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Abstract  

Spurious results are an inherent problem of most static 
analysis methods. These methods, in an effort to produce 
conservative results, overestimate the executable 
behavior of  a program. Infeasible paths and imprecise 
alias resolution are the two causes of such inaccuracies. 
In this paper we present an approach for improving the 
accuracy of Petri net-based analysis of concurrent 
programs by including additional program state 
information in the Petri net. We present empirical results 
that demonstrate the improvements in accuracy and, in 
some cases, the reduction in the search space that result 
from applying this approach to concurrent Ada programs. 

1 Introduct ion  

Developers of  concurrent software need cost-effective 
analysis methods to acquire confidence in the reliability 
of that software. Analysis of concurrent programs is 
difficult because, in many cases, the patterns of 
communication among the various parts of the program 
are complicated and the number of possible 
communications is large. One class of methods that can 
be used for analysis of concurrent programs is static 
analysis, which uses compile-time information to prove 
properties about a program. 
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In general, we would like any static analysis method 
to be conservative; for a given property, the analysis must 
not overlook cases where the property fails to hold. To 
ensure conservativeness, methods typically use program 
representations that overestimate the behavior of the 
program being analyzed. As a result, these methods may 
produce spurious results -- that is, report that a property 
fails when in fact the cases in which it fails do not 
correspond to actual program behaviors. Usually, an 
analysis method produces a spurious result as a 
consequence of considering paths that can never be 
executed in the program (commonly called infeasible 
paths) or of considering aliasing that can never occur in 
the program. For an example of an infeasible path, 
consider the program in Figure 1. In the caller2 task, the 
path through the true branch of the first conditional and 
the false branch of the second conditional is infeasible, 
assuming the value of BranchCond does not change 
between the two conditionals. Infeasible paths are 
natural phenomena of the internal representations we use 
for analysis and are usually not indicative of a fault in the 
code. 

This paper presents an approach for improving the 
accuracy of Petri net-based static analysis methods by 
eliminating some infeasible paths from consideration. 
We conjecture a scenario in which an analyst submits a 
program and property to a static analysis tool and then 
examines the anomaly report that results from the 
analysis. Since some of the reported anomalies might be 
spurious, due to consideration of infeasible paths or 
imprecise alias resolution, the analyst must examine each 
anomaly to determine if it is a spurious result or not. If  a 
large number of the results are spurious, weeding these 
out might overwhelm the analyst, causing results that 
actually do correspond to erroneous program behavior to 
be discarded. If the number of spurious results is 
extremely large, the analyst may lose confidence in the 
analysis tool altogether and forego using it. 

It has been our experience that, after looking at an 
anomaly report, an analyst easily recognizes certain 
infeasible paths that are the cause of at least some of the 
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task body callerl is 
begin 

accepter.entry2; 
end callerl; 

task body accepter is 
begin 

accept entryl; 
accept entry2; 

end accepter; 

Figure 1. Example Program 

task body caller2 is 
BranchCond : boolean; 

begin 

if BranchCond then 
accepter.entryl; 

else 
null; 

end if; 

if BranchCond then 
null; 

else 
accepter.entry2; 

end if; 
end caller2; 

spurious results. Early experience with static analysis 
tools indicated that analysts identified impossible pairs of 
statements after examining anomaly reports. Using 
information about these impossible pairs to recognize 
spurious results was shown to be intractable for analyses 
based on control flow graph representations of a program 
[GMO76]. The approach presented in this paper for 
improving accuracy is based on a Petri net model of a 
concurrent program. We describe how certain kinds of 
infeasible path information can be effectively captured in 
this model, improving the accuracy of the analysis results 
without degrading the performance of the analysis. 

Thus, the basic idea is that an analyst would apply the 
static analysis method to the Petri net model of the 
program. Through examination of the anomaly report, 
certain infeasible paths that are causing spurious results 
to be reported become apparent. The analyst, using our 
approach, refines the Petri net model of the program with 
this information and reapplies the analysis. Of course, if 
the analyst knew of infeasible paths before running the 
initial analysis, that information could be incorporated 
immediately. In our experience, however, analysts do 
not tend to think about infeasible paths until after 
examining an anomaly report with some obvious spurious 
results. The new anomaly report typically contains fewer 
spurious results than the previous report, since the 
additional information should have eliminated the cause 
of some inaccuracies. Frequently, the new report is 
significantly smaller since additional, as yet undetected, 
spurious results are eliminated as well. This smaller 
report may not be so overwhelming to evaluate, perhaps 
allowing the analyst to recognize additional spurious 
results more easily. The effect is an iterative process in 
which the analyst examines an anomaly report, adds 
additional information to the analysis, and reapplies the 
analysis repeatedly until the desired accuracy is achieved. 

Our approach allows the analyst to include selected 
control and/or data information in the Petri net model of 
the program. The basic idea is to introduce information 
about the states that the program being analyzed can 

enter during execution; this information may be in the 
form of sequences of program statements or in the form 
of variable values. Petri nets are used because including 
additional program state information in the net and using 
that information to control the transitions in the net is 
relatively straightforward. We hypothesize that, by 
including additional program state information in the 
Petri net, we can generate a more accurate estimate of the 
program state space. Analysis of this more accurate state 
space considers fewer infeasible paths, potentially 
reducing the number of spurious results reported by the 
analysis and increasing the value of the analysis results. 

The following section describes some of the major 
methods that have been used to perform static analysis of 
concurrent programs, Section 3 describes the  program 
representations we use to analyze concurrent programs 
with our approach, and Section 4 explains how we 
represent certain state information to improve the 
accuracy of those representations. Section 5 presents our 
empirical results, and Section 6 offers some conclusions 
based on those results and some pointers to future work. 

2 Related Work 

Numerous methods for static analysis of concurrent 
programs have been proposed. In this section we survey 
the major methods and describe accuracy-improving 
approaches that have been suggested for reducing the 
number of infeasible paths considered by these methods. 

Reachability analysis checks whether a selected 
property, often called the property of interest, can occur 
in a concurrent program by considering all reachable 
states of the program being analyzed. The set of 
reachable program states can be generated using a variety 
of program representations, including flow graphs 
[Tay83a, YTF+89] and Petri nets [Pet77, SC88, DCN95]. 
Theoretical results [Tay83b] imply that, in general, the 
time and space requirements for this method are 
exponential. Several approaches have been proposed to 
reduce the number of infeasible paths considered by 
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reachability analysis. One proposed approach is to 
combine reachability analysis with symbolic execution to 
prune infeasible paths from the estimated reachable state 
space [YT88]. Symbolic execution, however, is an 
expensive method that can not be guaranteed to 
determine feasibility. Our approach entails 
straightforward extensions of the Petri net representation. 

Other proposed approaches use program variable 
value information to exclude some infeasible paths from 
consideration [BDF92, DBD+94]. These approaches 
assume that, if a variable value is to be modeled, that 
value is always statically determinable. This assumption 
seems overly restrictive in general. In contrast, our 
variable value technique accounts for regions in which 
the value is not statically determinable, but can only 
improve accuracy in regions in which the value is 
determinable. Additionally, the effect of modeling 
selected variable values is not quantified in [BDF92] or 
[DBD+94], while Section 5 below compares the sizes of 
reachability graphs generated with and without modeling 
of selected variable values. 

Symbolic model checking methods [BCM+90] 
represent the program state space symbolically rather 
than explicitly. With this method, the program to be 
analyzed is modeled using Binary Decision Diagrams 
(BDDs), and the property of interest is specified by a 
formula. A fixed point algorithm is used to determine 
whether the property formula is valid in the program 
model. Because checking Boolean satisfiability is NP- 
complete, determining the validity of the formula in the 
program model can require exponential time in the worst 
case. In addition, the BDD representations can require 
exponential space in the worst case. Note that these 
representations are structured to symbolically capture the 
entire program state, so this method is already as accurate 
as possible given only compile-time information. In 
contrast, our approach only adds information as it is 
needed, thereby limiting the size of the program 
representation. 

The Constrained Expression method [ABC+91] 
avoids representing the state space of the program 
altogether. Selected program behavior and a set of 
necessary conditions for the property of interest are 
expressed as a system of inequalities, and integer linear 
programming techniques are used to determine whether 
the necessary conditions can be satisfied by the program. 
In the worst case, solving the system of inequalities can 
require exponential time. Including information about 
certain program variable values [Cor93] in the set of 
inequalities has been proposed as one way to efficiently 
provide accurate results. This approach is more limited 
than the approach we propose here. 

Data flow analysis is another method that has been 
applied to concurrent programs. This method employs 
polynomial-time algorithms to prove a range of program 

properties [TO80, RS90, MR91, CK93, DC94]. 
Infeasible synchronization events can be excluded from 
consideration by identifying program statements that can 
not execute concurrently [MR93]. An approach, similar 
to the approach described here, is being explored where 
the number of infeasible paths is reduced by including 
selected information about program paths and program 
variable values [DC94]. This approach encodes the 
information with the property, whereas our approach 
encodes the information in the program representation. 

An advantage of our approach and that described in 
[DC94] is that they provide a flexible means for 
incrementally including additional program state 
information to improve the accuracy of the analysis. 
After examining the anomaly report from an analysis run, 
an analyst can specify additional information to be 
included to improve the accuracy of the results as needed. 
In addition, the analyst can choose whether to represent 
this additional information in terms of control or data 
information, depending on which representation is best 
suited to the situation at hand. 

3 Program Representations 

Because Ada is one of the few commonly used languages 
supporting concurrency, we use Ada examples to explain 
our static analysis method and our accuracy-improving 
approach. The approach, however, is applicable to any 
language using rendezvous-style communication, and 
could he extended to most other communication styles as 
well. In Ada programs, potentially concurrent activities 
occur in tasks I. Ada tasks typically communicate with 
each other using a rendezvous. In a rendezvous, the 
calling task makes an entry call on a specific entry in the 
called task; the calling task then suspends execution until 
the called task terminates the rendezvous. The called 
task executes any statements contained in the accept body 
for the entry, then terminates the rendezvous and 
continues execution. 

Our static analysis method builds upon a variety of 
internal representations of a concurrent Ada program to 
capture information about the program. First, we 
represent each task with a Task Interaction Graph (TIG) 
[LC89], which abstracts sequential regions of control 
flow into single nodes. The nodes in the TIG for a task 
are connected by edges representing possible interactions 
(entry calls/accepts) between that task and other tasks in 
the program. We then combine the set of TIGs for all the 
tasks in a program into a Petri net [DCN95] to model the 
system as a whole. Finally, we use the Petri net to 
generate a reachability graph to represent an estimate of 
all states the program can enter when started in the initial 

IConcurrent activities in Ada programs can also occur in 
procedures; for simplicity, we call them tasks in this paper. 
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program state. Petri nets and reachability graphs are 
central to the techniques we use for improving accuracy, 
so these representations are described more fully below. 

Petri Nets 

Petri nets have been proposed as a natural and powerful 
model of information flow in a system [Pet77]. A Petri 
net can be represented as a 5-tuple (P, T, I, O, M0). P is 
the set of places in the Petri net, where a place can hold 
zero or more tokens. I f  a place holds one or more tokens, 
the place is said to be marked. T is the set of transitions 
in the Petri net. Tokens are moved between places in the 
net by the firing of transitions. A transition can only be 

termination points for a task are represented with double 
circles. For example, the caller2 task could potentially 
terminate at place 6 (by taking the false branch of the 
first conditional and the true branch of the second), place 
7 (by taking the true branch of both conditionals), or 
place 8 (by taking the true branch of the first conditional 
and the false branch of the second). We use TIG-based 
Petri Nets (TPNs) because it,has been shown that TPNs 
substantially reduce the size of the Petri net, thereby 
increasing the size of the programs that can be 
successfully analyzed [DCN95]. Although this example 
is small, in general Petri nets can be extremely complex 
and are not usually visualized. 

cal ler1 accepter caller2 

1 3 6 

7 

Figure 2. Petri Net 

fired if it is enabled; for a transition to be enabled, each 
of the input places for the transition must contain at least 
one token. I is a function mapping places in P to inputs 
of transitions in T. When a transition fires, a token is 
removed from each of the places that are inputs to the 
transition, and a token is deposited in each of the output 
places of the transition; O is a function mapping places in 
P to outputs of transitions in T. M0 is a list of all the 
places in the net that are initially marked. 

Petri nets appear to be a valuable representation for 
modeling concurrent software [SC88]. In our analysis 
method, we use a Petri net representation generated from 
the set of TIGs for the concurrent program. Each place in 
the Petri net corresponds to a sequential region of code in 
one of the tasks in the program, and each transition 
represents a possible interaction (entry call/accept) 
between two tasks in the program. For an example Petri 
net, based on the TIGs generated for the program in 
Figure 1, see Figure 2. In Figure 2, the places 
representing a task's states are displayed in a column 
under the task name and each transition, which represents 
an inter-task communication, is displayed between the 
two interacting tasks 2. Places that represent potential 

2Because of the optimized representation used in a TIG, two 
transitions are used to represent the interaction between the 

A Petri net is called safe if each place in the Petri net 
can contain at most one token. Safety is a desirable 
property, because safe Petri nets are guaranteed to have a 
finite number of reachable states. It has been shown that 
TPNs are safe [Cha95]. 

Reachability Graphs 

Often, developers want to determine whether or not the 
concurrent program being analyzed could potentially 
enter a state in which a specified property is violated; for 
instance, is it possible for the program to enter a state in 
which it deadlocks. One method for answering such 
questions is to enumerate all possible program states and 
check the property at each state. A reachability graph 
can be used to represent the program state space. 

A reachability graph for a Petri net consists of a set of 
nodes, N = {ni}, and a set of arcs, A = {ai}. Nodes in the 
reachability graph correspond to markings of  the Petri 
net; the root node of the reachability graph corresponds to 
the initial marking (M0) of the Petri net. An arc goes 

accepter and caller2 tasks for the entry2 entry. Transition 2 
represents the interaction occurring after caller2 takes the false 
branch in the first conditional and transition 3 represents the 
interaction occurring after caller2 takes the true branch in the 
first conditional. 

2 7  



from n i to nj if and only if the marking of the Petri net 
can change-from n i to nj with the firing of a single 
transition. Although in actuality several interactions, 
represented by fired transitions, can take place 
concurrently, we can capture all possible execution 
sequences by firing a single transition at a time; we use 
this approach, because the resulting graph is greatly 
simplified. We note that only markings reachable from 
the initial marking by some sequential combination of 
transition firings are included in the reachability graph. 
It is helpful to observe that a marking of a Petri net 
simply represents the states of  all the tasks being modeled 
by the Petri net; we therefore consider nodes in the 
reachability graph as states the program can reach when 
started from the initial program state. Figure 3 provides 
the reachability graph for the Petri net in Figure 2. Each 
node in the figure is annotated with the Petri net places 
that are marked in the corresponding program state. 

<••1,3,6 
2,5,7~1,5,8 

Figure 3. Reachability Graph 

4 Improving Accuracy 

In this section we examine an approach for improving the 
accuracy of static analysis without adding significantly to 
the cost of such analysis. To improve accuracy, we 
include additional program state information in the Petri 
net. Although we describe the approach in terms of 
TPNs, the approach is also applicable to other Petri net 
representations, such as those from [SC88]. The 
reachability graph generated from this enhanced Petri net 
representation provides a more accurate estimate of the 
program state space than the original reachability graph. 
Analysis of the revised reachability graph is thus more 
accurate, and the number of spurious results reported by 
the analysis should be less than or, in the worst case, the 
same as the number of spurious results reported for the 
original reachability graph. Since we propose a scenario 
where an analyst introduces additional information in 
response to discovering spurious results in the anomaly 
report, we would expect the number of such results to 
decrease. The increase in cost to gain this accuracy 
improvement includes the cost of incorporating the 
additional program state information in the Petri net and 
the cost of analyzing the resulting reachability graph. 

Our approach can incorporate additional control flow 
or data flow information in the Petri  net. The first 
technique, enforcing impossible pairs, retains information 
about past program states to eliminate some infeasible 
paths from consideration by the analysis; this technique 
may be suitable when conditionals are controlled by 

complicated conditions or when interactions between 
certain program statements are easily recognized by the 
analyst. The second technique, representing variable 
values, eliminates some infeasible paths by modeling 
variable values. This technique is suitable when 
conditionals are controlled by a small number of  boolean 
or enumerated variables. We would expect an analyst to 
select the technique that seems most appropriate or 
natural for the problem at hand. 

For either technique, it is important that the enhanced 
Petri net continue to be an accurate representation of the 
program under analysis; in other words, adding the 
additional control or data information must not hide 
errors that would have been exposed through analysis of 
the original Petri net. Although not presented here, to 
ensure our techniques are error-preserving we have 
verified that the new Petri net is still an accurate 
representation of the program. Since the new Petri net is 
actually a more accurate representation than the original 
Petri net, it can be shown that the only program states 
removed from the reachability graph are those that are 
reached through infeasible paths. 

Enforcing Impossible Pairs 

Impossible pairs [GMO76] are pairs of  program 
statements that can not both execute in the same 
execution of the program. In the mid-seventies, 
impossible pairs were recognized as an intuitive concept 
that developers could potentially exploit to improve the 
accuracy of their results. It was demonstrated in 
[GMO76], however, that deciding whether or not a path 
exists that does not include any impossible pairs is an 
NP-complete problem. Rather than explicitly solving the 
above problem to improve accuracy, we implicitly 
remove some infeasible paths from consideration by 
adding information about impossible pairs to the Petri 
net. 

In this paper, we use a less restrictive definition of 
impossible pairs than the one given in [GMO76], since 
we believe our definition more accurately captures the 
restriction that an analyst would want to include. In our 
definition, executing the first member of the impossible 
pair inhibits execution of the second member, but 
executing the second member of the impossible pair has 
no impact on the executability of the first member 3. In 
an extension of our technique, we also account for cases 
in which the second member of an impossible pair should 
only be disabled temporarily; this can occur if the 
condition that causes the second member to be disabled 

3Of course, using our definition an analyst could 
represent two statements a and b as an impossible pair as 
described in [GMO76] by specifying two impossible 
pairs, [a,b] and [b,a]. 
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can subsequently change. Finally, we restrict our 
attention here to cases in which the impossible pair 
consists of two interaction (entry call or accept) 
statements, since the majority of concurrency analysis is 
concerned with communication events. 

We observe that statements in an impossible pair are 
conceptually different from statements that Can't Happen 
Together (CHT) [MR93]. Impossible pairs identification 
is concerned with identifying invalid sequences of 
statements, whereas CHT analysis is concerned with 
identifying statements that can not execute concurrently. 

The technique described below involves representing 
additional program state information to eliminate 
infeasible paths that contain both members of an 
impossible pair. For an example of when this technique 
is useful, consider the program in Figure 1, and assume 
for the moment that the conditions in the if statements are 
much more complicated than the value of a boolean 
variable. If the condition in the first conditional in the 
caller2 task evaluates to true, leading to the entry call on 
entryl in the first conditional, the call on entry2 in the 
second conditional is impossible because the truth value 
of the condition does not change. Note that, similar to 
symbolic model checking, we could try to encode the 
possible values of the complicated condition in the Petri 

we assume that these are relatively easy for an analyst to 
manually identify after examining the anomaly report. 
We would expect that after discovering several spurious 
results in the report, the analyst would introduce specific 
impossible pair information to improve the accuracy of 
the results. In any case, for this presentation we assume 
that some method has been used to recognize the 
impossible pairs and the regions re-enabling them, so our 
discussion below focuses on including information about 
these impossible pairs in our Petri net. 

To simplify our explanation, we assume a single 
impossible pair in the program but note that the technique 
can be extended to multiple impossible pairs [Cha95]. 
Also note that, using the same basic technique, more 
complicated flow constraints than impossible pairs could 
be incorporated given Petri net representations of those 
constraints. 

To illustrate the ideas presented here, we modify the 
Petri net given in Figure 2. Transition 1, which 
corresponds to the accepter.entryl statement in the 
caller2 task, is the first member of the impossible pair. 
Transitions 2 and 3, which correspond to the 
accepter.entry2 statement in the caller2 task, represent 
the second member of the impossible pair. The enhanced 
Petri net is shown in Figure 4. 

C~ 

1 

Figure 4. Petri Net With 

net. For general boolean expressions, however, the 
encoding of the condition in the Petri net could be quite 
large. Instead, we use information about this impossible 
pair to improve the accuracy of the Petri net and the 
corresponding reachability graph. 

There are three distinct activities associated with 
enforcing impossible pairs: recognizing the impossible 
pairs in a program, recognizing which regions in the 
program re-enable second members of the impossible 
pairs, and including information about the impossible 
pairs in the Petri net. Although sophisticated methods, 
such as symbolic evaluation [CR81], could be used to 
recognize impossible pairs and regions re-enabling them, 

;d 

9 

Impossible Pairs Represented 

10 

.~d 

In general, to include impossible pair information in 
our Petri net we add two new places that control firing of 
the transitions corresponding to the second member of the 
impossible pair in the program, and also add duplicates of 
the transitions corresponding to the first member of the 
impossible pair. The first new place, called the Enabled 
place for the second member, is used to enable execution 
of the second member; the second new place, called the 
Disabled place for the second member, is used to inhibit 
execution of the second member. Because we restrict our 
attention here to impossible pairs of interaction 
statements, the first member and second member of the 
impossible pair are each represented by one or more 
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transitions in the Petri net. We connect the Enabled 
place as an input to all transitions that correspond to the 
task statement for the second member, which ensures the 
statement can only execute when the Enabled place 
contains a token (transitions 2 and 3 in Figure 4 ) .  We 
also connect the Enabled place as an output of these 
transitions, which lets the task statement execute multiple 
times. Since executing the first member of the 
impossible pair prohibits the second member from 
executing, we must ensure that firing the transition 
corresponding to the first member of the impossible pair 
results in an unmarked Enabled place and a marked 
Disabled place for the second member of the impossible 
pair. Because the second member may be enabled or 
disabled before executing the first member, we copy the 
transition corresponding to the first member, including all 
inputs and outputs of the transition. We then use the 
original transition (transition 1 in Figure 4) to change the 
second member from enabled to disabled when the first 
member is executed and the duplicate transition 
(transition 5 in Figure 4) to keep the second member 
disabled if it is already disabled when the first member is 
executed; we call these disabling transitions. 

To ensure that the second member is enabled or 
disabled (but not both), we have connected the new 
places to the net such that exactly one of the Enabled 
place/Disabled place pair for the second member is 
marked at any given time. The Enabled place is initially 
marked, and the Disabled place is initially unmarked (see 
Figure 4). 

In an extension of the technique described above, we 
also consider the possibility that the second member of an 
impossible pair should only be disabled temporarily. For 
example, if the first member of an impossible pair is 
contained within a loop and the condition is changed at 
the end of the loop, the second member of the impossible 
pair should be re-enabled at the end of the loop. Because 
the statement changing such a condition will typically not 
be an interaction statement, this statement is contained 
within the TIG region corresponding to a place in the 
Petri net; we call this region a re-enabling region, since it 
re-enables execution of a statement. To re-enable the 
second member, we modify transitions into the place 
corresponding to the re-enabling region. Because the 
statement to be re-enabled may be enabled or disabled 
before we reach the transition to be modified, we copy 
the transition, including all inputs and outputs of the 
transition. We then use the original transition to change 
the statement from disabled to enabled and the duplicate 
transition to keep the second member enabled if it is 
already enabled; we call these re-enabling transitions. In 
our example program the second member of the 
impossible pair is never re-enabled, so these transition 
modifications are not required for the Petri net in Figure 
4. 

In our example, the Petri net without impossible pair 
information is shown in Figure 2, and the corresponding 
reachability graph is shown in Figure 3. Node 4 in the 
reachability graph represents a deadlock of the callerl 
task. The transition fired to enter this node, however, 
represents an interaction that is not possible, because the 
true branch is traversed in the first conditional in the 
caller2 task to reach node 2, and the condition is not 
changed before the second conditional. Therefore, an 
analysis result that reports deadlock for this program is a 
spurious result, since the program can not actually 
execute the path required to reach the deadlocked node. 
Using the technique for impossible pairs described above, 
we add impossible pairs information to the Petri net as 
shown in Figure 4; the corresponding reachability graph 
is shown in Figure 5. Note that in Figure 5 we have 
retained the reachability graph node numbering from 
Figure 3 to facilitate comparison. For this example the 
spurious result has been removed by the additional 
information included, and thus analysis of the resulting 
graph can yield more accurate results. 

~ 1 , 3 , 6 , 9  

1,4,7,10 

2,5,7,10 

Figure 5. Reachability Graph With Impossible Pairs 
Represented 

Representing Variable Values 

When we include representation of impossible pairs 
information in our Petri net, we eliminate some infeasible 
paths from consideration by explicitly representing 
information about paths in the program execution. We 
can also implicitly eliminate some infeasible paths by 
representing the values of selected variables in the 
program. This technique is applicable when conditions in 
the program conditionals are relatively simple and 
include a small number of boolean or enumerated 
variables whose values can be statically determined in at 
least some regions of the program. As with the 
impossible pairs technique, we modify the Petri net to 
capture additional information about the program states. 
In this case, however, the state information is in the form 
of variable values. We can use this additional 
information to exclude interactions that are infeasible 
based on those values, thereby excluding some infeasible 
paths from our analysis. 

For an example of when this technique is useful, 
consider again the program in Figure 1 and assume that 
BranchCond is set to true at the beginning of caller2. 
Thus, caller2 makes the entry call on entryl,  but the entry 
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call on entry2 is impossible, based on the value of 
BranchCond. If we modify the corresponding Petri net to 
include information about values of the variable 
BranchCond, we can improve the accuracy of the 
reachability analysis by eliminating consideration of the 
entry call on entry2. 

There are four activities to be considered when we 
represent variable values in a Petri net: recognizing the 
interactions that are controlled by specific variable 
values, recognizing the regions that change the variable's 
value (and how they change it), building the 
representation for the variable, and connecting it to the 
existing Petri net. We believe that this is often 
straightforward in practice, particularly when a boolean 
variable is used to control communication in the 
program. For these cases, an analyst should easily be 
able to identify such controlling variables and could 
specify those variables for inclusion in the Petri net. In 
this paper, we assume the first two actions have been 
accomplished and focus on the actual representation and 
inclusion of the variable value information. 

We represent a variable in the program for which we 
want to maintain value information with a variable 
subnet. This subnet contains two kinds of places: value 
places and operation places. The subnet includes a value 
place for each possible value of the variable, plus an 
"Unknown" place to account for those occasions on 
which we can not statically determine the variable's 
value. To simplify the presentation, we describe a 
variable subnet for a boolean variable. The variable 
subnet for a Boolean variable would have a "True" place, 
a "False" place, and an "Unknown" place. When the 
"Unknown" place is marked, the variable could be true or 
false; based on the connections described below, both 
possibilities are considered during generation of the 
reachability graph. The "Unknown" place is marked in 
the initial marking of the Petri net. The variable subnet 
also includes operation places for the valid operations on 

a variable of the given type; for example, the valid 
operations on a boolean variable are "Assign True", 
"Assign False", and "Not". For each operation, we 
connect the corresponding operation place to transitions 
between the appropriate value places. For example, the 
Boolean variable subnet contains a transition with 
"Assign True" and "False" as inputs and "True" as an 
output. The variable subnet is effectively a finite state 
machine for the variable, with transitions between the 
states (values) of the variable controlled by operations on 
the variable. 

To make the resulting subnet safe, we modify the 
Petri net to ensure the operation places can never contain 
more than one token, using transformations similar to 
those described by Peterson [Pet81]. For every operation 
place for the variable, we add an operation prime place, 
yielding two places for each possible operation on the 
variable. For each transition with an operation place as 
an output, we add the corresponding operation prime 
place as an input. For each transition with an operation 
place as an input, we add the corresponding operation 
prime place as an output. This transformation yields a 
safe subnet, with the additional property that only one of 
the operation place/operation prime place pair for a given 
operation can be marked at any given time. If none of 
the regions corresponding to marked places in the initial 
marking of the original Petri net modify the modeled 
variable, all operation prime places are marked in the 
initial marking of the Petri net; otherwise, the appropriate 
operation places are marked, with the corresponding 
operation prime places left unmarked. We also note that, 
since it is possible for the program to exit a region in 
which the value of a variable is statically determinable 
into a region in which the value is not statically 
determinable, we need to provide an "Assign Unknown" 
operation as well. The resulting variable subnet for a 
Boolean variable is as shown in Figure 6, but the subnet 
shown has not yet been connected to the Petri net for a 
program. 

AssignFalse AssignFalse' AssignTrue AssignTrue' AssignUnknown AssignUnknown' Not Not' 

Figure 6. Boolean Variable Subnet 
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To use the additional information provided by the 
variable subnet, we need to connect the variable subnet to 
the Petri net. Figure 7 illustrates the revisions to the Petri 
net using the example shown in Figures 1 and 2. The 
variable subnet for the BranchCond variable is abstracted 
to facilitate understanding. In Figure 7, a T, F, or U on 
an arc represents a connection to the True, False, or 
Unknown value place in the BranchCond Subnet. Also, 
connections between transitions and operation prime 
places are as described below, but are omitted from this 
figure for clarity. 

modifying regions. If we assign BranchCond the value 
true initially in the caller2 task then the corresponding 
place (place 6 in Figure 7) corresponds to a modifying 
region. For each of these regions, we add the appropriate 
operation place as an output and the corresponding 
operation prime place as an input of all transitions 
leading into the modifying region; this initiates 
modification of the variable on entry into the modifying 
region. We also add the operation prime place as an 
input and output of all transitions exiting the modifying 
region; because the operation prime place will not be 

C 

1 

2 

Figure 7. Petri Net With Variable Subnet Added 

A variable subnet is connected to the Petri net for a 
program in two cases: at transitions controlled by the 
variable and at transitions leading into or out of places 
corresponding to regions that modify the value of the 
variable. In the first case, a transition is controlled by a 
variable if the transition can only occur if the variable has 
a certain value. In this case, we copy the transition. The 
appropriate value place for the variable is connected as 
an input to the original transition (transitions 1, 2, and 3 
in Figure 7), and the same value place is connected as an 
output of the transition to preserve the value of the 
variable. We add the Unknown value place as an input 
and output for the duplicated transition (transitions 5, 6, 
and 7 in Figure 7) to represent the fact that the interaction 
may be possible in the case where the variable's value is 
currently undetermined. In addition, we add all operation 
prime places for the variable as inputs and outputs for the 
original and duplicate transitions to ensure any required 
modifications to the variable have been completed before 
we use the variable's value. In this manner, we exclude 
all markings from the reachability graph that include 
firing this transition when the variable does not have the 
required value, thereby improving the accuracy of the 
analysis. 

In the second case, to effect changes to the variable 
values, we need to account for regions from the program 
(places in the Petri net) in which the variable is changed 
(by assignment, for instance); we call these regions 

marked until the operation on the variable is completed, 
this ensures the modification is complete before the 
program exits the modifying region. Since the operation 
prime places have already been added to transitions 1 and 
5 as described above, no further changes are required in 
Figure 7. 

Note that a single region can potentially modify a 
given variable in several different ways. To simplify the 
description we assume a simpler model here, in which a 
single region modifies a given variable in one specific 
way. Note that more complicated modeling can be used 
to handle the more general case. Also note that since the 
region represented by place 6 in the Petri net would 
contain B r a n c h C o n d  : = t r u e ,  in our initial marking 
the AssignTrue place is marked (and the AssignTrue' 
place is unmarked). 

Using a variable subnet as described above yields the 
Petri net shown in Figure 7. The corresponding 
reachability graph is shown in Figure 8, where the 
reachability graph nodes are annotated with the marked 
Petri net places as well as the marked value, operation, 
and operation prime places in the BranchCond Subnet. 
Again we see that the spurious result is no longer 
reported. 

Information about variable values could also be 
incorporated using an FSM, with states of the FSM 
representing variable values and transitions in the FSM 
representing operations on the variable. While the FSM 
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1,3,6, 
Unknown, 
AssignTrue, 
AssignFalse_Prime, 

AssignUnknown Prime, Not_Prime 

1,3,6, 
True, 
AssignTrue_Prime, AssignFalse_Prime, 

AssignUnknown_Prime, Not_Prime 

1,4,7, 
True, 
AssignTrue_Prime, AssignFalse_Prime, 

AssignUnknown_Prime, Not_Prime 

2,5,7, 
True, 
AssignTrue_Prime, AssignFalse_Prime, 

AssignUnknown_Prime, Not_Prime 

Figure 8. Reachability Graph Using Variable Subnet 

would certainly be easier to understand than Figure 6, the 
difficulty comes when incorporating the FSM into the 
model. An FSM can not be "connected" to the Petri net 
as our variable subnets are, so the FSM would need to be 
used during reachability graph generation, potentially 
slowing down the generation process significantly. 
Representing variables with variable subnets provides the 
same accuracy improvements as would be provided with 
FSMs, while retaining a standard Petri net as the program 
model. 

Choosing Between the Two Techniques 

The two techniques described above give the analyst 
flexibility when determining what kind of additional 
information to include to improve analysis accuracy. In 
general, we expect the analyst to choose whichever 
technique appears more natural given the program being 
analyzed and the property of interest. 

The impossible pairs technique seems particularly 
attractive when static information about the impossible 
pairs in the program is readily available and transitions 
correspond to members of a single impossible pair. If the 
control flow decisions in the program are complicated, 
the impossible pairs technique may be more suitable than 
the variable values technique. The impossible pairs 
technique will tend to be expensive for programs for 
which the Petri net contains transitions that affect 
multiple members of impossible pairs, since the number 
of these transitions grows exponentially in the number of 
impossible pairs affected. 

In the variable values technique, efficient algorithms 
for recognizing the regions that affect a variable's value 
are available. An analyst may also be able to easily 
identify those variables that are used in the program to 

control communications. If the control flow decisions on 
those variables are not extremely complicated, 
recognizing the transitions controlled by the variable 
values and making the appropriate connections is 
relatively straightforward. The additional information 
added to the Petri net is based on the variable type, so the 
variable subnet for a variable with relatively few values 
(such as a boolean variable), used in relatively few 
locations, does not increase the Petri net size 
significantly. Limitations of this technique include the 
requirement to be able to statically determine variable 
values to gain accuracy improvement, the difficulties 
determining the proper connections to account for 
complicated conditions, and the rapid growth of the size 
of the variable subnet as the number of possible values of 
the represented variable grows. 

5 Empirical Results 

We have run experiments on a small set of programs to 
gather information about how the application of our 
approach affects the sizes of the Petri nets and 
teachability graphs for these examples. We hypothesize 
that our accuracy-improving approach can improve 
analysis accuracy without significantly impacting 
performance. 

In each of the techniques presented, the size of the 
Petri net is increased by the places and transitions added 
to model the additional semantic information. On one 
hand, we expect the size of the reachability graph to grow 
as the size of the Petri net grows, since the upper bound 
on the size of the reachability graph is exponential in the 
number of Petri net places. On the other hand, we would 
expect the additional modeling in the Petri net to remove 
some infeasible paths from consideration, thereby 
reducing the size of the reachability graph. We perform 
the experiments to acquire preliminary indications of 
which scenario is more common and also to gain 
experience applying the approach. 

Whenever the approach is applied, the resulting 
reachability graph more accurately represents the 
program state space. However, this does not necessarily 
guarantee that the number of spurious results in the 
anomaly report will be reduced. For instance, if the 
states removed from the reachability graph are 
independent of the property being checked, the number of 
spurious results in the anomaly report will stay the same. 
For that reason, we consider our accuracy improvements 
as improvements in the reachability graph as a 
representation of the program state space, rather than as 
reductions in the number of spurious results in the 
anomaly report. While we expect that improving the 
accuracy of the reachability graph will commonly reduce 
the number of spurious results, whether or not this occurs 
in practice depends on the property being checked. 

33 



To perform the experiments below we modified an 
existing tool set. Tools to convert an Ada program to a 
TIG and a set of TIGs to a Petri net were already 
available. We developed a general tool to generate the 
reachability graph from a Petri net, and also built several 
specialized tools to include impossible pair information 
and variable subnets in the Petri net. 

For the experiments described here, we used various 
sizes of the readers/writers problem and the gas station 
problem. The notation rwXY indicates an instance of the 
readers/writers problem with X readers and Y writers. 
The code for readers/writers programs is fairly standard, 
with a Boolean variable WriterPresent used to track the 
presence of a writer. The notation gasXY indicates an 
instance of the standard gas station problem [HL85] with 

Program 

resulting variable subnet and manually connect it to the 
original Petri net by recognizing interactions that are 
controlled by the variable value and also identifying 
regions in which an operation is performed on the 
variable. This activity could be automated by scanning 
for the variable name in branches and select guards and 
by collecting information about operations on the 
variable for each region. 

The effects of using these techniques for the sample 
programs can be found in Table 1. In the table, NA 
means that no additional information is included in the 
Petri net for the program. Imp specifies a Petri net that 
includes information about impossible pairs and Var 
specifies a Petri net that includes one or more variable 
subnets. 

Petri Net Reachability Graph 
Refinement Places Transitions Nodes Arcs 

rw21 NA 17 48 41 119 
Imp 25 183 31 71 
Var 28 105 52 94 

rw22 NA 20 66 175 692 
Imp 28 306 98 276 
Var 31 138 166 348 

rw23 NA 23 84 609 3,031 
Imp 31 429 248 794 
Var 34 171 426 978 

rw32 NA 23 81 579 2,884 
Imp 31 336 308 1,097 
Var 34 168 502 1~295 

rw25 NA 29 120 6,229 43,571 
Imp 37 675 1,320 4,888 
Var 40 237 2T330 5~908 

rw52 NA 29 111 5,811 40,660 
Imp 33 638 2,972 14,955 
Var 40 228 4T678 16r665 

gas31 NA 39 75 493 987 
Imp 45 111 931 1,773 
Var 87 224 559 885 

gas51 NA 59 163 9,746 26,785 
Imp 64 463 22,841 57r655 

Table 1. Effects of Approach on Petri Nets and Reachability Graphs 

X customers and Y pumps. 
For the impossible pair technique, identifying the 

impossible pairs in the program to be analyzed is done 
manually. Once we have identified which regions 
correspond to impossible pairs, we provide this 
information to a tool that scans the transitions in the Petri 
net and automatically modifies the transitions as 
described in the previous section. 

When we use the variable subnet technique, we 
provide the name of the variable to be modeled to the 
Petri net toolset. The toolset then automatically 
generates a variable subnet with the appropriate value 
and operation places. Currently, we only automatically 
build Boolean variable subnets. We then take the 

For the Imp version of the Petri net for readers/writers 
problems, we model the impossible pairs resulting from 
whether or not a writer is present. These pairs were easy 
to recognize given the simple guards in the control task. 
Including this information improves the accuracy of the 
analysis by eliminating consideration of some infeasible 
paths through the program and reduces the size of the 
reachability graph as well. 

For the Imp version of the gas station problems, we 
use impossible pairs to reflect the fact that if a customer 
enters an empty pump queue, then that customer gets 
their change before any other customer. Including 
information about impossible pairs in gas31 and gas51 
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yields reachability graphs with approximately twice as 
many nodes and arcs as the original reachability graph. 

Including impossible pairs information in the Petri net 
can cause an increase in the reachability graph size 
because we encode not just the current program state, but 
also information about the path leading to that state. For 
example, consider the state in which customer 1 and 
customer 2 have both pre-paid the operator. Without 
impossible pairs information, this state is represented by 
a single node in the reachability graph. When we include 
impossible pairs information, the reachability graph 
contains one node for this state in which customer 1 
entered the (empty) queue first, one node in which 
customer 2 entered the (empty) queue first, and one state 
in which neither entered an empty queue. In such cases, 
the improvement in accuracy comes at the cost of a larger 
reachability graph to be analyzed. 

For the Var version of readers/writers, we model the 
WriterPresent variable that is included in the guards of 
the main select statement. Selecting this variable to be 
modeled and recognizing the appropriate connection 
points for the variable subnet were straightforward 
because of the basic operations on the variable and the 
simplicity of the guards containing the variable. We 
observe that, for instances of readers/writers larger than 
rw21, the technique yields two benefits: it improves the 
accuracy of the analysis by eliminating consideration of 
some infeasible paths through the program and it reduces 
the size of the reachability graph. For rw21, this 
technique increases the size of the reachability graph. 
This occurs because of the possible interleavings of firing 
transitions that change the variable value and firing 
transitions that are independent of the variable value. As 
the problem is scaled, the affect of these interleavings 
seems to decrease, and we see reduction in the 
reachability graph size instead of growth. 

For the Var version of gas31, we implement a variable 
subnet for each element of the customer queue, in 
addition to the counter for the number of active 
customers. Because our tools don't currently 
automatically build subnets for enumerated or subrange 
types, we manually built the subnets for this version. 
Modeling the customer queue and number of active 
customers yields a slight increase in the number of 
reachability graph nodes, so simply checking for a 
property at each node would take somewhat longer. In 
addition, we note that manually building the variable 
subnets was tedious. Although building the subnet for 
each queue element is straightforward, the difficulty 
comes in recognizing where the gas31 code moves the 
queue forward and representing that movement with the 
subnets. In any case, the analysis is more accurate, since 
using the variable subnets ensures that change is always 
given to the correct customer. Developing the model of 

the customer queue was sufficiently time-consuming that 
we did not attempt this for the gas51 program. 

For the readers/writers problem, the impossible pairs 
and variable value techniques implicitly model the 
"same" information (the value of the WriterPresent 
variable). It is therefore valid to directly compare the 
sizes of the resulting reachability graphs (since they have 
the same accuracy), and to note that the impossible pairs 
technique is more effective at reducing the size of the 
graph. On the other hand, the Imp Petri nets contain 
many more transitions than the Var Petri nets for this 
problem, so it may take longer to actually generate the 
(smaller) Imp reachability graphs. With both techniques, 
the accuracy of the reachability graph is improved; the 
reduction in size is a beneficial side effect. 

For the gas station problem, our impossible pairs 
results are not comparable to the Var version, since we 
are not capturing the same information in our Petri net. 
The Var version captures a significant amount of state 
information for only a slight increase in reachability 
graph size, but manually adding the required variable 
value modeling was difficult. The Imp version captures 
less information than the Vat version, and yields a large 
increase in reachability graph size, but including the 
modeling was straightforward. 

Table 2 lists several properties of each program 
considered. Entries is the number of unique entries in the 
program and Entry Calls is the total number of calls on 
those entries. Variables provides the number of variables 
modeled in the Var version of the Petri net, with the 
number of possible variable values (including unknown) 
following in parentheses. For instance, for the Vat 
version of the gas31 Petri net, we model 3 variables with 
4 possible values and 1 variable with 5 possible values. 
Impossible Pairs provides the number of impossible pairs 
modeled in the Imp version of the Petri net. For the 
readers/writers programs, the numbers of variables and 
impossible pairs modeled stay constant as the problem is 
scaled. This occurs because the additional modeling is 
applied to the control task, which does not change as the 
problem is scaled. For the gas station problems, the 

Entry Impossible 
Program Entries Calls Variables fairs  

rw21 4 6 1 (3) 7 
rw22 4 8 1 (3) 7 
rw23 4 10 1 (3) 7 
rw32 4 10 1 (3) 7 
rw25 4 14 1 (3) 7 
rw52 4 14 1 (3) 7 
gas31 10 17 3 (4), 1 (5) 6 
gas51 14 27 20 

Table 2. Program Properties 
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number of impossible pairs modeled grows as the 
problem is scaled because the modeling is applied in the 
operator task, which grows as the problem size grows. 

6 Conclusions 

Static analysis can be used to answer questions about 
properties of concurrent programs, although often with 
the inclusion of spurious results. We have identified an 
approach that can be used to improve the accuracy of 
Petri net-based analysis of concurrent programs. In 
several cases that we examined, the approach reduced the 
size of  the reachability graph for the system as well. The 
impossible pairs technique retains additional program 
state information in the form of the impossible pair 
transitions that are currently enabled and disabled, and 
the variable subnet technique retains additional program 
state information in the form of the current values of 
selected variables. 

The cost of using the above techniques can vary 
considerably from program to program. To effectively 
use variable subnets, we must first recognize which 
variables affect the control flow of the program and 
identify the regions in which those variables are 
modified. We must also determine how the represented 
values should be connected to the transitions of the Petri 
net to accurately reflect how the values influence the 
interactions of the program. The difficulty of doing this 
ranges from very easy (for control flow decisions based 
on a Boolean variable's value only, for example) to very 
difficult (for control flow decisions containing 
complicated conditions). Alternatively, we can 
sometimes account for complicated conditions by 
including impossible pairs information instead. The 
complexity of adding the information for the impossible 
pairs is linear in the number of original transitions in the 
Petri net; the difficulty comes in recognizing the regions 
of the program that represent impossible pairs. 
Ultimately, the decision about which technique to use 
will fall on the analyst. For some programs, the 
impossible pairs may be easily recognized by the analyst, 
whereas for other programs, representing key variables 
that control communications in the program may seem 
more straightforward. 

In several of the programs examined, the reachability 
graph size or complexity was reduced as a side effect of 
the improved accuracy. Static analysis models generally 
include infeasible as well as feasible paths through the 
program; the state space which needs to be searched for 
the property is therefore larger than the actual possible 
state space of the program. Because our goal was to 
improve accuracy by eliminating impossible program 
states from the reachability graph, it is reasonable to 
expect a smaller reachability graph to result. On the 
other hand, in some cases our modeling of the additional 

state information leads to larger graphs, because we add 
possible interleavings between activities on our variable 
subnets or Enabled/Disabled impossible pair places and 
the original Petri net. In all cases, the generated 
reachability graph represents more accurately the 
possible states of the program because of the additional 
information modeled. 

We have examined how to incorporate accuracy- 
improving semantic information into Petri nets. It is not 
as easy to modify the semantics of other internal 
representations that are commonly used for analysis, such 
as control flow graphs, abstract syntax trees, and program 
dependency graphs. A complementary and somewhat 
similar approach is explored in [DC94], but instead of 
modifying the internal representation, the approach 
incorporates the additional semantic constraints in the 
analysis algorithms. Similarly, information about 
impossible pairs or variable values could be incorporated 
in the reachability graph generation algorithm rather than 
in the Petri net representation of the program. It is not 
clear how this would affect the size of the resulting 
reachability graph, but the added complexity in the 
algorithm might lead to a significant increase in 
reachability graph generation time. It is too early to 
determine when one approach might be superior to the 
other. 

Because of various limitations, we have only 
demonstrated the viability of our approach on a small 
sample of programs. It is doubtful, however, that these 
programs are representative of the population of "real" 
concurrent programs. To more accurately quantify how 
well these techniques work in general, more experiments 
need to be run on a larger sample of programs. Our 
future plans include performing a series of experiments 
using this approach on a wider range of program sizes 
and complexities. 

For the programs examined here, we have manually 
detected variables and impossible pairs to model, then 
added them to the Petri net using partially automated 
tools. More support could be provided to the analyst 
through automatic recognition of variables that control 
interaction patterns in the program; these variables could 
then be automatically included in the Petri net or 
recommended as useful variables to model. 
Automatically detecting impossible pairs in the program 
may not be feasible except in simple cases, but further 
automating the process of modeling variables and 
impossible pairs is a potential area for future research. 

It would also be interesting to make the tool 
interactive to determine the effects on analysis accuracy 
of representing other user-supplied information. If the 
analysis yields spurious results that are not easily 
eliminated using the above techniques, it may be possible 
to include additional information from the user to refine 
the Petri net to improve accuracy. Other constraints on 
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the control flow, such as sequences of certain statements 
that can never occur or must always occur, can be 
modeled with subnets and attached appropriately. More 
generally, any constraints that can be expressed with a 
subnet could be used to improve the accuracy of analysis 
results, as long as the analyst or an enhanced tool could 
determine how to attach the subnet appropriately. To 
ensure conservativeness, the modifications would need to 
be error-preserving, at least for the property being 
checked. 

The results above support our hypothesis that 
modeling specific kinds of program state information in 
the Petri net can lead to cost-effective improvements in 
the accuracy of the corresponding reachability graph, and 
for some programs reduce the size of the reachable state 
space as well. Further work needs to be done to more 
accurately quantify the benefits of these techniques, and 
the tools should be made more robust to allow additional 
investigation of these and other techniques for improving 
static analysis accuracy. 
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