Performance of a Software MPEG Decoder

ACM Multimedia 93

Ketan Patel, Brian C. Smith, and Lawrence A. Rowe
Computer Science Division - EECS
University of California at Berkeley
(larry@cs.berkeley.edu)

Outline

MPEG video compression
Software decoder
Performance
Future plans

MPEG Video Stream

Different types of frames
I - intracoded frame
P - forward predicated frame
B - bi-directional/interpolated frame
Frames delivered in decode order

Frame Compression

I frames:

P/B frames:
Decoder

Algorithm - parse bitstream and undo compression

Written in C (15K lines of code)

Ported everywhere
- Unix/X Windows
- PC/Windows 3.x
- Macintosh

Code freely distributed
FTP from toe.cs.Berkeley.edu: pub/multimedia

Relative Performance

Original code spent 60-80% time dithering

Using ordered dither into a fixed color map ...

<table>
<thead>
<tr>
<th>Operation</th>
<th>%Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parsing</td>
<td>17%</td>
</tr>
<tr>
<td>Inverse DCT</td>
<td>14%</td>
</tr>
<tr>
<td>Reconstruction</td>
<td>32%</td>
</tr>
<tr>
<td>Dithering</td>
<td>24%</td>
</tr>
<tr>
<td>Misc arithmetic</td>
<td>10%</td>
</tr>
<tr>
<td>Other</td>
<td>3%</td>
</tr>
</tbody>
</table>

IDCT is not the bottleneck
Reconstruction and dithering are bottleneck, problem is memory bandwidth

Real Time?

Canyon: 144x112, 49:1 compression (1:1:4, 0.49 bpp, 0.24Mbs)
Flower: 320x240, 50:1 compression (1:4:10, 0.49 bpp, 1.00Mbs)
Berkeley MPEG decoder v2.0 running on Unix

<table>
<thead>
<tr>
<th>Machine</th>
<th>Canyon</th>
<th>Flower</th>
<th>Clock</th>
<th>Cache (I/D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEC AXP 3k/500</td>
<td>43.1</td>
<td>8.9</td>
<td>150 MHz</td>
<td>?</td>
</tr>
<tr>
<td>HP 9k/750</td>
<td>74.7</td>
<td>15.4</td>
<td>66 MHz</td>
<td>256/256</td>
</tr>
<tr>
<td>Intel 486DX2</td>
<td>13.4</td>
<td>3.3</td>
<td>66 MHz</td>
<td>8/0</td>
</tr>
<tr>
<td>SGI Indigo</td>
<td>54.6</td>
<td>11.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sun Sparc 10/30</td>
<td>38.1</td>
<td>8.2</td>
<td>36 MHz</td>
<td>16/20</td>
</tr>
<tr>
<td>Intel 486DX2</td>
<td>22.0</td>
<td>5.5</td>
<td>running v1.2 on Windows</td>
<td></td>
</tr>
<tr>
<td>DEC AXP 3k/500</td>
<td>68.3</td>
<td>16.3</td>
<td>running DEC decoder</td>
<td></td>
</tr>
</tbody>
</table>

Small sized images can play real time
Medium sized images are within a factor of 2
CIF format (352x288) in real time on Phillips 50 MHz
PRPA VLIW processor

The Global Village

Internet distribution has been very successful
First release in November 1991
Many contributions by others: bug fixes, feature extensions, and performance improvements
Over 1500 copies distributed per month (7/93)
Over 8000 mpeg movies distributed per month (7/93)

Special acknowledgements...
- Toshihiko Kawai of Sony
- Tom Lane of the Independent JPEG Group
- Reid Judd of Sun Microsystems
- Todd Brunhoff of NVR
- Earl Killian of IDT, Inc.
- Chad Fogg of U. of Washington
- Paulo Villegas of Telefonica I+D
- Arian Koster of PTT
Future Plans

Integrate MPEG video stream into CMPlayer
 Full-function VCR commands with frame drops
 caused by decoder CPU and network limitations
Distribute portable, parallel MPEG video encoder
Experiment with other compression algorithms
 MPEG-2, wavelets, 3D subband coding, ...
Complete Berkeley Video-on-Demand server, meta
database, and archive server

Conclusions

MPEG-1 decoding is not that difficult
 ... within a factor of 2 for CIF images
 ... low cost chips/boards will be released real soon
Implementation experience
 Biggest problem is memory bandwidth, not CPU
 IDCT is only 15% of time
 Dithering and reconstruction over 50% of time
Playing movies on your screen is great fun, try it!