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Algorithms for Precomputing Constrained
Widest Paths and Multicast Trees

Stavroula Siachalou and Leonidas Georgiadis, Senior Member, IEEE

Abstract—We consider the problem of precomputing con-
strained widest paths and multicast trees in a communication
network. Precomputing and storing of the relevant information
minimizes the computational overhead required to determine an
optimal path when a new connection request arrives. We evaluate
algorithms that precompute paths with maximal bandwidth
(widest paths), which in addition satisfy given end-to-end delay
constraints. We analyze and compare both the worst case and
average case performance of the algorithms. We also show how
the precomputed paths can be used to provide computation-
ally efficient solutions to the constrained widest multicast tree
problem. In this problem, a multicast tree with maximal band-
width (widest multicast tree) is sought, which in addition satisfies
given end-to-end delay constraints for each path on the tree from
the source to a multicast destination.

Index Terms—Bottleneck paths, graph theory, multicast trees,
precomputation, QoS routing, widest paths, widest trees.

I. INTRODUCTION

I N TODAY’S communication networks, transmission of
multimedia traffic with varying performance requirements

(e.g., bandwidth, end-to-end delay, and packet loss), col-
lectively known as quality of service (QoS) requirements,
introduces many challenges. In such an environment, where
a large number of new requests with widely varying QoS
requirements arrive per unit of time, it is important to develop
algorithms for the identification of paths that satisfy the QoS
requirements (i.e., feasible paths) of a given connection request,
with minimal computational overhead. Minimization of the
overall computational overhead can be achieved by computing
a priori (precomputing) and storing all relevant paths in a data
base. The computation of all relevant paths is also an important
intermediate step in the development of algorithms for other
problems related to networking [12], [14], [16]. Hence, it is
important to study and evaluate algorithms that specifically
address the precomputation problem.

While a large number of studies addressed the Constrained
Path Routing Problem (see [2], [3], [8], [11], [13], [15], [18],
and [22] and the references therein), there are relatively few
works addressing the specific issues related to precomputing
paths with QoS constraints. In [9], the problem of precomputing
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optimal paths under hop-count constraints is investigated and
an algorithm is proposed that has superior performance than
Bellman Ford’s algorithm in terms of worst case bounds. In
[20], by considering the hierarchical structure which is typical in
large-scale networks, an algorithm which offers substantial im-
provements in terms of computational complexity is presented.
These studies concentrated on the hop-count path constraint.
The algorithms in [5], [18], and [22] can be used for precompu-
tation under general QoS constraints. In [5], a subset of the “rel-
evant” (see Section II for explanation) paths are precomputed.
The algorithms in [18] and [22] are similar in spirit, however,
the one in [22] avoids steps that would compute irrelevant paths
and hence achieves better worst case performance.

In the first part of this paper, we focus on the problem of pre-
computing paths with maximal bandwidth (path bandwidth is
the minimal of the path link bandwidths), which in addition must
satisfy given end-to-end delay requirements. We call these paths
constrained widest paths. As mentioned in [10], in order to ac-
cept as many requests as possible, it is important to select paths
with maximal bandwidth. This way, after a connection is ac-
cepted, the leftover minimum bandwidth on the path links will
be as large as possible. We examine three algorithms that pro-
vide all relevant paths. The first algorithm is an application in the
specific context of the algorithm developed in [22] for the gen-
eral Constrained Path Routing Problem. The second is based on
an implementation of the basic algorithmic steps in [22] using
data structures that take advantage of properties of the problem
at hand. The third algorithm improves on an approach whereby
iteratively relevant paths are determined and links that are not
needed for further computation are eliminated [12]. We analyze
the worst case performance of the algorithms in terms of run-
ning time and space requirements. In addition, we compare the
average case running time and space requirements of the algo-
rithms through simulations. The analysis shows the tradeoffs in-
volved in the implementation of each of the algorithms.

In the second part of this paper, we consider the constrained
widest multicast tree problem. In this problem, a multicast tree is
sought with maximal bandwidth (tree bandwidth is the minimal
of the tree link bandwidths), which in addition satisfies given
end-to-end delay constraints for each path on the tree from the
source to a multicast destination. We show that, using the pre-
computed constrained widest paths, an algorithm can be devel-
oped that computes very efficiently the required tree. Hence, in
effect, by precomputing the constrained widest paths, we also
precompute all of the constrained widest multicast trees.

The remainder of this paper is organized as follows. The
problem is formulated in Section II. We present the algorithms
in Section III, and in Section IV we examine the algorithms in
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terms of worst case running time and memory requirements. In
Section V, we show how the precomputed paths can be used to
provide efficient computation of the constrained widest multi-
cast tree problem. Section VI presents numerical experiments
that evaluate the performance of the proposed algorithms.
Conclusions are presented in Section VII.

II. MODEL AND PROBLEM FORMULATION

In this section, we formulate the problem related to the pre-
computation of constrained widest paths and define some nota-
tion that will be used in the rest of the paper.

A network is represented by a directed graph ,
where is the set of nodes and is the set of edges (links).
Let and . A link with origin node and
destination node is denoted by . A path is a sequence
of nodes , such that for all

, and is the number of hops of . By , we
also denote the set of links on the path, i.e., all links of the form

. By and , we denote,
respectively, the set of incoming and outgoing neighbors to node

, that is

respectively.
With each link , there is an associated

width and a delay . We define the width and the
delay of the path , respectively, as

The set of all paths with origin node , destination node ,
and delay less than or equal to is denoted by . The set
of all paths from to is denoted by .

In a computer network environment, may be interpreted
as the free bandwidth on link and as the link delay. As-
sume that a connection request has bandwidth requirements
and end-to-end delay requirement . Upon the arrival of a new
connection request with origin node and destination node ,
a path must be selected that joins the source to the destina-
tion, such that the connection bandwidth is smaller than the free
bandwidth on each link on the path, and the end-to-end delay of
connection packets is smaller than the path delay. It is often de-
sirable to route the connection through the path with the largest
width in ; this ensures that the bandwidth requirements of
the connection will be satisfied, if at all possible, and the delay
guarantees will be provided. Moreover, the leftover minimum
bandwidth on the path links after connection acceptance will be
as large as possible. We call such a path the “constrained widest
path.”

According to the previous discussion, upon the arrival of a
new connection request with end-to-end delay requirement ,
we must select a path that solves the following
problem.

Fig. 1. Example network.

Problem I: Given the source node a destination node ,
and a delay requirement , find a path that satisfies

for all

Note that, when for all , Problem I reduces to the
problem addressed in [9], i.e., the problem of finding a widest
path with hop count at most . Let us assume that the source
node is fixed. In principle, in order to be able to select the ap-
propriate path for any delay requirement, one must precompute
for each destination and each delay , an appropriate optimal
path . At first, this may seem rather formidable, both in
terms of running time and in terms of space requirements. How-
ever, the situation is greatly simplified by the observation that
one needs to precompute the paths for only a subset of the
delays [12], [16], [22]. Indeed, let be the value of the so-
lution to Problem I (if no solution exists, set ). It
can be easily seen using similar arguments as in [22] that
is a piecewise-constant, right continuous, nondecreasing func-
tion with a finite number of discontinuities. Consider for ex-
ample the network in Fig. 1, where the pair above each
link denotes the link delay and width, respectively. As shown in
this figure, in this example, there are four paths from node to
. Hence, we have

Based on this, we can plot the graph of in Fig. 2.
The points correspond to paths , re-
spectively. Notice that for the optimal width
corresponds to the width of path , which has smaller delay
and larger width than path . Hence, there is no discontinuity
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Fig. 2. Plot of W (d) for the network in Fig. 1.

at point , even though the path is added to the set at
.

Hence, to determine the function we only need to
know the values of at these discontinuities (we also need
the paths that cause these discontinuities—see Section III-A). A
discontinuity of will also be referred to as a discontinuity
of node .

In fact, from the routing perspective, the pairs ,
where is a discontinuity point of are the most inter-
esting ones, even if one takes into account routing requirements
different than those considered in Problem I—in Section V we
present such a situation. Specifically, under our interpretation
of path delay and width, among pairs

there is a natural “preference relation.” That is, we
would like to obtain paths that have as small delay as possible
and as large width as possible. We are thus led to the following
natural definition of dominance.

Definition I (Dominance Relation): We say that pair
dominates pair

(or that path dominates path ) if either
and or

and .

Hence, the pairs of interest in our setup are those for which no
other dominating pair can be found for the same origin-destina-
tion nodes. This set of paths is generally known as the nondom-
inated or the Pareto-optimal set [6], [18]. From a precomputa-
tion perspective, it is desirable to determine for each destination

, the set of nondominated pairs (and the associated paths). It
can be shown that this set is exactly the set of discontinuities of

.

III. ALGORITHM DESCRIPTION

In [22], the problem of determining the function discontinu-
ities for multiple additive link costs (i.e., cost of a path is the
sum of its link costs) has been addressed. In the current setup,
the main difference is that the path width is the minimum of its

link widths (rather than the sum). However, the general algo-
rithms in [22] can be adapted to the problem under considera-
tion with minor modifications, as outlined in Section III-A. In
Sections III-B and III-C, we present two additional algorithms
that take into account the particular structure of the problem
under consideration. The first is an implementation of the al-
gorithm in [22] that uses efficient data structures. The second
uses a “natural” approach that eliminates successively unneeded
graph edges and uses a dynamic version of Dijkstra’s algorithm
to determine all function discontinuities. Our intent is to com-
pare these algorithms in terms of worst case and average running
times and space requirements.

A. Algorithm I (ALG I)

The algorithms proposed in [22] are based on the following
facts, which carry over to the situation at hand. In the discussion
that follows, we assume for convenience that is defined
for any real , and .
Hence, by convention, the source node has a discontinuity at
zero.

• For any if is discontinuous at , then
there is a such that is discontinuous at

and . We call
the pair the successor discontinuity of

. Also, is called
the predecessor discontinuity of . If it is known
that the pair is a discontinuity point, then its
“possible” successor discontinuities are pairs of the form

• If is discontinuous at , then there is a path
such that

• Suppose that we impose a lexicographic order relation
between pairs , as follows. We say that

is larger than in the lexicographic
order, , if and only if (iff) either

or ( and .
Suppose also that, among all the discontinuities of

the functions , we know the set of the
smallest ones (with respect to the lexicographic order).
Call this set . Let be the discontinuities in that
belong to node function . Hence, .
The set of possible successor discontinuities of those in

, that are larger than or equal to the discontinuities in ,
is denoted by . Let be a smallest element of
and let be the node to which this possible discontinuity
belongs. Then is a real discontinuity for node ,
and the -smallest among all the node discontinuities
of the functions , iff

(1)

The proof of correctness of the facts above is analogous to
arguments used in [22, Lemma 2 and arguments in Section
3.1.1]. We outline the arguments leading to (1), since it is
essential for understanding the algorithm. Let be
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TABLE I
GENERIC ALGORITHM FOR SOLVING PROBLEM I

the discontinuity in with the largest delay—hence,
also with the largest width since is nondecreasing.
Since is larger than in the lexicographic
order, it must hold, . If , then
dominates or is equal to . Hence, cannot
be a new real discontinuity. Assume next that .
Then necessarily , since otherwise domi-
nates which contradicts the fact that is
a discontinuity of . Using the fact that every discon-
tinuity of a node has a predecessor discontinuity, it
can be shown that, if there is a node discontinuity not in

, smaller than in the lexicographic order, then
there must also be a discontinuity in whose
successor is larger than the discontinuities in (hence

belongs to ) and smaller than . How-
ever, this contradicts the fact that is the smallest
element of . Hence, there is no discontinuity in
larger than and smaller than , and since

is not dominated by any of the discontinuities in
, it must itself be a discontinuity.

Based on these facts, we can construct an algorithm for de-
termining all node discontinuities as described below. In the
following, we will need to know the node to which a real
or possible discontinuity belongs. For clarity, we de-
note this discontinuity by . For initialization purposes,
we set and

. The generic algorithm is presented in Table I. Steps
1–4 of Algorithm I initialize the discontinuities pairs for each
node. In step 5, having identified a real discontinuity ,
the algorithm creates the set of all possible discontinuities that
have as a predecessor. If there are no possible dis-
continuities (step 6), the algorithm stops. Else, in step 7, the
smallest possible discontinuity in the lexicographic order is ex-
tracted from . In step 8, it is examined whether the latter dis-
continuity is a real one. If it is, it is added to the appropriate set
(step 10); else the next possible discontinuity is extracted from

, i.e., the algorithm moves to step 6. A schematic diagram of
the operation, taken from [22], is given in Fig. 3.

In [22], two implementations of the generic algorithm were
proposed, which differ mainly in the manner in which the set

Fig. 3. Basic steps of Algorithm I.

is organized. In the current work, we pick the implementation
that was shown to be more efficient both in worst case and av-
erage case analysis. For our purposes, it is important to note
that the sets are implemented as FIFO queues and that the
elements in these queues are generated and stored in
increasing order of both and as the algorithm proceeds. Fur-
thermore, in our implementation of Algorithm I, we introduce
an additional optimization that is based on the following obser-
vation in [9]: whenever a real discontinuity is found
and the possible discontinuities caused by are created,
then links with can be removed
from further consideration. This is so, since these links cannot
contribute to the creation of new discontinuities for node . In-
deed, any newfound discontinuity at node , will
create a possible discontinuity .
However, , and hence this possible discon-
tinuity cannot be a real one for node .

As usual, in order to be able to find by the end of the algo-
rithm not only the discontinuities, but paths that correspond
to these discontinuities, one must keep track of predecessor
discontinuities as well. That is, in the implementation, we
keep track of , where for the source
node , and for any other node

is a pointer to the predecessor disconti-
nuity of . To simplify the notation, in the description of
all algorithms, we do not explicitly denote ,
unless it is needed for the discussion.

B. Algorithm II (ALG II)

The generic algorithm in Table I works also when lexico-
graphic order is defined as

if either

or and
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In this case, the elements in the FIFO queues
are generated and stored in decreasing order of both and
as the algorithm proceeds.

Algorithm II uses the lexicographic order and is based on
an extension of ideas presented in [7] to speedup computations.
The basic observations are the following.

• Suppose that link widths take different values
. If for link it holds ,

set . If one uses instead of the link’s ac-
tual width in the calculations, the resulting discontinuities
occur at the same delays and for the same paths as if the ac-
tual widths were used. This is true since the steps in Algo-
rithm I use only comparisons between link widths; hence,
the same decisions are taken if is used in place of

.
• Since a path width is the minimum of the widths of the

path links, path widths always take one of the values in the
set , i.e., they take at most different
values. Hence, the same holds for the values of and
the widths of all possible discontinuities.

We use these observations to speed up the computations of
Generic Algorithm I as follows. First, we use in place of
the link widths. Next, we organize the set of possible discon-
tinuities as follows. We create an array

where , if nonnull, denotes a possible
discontinuity of the form . Note that we are able to use
the width of a discontinuity as an index to , since we are
working with instead of . Had we used directly, even
if were integers, we would in general need more space
for since the range of the values of would be larger
than . We also create heaps . Heap
contains the nonnull elements of and uses
as a key the delay of a possible discontinuity. Reference [4]
contains various descriptions of heap structures. For our pur-
poses, we need to know that the following operations can be
performed on the elements of a heap structure.

• : creates an empty heap .
• insert : inserts element to .
• : removes and returns an element in

with the smallest key.
• : replaces in element with

, where element has a smaller key than .
Fig. 4 shows the data structures used to implement the set
. With these data structures, we implement steps 5 and 7 of

Generic Algorithm I in Table I as follows. For an element
, we denote .

Step 5: Create all possible successor discontinuities of
and add them to .

/* let , hence we have available the discontinuity
*/

1) For do
2)
3)
4) If is null then
5) insert ;
6) Else

Fig. 4. Structures implementing the set of possible discontinuities ^P .

7)
8) If then
9) ;
10) ;
11) end do

In step 4, if is null, there is no possible discontinuity
for node with width . Hence, a new possible discontinuity for
node with width is created and placed both in and

. In step 8, when we know that the
old possible discontinuity for node cannot be a real disconti-
nuity since dominates and therefore in steps 9 and 10, we
replace with both in and . Note that, in this
way, heap always contains at most one possible disconti-
nuity of any node . Hence, with steps 9 and 10, we avoid in-
serting unnecessary elements in the heap , thus decreasing
the time that the get min operation takes in step 7 of Generic
Algorithm I in Table I. The tradeoff is extra memory space re-
quirements due to array . We discuss this issue further in
Sections IV and VI.

Step 7: Among the elements , find and extract the minimum
one in the lexicographic order (with respect to ). Denote this
element .

/* let , hence we have available the discontinuities
*/

The heaps are scanned starting from the largest index and
moving to the smallest. The index of the heap currently scanned
is stored in the variable which is initialized to .

1) Find the largest such that is nonempty.
2) .
3) Set to null.
4) .
The scanning process (largest to smallest) works since, when-

ever a possible discontinuity is removed from , any
possible discontinuities that already exist or might be added
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TABLE II
PSEUDOCODE OF ALGORITHM II

later to are larger (with respect to ) than or equal to
and thus will have width at most ; hence, all of these disconti-
nuities are or will be located in one of the heaps . No-
tice that this would not be true if the order were used. Indeed,
had we used order , we would know that any possible discon-
tinuities that already exist or might be added later to have
a delay of at least , but we would not be able to say whether
the widths of these discontinuities are larger or smaller than .
Table II presents the pseudocode for Algorithm II. Steps 11–15
are used to initialize the scanning process. The real discontinu-
ities are again implemented as FIFO queues.

Summarizing, Algorithm II takes advantage of the properties
of path width to create a more efficient organization of the set
of possible discontinuities ; otherwise, it takes the same de-
cisions as Algorithm I. Hence, the correctness of Algorithm II
follows from the correctness of Algorithm I. It is worth noting
that, if the widths take integer values and the range of
these values is, say , then one can use as
an index for placing the discontinuities in the structures
and . In this case, step 4 of Algorithm II in Table II is not
needed and computations can be saved, provided that is
small compared to . In any case, step 4 is not the major source
of computations.

TABLE III
ITERATION STEPS OF ALGORITHM III

C. Algorithm III (ALG III)

The third algorithm is based on an improvement of the idea
proposed in [12]. It consists of a) identifying discontinuities, b)
eliminating links that are not needed to identify new disconti-
nuities and c) repeating the process all over again. Specifically,
the algorithm performs iterations of the basic steps shown in
Table III. Again are implemented as FIFO queues.

This algorithm produces all discontinuities in as the next
theorem shows.

Theorem 1: Algorithm III produces all discontinuities in .
Proof: We will show by induction that, at iteration , all

discontinuities in with width at most (defined in step 2
of Algorithm III in Table III) have been determined.

Assume this to be true up to iteration (the arguments for
are similar). For any node any other real discon-

tinuity will necessarily have larger width than . Hence, the
removal of links with width at most in step 2 cannot result
in elimination of a path that causes real discontinuities.

We claim that, at iteration , the pairs
added to at step 2 are the real discontinuities having
width . Indeed, observe first that
cannot be dominated by any , with

since . We show next
that is not dominated by any
with . Assume the contrary. Notice first that the
graph in step contains path because
and hence all links of belong to in step . Since

is a shortest path in at step , it is impossible that
. Hence, for domination, we must have

However, this latter condition is impossible also, since, ac-
cording to step 1, is a widest–shortest path in a graph at
step .

The widest–shortest path problem can be solved by a modifi-
cation of Dijkstra’s algorithm [23], without increasing the worst
case complexity. In fact, after the removal of the links of in
Step 3, paths whose width is larger than will still remain
the widest–shortest paths when the algorithm returns to step 1.
Hence, the computations in the latter step can be reduced by
taking advantage of this observation. Algorithms that address
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this issue have been presented in [19], and we pick for our im-
plementation the one that was shown to be the most efficient,
namely the static Heap Dijkstra algorithm.

Algorithms similar to Algorithm III have been presented in
[12, p. 308] and [16, p. 20]. The main difference of the present
algorithm is the use of the widest–shortest path algorithm to de-
termine new discontinuities. As seen from the Proof of Theorem
1, at each round of the algorithm new real discontinuities are
found, while the algorithms in [12] and [16] may waste rounds
determining paths that do not correspond to real discontinuities.
The algorithm in [12] determined the discontinuities of a spe-
cific node and can be extended to determine the discontinuities
of all nodes. The algorithm in [16] adds links rather than re-
moving them. This choice may have significant performance im-
plications when the algorithms are used in combination with the
algorithms in [19] to improve average case performance. This is
due to the fact that the algorithm in [19] needs to determine a
set of nodes, whose shortest delay will not change by the
removal or addition of network links. As mentioned in the pre-
vious paragraph, when links are removed, set is immediately
determined. However, when links are added, further processing
is required to determine . In Section VI, we discuss further the
performance implications of these alternatives.

IV. WORST CASE ANALYSIS

In this section, we examine the three algorithms proposed
in Section III in terms of worst case running time and memory
requirements. Let be the number of discontinuities of

and denote . Notice that, since
takes only the values , we have .

Let also be the maximum in-degree of the nodes in
that is,

Clearly, . In all three algorithms, we assume a Fi-
bonacci heap implementation [4]. In such implementation of a
heap , all operations except take time.
Operation takes time, where is
the number of elements in the heap.
Algorithm I

The analysis of this algorithm has been presented in [22].
According to this analysis the following hold.

Running Time: The worst case running time of the algorithm
is, and in terms of the net-
work size, .

Memory Requirements: The memory requirements of the al-
gorithm are or .
Algorithm II

Running Time: The process of determining
(step 4 of Algorithm II) amounts to sorting the elements of

. Hence, with a comparison based sorting, this process takes
time. Each of the heaps

contains at most elements and the get min operation is
applied at most once to each element. Hence, the computation
time to process the get min operations on heap is at most

TABLE IV
WORST CASE RUNNING TIMES AND MEMORY REQUIREMENTS

. The total computation time to process the pos-
sible discontinuities at the outgoing neighbors of all nodes in
heap (lines 16–26 of Algorithm II in Table II), is .
Since all the rest of the operations during the processing of
the elements of heap take time , the computation
time to process the th heap is . Since there
are at most heaps, the total worst case computation time
is , including the time needed to sort

.
Memory Requirements: The size of is . Each of

the heaps contains at most elements, and, since there
are at most such heaps, the total heap memory space needed
is . Since each of the queues can contain
up to discontinuities, the memory space needed to store the
discontinuities is at most . Therefore, the total memory
space requirements are .
Algorithm III

Running Time: At each iteration of steps 1 to 4 of Algorithm
III in Table III, the dynamic version of the Dijkstra Algorithm
[19] is used to find the widest–shortest paths. While this dy-
namic version reduces significantly the average running time of
the algorithm, it does not reduce its worst case running time.
Hence, the worst-case time bound for step 1 of the algorithm at
each iteration is . The rest of the operations at
each iteration are of smaller order than . Since
there can be at most iterations, the total worst case running
time of the algorithm is .

Memory Requirements: This algorithm needs a single heap
of size at most . It also needs space to hold the real
discontinuities. Hence, its space requirements are in the worst
case, .

Table IV summarizes the worst case running time and space
requirements of the proposed algorithms. All three algorithms
have the same worst case memory requirements. ALG II and
ALG III have the same worst case running time, which is
slightly better than the worst case running time of ALG I.
Hence, based on these metrics, all three algorithms have similar
performance. However, worst case analysis alone is not a
sufficient indicator of algorithm performance. For example, as
discussed above, the performance of ALG I depends on ,
which in many networks is much smaller than . Since ALG II
is based on ALG I, a detailed analysis of ALG II reveals that its
performance depends on as well. Regarding ALG III, the
number of iterations of the basic algorithmic steps may be sig-
nificantly smaller than . As for memory requirements, ALG
II has in general the most requirements due to the array .
ALG III has the least requirements which are dominated by the
necessary space to hold all node discontinuities. The simulation
results in Section VI will reveal the performance difference of
the algorithms in several networks of interest.
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Fig. 5. Example of a network with 
(N ) memory requirements.

Since can be of order , the worst case space require-
ments of all three algorithms is . For this to happen, most
of the functions should have a large number of disconti-
nuities, and it is not immediately clear whether this can happen.
Next we present an instance where indeed the memory require-
ments are .

Consider a network consisting of nodes and the following
edges:

Fig. 5 shows an example of such an network with . The
number of edges in this network is

Set

(2)

Pick the rest of the widths and delays so that the following
inequalities hold:

(3)

(4)

(5)

and in general

(6)

An example of widths and delays satisfying relations (2)–(6) is
the following:

Under these conditions, each node has the following paths
that cause discontinuities.

Node 2: paths of the form
because of relations (2) and (3).

Node 3: paths; paths of the form
because

of relations (2) and (4) and paths of the form
because of relations

(2) and (3).
Node 4: paths; paths of the form

because
of relations (2) and (4), paths of the form

because of
relations (2) and (5), and paths of the form

because of relations (2)
and (3).

In general, it can be seen that node
has discontinuities, and hence the total number of

discontinuities is

Example 2: Consider the example network in Fig. 5. The
nodes have the following paths that cause discontinuities.

Node 2:

1)
.

Node 3:

1)
.

2)
.

Node 4:

1)
.

2)
.

3)
.

Node 5:

1)
.

2)
.

3)
.



1182 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 13, NO. 5, OCTOBER 2005

4)
.

Node 6:

1) .
2) .
3) .
4) .
5) .

Note that, since any precomputation algorithm has to create
all of the discontinuities, the previous instance shows also that
the worst case running time of any algorithm is . All three
algorithms have worst case running times of at least .
Whether this gap can be closed is an open problem.

In all three algorithms, the node discontinuities were
implemented as FIFO queues. Once the algorithms complete, a
discontinuity at node with a specific property can be found by
searching through the FIFO queues. The search time will be of
the order of the number of elements in , which is at most

. In several applications, one is interested in discontinuities of
the following form: the discontinuity whose delay is the largest
among those whose delay is at most . For example, this is the
case when one is interested in providing a solution to Problem
I. Since elements of are stored either in decreasing or in
increasing order of discontinuity delay and width, it is helpful
to store as an array. With this implementation, we can
perform binary search for discontinuities of the previously de-
scribed form and the search time becomes logarithmic in the
number of elements in , i.e., . Of
course, we also have to determine the associated path using the
pointers in . Since a path contains at most
nodes, the overall process takes time in the worst case.

V. COMPUTATION OF CONSTRAINED BOTTLENECK

MULTICAST TREES

In this section, we show how the node discontinuities ob-
tained in the previous section can be used to provide a quick
solution to a problem related to multicast communication.

Assume that the source node needs to establish a multicast
tree session with a subset of the nodes. The multicast trans-
mission bandwidth is and node has end-to-end delay
QoS bound . Let and define the width
of a tree

Let also be the set of directed trees with source , span-
ning set (i.e., there is a path on the tree from to any node in

) and having the following property: the delay of the path on
the tree from to is at most . The generalization of
Problem I in such a situation is,
Problem II: Given a source node a destination node set and
delay requirements , find a tree that satisfies

There is a large body of literature addressing the multicast
tree design problem, where emphasis is placed on conserving
resources. In particular, maximization of total consumed band-
width is sought. While it is true that multicasting is used to con-
serve resources, this is not the only issue that must be addressed.
The associated optimization problem for conserving resources
is known to be NP-complete and one has to rely on heuristics,
which again lead away from the optimal. Trying to develop al-
gorithms that are close to the optimal in terms of resource con-
sumption is time consuming, especially when one has to take
into account QoS constraints. This is a reason, among others,
that several existing protocols do not rely on multicast trees that
solely optimize resources. In the environment we are consid-
ering, the situation is aggravated by the demand that QoS objec-
tives are satisfied for each user on the multicast tree. The solu-
tion we present here ensures that the QoS objectives of all users
are satisfied, provides a form of resource conservation since a
tree with maximal width is sought and, as will be seen, is com-
putable very efficiently based on precomputed paths. Hence, it
may provide an alternative way of selecting a multicast tree, al-
though further work is needed to evaluate the benefits and dis-
advantages of each approach.

We assume that we already obtained the discontinuities
, by one of the algorithms in the previous section,

and that is implemented as an array. Elements of
are stored in the array either in decreasing or in increasing
order of delay and width. In a practical implementation, the
elements will be updated whenever new topology in-
formation arrives at the source node while Problem II must
be solved online, in more frequent intervals, each time a new
multicast tree request arrives. We describe next an algorithm
for determining quickly an optimal tree for Problem II.

For any node , we can obtain a path that
solves Problem I by finding the discontinuity in (if one
with finite delay exists) whose delay is the largest among the
delays of the discontinuities in not exceeding . Assume
that the paths exist for all —otherwise, Problem II
does not have a solution. Let

Let be the graph obtained by including the links and nodes of
all the paths . The widths and delays of the links in

are the same as in . Graph is not a tree in general, as the
following example shows.

Example 3: Fig. 6 shows a network with the discontinu-
ities of each node. Next to each dis-
continuity is the associated path . We assume that ,
and . With we represent the delay
bound for each node . The assumed values of are shown in
the figure. Graph is constructed by finding for every ,
the discontinuity whose delay is the largest among the de-
lays of the discontinuities not exceeding . For node 2,
the delay constraint is , thus we choose the first discon-
tinuity with which corresponds to the path

. Similarly, we choose the following paths
to construct graph :

which is definitely not a tree.



SIACHALOU AND GEORGIADIS: ALGORITHMS FOR PRECOMPUTING CONSTRAINED WIDEST PATHS AND MULTICAST TREES 1183

Fig. 6. Example of a graph G that shows that �G is not a tree.

Clearly, for the width of , it holds that

(7)

Let be the tree in that consists of the shortest delay paths
from to all nodes in . The next lemma shows that the tree
solves Problem II and that its width is .

Lemma 4: It holds that . Hence,
solves Problem II.
Proof: We first show that

(8)

Let . There is a path in that joins to node
. By definition of . Since solves

Problem I with end-to-end delay , it holds that

Hence, taking into account (7), we have

Next, we show that

(9)

which together with (8) implies the lemma.
Since there is a path from to in with delay

and is a shortest delay path tree in , we are ensured that
the delay of the path in from to will be at most . This
implies that and therefore

However, since is a subgraph of , we have

and hence (9) is true.
According to Lemma 4, we can obtain a solution to Problem II

by finding the shortest path tree in . This process involves
constructing first the graph , which in the worst case takes

time . In addition, one has to still determine the tree
. A direct application of a shortest path algorithm requires

time . It is possible to take advantage of the
structure of and reduce the computation time for determining

to . However, we will not examine this approach fur-
ther, since, as we will show next, based on the knowledge of the
value of the solution to Problem II which according to Lemma
4 is , and the discontinuities , we can obtain
the required tree in time .

Once we know the value of the solution to Problem
II, we can determine a corresponding tree as follows. Let

, be a discontinuity of with the following prop-
erty.

Property I: The delay of discontinuity is the
smallest one among the delays of the discontinuities of
whose width is larger than or equal to . Let be the path
from to that causes discontinuity .

Let . As discussed in
Section III-A with each node , there is an as-
sociated discontinuity , and is the
predecessor discontinuity of . The following Lemma
will be useful in the sequel.

Lemma 5: If satisfies Property I and
, then the associated discontinuities at

all nodes satisfy Property I.
Proof: The proof is by induction from to

. The statement is true for . Assume
that the associated discontinuity of node

, satisfies Property I. As is
the predecessor discontinuity of , it holds that

.
Since , it also holds that

, hence and .
This implies that satisfies Property I. To
see this assume the contrary, i.e., that there is a disconti-
nuity at node with
and . Then the possible discontinuity

at node must be
dominated or be equal to a real discontinuity , i.e.,

The latter conditions show that does not satisfy
Property I, which is a contradiction.

Let be the graph obtained by including the links and nodes
of all of the paths . We then have the following the-
orem on which we can base the algorithm for finding a solution
to Problem II.

Theorem 6: The graph is a tree that solves Problem II.
Proof: Assume that a node in graph has

outgoing neighbors, and hence this node belongs to at least
of the paths . According to Lemma 5, for each of
these paths, the associated discontinuity on node is
the unique one having Property I. Hence, has a unique in-
coming neighbor, namely the predecessor node of the disconti-
nuity . Since each node in other than has a unique
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TABLE V
ALGORITHM FOR COMPUTING CONSTRAINED BOTTLENECK MULTICAST TREES

incoming neighbor and by construction there is a path from to
any node in , it follows from [1] that is a tree.

By construction, the width of is at least . Also, since
the path has a delay smaller than or equal to that of (both
paths have a width larger than or equal to and satisfies
Property I), we conclude that . This together with
Lemma 4 imply that , hence solves
Problem II and its width is .

According to Theorem 6, to determine the tree we can em-
ploy the algorithm shown in Table V. In step 1, for all , a
discontinuity in is found whose delay is the largest among
the delays of the discontinuities in not exceeding . In
step 2, the minimum width among the widths of the disconti-
nuities found in step 1 is determined. Of course, step 2 can be
completed while executing step 1; we state the steps separately
for clarity in the description. In step 3, for all , we deter-
mine a discontinuity satisfying Property I. Finally, in
step 4, we construct tree using the predecessors of the discon-
tinuities found in step 3. Notice that the predecessor information
contained in already defines the tree . Specifi-
cally, the parent of node in the tree is the node asso-
ciated with the predecessor discontinuity of
the parent of node is the node associated with the predecessor
discontinuity of , and so on. Step 4 is needed to simply
mark the nodes that participate in the multicast tree.

Example 7: Consider again the example in Fig. 6. Following
the steps of Algorithm IV, we have the following.

Step 1)
a) Node 2: .
b) Node 3: .
c) Node 4: .

Step 2)
Step 3)

a) Node 2: , parent node 3.
b) Node 3: , parent node 4.
c) Node 4: parent node 1.

Step 4: the nodes 2, 3, 4, and 1 are marked as belonging to
the tree.

The tree obtained by applying Algorithm IV is shown in
Fig. 7.

Worst Case Analysis of Algorithm IV
Recall that the discontinuities in are stored either in

decreasing or increasing order of both width and delay. Hence,
using binary search, the determination of each
takes time and steps 1 and 3 take time .
Step 2 takes time. Finally, step 4 takes time since

Fig. 7. Tree ^G obtained by the application of Algorithm IV to the graph G
shown in Fig. 6.

, being a tree, contains at most links. Hence, the overall
worst-case running time is .

Notice that there are no complicated structures involved in
Algorithm IV, and hence the constants involved in the previous
bounds are small.

VI. SIMULATION RESULTS

We run two sets of experiments. Each set employs dif-
ferent methods of network generation. Thus, we generate the
following.

Power Law Networks: This is one of the methods that at-
tempt to generate network topologies that are “Internet like.”
We choose a number of nodes and a number of links

. The links are used to connect nodes ran-
domly with each other in such a manner that the node degrees
follow a power law.1

Real Internet Networks: These networks were taken from
The Real Networks2 and are based on network topologies ob-
served on the dates 20/09/1998, 01/01/2000, and 01/02/2000.

We also run experiments using “uniform” random networks
which are formed by picking uniformly a subset of links
among the link set of a complete -node graph. For this type
of networks, for the same and , the running times of the
algorithms are smaller than those obtained for Power Law and
Real Internet Networks. However, the comparative performance
of the algorithms were similar with the performance results of
Power Law Networks and therefore are not presented here.

For each experiment, the delay of a link is picked randomly
with uniform distribution among the integers [1, 100]. For the
generation of the link widths we use two different methods.

• Width 1. Each link width is picked randomly with uni-
form distribution among the integers [1, 100].

• Width 2. In this case, link widths are generated in such a
manner that they are correlated to their delays. Thus, for
each link , a parameter is generated randomly among
the integers [1, 10]. The width of link will then be

.
We generate Power Law Networks with 400, 800, and 1200

nodes and with ratios equal to 4, 8, and 16. For each
and , we generate ten different networks, and for each net-

work we generate the link widths according to the two methods
previously described (Width 1 and Width 2).

1The Power Law Simulator. [Online]. Available: http://www.cs.bu.edu/brite
2The Real Networks. [Online]. Available: http://moat.nlanr.net/Routing/raw-

data
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Fig. 8. Running time for Power Law Networks with width independent of
delays.

Fig. 9. Running time for Power Law Networks with width correlated to delays.

The experiments were run on a Pentium PC III, with 1.2 GHz
and 256 MB RAM.

As will be discussed in the end of this section, compared to the
algorithms in [12], [16], that are based on a similar idea, Algo-
rithm III has better average case performance, while all three al-
gorithms have the same average case memory requirements, and
the same worst case running time. Hence, in the following, we
use Algorithm III as a representative of this class of algorithms.

In Figs. 8 and 9, we present the average running times (in
seconds) of the three algorithms, Algorithms I, II, and III, for
Power Law Networks. We make the following observations.

• For a given algorithm and for a fixed number of nodes
and edges, we notice that the running time increases when
the width values are generated according to the second
method (Width 2). This is due to the fact that, when widths
are correlated to delays, the number of discontinuities is
increased.

• Algorithm II has the best running time performance and
Algorithm III the worst.

• Compared to Algorithm II, the running times of Algo-
rithms I and III are found to be up to 1.6 times and 2.3
times larger, respectively.

• Algorithm II performs better than Algorithms I and III for
all experiments and especially for large networks.

The Real Internet Networks have
links and nodes, respectively. We refer
to these networks as N2107, N4120, and N6474, respectively.
The link delays are picked randomly with uniform distribution
among the integers [1, 100] and the link widths are generated
according to the two methods. In these networks, we also per-
formed ten experiments, where in each experiment we picked
randomly a source node. Figs. 10 and 11 show the average run-
ning time of the three algorithms. We notice again that Algo-
rithm II has the best running time performance and Algorithm

Fig. 10. Running time for Real Internet Networks with width independent of
delays.

Fig. 11. Running time for Real Internet Networks with width correlated to
delays.

III the worst. The running time of Algorithm III has been found
to be 14 times larger than that of Algorithm II in some experi-
ments. The performance of Algorithm I is worse, but is compa-
rable to that of Algorithm II.

The additional optimization (removal of unneeded links) in
Algorithm I improves its running time but not by much. Specif-
ically for the Real Network with nodes and

edges, and Width 2 the running time with and without
the optimization is, respectively, 2.52 and 2.78 s.

Next we look at the memory requirements of the algorithms.
The memory space needed to store the network topology is
common to all algorithms and is not presented in the figures
below.

The additional memory requirements of the three algorithms
at any time during their execution are determined mainly by the
total number of elements in the queues as well as:
1) the heap size of possible discontinuities for Algorithm I;
2) the heaps and the array

for Algorithm II; and 3) the heap size to run
the dynamic version of Dijkstra’s algorithm for Algorithm III.
For each experiment, we determined the maximum of memory
space needed to store the previously mentioned quantities. This
space depends on the particular network topology for Algo-
rithm I and III, while for Algorithm II it is already of order

due to the array . As a result, the memory re-
quirements of Algorithm II are significantly larger than those of
the other two algorithms. This is indicated in Figs. 12–15, where
we present the memory requirements of the three algorithms for
Power Law and Real Internet Networks. Algorithm III has the
smallest memory requirements, followed by Algorithm I, whose
memory requirements are comparable to those of Algorithm III.
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Fig. 12. Memory requirements for Power Law Networks with width
independent of delays.

Fig. 13. Memory requirements for Power Law Networks with width correlated
to delays.

Fig. 14. Memory requirements for Real Internet Networks with width
independent of delays.

Fig. 15. Memory requirements for Real Internet Networks with width
correlated to delays.

Due to the need of array , Algorithm II has significantly
larger memory requirements.

To compare Algorithm III with the similar algorithms that
were proposed in [12] (Algorithm IV—ALG IV) and [16] (Al-
gorithm V—ALG V), we run the algorithms for the three Real

TABLE VI
RUNNING TIMES OF ALG III, ALG IV, ALG V

FOR THE THREE REAL INTERNET TOPOLOGIES

TABLE VII
RUNNING TIMES FOR REAL INTERNET NETWORKS WITH

DELAYS EQUAL TO 1 AND WIDTHS BETWEEN 1 AND U

Internet Network topologies and Width 2. In the implementation
of Algorithms IV and V, we also incorporated the mechanisms in
[19] to improve average running time. The results are presented
in Table VI. We see that Algorithm III achieves the best running
time with Algorithm IV being very close, while Algorithm V has
the worst performance. The difference in performance of Algo-
rithm V was explained in the end of Section III-C. For this set of
experiments, the use of widest–shortest path algorithm in Algo-
rithm III in place of Dijkstra’s algorithm used in Algorithm IV,
has a small effect on running time. This is explained by the fact
that for the values of link delays and widths used, the number
of shortest paths between the source and a given destination
is generally small. Hence, using Dijkstra’s algorithm often re-
sults in also determining the widest–shortest path and not many
rounds are wasted determining paths that do not correspond to
real discontinuities. To demonstrate this, we run experiments
for Real Internet topologies N4120 and N6474, assuming that
all link delays are equal to 1 (hence we are interested in paths
with smallest hop-count). This choice increases the number of
shortest delay paths between a source and a destination. The
link widths were picked randomly in the range 1 to , where

. The larger is, the larger the
likelihood that there are several shortest delay paths with dif-
ferent width. The results appear in Table VII. We see that the
difference is now more pronounced. Another point of interest in
Table VII is that the performance of all three algorithms deteri-
orates rapidly as increases. This is due to the fact that as the
range of possible width values increases, the number of disconti-
nuities from the source to any of the nodes in the network having
the same width, decreases. Hence, while for smaller ranges it is
probable that many discontinuities are found at each round, this
probability decreases as the range increases. As a result, all three
algorithms need more rounds to find all possible discontinuities
as the range of link widths increases. In contrast to this, the per-
formance of Algorithms I and II does not depend on the range
of width values. For this set of experiments, the running time of
Algorithm I and Algorithm II was less than 0.8 s.

Summarizing our observations, Algorithm II has the best run-
ning time; however, its memory requirements are significantly
worse than those of the other two algorithms. At the other end,
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Algorithms III, IV, and V have the best memory space require-
ments; however, their running time is significantly worse than
that of Algorithms I and II and depends heavily on the range
of width values. Algorithm I represents a good compromise be-
tween running time and space requirements, as its performance
with respect to these measures, while not the best, is comparable
to the best.

VII. CONCLUSION

We presented three algorithms for precomputing constrained
widest paths and multicast trees in a communication network.
We analyzed the algorithms in terms of worst case running time
and memory requirements. We also presented simulation results
indicating the performance of the algorithms in networks of in-
terest. The worst case analysis showed that all three algorithms
have similar performance, with Algorithm I being slightly worse
in the case of worst case running time. However, the simula-
tions revealed significant performance differences and indicated
the conditions under which each algorithm is appropriate to
be used. Finally, we considered the constrained widest multi-
cast tree problem. We provided an efficient algorithm for con-
structing a constrained widest multicast tree using the precom-
puted constrained widest paths.
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