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Project Proposal
Mission Statement

The project will consist of a study of Quality of Service (QoS) Differentiation. We will explore concepts and current work in the field, concentrating on Proportional Differentiation. We will study the working of real routers in detail. Subsequently, we will simulate the Waiting Time Priority (WTP) scheduling algorithm on the router.

Goals

· Study QoS Differentiation, Absolute and Relative, and existing surveys and taxonomy in the subject

· Zero in on Proportional Delay Differentiation (PDD) and Proportional Loss Rate Differentiation (PLRD)

· Explore the workings of the Click Modular Router

· Implementation:

· MM1 Queue

· WTP Scheduler with 2 Classes

· WTP on Click Router

Goals Accomplished

· Study of QoS Differentiation surveys and taxonomy complete

· Explored PDD and PLRD

· Explored Click Modular Router

· Implemented MM1 Queue Simulation

Remaining Work

· Extend MM1 Queue simulation for WTP scheduling

· Implement on Click Router

Presentations
· Complete Presentation is at:

· http://cs.uccs.edu/~htjaffar/cs522/project/presentation.ppt
· Condensed in-class Presentation is at:

· http://cs.uccs.edu/~htjaffar/cs522/project/condensed.ppt
Quality of Service Basics

What is Quality of Service?

Quality of Service (QoS) is related to a stream of packets from a source to a destination. QoS is determined by the quality of several parameters of the stream. Some of these parameters might include reliability, delay, jitter, bandwidth, response time, queuing delay, and several others. The precise definition of QoS is a work in progress.
QoS is characterized as being low, medium, or high depending on whether the aforementioned parameters are low, medium, or high.

Consider some standard parameters in use. Reliability of a stream refers to the fact that bits can be delivered correctly. It is achieved by using checksum at the source and verifying that checksum at the destination. Applications like email, file transfer, web access, remote login, require high reliability. If bits in email are received incorrectly, important content might be garbled. Garbled bits in any of these applications are unacceptable. Remote logins will fail, files will be corrupted, and other such consequences will ensue. QoS is then measured by reliability as a parameter.
Delay occurs when bits do not reach when they are expected to. In certain applications like videoconferencing, there are very rigid delay requirements. Even a little bit of delay introduces unacceptable picture. In others like web access, these requirements can be relaxed just a bit as the user may simply be able to hit the stop and refresh buttons on a web browser while surfing a page. Still other applications like email, streaming audio, and streaming video have low delay restrictions. Email delayed by a couple of minutes even does not have a major impact in most situations. Similarly, streaming audio and video can be buffered.

Another parameter that affects QoS is jitter. It refers to the variance in packet arrival times. Telephony, streaming audio, and streaming video are sensitive to even a little bit of jitter. Applications like remote login are not as sensitive as say Telephony, but are more sensitive to jitter than email and file transfer.
Bandwidth is the amount of data that can be sent from one node to another over a particular connection in a certain amount of time. Usually applications like email require relatively low bandwidth. File transfer and web access require more bandwidth. Other applications like videoconferencing require very high bandwidth.

Apart from the common parameters briefly talked about above, QoS can be affected by several other parameters depending on the applications at hand. Security is a major parameter for some customers and applications. Most military and financial applications require more security than say a news service. Though, security is in general a high concern in most applications, it is more vital in some than in others. Queuing delay and response time are other parameters that affect QoS at lower levels. Similarly, throughput, latency, latency variation, speed, priority, transmission rate, and error rate are some of the innumerable parameters that can affect QoS.

Given the generality of the concept, it is no surprise that defining QoS is a work in progress and will be for a long time to come.

To narrow down the idea of QoS, consider looking at QoS requirements from the viewpoint of applications.
Web traffic requires good service time, low queuing delay, short response time, high bandwidth and high throughput.

E-Commerce applications might require high security, throughput, and response time. In this case, QoS is concerned with both the period during which there is an established session between the user and the application as well as between user sessions in general. It is referred to as 2-dimensional QoS.

Applications like streaming audio and streaming video require low startup latency, and a high streaming bit rate which in turn depends on other factors like frame rate, frame size, and depth of color. Some of these are cases of 3-dimensional QoS.

Standardized Solutions

There are several possible ways to provide good Quality of Service. Some of these are discussed here.
The easiest way to ensure everyone gets good QoS is to overprovision the lines. Give everyone “fat-dump-pipes” and every one receives great QoS. However, this solution is obviously expensive. This is why it is not practical. Nonetheless, it is the way that is relatively widely adopted.

Buffering can be used to achieve QoS requirements for some applications like streaming audio and streaming video.  The scope of buffering is highly restricted to certain applications but it does work well when used appropriately.
Traffic shaping is done based on Service Level Agreements between the customer and the telecommunications company providing the service. Several algorithms are in use that help achieve traffic shaping. Some of these are the leaky bucket and token bucket algorithms.

Another technique that can be used to achieve QoS is resource reservation. Resources that can be reserved include things like bandwidth, CPU cycles, and buffer space.

Admission Control is used to achieve QoS by only accepting the responsibility if the parameters can be met. Some of these parameters might be token bucket rate, token bucket size, peak data rate, and minimum and maximum packet sizes.

Proportional routing where traffic is split over paths and packet scheduling methods such as fair queuing are other methods used to provide QoS.
The International Engineering Task Force (IETF) proposed a standard QoS solution called Integrated Services in 1995-1997. Integrated Services used the Resource Reservation Protocol (RSVP) using multicast routing with spanning trees. Integrated Services (IntServ) was meant to provide end-to-end QoS service guarantees to individual flows. However, these very goals were the source of its major drawbacks – it was not scaleable because it maintained per-flow state in routers, and it involved considerable implementation complexity with management and accounting information having to be maintained in every router for several flows. “The three major components of the IntServ architecture are the admission control unit, which checks if the network can grant the service request; the packet forwarding mechanisms, which perform the per-packet operations of flow classification, shaping, scheduling, and buffer management in the routers; and the Resource Reservation Protocol (RSVP), which sets up some flow state (e.g. bandwidth reservations, filters, accounting) in the routers a flow goes through. The IntServ approach is based on a solid background of research in quality of service mechanisms and protocols for packet networks. However, the acceptance of IntServ from network providers and router vendors has been quite limited, at least so far, mainly due to scalability and manageability problems [2]”.
To overcome these drawbacks, the IETF proposed another standardized solution known as Differentiated Services (DiffServ) in 1998.  DiffServ is locally implemented and provides differentiated services among network-independent classes of aggregated traffic flows. DiffServ was able to provide absolute or relative per-hop QoS guarantees.

DiffServ was able to overcome the drawbacks of IntServ because it was much more scaleable with routers having to maintain only per-class information and the network management was similar to existing IP networks. However, DiffServ came with its own drawbacks in the form of dramatic operational changes and the consequent lack of demand and support from router vendors.

A third standardized solution was router vendor developed and not as widely studied in academic circles due to lack to availability. It involves “fast rerouting traffic protection and differentiated traffic engineering based on Label Switched Paths (LSPs) in Multi-Protocol Label Switching (MPLS). However, this requires pre-establishment of large number of labeled switched paths, which lead to inflexibility of the network in adapting to changing demands of multimedia requirements.”
Differentiated Services (DiffServ)
This project concentrates on some DiffServ models. 
DiffServ is a relatively simple approach to providing QoS. As mentioned above, it is class-based. It was probably derived from similar class-based service techniques widely existent in several other industries and fields. For example, FedEx has overnight, 2-day, 3-day, and 1-week delivery, with respectively decreasing costs. Similarly, airplanes have 1st class, economy, and other classes, each with differing prices for differing services. With DiffServ, the administration – say the ISP or the telecommunications company – defines a set of service classes with corresponding forwarding rules. A customer will then sign up for DiffServ and traffic within the classes are required to conform to the rules. Application packets are assigned to different classes at the network edges and the DiffServ routers perform stateless prioritized packet forwarding or dropping.
Why use DiffServ? Here is a brief comparison of DiffServ to the other standardized solutions mentioned above.
· Integrated Services 

· Require advance setup to establish each flow

· Do not scale well

· Vulnerable to router crashes because they maintain internal per-flow state in routers

· Changes required to router code substantial and complex
· MPLS

· Work in progress 

· Academia does not have access
· DiffServ 

· No advance setup required

· No resource reservation necessary

· No time-consuming complex end-to-end negotiation for each flow

· Not vulnerable to router crashes

· Scaleable

DiffServ provisioning involves providing different levels of QoS to different traffic classes by allocating and scheduling resources differently in the server, proxy, and network core and edges. 
There are 2 general approaches to DiffServ provisioning. Absolute DiffServ is based on admission control and resource reservation mechanisms to provide statistical assurances for absolute performance measures such as max delay ex. streaming audio. Relative DiffServ is where a traffic class with a higher desired QoS level is assured to receive better or no worse service than a traffic class with a lower desired QoS.

The DiffServ classes can be client-centric, target-centric, or application-centric. Client-centric classification is based on client-specific attributes, ex. IP address, cookies, to establish different client service classes. Target-centric classification can be used to give better service quality to websites whose content providers pay more. Application-centric classification will treat applications within each class differently.
Categorization by DiffServ can be done by location, by strategy, or by implementation layer. By location:
· DiffServ in Server

· DiffServ in Proxy

· DiffServ in Network
By strategy:
· DiffServ by Admission Control

· DiffServ by Resource Allocation and Scheduling

· DiffServ by Content Adaptation
By implementation layer:
· DiffServ at the Application level

· DiffServ at the Kernel level

Taxonomy

Here is a brief description of the DiffServ taxonomy. The taxonomy is given in much more detail in [3].
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The taxonomy here is done by location and then within those classifications, by strategy.  We will briefly walk through most of the DiffServ approaches mentioned in the taxonomy.

Server-side DiffServ
Incoming requests are classified into different classes according to network domain, client profile, request content, etc. Each class is assigned a priority level. Available resources in server allocated according to priority level to support DiffServ. Resources include CPU cycles, disk I/O bandwidth, and network I/O bandwidth.
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· Admission Control 

· On/off model deployed to prevent server from getting overloaded

· Measurement-based Admission Control DiffServ approaches

· Set thresholds on workloads so that if workload exceeds it, incoming packets from lower classes dropped.

· Admission control for response time guarantee – ex. 2 thresholds, lower classes rejected when 1st is crossed, and all classes rejected when 2nd in crossed.

· Admission control for stretch factor (response time/service demand) guarantee.

· Admission control for bandwidth guarantee – ex. Bandwidth estimates maintained for classes. When estimate for a class falls below its target, overaggressive classes’ bandwidth is controlled by delay or loss.

· Queuing-theoretical approaches

· Average waiting time of a class related to max arrival rate, priority ratios between classes, and average queuing delay of all requests.

· Adapted from network-based strategies.

· A client from a class is admitted only if queuing-delay requirements of all admitted clients are satisfied.
· Ex. Max profit and max admission algorithms. Max profit says that more stringent queuing delay requirements cost more and admitting those classes first maximizes profit. Max admission tries to admit as many client classes as possible to the server to enhance popularity of the web service.
· Control-theoretical approaches 

· Application of control theories to design effective admission control strategies to keep server utilization at or below a pre-computed bound.

· A control feedback loop determines server utilization and determines subset of classes that receive service at any instant. Size of the subset is adjusted accordingly.

· Admission control for response time guarantee

· Ex. Allocate entire server capacity to highest class first and then unused remainder to lower classes. Lower classes receive service degradation and rejection if required to satisfy higher class service requirements.

· Admission control for cache hit-rate guarantee

· Cache spatial storage allocated to higher classes and then controlled by degradation or rejection of lower class to satisfy higher class requirements if required.

Resource Allocation and Scheduling
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· Processing Rate Allocation

· Adjust service rate allocation of classes dynamically to meet differentiation constraints. Usually limit resource usage allocated to requests of different classes.

· Upper-bound imposed for number of processes in the process pool for requests of each class.

· Rate allocation for response time DiffServ

· Ex. Scheduler process added into master process of Apache Web Server. Incoming request scanned for URL and assigned priority according to requested content. Scheduler restricts max number of concurrent processes for each class. Higher class given more concurrent processes. Incoming request then scheduled.

· Rate allocation for proportional response time DiffServ

· Ex. dynamically and adaptively change processes allocated per class ensuring a pre-defined ratio of allocation is kept constant.

· Rate allocation for proportional slowdown DiffServ

· Slowdown = (request’s queuing delay) / (request’s service time).

· Priority-based request scheduling

· Incoming requests are categorized into queues which are assigned different priority levels. Processes receive requests from these queues instead of from sockets. Scheduling among classes is priority-based.

· Strict priority scheduling

· Pick requests from higher classes before processing those from lower classes. May lead to starvation for lower classes.

· Time-dependent priority scheduling

· Instantaneous priority of a class changes dynamically according to the waiting time of the requests of the class.

· Node partitioning on server clusters

· Partition server nodes in a cluster into a number of sets, one set per request class. Higher classes have more server nodes in the set.

· Static node partitioning

· Statically partition server nodes of a cluster for different data or function domains and forward incoming requests to different node partitions. 

· Fails to support DiffServ if higher class node set overloaded and lower class is free.

· Difficult to map allocation of server nodes to various classes statically.

· Dynamic node partitioning

· Adaptively partition server nodes of a cluster and allocate them to different service classes.

· Not efficient for continuous and long-lived applications ex. Streaming

· Ex. In session-oriented applications like e-commerce, move server nodes heuristically between different sets.

Operating System Support
· New OS Abstractions for resource management

· Resource allocation and scheduling primitives do not extend to significant parts of the kernel. Generally, the process or the thread is the scheduling and resource allocation entity. Priority-based policies for DiffServ are limited in their implementation.

· Resource  container

· A new operating system abstraction. It encompasses all system resources the server uses to perform an independent activity. All user and kernel level activity are charged to a particular container and scheduled at the priority of the container.

· Cluster reserve

· Extension of resource container to a cluster of servers.
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Proxy-side DiffServ

Cache-Management
· Caching content close to client can reduce the number of requests to origin servers, the traffic associated with them, and client perceived response time.

· Miss penalty is significantly greater than hit time.

· DiffServ cache resource allocation policy provides different hit rates to different classes.

· Relative DiffServ model more realistic than absolute DiffServ where characteristics need to be known a priori.

· Storage space allocation for differentiated caching services usually based on feedback mechanisms.

· Cache space allocation for a class heuristically adjusted based on difference between measured performance and desired performance at fixed time intervals.

· Strategies for control function design (input performance error, output modifications to currently allocated cache space)

· Linear controller – adjusts cache space allocation based on simple linear function

· Gradient-based controller – adjusts cache space allocation based on a gradient of space-hit curve

· Retrospective controller – adjusts cache space allocation by maintaining 
· histories and predicting hit rate 

· Theoretical controller – adjusts cache space allocation based on digital feedback control theory
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Content Adaptation
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· Content Adaptation

· Multimedia access constrained by processing capacity and network I/O bandwidth in the server side.

· Overloaded servers may reject lower class requests due to admission control. PDAs and wireless devices may require lower QoS levels.

· Content adaptation is changing content to offer degraded QoS levels in addition to the regular level to save resource utilization.

· Can be deployed both at the server and at the proxy.

· Dynamic content transcoding 

· Dynamic content adaptation to transform multimedia objects from one form to another trading off object quality for resource consumption.

· Client-oriented content transcoding

· Ex. Application-level datatype specific techniques, PowerBrowser with text summarization

· Server-oriented content adaptation

· Ex. Server-based quality-ware image transcoding technique

Network-side DiffServ
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· Provide differentiated services among classes of aggregated traffic flows.
· Implemented in core routers in combination with stateful resource management mechanisms at the network edges. 
· Application packets assigned to classes at network edges. DiffServ routers perform stateless prioritized packet forwarding or dropping based on per-hop metrics for packet queuing delays or packet losses.

Proportional delay

· Proportional delay differentiation in packet scheduling

· Ratio of the average delay of a higher priority class to that of a lower priority class is kept constant for proportional delay differentiation (PDD)

· Rate-based packet scheduling algorithms adjust service rate allocations of classes dynamically to meet the PDD constraints

· Ex. BPR, dynamic weighted fair queuing. BPR adjusts service rate of a class according to backlogged queue length

· Time-dependent priority packet scheduling algorithms adjust priority of a backlogged class according to experienced delay of its head-of-line packet

· Ex. WTF and adaptive WTP

· Little’s law-based (i.e. average queue length = average arrival rate x average queuing delay) packet scheduling algorithms control delay ratio between classes by equalizing their normalized queue lengths for a given arrival rate. Equalization process is a feedback control process based on average delay of arrived packets in a time window.

· Ex. PAD, HPD, LAD

Proportional Loss
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· Proportional loss differentiation in packet dropping

· Loss rate of a class is proportional to its loss rate differentiation parameter

· Ex. PLR(∞) where normalized loss rates are adjusted so that they are equal for all classes, the loss rate being based on a long history of packet arrivals.

Case Study: Differentiated Services in Web Content Hosting [4]
Introduction

Web content hosting is paid service involving storage of and web access to documents of institutions, companies, and individuals by a provider with large bandwidth, disks, processors, memory, and other such resources. An existing variety of customers means service can be provided proportional to fee. Most web servers do not provide that today. This paper investigates priority-based request scheduling approaches at user and kernel levels to provide differentiated services. A complete solution would require combination of client, network, and server QoS support. The focus of paper is only on end (server) systems. Previous works provide QoS using data prefetching, image compression, fast packet interposing, using secondary IP address.

Methodology

Only 2 levels of QoS addressed – high and low. Priority-based approach is used – requests are attached with priorities and serviced according to priorities. User level approach modifies Apache by adding a Scheduler process. Kernel level approach modifies both Apache and Linux kernel so that request priorities are mapped to process priorities handled by the kernel. Performance metric used is average latency time of servicing a request.
Design and Implementation

Scheduling policy

The scheduling policy involves 2 decisions:
· a decision whether to process request immediately upon receiving it depending on current workload and other requests in queue and (sleep policy) and

· A decision when a postponed request must be allowed to continue (wakeup policy).

The policy types addressed in paper are:
· Non work conserving policy where sleep policy says only slots in queue of same priority can be occupied by incoming request and wakeup policy says we can pick a request of only that priority that have not exceeded threshold. 
· Work conserving policy where sleep policy says a request can occupy a slot in queue of a different priority and subsequent high priority request can be executed either 

· Preemptively – i.e. immediately when it arrives regardless of lower priority requests that are in its queue (implemented only in kernel approach) or

· Non-preemptively where it blocks - called priority inversion (implemented in user level approach).


and the wakeup policy is the same as above.

User level approach

· Master Apache process spawns a Scheduler process along with usual child processes.

· When child Apache process receives request, it obtains scheduling information of the request from Scheduler by blocking and waking up Scheduler.

· To schedule a request, the Scheduler determines customer owner of the file (from URL) and maps customer to into a priority value.

· Scheduler then wakes child process back up to give it a go-ahead to complete processing request and close connection.

· After completion, child process wakes the Scheduler back up and blocks listening for the next request.

· Child process and scheduler process communicate by means of request and event boards implemented in main memory so overhead is low. Race conditions avoided by always waking up before sleeping.

Kernel level approach

· Uses direct mapping from user level request priority to a kernel level process priority.

· Apache modified by having each Apache process call kernel to record priority of its current request.

· Kernel maps this priority into process priority (mod 40 because paper argues 40 is the max number of processes for efficient performance) and executes sleep policy to decide if processes should proceed or block.

· When process finishes, it calls kernel again to release the priority and execute wakeup policy.

· Kernel decides priority of process to be unblocked and then chooses the oldest to guarantee fairness within each priority class.

· Kernel keeps track of the state of each process with a table with one entry per process.
Approach Differences

· In user level approach, once a low priority process is started, it runs with the same priority as high priority requests run. Kernel level approach allows low priority process to be configured lower.

· In user level approach, a postponed process is blocked. In kernel level approach, its CPU time is reduced (to less than the interval between timer interrupts).

· User level implements only non-preemptive scheduling while kernel level approach implements preemptive scheduling – i.e. if many high priority requests are waiting, an already-running process may be preempted.
Measurement

· Server latency (response time) is QoS parameter measured.

· Patch file linked with Apache code used for measurement.

· WebStone benchmark used to generate WWW workload.

· Closed system used.

Results and Conclusions
User level approach

· Maximum number of low priority processes required to be limited to a small number (5) to obtain differentiated performance.

· Results show performance of higher priority requests increased by 21% by trading performance of lower priority requests that decreased by 206%.

· In work conserving policy, results were same as for non work conserving setup for small number of high priority requests. For larger number of high priority requests, performance degenerated to that of original Apache server without QoS.

User level approach

· Maximum number of low priority processes required to be limited to a small number (5) to obtain differentiated performance.

· Results show performance of higher priority requests increased by 21% by trading performance of lower priority requests that decreased by 206%.

· In work conserving policy, results were same as for non work conserving setup for small number of high priority requests. For larger number of high priority requests, performance degenerated to that of original Apache server without QoS.
· Non-work conserving scheme much better than work conserving scheme.

· Throughput of requests remained same – i.e. though high priority requests completed earlier, sum of requests processed remained constant because low priority requests too longer.

· As in user level approach, as the number of high priority processes (not requests) increases in work conserving approach, the performance improvement for high priority requests decreases. Hence limiting total number of concurrent processes reduces contention and betters overall performance in this situation.

· Necessary to severely restrict the number of processes allowed to run in low priority to get QoS differentiated services behavior.

Relative Differential Services and Proportional Differentiation Model

Relative Differential Services

The main goal of DiffServ is scaleable and manageable architecture for service differentiation in IP networks. DiffServ can be absolute service differentiation with same goals as IntServ without per-flow state in routers and Resource Reservation Protocol (RSVP) or relative service differentiation with assurances for relative quality ordering between classes. Proportional differentiation is used to control quality spacing between classes independent of class loads. QoS metrics are in the ratio of class differentiation parameters the network operator chooses. DiffServ is generally easy to deploy and capable of better service.
The central premise in relative differentiated services is that the network traffic is grouped into N service classes, which are ordered based on their packet forwarding quality:
Class i is better (or at least no worse) than class (i – 1) for 1 < i ≤ N, in terms of local (per-hop) performance measures for queuing delays and packet losses.

Note that the elucidation “or no worse” is required since in low-load conditions all classes will experience the same quality level. The Internet Engineering Task Force (IETF) has recently standardized eight such classes, called class selector per-hop behaviors (PHBs), using the Precedence bits of the IPv4 packet header [5].

In Relative DiffServ, network packets grouped into service classes ordered based on their packet forwarding quality, i.e. higher class is better or no-worse than a lower class. Classification of packets to different classes can be done by application, end host, or router. This model requires to be strongly coupled with pricing or policy based scheme to be worth its existence. Unlike absolute differentiated services where packet will not be admitted in guarantee cannot be made, relative differentiated services will allow with only an assurance that a higher class will receive better service than a lower class. Relative DiffServ models need to provide controllability of quality spacing between classes and predictability or consistency.

Some models that are used to provide relative differentiation services are as follows:

· Strict prioritization

· Unadvisable because it can lead to starvation for lower classes and it is not controllable 

· Operating point depends only on load distribution between classes

· Price Differentiation

· Ex. Paris Metro Pricing scheme based on assumption that higher prices will lead to lower loads in higher classes and thus to better service quality

· Unadvisable because pricing mechanisms need to be in effect for a long time for this to be effective and they cannot be changed at regular intervals. Hence inconsistent or unpredictable or both

· Capacity Differentiation

· Allocation of larger amount of resources to higher classes, relative to expected load in each class

· Drawback is that short-term class loads may deviate from long-term class loads over significantly large time intervals. Ex. WFQ does not provide consistent delay differentiation over short timescales
Proportional Differentiation

In Proportional DiffServ, certain class performance metrics should be proportional to differentiation parameters that the network operator chooses. Though actual quality level of service for each class will vary with class loads, the quality ratio between the classes will remain fixed and controllable by network operator, independent of those loads. Delay differentiation parameters (DDPs) and loss rate differentiation parameters (LDPs) are used. Better network service generally means lower queuing delays and lower likelihood of packet loss. Proportional differentiation model is not always feasible using work-conserving forwarding mechanisms.
Consider Proportional DiffServ in comparison with other DiffServ models.

Virtual leased line (premium) service guarantees nominal bandwidth with minimal queuing delays and losses along network path independent of other traffic in that path

· No endpoint adaptation required

· Bandwidth broker agent required

· Route pinning important

· Policing at network ingress required

Assured Service provides bandwidth assurances without strict guarantees. Based on provisioning rather than bandwidth assurances

· Requires endpoint adaptation

· No bandwidth broker required

· Route pinning required

· Marking at network ingress

Proportional differentiation

· Requires endpoint adaptation

· No bandwidth broker required

· No route pinning required

· Class usage accounting at network ingress
The forwarding mechanisms for Proportional DiffServ consist of a model of N logical queues, one for each class. The queues share link bandwidth and physical buffer space using a packet scheduler and a buffer manager respectively. Two techniques considered are scheduling and packet dropping. 

· Proportional delay scheduler

· Dynamically distributes link bandwidth to N classes attempting to maintain proportional delay constraints. 

· WFQ etc. do not adjust link shares so not suitable

· Waiting Time Priority (WTP) scheduler can approximate proportional delay differentiation, especially in high load conditions where differentiation is most valuable

· However, WTP deviates significantly from proportional differentiation model in low or moderate load conditions

· Proportional loss rate dropper

· Maintains a loss history buffer (LHB) which is a cyclical queue. Information stored is what class a packet belonged to and whether it was dropped and possibly, size of packet

· Loss rate calculated for each class from these fields (in terms of packets or bytes)

· When a packet needs to be dropped, dropper selects class with minimum normalized drop rate so that when normalized loss rates are approximately equal, the proportionality constraints are approximately met

Summarily, DiffServ architecture can extend Internet forwarding paradigm with scaleable and easily deployed mechanisms. Absolute differentiation is useful for inelastic applications with specific service requirements. Proportional differentiation model allows control of quality and spacing between classes independent of class loads and in short timescales. When implemented, proportional delay scheduler and proportional loss rate dropper can help closely approximate proportional differentiation.
Proportional Delay Differentiation (PDD)
In PDD, the key relation in mapping from delay ratios to class delays is the conservation law which constrains average class delays in any work-conserving scheduler. Conservation law implies that though a scheduler can affect relative magnitude of class delays making the delay of one class lower than the delay of another class, this is a zero-sum because average backlog remains constant.  This can be expressed as ∑ λ L d = q which means, q, the average backlog, is always the sum of total delay which in turn is arrival rate times packet size times delay. Hence, d can be changed relatively, but only with the constraint that the above weighted sum remains q. Because of this, the average delay of each class is determined in an absolute sense though it appears relative i.e. there are feasibility constraints to PDD.
Consider some delay dynamics related to PDD.

· Average delay of class i can be represented as 

· di = (δi q) / ∑(λ δ L)

· If each of N classes have same packet size distribution, this reduces to  

· di = (δi q) / ∑(λ δ)

· From the above, inferences are:

· Increasing input rate of a class increases average delay of all classes

· Increasing rate of a higher class causes a larger increase in the average class delays than does increasing the rate of a lower class

· Decreasing DDP of a class increases average delay of all other classes and decreases the average delay of that class

To evolve a feasibility model given the above delay dynamics, we can make the following observations. Given input rates {λ}, average class packet sizes {L}, and average backlog q of the aggregate traffic stream, a set of DDPs {δ} is feasible when there exists a work-conserving scheduler that can set the average delays of each class to di = (δi q) / ∑(λ δ L). Coffman-Mitrani inequalities derived from these govern feasibility parameters for PDD. In a simple 2 class scenario for ex., a given delay ratio δ is possible only if the corresponding average delay ratio in a strict priority scheduler is not larger than δ. This scenario can be generalized to constrain {δ} for several classes. In order to examine the feasibility of PDD model, average delays that would result from a strict priority scheduler need to be known, either analytically or mathematically calculated, or if the traffic does not conform to mathematical model, then by experiment measurement. Most existing routers already provide a strict priority scheduler so this is a viable expectation.
Proportional Delay Differentiation Scheduling

PAD Scheduler

The PDD model can be interpreted as saying that normalized average delay di = di/δi for {d}, {δ}, must be equal in all classes i in {1…N}. PAD scheduling is proportional average delay scheduling to equalize these normalized average delays. For a given class, normalized average delay at time t, d(t) is S/Pδ where S is sum of queuing delays of all packets in that class departed before t and P is the number of packets in that class departed before t. PAD chooses the backlogged class with maximum normalized average delay d(t). If a packet from class with maximum normalized average delay is serviced, the increase in value of S due to that packet is minimized. The algorithm has minor overhead with N-1 comparisons. Simulation results show PAD achieves PDD model constraints except in short timescales. Because it is unaware of the waiting times of backlogged packets, it sometimes allows higher classes to experience much larger delays than their long-term average delays or than the delays of lower classes – i.e. it fails because it attempts to equalize only long-term normalized delays.
WTP Scheduler

The WTP (waiting time priority) algorithm is due to Kleinrock, 1964. A packet is assigned a priority that increases proportionally with its waiting time. Higher class packets have larger priority increase factors. Packet with highest priority is serviced first. Normalized head waiting time is w/δ, where w is waiting time of head packet in a class at time t. WTP selects class with maximum normalized head waiting time. This also has minor overhead with N-1 comparisons. Packets must be time stamped upon arrival. WTP is an excellent scheduler for providing higher classes with lower delays in short timescales as proved by simulation results. WTP tends to PDD model as utilization approaches 100% and aggregate backlog increases. When utilization is less than 85%, WTP shows a large deviation from the PDD either because DDP is infeasible or because it is not a good scheduler for these conditions.
Hybrid Proportional Differentiation (HPD)
HPD is hybrid proportional differentiation which is a simple combination of PAD and WTP scheduling. It attempts to maximize normalized hybrid delay which is h = dg + w(1-g) where d is normalized average delay of class at time t, w is normalized head waiting time of class at time t, and g is HPD parameter such that 0 <= g <= 1. When g is 0, HPD = WTP. When g = 1, HPD = PDD. We need to pick g to get HPD to closely approximate PDD in short timescales and under moderate loads. Empirically, g = 0.875 seems best from simulation results. HPD does not approximate PDD as closely as does WTP in low or moderate loads, which was the WTP algorithm’s main shortcoming.
Proportional Loss Rate Dropping

In Proportional Loss Rate (PLR) dropping, normalized loss rates i.e. ratio L(i)/σ(i) should be equal for all classes i in N. The idea is to keep a running estimate of L(i), loss rate of each class. When a packet needs to be dropped, select the backlogged class with the minimum ratio L(i)/σ(i). Dropping a packet from that class reduces the difference L(i)/σ(i) of that class from the normalized loss rate of other classes. Under certain conditions, loss-rate differentiation parameters σ (LDPs) cannot be met depending on specified LDPs, corresponding delay differentiation parameters (DDPs), class load distribution, and aggregate backlog.
PLR(∞)

In this algorithm, the loss rate estimate L(i) is a long-term fraction of packets from class I that have been dropped. It is measured using simple counters for arrivals and drops in each class. It is measured since entire history of previous arrivals and drops so it is given the name “infinite”. To deal with counter overflows (after say 4 billion packets in a 32 bit counter), either cold reset all counters or under certain traffic conditions, reset counters over short time intervals.
· Algorithm: 

· If packet arrives, arrival counter A(i) is incremented for class

· To drop a packet, select minimum value of D(i)/A(i)σ(i), where i is a backlogged class

It requires N multiplications and N divisions but newer implementations are available which make the overhead lower.
PLR(M)

In this algorithm, the loss rate of class i is estimated as a fraction of the dropped packets in the last M arrivals. Cyclic queue with M entries called Loss History Table (LHT) records class index and drop status of each of last M packets. It requires a packet tag, used internally in the router, recording the LHT entry of the packet. Additional complexity is introduced but this is not uncommon in regular switch or router designs. It is necessary so that the corresponding LHT entry is updated if the packet is dropped. How large is M required to be? Constraints are large enough so that a dropped packet is always one of the last M arrived packets and large enough so that specified LDPs are possible given the aggregate loss rate and current load distribution. Theoretical minimum of M is found to be too small. In practice, much larger M than the theoretical minimum value is required.
Evaluation of PLR Droppers
Dovrolis et al evaluation PLR Droppers. In their evaluation, buffer is selected so that loss rate is 0.1% to 1.5, common operating levels in Internet. WTP scheduler is used along with drop-tail backlog controller. Traffic generated from Pareto sources for each class using same length packets. Same results are found for different variations of these assumptions. Loads distribution used was both stationary and non-stationary load distribution. 

With Stationary Distribution (arrival rate constant), both droppers approximate specified LDP of σ(i)=1, σ(j)=2 closely in most time intervals.
With Non-stationary, PLR(∞) negatively affected by load distribution change.

Performance was not always equal to LDPs short-term. Occasional noise spikes of significant magnitude because of several reasons: over short term, arrival rates can differ significantly due to burstiness, dropper might drop packets on longer history than last T packets, we cannot drop packets from an idle class, if loss rates in certain time interval are too small, might not be possible to drop enough packets from each class so that loss rates are proportionally adjusted. 
For PLR(M) dropper, increasing M causes smaller deviations since burstiness and drop times smooth out more. M increases as ratio of LDPs increases, aggregate loss rate decreases, or load ratio between classes increases.
It was also found that certain LDPs are not feasible. Infeasible LDPs happen in these circumstances:
· When class with minimum normalized rate is not backlogged at time of packet drops

· High LDPs in combination with weaker loads

· DDP is too low so not enough backlog accumulated for specified LDP

· DDP is too high so high class will not have enough backlog.
Proportional Delay Differentiation in Combination with Hybrid Proportional Differentiation: WTP with Bounded Buffers
WTP approximates proportional delay differentiation as utilization tends to 100% - based on lossless model with unlimited buffers. However, it works even with finite buffers and in lossy conditions within limited experimental backlogs. 
Simpler Implementation of Proportional Differentiation: Bounded Random Dropper

Scheduling and buffer management are 2 main mechanisms for providing differentiated services. In the algorithms above, using multiple queues introduces complexity along several dimensions: we need to enforce memory allocation across several queues and we need a scheduler to pick who goes next. Huang et al in [6] propose a single queue system, Bounded Random Drop (BRD). They concentrate on buffer management schemes that only drop packets on arrivals, limiting dropping decisions to whenever the buffer is full is not possible because class of incoming packet is unknown. Hence dropping decisions need to be made based on class of arriving packet, buffer state, traffic characteristics, and current performance. Bounded Random Drop (BRD) drops packet randomly with a probability that depends on its traffic class, loss requirements, and input traffic intensity of each class.

The goal in BRD is to avoid penalizing lower classes so that their loss rates are increased only when required to enforce loss bounds of higher classes. A class will exceed its bound only after dropping all packets from lower classes. The algorithm based on the solution of a 6-requirement optimization problem

The algorithm is:

· Input traffic rates estimated using an exponentially weighted moving average with parameter α
· For each class, traffic rate estimated counting packets of class (count = A say) during a Δt sampling period and updated by r = (1-α)r + αA/Δt

· Larger α and smaller period mean faster detection to traffic variation but less stable estimates

· α = 0.125 and Δt = 1ms found to work well empirically
· Arrival of a packet belonging to class means the A for that class is incremented by size of packet. Packet is then randomly dropped with a probability calculated from the solution to the optimization problem or it enters the buffer

· Still possible to experience buffer overflows but does not happen too often practically
Cost-wise, BRD involves operations of: for each arrival, one addition, one random number generated after Δt, one addition, 3 multiplications, and probability computation.
The simulation results claimed by Huang et al are described here. Performance investigations were done using wide range of traffic. BRD worked successfully with 2 classes TCP (short and long lived) and UDP video. Short-lived TCP as in web connections require low delay and even more sensitive to losses because they can cause time out and long response time (1% loss bound range). Long-lived TCP as in FTP (1% loss bound). UDP video is sensitive to losses because of degraded quality of video (10% loss bound range). BRD also worked with 3 classes: Short-lived TCP as in web connections (1% bound), UDP video 10% loss bound range, and Long-lived TCP as in FTP no loss bound.
Compared with priority queue for 3 classes, BRD provided less “over-penalization”. BRD obtained response times and throughput comparable with priority queue model. Hence BRD can offer strong protection to sensitive traffic while avoiding overly penalizing other traffic classes. It also offers simple implementation and delivers consistent loss guarantees across a broad range of traffic mixes.
Another Case Study: Integrated Approach with Feedback Controller

This is a study of “Xiaobo Zhou, Yu Cai, C. Edward Chow: An Integrated Approach with Feedback Control for Robust Proportional Responsiveness Differentiation on Web Servers” [7].
Processing Rate Allocation

Applications and clients selected the appropriate QoS levels in terms of differentiation parameters that best meet requirements, cost, and constraints. The server was divided into N virtual servers, one per class, and each configured with a process pool. 

Extrapolating from queuing theory, response time of requests of a class i during a sampling period k is 

Ti(k) = 1 / (μi(k) - λi(k))

But Σμi(k) = 1
(i from 1 to N, number of classes)

Also, for proportional differentiation, Ti(k)/Tj(k) = δi/δj

Derive: Ti(k) ≡ δi/λ 

Hence, increasing workload (arrival rate) of a higher class causes larger increase in response time than increasing workload of a lower class which provided predictability of DiffServ. Increasing δ leads to higher response time and vice versa so it provided controllability.
Queuing Theoretical Approaches

These involved having a fixed process allocation strategy. On Apache, process is both scheduling entity and the principal for allocation of resources. It was assumed that processing rate of a virtual server is proportional to size of its process pool. The fixed allocation strategy is to divide processes into multiple process pools listening to different ports. The problem is not all processes are active due to changing workloads
Adaptive process allocation strategy involved dynamically and adaptively changing the number of processes allocated to process pools for handling different classes while ensuring the ratios of process allocation.

Source was Poisson distributed Http requests generated by 4 PCs. Router PC did traffic classification. Apache listened to different ports to which requests of different classes were routed. Process allocation module in web server calculated processing rate of each class according to predicted load condition (average of last 5 sampling periods, each of which were found with moving window with exponential averaging for load prediction).
The results of the simulation were as follows. Higher class received better response time than lower class at various load conditions. When load is below 60%, achieved ratio was far less than expected ratio because not all allocated processes always active. Over 70% load, achieved ratio much greater than expected ratio meant that lower class is overly penalized because variance of inter-arrival and service times significantly affect performance of process allocation and scheduling. At close to 90% load, expected ratio is not achieved because of high impact of inter-arrival time on queuing delay and this queuing delay in all traffic queues increases significantly. Hence there was a huge variance of achieved response time. Reasons summarily are because workload of traffic is stochastic and bursty, impact of variance of inter-arrival and service times is big, and process abstraction does not extend to significant parts of the kernel code so resource principals do not always coincide with processes.
Adding in Feedback Control

A feedback controller was integrated to the adaptive process allocation approach to control process allocated to a pool according to the difference between the target average response time and the experienced average response time. This was based on standard EE principle of feedback control.
pi(k+1) = pi(0) + KP ei(k) +KI Σei(j) + KD Δei(k)

The equation can be interpreted as follows. Operation of controller dependent on initial processes as well as proportional, integral, and derivative components. Setting large KP for proportional feedback gain leads to faster response time at the cost of system stability. Integral controller KI helps eliminate steady-state error and avoid over-reactions to measurement noise. Derivative control KI helps respond quickly to errors and leads to higher system stability.
The feedback appeared to provide more effectiveness in the simulation. The simulation used integrated settings KD = KI = KP = α for class one and = β for class two. It outperformed queuing theoretical based approach. At high system loads, integrated approach is able to maintain proportionality unlike queuing theoretical approach. Integrated approach achieves more consistent results at various workloads. It converges to target ratio with less settling time, less oscillation time, and better differentiation stability.
MM1 Queue Simulation

The implementation goals are to study queuing systems, initially implement a simple MM1 queue, then use the MM1 queue to implement a WTP scheduler on a real router.
Queuing Systems

A queuing system is a line formed when customers arrive at a system offering certain facilities and demand service. It is characterized by:
· The input – nature of customers and arrivals

· Customers from a finite or infinite source

· Customers arrive individually or in groups

· Customer can join the wait (waiting or delay system) or a decide to not wait (balking system)

· fully-occupied system can reject the customer (loss system)

· Waiting space may be of finite or infinite capacities

· Queue discipline – rules of queue formation and customer behavior

· FCFS first come first served (FIFO)

· LCFS last come first served (LIFO)

· Parallel queues at each server

· Class-based queues

· Customer may leave system after a wait (reneging)

· Customer may switch from one line to another (jockeying)

· Service mechanism – arrangements for serving the customers

· S (> 1, < ∞) servers might be in parallel

· S = ∞ servers might be in parallel so no waiting time

· S (> 1, < ∞) servers might serve customers in batches (bulk service)

· S (> 1, < ∞) servers might be in series

· Cost structure

· Customers make payment for service (reward)

· System incurs a holding cost for number of customers waiting and delay suffered by them

Based on description above, some interesting measures might be wait time, service time, time in system, server utilization, number in queue, number in system, etc. Analytic models based on queuing theory can often be used to predict the effects of some change in load or design. Single queue systems are often used to represent shared resource networks.
Examples of Queuing Systems Models: 

Time-shared computer has customers as Programs (processes) and severs are CPU, disk, I/O devices, bus.

Packet-based statistical multiplexer has customers as packets (or cells) and server is the link.
Circuit-switched or channel-based concentrator has customers as calls and servers as channels.
Multiple access network, such as an Ethernet LAN or wireless LAN has customer as packets (frames) and server is the medium, e.g., fiber, twisted pair, RF medium.
Web (or other) services has customers as client requests and server is the Web (or other) server.
Basic Models

Customers arrive at rate λ. Queuing system has s identical servers. The ith customer seeks service requiring ri time from one server. Customer joins a queue if all servers are busy. Waiting time ti is the time for the ith customer to receive service. 
There are several delay components. Processing delay is the time from when a packet is correctly received to when it is assigned an outgoing link but we ignore it because we usually assume adequate computational resources. Queuing delay is the time from when a packet is assigned to an outgoing queue till transmission begins (wait time) and it depends on traffic and its size. Transmission delay is the time between transmission of first and last bits which depends on traffic and its size. Propagation delay is the time from when last bit is transmitted by sender to when the first bit is received by the receiver which is dependent on medium. Traditional focus is on queuing and transmission delays

In the Poisson Process, Arrivals occur with rate λ. 

The probability [exactly one customer arriving within the interval [ t, t + ∆t ] ] = λ ∆t. Probability [no arrivals within the interval[ t, t + ∆t ] ] = 1 - λ ∆t

As we let ∆t approach 0, we have a Poisson process

Let Pn(t) = P[number of arrivals by time t = n]. The Poisson distribution can be shown to be

Pn(t) = (λt)ne-λt / n!
Poisson process is generally a good model if there are a large number of users (packet sources) such that the users are similar and the users are independent.
The Distribution Function

If customers arrive at times t0, t1, t2, t3…, the inter-arrival times are defined by un = tn – tn. These follow certain distributions which can be:

· D (deterministic) if customers arrive at epochs 0, a, 2a…

· The distribution function in this case is given by:

· A(u)
= 0 
if u < a

·        
= 1
if u >= a

· M (Markovian) if the interarrival times have the exponential density λe-λu where 0 < {u, λ} < ∞

· The mean of this distribution, integrating over infinity is 1/λ which means it is memoryless and the arrival rate can be considered λ since the number of arrivals over (0, t] has the Poisson distribution with mean λt.

· G (general) where there is no mathematical model and only simulation can lead to empirical guesses

A queuing system is then described with the notation a/b/c/K

· a is the arrival process (D, M, or G)

· b is the service time distribution (D, M, or G)

· c is the number of servers (1 < c < ∞)

· K is the maximum number of customers allowed in the system (0 < K < ∞). K is usually not expressed if K = ∞

Little’s law states that expected number in a queue is the product of arrival rate and expected time in the system E(n) = λ E(t). Hence utilization is ρ = λ E(s), where E(s) is the expected number being served.
MM1 Specific

The MM1 is a single queue with a single server (single transmission line). Customers (packets) arrive according to a Poisson process with rate λ per second. The service time distribution is exponential with mean 1/µ seconds. An infinite buffer is assumed.

The following are some results which can be mathematically derived for the MM1 queue. That derivation is omitted here and the final results are shown. Please see [8] for details on the derivations.

· ρ = λ/µ (utilization = arrival rate/service rate – general result)

· Expected number in the system

· E(n) = ρ/(1 - ρ) 

· Expected number in queue 

· E(nq) = ρ2/(1 - ρ) 

· Expected time in the system

· E(τ) = 1/(µ - λ)

· Expected time in the queue

· E(t) = ρ/(µ - λ)

Simulation Details

A source generates packets with Poisson distribution. Packets are sent to the MM1 queue. The server takes packets out of the queue and processes packets with Poisson distribution.


[image: image1]
· 1. Source generates packets with Poisson distribution

· 2. Packets sent to queue

· 3. Packets queued up

· 4. Server takes packets out of the queue

· 5. Server processes packets with Poisson distribution service time.
There are several scenarios of interest that need to be considered. 
Scenario 0 : Packet 1 starts service the moment it arrives. It departs at departure time = arrival time + service duration time.

Scenario 1 : Packet 2 arrived before Packet 1 has completed service and hence before Packet 1 departs. Packet 2 is placed in queue (size 1) and starts service when Packet 1 departs. It departs after its start service time + service duration time.

Scenario 2 : Packet 3 arrived before either Packet 1 or Packet 2 has completed service. It is placed in queue which has grown to size 2. It is serviced after Packet 2 has completed service.

Scenario 3 : Packet 4 arrived before Packet 2 or Packet 3 completed service but after Packet 1 completed service. The size of the queue is still 2 because the departure of Packet 1 decremented it.

Scenario 4 : Packet 5 starts service as soon as it arrived.
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The M/M/1 queue simulation was developed in Visual C++. Each packet was represented as a structure that contained information about its own sequence number, arrival time, service duration, start service time, and departure time. The source was represented as an array of packets. Initially, the source packets are allocated arrival times with their respective inter-arrival times being in Poisson distribution. Initially, the source packets are also allocated service times again in Poisson distribution.

To implement the above scenarios:
Scenario 0

The system is initialized by simulating the start service time of the first packet to be its arrival time. Its departure time is calculated to be the sum of its service duration and start service time.
We keep track of the arrival packet sequence number as well as the departure packet sequence number.

When a packet arrives:
· It is added to the queue

· Scenarios 1 and 2

· If the packet has arrived before the departure time of the packet being serviced, the arriving packet is added to queue

· Scenarios 3 and 4

· If the packet has arrived after the departure time of the packet being serviced

· Scenario 3

· If there is a queue

· Decrease the queue length to simulate the departure of the packet that just got done being served

· Start the service of the next packet in queue by setting its start service time to the departure time of the packet that just left (provided it arrives after this time)

· Scenario 4

· If there was no queue, then simply start servicing the packet immediately by setting its start service time to its arrival time

· Set the departure time of the new packet to the sum of its start service time and its service duration.

When all the packets have arrived, we have to finish up processing of the packets in queue by

· Servicing them after the departure of the current packet being serviced

· And then setting the departure time of the new packet being serviced to the sum of its arrival time and service duration time

When the simulation has run to completion

· Actual mean time in the queue (queuing delay) is calculated by summing the difference in the start service time and arrival time of each packet and this is compared to the expected mean queuing delay (ρ/(μ-λ))

· Actual mean time in the system is calculated by summing the difference between the departure and arrival times for each packet and this is compared to the expected mean time in system (1/(μ-λ))

Simulation Results

The simulation results closely matched the expected results for low utilization. For large utilization, the simulation results varied drastically from expected results due to the limiting factor of the number of packets being considered.

Some graphs of the performance are shown below.
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Click Modular Router

The Click Modular Router was developed at the Parallel and Distributed Operating Systems Laboratory at the Massachusetts Institute of Technology in 1999.

The Click router assembled is from packet processing modules called elements. Router configuration is a directed graph with elements at the vertices and packets flowing along the edges. Router configurations are modular and easy to extend. The developers make a claim maximum loss-free forwarding rate of up to 446,000 64-byte packets per second.

Design Goals

· Rich, flexible abstraction

· Only elements are used

· Simplicity

· Programmability

· Configuration language

· Avoid restrictions

· Optimization

Architecture

Elements pass packets over connection links. Router configurations run in the context of a driver: user level or kernel level. Every configuration is specified through either choice of elements or through their arrangement. 

Each element is a subclass of class Element. Each element can have any number of input and output ports: push, pull, or agnostic. Each element can have an optional configuration string that it can be passed at router initialization. Each element exports method interfaces other elements can access. There are base methods that must be implemented (ex. Transfer packets) as well as optional other methods. Each elements has handlers – methods exported to the user. 

Elements are broadly classified into the following categories:

· Packet sources

· generate packets, ex. FromDevice, RandomSource

· Packet sinks

· remove packets, ex. ToDevice, Discard

· Packet modifiers 

· modify packet data, ex. DecTTL

· Packet checkers

· check data, ex. CheckIPHeader

· Routing elements

· choose where packets go, ex. RoundRobinSwitch (packet-independent), Meter (based on flow), Classifier or LookupIPRoute (based on packet content)

· Storage elements

· ex. Queue

· Scheduling elements

· ex. PrioSched

· Information elements
At the kernel-level, packets in Click are the equivalent of sk_buffs. At the user-level, there is a header pointing to data but the packet reimplements kernel-level packet interface. Headers contain annotations that belong to Linux or click Ex. CheckIPHeader element marks where packets start and end so later elements don’t have to. Data stored is in a single memory buffer.

A connection passes from output (source) port of one element to the input (destination) port of another. It is represented as pointer to element object. There can be a Push connection where packets start at the source element and are passed downstream to the destination or pull connection where destination packets initiate a packet transfer. Connections never block. Every port is push, pull, or agnostic. 
Storage is in Queue element. Elements are units of CPU scheduling. Flow-based router context is used where for packet transfer, connections are used. Element calls other method interfaces of another element using this mechanism. 

The Linux kernel driver contains roughly 14,000 lines of core and library source code and 19,000 lines of element source code (not counting comments); this compiles to about 341,000 bytes of i386 instructions, most of which are used only at router initialization time (100 elements). 
Configuration Language

The Click router configuration language was designed with the goals of readability and convenience for tools. It is declarative.
Examples:

· FromDevice(eth0) -> Counter -> Discard;

· elementclass MaybeChecksum { $checksum_p |


input -> sw :: StaticSwitch($checksum_p);


sw[0] -> CheckIPHeader2 -> output;


sw[1] -> CheckIPHeader -> output;


};


c1 :: MaybeChecksum(0); // uses CheckIPHeader2


c2 :: MaybeChecksum(1); // uses CheckIPHeader

Configurations

Here are some sample element classifications in Click.
Simple Priority Scheduling Scheduling Configuration
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Simple Random Early Dropping Configuration
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Simple Differentiated Services Block Configuration


[image: image2]
A Sample Full IP Router Configuration in Click


[image: image3]
Future Work

The immediate future work involves developing a WTP element for the Click Modular Router since that goal of the project was not accomplished due to time limitations.
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‘We have already described elements for classification (Classifier), dropping
(Discard), queueing (Queue), and scheduling (RoundRobinSched). SetPDSCP
is a simple retagger; it changes incoming IP packets’ Differentiated Services
Code Point field (DSCP) [33] to a fixed value and incrementally updates their
IP checksums. The RatedSplitter and Meter elements classify packets based on
their arrival rate. RatedSplitter(r) forwards at most r packets per second to its
first output; any excess packets are redirected to the second output. Meter(r),
in contrast, sends the entire incoming stream to the second output once it
exceeds r packets per second. Variants of these elements measure bandwidth
(bytes per second) rather than packet rate. Finally, Shaper is a simple traffic
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Figure from “Quality-of-Service Differentiation and Adaptation on the Internet: A Taxonomy” by Dr. Xiaobo Zhou, Jianbin Wei, and Cheng-Zhong Xu 
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