Component at Geilenkirchen, Germany. His research interests
inelude computer networks, information warfare, and computer science
education.

Jason A. Moore

PSC 7 Box 3

APO AE 09104
moorej @cs.usafa.af mil

Dr. David S. Gibson is an assistan proféssor of computer science at the U.S. Air
Force Academy. His research interests include reusable software components,
i wputer architecture, computer science education, and

PTog g nguag
Web site Maintainability
David S. Gibson
Department of Computer Science
U.S. Air Force Academy, CO 80840
David Gibson@usafa.af mil

OOPs! continued from p. 7

Although Visual Basic does not support object inherirance, it does
allow class composition. By using this simple OO technique and
the ActiveX Control Interface Wizard, it is a fairly simple task to
create a custom control that inherits the essential functionality of
an existing control, but adds additional properties and methods
that are desired for specific applications. The use of Property
methods allows these custom controls to mimic the standard
controls in every way.

Bakopanos presented a basic solution to the problem of
modifying a standard control to achieve custom functionality
and appearance, bur his solution fell short of its potential. It
required special code to be written at the application level racher
than hiding it within the control code itself. Requiring this
additional code violated the basic OO principle ofinformation
hiding and resulted in a solution that was inflexible and prone
to error. In addition, by separating the custom code from the
object to which it was to be applied, he also violated principles
of encapsulation. The solution developed in this aricle, applied
class composition to provide a truly OO approach that
illustrated the principles of information hiding and
encapsulation. We also saw how the ActiveX Control Interface
Wizard could be used to imitate inheritance, even though it is
not a feature of the Visual Basic language.

As a final note, regarding object reuse, the Visual Basic IDE
provides a method of packaging this new control to make it
instantly available to any project. By compiling the Custom TextBox
control to create an ActiveX Conrrol file (Custom TextBox.ocx), it
can be included in the project components of any new project. By
simply dropping an instance of this control on a form, we get all
of the desired custom funcrionality, plus the added benefit of
modifying any of its properties or methods on an individual
control basis.

Reference

Bakopanos, K. (2000, February). Applying functionality on controls the
OQ way. Visual Basic Online [Online serial]. (Note: At press time, this
periodical was no longer available online.)

Contributor
Dr. Margush has been teaching computer science for over twenty years. His main
interests are in the area of discrete mathematics and software develop in

Visual Basic, C++, and Java. He has authored several custom packages for various
v F it ‘
wrofit 1g activities with several firms.
Tim is active in community organizations, and has appeared in several drama

-
and engaged in

productions through his church. When he is not thinking about programming, he
enjoys spending time with his family or singing and playing guitar.

Dr. Tim Margush

Departrnent of Computer Science

The University of Akron

Abkvon, OH 44325

Margush@uakron.edu

www cs.uakron. edu/~-margush 330.972.7109

JCSE Annual 2002 19

