
Re-engineering Global Variables in Ada
Ricky E. Sward

Department of Computer Science
U.S. Air Force Academy, CO

719-333-7664

ricky.sward@usafa.af.mil

A.T. Chamillard
Computer Science Department

University of Colorado at Colorado Springs
Colorado Springs, CO 80933

719-262-3150

chamillard@cs.uccs.edu

ABSTRACT
This paper describes one method for identifying global variables in
Ada procedures and adding them to the parameter list of appropriate
procedures. Global variables, ones that are visible to the entire
program, are considered harmful to the maintainability of software
systems because of the side effects that can result. A tool has been
developed based on the Ada Semantic Interface Specification
(ASIS) that can be used to identify global variables and re-engineer
Ada procedures. By adding global variables to the parameter lists of
appropriate procedures, the variables can be removed from the
globally visible data space and introduced into the local declaration
space.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environments –
programmer workbench.

General Terms: Languages, Verification.

Keywords: Global variables, ASIS, SPARK.

1. INTRODUCTION
Software systems can often spend 70% of their life span in the
maintenance phase of the Software Development Life Cycle.
Certain software development practices have become recognized as
harmful to the maintainability of software systems. One such
practice is the use of global variables. This practice of making data
visible to the entire software system is particularly harmful because
of the side effects that can result when several different software
modules are changing the same global variable.
This paper explains one method for identifying and removing global
variables from Ada programs. By using a static analysis tool we
have developed using the Ada Semantic Interface Specifi-cation
(ASIS) [2,3,7], we are able to identify global variables in
procedures and add them as parameters of the appropriate
procedures. By changing these variables to parameters of the
procedure, we are introducing them into the local data space of the
procedure and removing them from the globally visible data space.
This removes the possibility of side effects in the resulting code and

improves the maintainability of the re-engineered Ada software
system.
Similarly, the SPARK programming language [4] recognizes the
harmful nature of global variables and, while not prohibiting global
variables, requires the SPARK programmer to annotate any global
variables being used. The tool we have developed can be used to
identify and annotate these global variables automatically in SPARK
programs.
As is desirable with any re-engineering project, our tool does not
change the semantics of the legacy Ada code, i.e. the code produced
from our tool is functionally equivalent to the legacy code. All the
transformations performed on the legacy Ada code are semantics-
preserving transformations.
The paper will first discuss some related work, define global
variables in more detail, and then explain how we identify them in
Ada procedure declarations and procedure calls. Our tool does not
currently process functions or function calls. Next, we explain how
the tool adds SPARK annotations to the Ada procedures, if desired.
Then we discuss how global variables are added to the parameter list
of the appropriate procedures. We conclude with future directions
for this research.

2. RELATED WORK
The identification of global variables is a well defined process and is
discussed in many programming language textbooks [5,11]. Many
re-engineering tools have been developed that identify global
variables in legacy programs [9,12]. From our examination of these
tools it does not appear that any of these tools change the Ada code
to remove global variables. Identifying global variables has also
been useful in software metrics [6] and extracting objects from
legacy code [8,10].
With the recent advent of the SPARK language, the identification
and removal of global variables has also become more desirable.
Global variables in SPARK are not prohibited, but they must be
annotated properly in order for the information flow analysis of the
SPARK Examiner to work properly. As legacy Ada code is re-
engineered into SPARK code, our tool can be used to identify and
remove any global variables from the software system. If an
organization chooses not to remove the global variables, our tool
can also be used to identify and annotate the code with the global
annotation as required for the Examiner.

3. GLOBAL VARIABLES
In this section we define the term global variable in more depth as
explained in fundamental programming language theory. Each
variable in an Ada program must be declared at some point. Ada
language rules define the scope of the variable [1] as the portion of

Copyright 2004 Association for Computing Machinery. ACM acknow-
ledges that this contribution was authored or co-authored by a
contractor or affiliate of the US Government. As such, the Government
retains a nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for Government purposes only.
SIGAda 2004, November 14-18, 2004, Atlanta, Georgia, USA.
Copyright 2004 ACM 1-58113-906-3/04/0011...$5.00.

29

the program in which that variable may be referenced, i.e. in which
the variable is visible. Sebesta [11] explains the difference between
local, non-local, and global variables. Local variables are those
variables declared within the scope of a program unit or block.
Non-local variables are visible in the sub-program but are not
declared there, i.e. they are declared outside the scope of the sub-
program. Global variables are those non-local variables that are
also visible to the entire program.
In Ada, we can distinguish variables further by pointing out the use
of package variables. With the advent of the software engineering
practice of Abstract Data Types (ADTs), certain packages are built
with variables that are global to all procedures in that package.
Procedures within the ADT are then used to access the package
variables and provide a clean, secure interface to the variables. This
is considered a beneficial practice and the global visibility of
package variables is essential to the success of ADTs. For these
reasons, we do not consider package variables harmful if they are
used properly.
For example, an ADT that implements a stack is very useful. The
stack variable can be encapsulated in the ADT as a package variable.
The programmer can define an interface to the package variable via
procedures such as pop and push. The ADT provides an interface
to the stack variable via the procedures, which access the package
variable as a non-local variable. This is desirable as long as the only
procedures that access the stack variable are those procedures in the
outermost scope of the package. A procedure nested within another
procedure should not access the stack variable as a non-local
variable.
For simplicity, we present an example that is smaller than a stack
package to demonstrate our re-engineering tool. Consider the
program shown in Figure 1. Variable X is a package variable
defined in the specification of package One_Global. It is beneficial
for the procedure Outera to have access to the variable X even
though X is not declared in the local scope of Outera or passed as a
parameter to Outera. This is standard practice when building an
ADT. However, consider the use of variable X in the procedure
Innerb. In this procedure, X is still visible because it is a global
variable, but Innerb is not in the outermost scope of the package, it
is nested within the scope of Outera. This highlights the improper
use of the package variable X as a global variable in the procedure
Innerb. Using package variable X in the procedure Outera is
admissible, but using the package variable X in the procedure
Innerb is not.
package One_Global is
 X : Integer := 10;
 procedure Outera(A : in out Integer);
end One_Global;

package body One_Global is
 procedure Outera (A : in out Integer) is

 procedure Innerb (B : in out Integer) is
 begin
 B := X; -- X is a global var
 X := X + 1;
 end Innerb;

 begin
 Innerb(A);
 end Outera;
end One_Global;

Figure 1. Example of global variable X

Given this discussion, we can distinguish between the proper versus
improper use of package variables as global variables. Using
package variables in procedures that are in the outermost scope of
packages can be a beneficial and desirable programming practice for
ADTs. Using package variables within nested procedures places
them in the category of “global variables” and is a harmful
programming practice because of possible side effects. The work
presented in this paper focuses on the identification and removal of
global variables, but recognizes the value and benefit of using
package variables properly.
Although is it possible to write an Ada procedure that is not
contained within a package, all the examples in this paper involve
packages. In procedures not in packages, the same definitions for
the scope of a variable apply, but obviously package variables are
not a consideration. Our tool works on these procedures as well.
One assumption we have made in our work is that all programs we
pass to our tool already compile properly, i.e. there are no syntax
errors in the programs that we process. Since Ada uses static
scoping, the scope of a variable can be determined at compile time.
Using syntactically correct programs and static analysis has greatly
contributed to the identification of global variables and the re-
engineering of Ada procedures.

3.1 Identifying Global Variables
The first step in our process is to identify global variables in Ada
procedures. As shown in Figure 1, the variable X in the procedure
Innerb is a non-local variable. To determine if X is a global
variable, we consider the scope of its declaration. If a variable being
used in a procedure is declared in the local scope it is not global and
is ignored. If the variable is passed into the procedure as a
parameter, it is not global and is ignored. If the variable is not
declared in the local scope and is not a parameter to the procedure,
then the declaration of the variable is examined. The only
permissible case in this scenario is that the variable is a package
variable being used in the outermost scope of the package. In any
other case, the variable is considered a global variable.
For example, consider the block diagram in Figure 2 that depicts the
scoping of package One_Global (shown in Figure 1).

Package One_Global

X : Integer

Procedure Outera (A : in out Integer)

Procedure Innerb (B : in out Integer)

Figure 2 – Block diagram of scope nesting

As Figure 2 shows, the package One_Global defines a scope at the
outermost level. The variable X and the procedure Outera are both
in this outermost scope, which we designate as scope level zero.
The procedure Innerb, however, is nested within the scope of
procedure Outera and is at scope level one. This scoping and

30

nesting information is crucial to the identification of global
variables.
As part of the re-engineering process, it is necessary to record the
definition and reference sets for each global variable. A variable is
defined in a statement if that statement assigns a new value to that.
The definition set or DEF set is built for each statement collecting
those variables defined by the statement. Our tool builds the DEF
set for an entire procedure as part of the global variable processing.
Similarly, a variable is referenced in a statement if it appears in any
part of the statement. The reference set or REF set is built collecting
variables referenced in a statement. Our tool also builds the REF set
of an entire procedure.
In our tool, a symbol table is used to maintain the information about
the declaration of variables, their enclosing scope, and the level of
nesting of the declaration. To determine if a variable is global, the
declaration information for any non-local variables is retrieved from
the symbol table. If the declaration is at the package level, which is
nesting level zero, it is a package variable. These variables may be
accessed properly by procedures at the outermost level of nesting,
such as procedure Outera. However, if the nesting level of the
procedure using the variable is greater than zero, then the variable is
identified as a global variable.
All global variables identified in a procedure are collected into a set
of variables. In order to re-engineer the harmful use of global
variables, our tool provides two options. The first option is to
annotate the global variable using a SPARK annotation.
Specifically, the global annotation can be added to the procedure
that is using the global variable. The second option is to include the
variable in the parameter list of the procedure that is using the
variable. This implies that any calls to the procedure must also now
include this new parameter in the call. The following sections
discuss these two options in more detail.

3.2 Annotating Global Variables
After a global variable has been identified in a procedure, one
option is to annotate the global variable using the proper SPARK
annotation. The general form of the SPARK global annotation is
shown below [4].
 --# global <mode> <variable name>;

The “--#” symbols indicate that this is a SPARK annotation. In this
annotation the variable name and mode of the global variable are
listed after the keyword “global”.
To determine the mode of the global variable we examine how the
variable is used in the procedure. Using the terminology introduced
in our discussion of DEF and REF sets, a global variable that is only
referenced and not defined, i.e. is only in the REF set, is an IN mode
variable. A global variable that is defined and not referenced, i.e.
only in the DEF set, is an OUT mode variable. A global variable
that is referenced and defined, i.e. in both the REF and DEF sets, is
an IN_OUT mode variable. We recognize that this variable could
be an OUT mode variable that is referenced in the body of the
procedure, as allowed in Ada 95; however, identifying it as an
IN_OUT mode variable is the most conservative approach. The
completed global annotation is added the procedure that is using the
global variable.
For example, as shown in Figure 1, the variable X is a global
variable being used in the procedure Innerb. For the procedure
Innerb, the REF set includes B and X since both variables are

referenced in the statements of the procedure. The DEF set for
Innerb also includes both B and X since both variables are defined
by statements in the procedure. Given this information the
following global annotation is added to the procedure Innerb to
meet this particular SPARK requirement.
 --# global in out X

Since the global variable X appears in both the DEF and REF sets
for the Innerb procedure, the mode of the variable is determined to
be IN_OUT mode.
Figure 3 shows the updated code with the proper SPARK
annotations included.
package One_Global is
 X : Integer := 10;
 procedure Outera(A : in out Integer);
end One_Global;

package body One_Global is
 procedure Outera (A : in out Integer) is

 procedure Innerb (B : in out Integer) is
 --# global in out X
 begin
 B := X; -- X is a global var
 X := X + 1;
 end Innerb;

 begin
 Innerb(A);
 end Outera;
end One_Global;

Figure 3 – Global SPARK annotations
As we have shown, our tool is useful for identifying and annotating
global variables in SPARK code.

3.3 Re-engineering Global Variables
The second option after a global variable has been identified in a
procedure is to re-engineer the procedure and add the variable to its
list of parameters. Any calls to this procedure must be updated as
well. After this re-engineering, the variable will be in the local
scope of the procedure rather than a global variable used
inappropriately in that procedure.
For example, consider the code shown in Figure 1. The variable X
has been identified as a global variable in the procedure Innerb. To
re-engineer this code, X must be added as a formal parameter in the
declaration of the Innerb procedure. It must also be added as an
actual parameter in any calls to the procedure. The only call to
Innerb is found in Outera.
Figure 4 shows the re-engineered code. In the figure, the global
variable X has been added as a parameter to the Innerb procedure.
The call to this procedure has also been updated to include variable
X as an actual parameter of the procedure call. This example shows
the changes performed to re-engineer the code and remove the
global variable.
Once a global variable has been identified (see Section 3.1),
information is needed to proceed with the re-engineering. To ensure
the semantics of the legacy code is preserved, the identifier and data
type are gleaned from the original declaration of the global variable.
These are used to build the new formal parameter for the procedure
using the global variable. As is done for the SPARK global
annotation, the mode of the parameter is determined automatically
from the DEF and REF sets for this procedure. A global variable

31

that is only in the REF set is built as an IN mode parameter. A
global variable that is only in the DEF set is built as an OUT mode
parameter. A global variable that is in both the REF and DEF sets is
built as an IN_OUT mode parameter.
package One_Global_New is
 X : Integer := 10;
 procedure Outera (A : in out Integer);
end One_Global_New;

package body One_Global_New is
 procedure Outera (A : in out Integer) is

 procedure Innerb (
 B : in out Integer;
 X : in out Integer) is
 begin
 B := X;
 X := X + 1;
 end Innerb;

 begin
 Innerb(B => A, X => X);
 end Outera;
end One_Global_New;

Figure 4 – Global added as parameter
Again, we recognize that parameters identified as IN_OUT mode
may actually be OUT mode parameters which are reference in the
body of the procedure, but as with SPARK global annotations, we
take the most conservative approach. The new actual parameter
needed for the re-engineered procedure call is also built using
information from the original declaration, which ensures functional
equivalence.
package Two_Globals is
 X : Integer := 10;
 Y : Integer := 0;
 procedure Outera (A : in out Integer);
end Two_Globals;

package body Two_Globals is
 procedure Outera (A : in out Integer) is

 procedure Innerb (B : in out Integer) is

 procedure Innerc (
 C : in out Integer) is
 begin
 C := Y;
 Y := Y + 1;
 end Innerc;

 begin
 B := B + 1;
 Innerc(C => B);
 end Innerb;

 begin
 Innerb(B => A);
 end Outera;

end Two_Globals;

Figure 5 – Double nested procedure Innerc

Another case to consider is an access to a global variable that
requires changing two procedures in order to remove inappropriate
uses of global variables, as shown in Figure 5.
In the figure, there is a package variable Y that is referenced in the
procedure Innerc. Since the procedure Innerc is not in the
outermost scope of the package, the variable Y is identified as a
global variable. To re-engineer this program, the variable Y must be

added to the formal parameter list for the procedure Innerc. It must
also be added as an actual parameter of the call to Innerc found in
the Innerb procedure. However, adding this variable Y to the
procedure call in Innerb now introduces Y as a global variable in the
procedure Innerb. The variable Y is a non-local package variable,
but Innerb is not in the outermost scope of the package. Figure 6
shows this intermediate, incomplete result.
package Two_Globals_new is
 X : Integer := 10;
 Y : Integer := 0;
 procedure Outera (A : in out Integer);
end Two_Globals_new;

package body Two_Globals_new is

 procedure Outera (
 A : in out Integer) is

 procedure Innerb (
 B : in out Integer) is need Y here

 procedure Innerc (
 C : in out Integer;
 Y : in out Integer) is
 begin
 C := Y;
 Y := Y + 1;
 end Innerc;

 begin
 B := B + 1;
 Innerc(C => B, Y => Y); Y is global!
 end Innerb;

 begin
 Innerb(B => A); need Y here
 end Outera;

end Two_Globals_new;

Figure 6 – Intermediate result, global Y in Innerb

To re-engineer this procedure, the variable Y must be added to the
formal parameter list of the procedure Innerb. It must also be added
to the actual parameter list of the call to Innerb found in Innera.
Adding the variable Y to the procedure call in Innera does not
introduce Y as a global variable in Innera. The variable Y is a non-
local package variable, but the procedure Outera is in the outermost
scope level of the package. This use of the package variable Y is
allowed. The re-engineering of the Ada code is complete.
Figure 7 shows the re-engineered code for the package
Two_Globals. In this code, the variable Y has been added as a
formal parameter in the declarations of the Innerc and Innerb
procedures. The variable has also been added as an actual parameter
in the calls to these procedures found in procedure Innerb and
Innera, respectively. Adding Y as a formal parameter to Innerc
introduced it into the local scope of Innerc. Adding Y as an actual
parameter in the procedure call to Innerc introduced Y as a global
variable in Innerb. This required adding Y as a formal parameter to
Innerb and as an actual parameter in the call to Innerb propagating
Y out to the scope of procedure Innera. Innera is at the outermost
scope of the package, so Y is not considered a global variable in
Innera and the propagation of Y is complete.

32

4. USING ASIS
As explained by the ASIS Working Group:

“ASIS is an interface between an Ada environment as
defined by ISO/IEC 8652:1995 (the Ada Reference
Manual) and any tool requiring information from this
environment.” [2]

The static analysis information provided by the ASIS tool was
invaluable to this project. ASIS includes procedures and functions
that can be used to access information found in the Abstract Syntax
Tree (AST) generated at compile time for Ada programs. The
statement-level information gleaned from the AST was instrumental
in determining the scope of variables during global variable
identification. ASIS provides AST traversal routines that we used
in identifying global variables in assignment statements and
procedure calls.
package Two_Globals_new is
 X : Integer := 10;
 Y : Integer := 0;
 procedure Outera (A : in out Integer);
end Two_Globals_new;

package body Two_Globals_new is

 procedure Outera (
 A : in out Integer) is

 procedure Innerb (
 B : in out Integer;
 Y : in out Integer) is

 procedure Innerc (
 C : in out Integer;
 Y : in out Integer) is
 begin
 C := Y;
 Y := Y + 1;
 end Innerc;

 begin
 B := B + 1;
 Innerc(C => B, Y => Y);
 end Innerb;

 begin
 Innerb(B => A, Y => Y);
 end Outera;

end Two_Globals_new;

Figure 7 – Double nested procedures re-engineered

5. FUTURE DIRECTIONS
We have completed a prototype tool that can either annotate legacy
Ada code with the SPARK global annotation or include global
variables in the parameter lists of procedures. To extend this work,
other SPARK annotations such as the own annotation could be
automatically inserted into the package specification.

Another extension could be to identify global variables in functions
and function calls. Our tool currently includes only procedures and
procedure calls in the re-engineering process. This could be
extended to add annotations to functions or add the global variable
to the function parameter list and the function call.
With the power of the ASIS tool, we have been able to successfully
analyze and re-engineer legacy Ada code. With our prototype tool,
the user has the option to automatically annotate Ada code or
remove global variable and introduce them into the local scope of
Ada procedures.

6. REFERENCES
[1] Ada Language Reference Manual. Version 6.0

21 December 1994. Copyright (C) 1992,1993,1994,1995
Intermetrics, Inc.

[2] ASIS Basic Concepts. Retrieved June 3, 2003, from
www.acm.org/sigada/wg/asiswg/basics.html, 1998.

[3] ASIS Implementation, Products, and Services. Retrieved June
3, 2003, from
www.acm.org/sigada/wg/asiswg/products.html#Products ,
1998.

[4] Barnes, J. High Integrity Software, The SPARK Approach to
Safety and Security. c2003, Praxis Critical Systems Limited.
Addison-Wesley, London UK.

[5] Ghezzi, C. and Jazayeri, M. Programming Language
Concepts, c1982, John Wiley and Sons, New York, NY.

[6] Henry, S.; Kafura, D.: Software Structure Metrics Based on
Information Flow. IEEE Transactions on Software
Engineering, 7(1981)5, pp. 510-518

[7] ISO/IEC 15291:1999. Information technology -- Programming
languages -- Ada Semantic Interface Specification, 1999.

[8] Liu, S.S. and Wilde, N. Identifying objects in a conventional
procedural language: An example of data design recovery. In
Conference in Software Maintenance, pp. 266–71. IEEE
Computer Society Press, 1990.

[9] Panorama’s Solution. Retrived 30 Apr from
http://www.softwareautomation.com/www/reengin.htm

[10] Sahraoui H. A., Lounis, H., Melo, W., and Mili, H. A Concept
Formation Based Approach to Object Identification in
Procedural Code. In Automated Software Engineering
Journal, Volume 6 No 4, Kluwer Academic Publishers, 1999,
pp. 387-410.

[11] Sebesta, R. Programming Language Concepts. c2003,
Addison Wesley, Reading MA.

[12] TROOP database re-engineering. Retrieved on 30 Apr 2004
from http://www.ercim.org/publication/Ercim_News/enw23/-
castelli.html

33

