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Constructing Internet Coordinate System
Based on Delay Measurement
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Abstract—In this paper, we consider the problem of how to
represent the locations of Internet hosts in a Cartesian coordi-
nate system to facilitate estimation of network distances among
arbitrary Internet hosts. We envision an infrastructure that
consists of beacon nodes and provides the service of estimating
network distance between pairs of hosts without direct delay
measurement. We show that the principal component analysis
(PCA) technique can effectively extract topological information
from delay measurements between beacon hosts. Based on PCA,
we devise a transformation method that projects the raw distance
space into a new coordinate system of (much) smaller dimensions.
The transformation retains as much topological information as
possible and yet enables end hosts to determine their coordinates
in the coordinate system. The resulting new coordinate system
is termed as the Internet Coordinate System (ICS). As compared
to existing work (e.g., IDMaps and GNP), ICS incurs smaller
computation overhead in calculating the coordinates of hosts and
smaller measurement overhead (required for end hosts to measure
their distances to beacon hosts). Finally, we show via experiments
with both real-life and synthetic data sets that ICS makes robust
and accurate estimates of network distances, incurs little compu-
tational overhead, and its performance is not susceptible to the
number of beacon nodes (as long as it exceeds a certain threshold)
and the network topology.

Index Terms—Internet, modeling techniques, network topology,
measurement techniques.

1. INTRODUCTION

ISCOVERY of the Internet topology has many advantages

for design and deployment of topology sensitive network
services and applications, such as nearby server selection,
overlay network construction, routing path construction, and
peer-to-peer computing. The knowledge of network topology
enables each host to make better decisions by exploiting
its topological relations with other hosts. For example, in
peer-to-peer file sharing services such as Napster, Gnutella,
and eDonkey, a client can download shared files from a peer
that is closer to itself, if the topology information is available.
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Among several categories of approaches to infer network
topology, the measurement based approach may be the most
promising, whereby the network topology can be constructed
based on several network properties, such as bandwidth,
round-trip time (RTT), and packet loss rate. In this paper, we
focus on topology construction based on end-to-end delay
(RTT) measurement, and use the term “network distance” for
the RTT between two hosts.

The primary goal of constructing network topology is to en-
able estimation of the network distance between arbitrary hosts
without direct measurement between these hosts. Several ap-
proaches have been proposed, among which IDMaps [2] and
GNP [3] may have received the most attention. Both assume a
common architecture that consists of a small number of well-po-
sitioned infrastructure nodes (called beacon nodes in this paper).
Every beacon node measures its distances to all the other beacon
nodes and uses these measurement results to infer the network
topology. A host estimates its distance to the other ordinary
hosts by measuring its distances to beacon nodes (rather than
to the other hosts). A host benefits from using this architecture,
as it needs only to perform a small number of measurements
and will be able to infer its network distance to a large number
of hosts (such as servers).

One important issue in realizing these measurement architec-
tures is how to represent the location of a host. IDMaps and
Hotz’s triangulation [4], [5], for example, use the original dis-
tances to beacon nodes to represent the location of a host, while
GNP [3] and Lighthouse [7] transform the original distance data
space into a Cartesian coordinate system and uses coordinates
in the coordinate system to represent the location. As will be
discussed in Section III, the major advantage of representing
network distances in a coordinate system is that it enables ex-
traction of topological information from the measured network
distance data. As aresult, the accuracy in estimating the distance
between two arbitrary hosts will be improved. This is especially
true when the number of available beacon nodes is small. To
construct a new coordinate system, GNP formulates an opti-
mization problem that minimizes the discrepancy between the
measured network distance and the distance computed by a dis-
tance function in a coordinate system, and applies the Simplex
Downhill method to solve the minimization problem. In spite
of its many advantages, as will be elaborated on in Section III,
GNP does not guarantee that a host has a unique coordinate in
a coordinate system. Depending on the initial value used in the
Simplex Downhill method, a single host may have different co-
ordinates.

In this paper, we present a new coordinate system called the
Internet Coordinate System (ICS). The distances from a host to
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beacon nodes are expressed as a distance vector, where the di-
mension of the distance vector is equal to the number of beacon
nodes. As each beacon node defines an axis in the distance data
space, the bases may be correlated. We apply the principal com-
ponent analysis (PCA) to projects the distance data space into a
new, uncorrelated and orthogonal Cartesian coordinate system
of (much) smaller dimensions. The linear transformation essen-
tially extracts topology information from delay measurements
between beacon nodes and retains it in a new coordinate system.
By taking the first several principal components (obtained in
PCA) as the bases, we can construct the Cartesian coordinate
system of smaller dimensions while retaining as much topology
information as possible.

Based on the PCA-derived Cartesian coordinate system, we
then propose a method to estimate the network distance between
arbitrary hosts on the Internet. The network distances between
beacon nodes are first analyzed to retrieve the principal compo-
nents. The first several components are scaled by a factor (such
that the Euclidean distances in the new coordinate system ap-
proximate the measured distances) and used as the new bases
in the coordinate system. The coordinate of a host is then deter-
mined by multiplying its original distance vector to (a subset of)
beacon nodes with the linear transformation matrix consisting
of the principal components. As compared to GNP, ICS is more
computationally efficient because it only requires linear algebra
operations. In addition, the location of a host is uniquely deter-
mined in the coordinate system. Another advantage of ICS is
that it incurs smaller measurement overhead, as a host does not
have to make delay measurement to all the beacon nodes, but
only to a subset of beacon nodes. This is especially desirable in
the case that some of the beacon nodes are not available (due
to transient network partition and/or node failure). Finally, we
show via Internet experiments with real-life data sets that ICS is
robust and accurate, regardless of the number of beacon nodes
(as long as it exceeds a certain threshold) and the complexity of
network topology.

The rest of this paper is organized as follows. In Section II,
we provide the background material and define a distance coor-
dinate system using linear algebra. In Section III, we give a sum-
mary of related work in the literature and motivate the need for a
new coordinate system. In Sections IV and V, we first introduce
PCA and then elaborate on ICS. Following that, we present in
Section VI experimental results, and conclude the paper in Sec-
tion VIIL.

II. PRELIMINARY

The topology of the Internet can be modeled in a coordinate
system based on the delay measured between hosts. First we
consider a raw distance space. Each host measures the network
distance (RTT) to the other hosts using ping or traceroute. Under
the assumption that there exist m hosts, the coordinate of a host
‘H; in an m-dimensional system can be represented by the dis-
tance vector

di = [di, ..., dim]" M
where d;; is the network distance measured by the 4th host to the
jthhost and d;; = 0. In general, d;; # d;; because the forward
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and reverse paths may have different characteristics. The overall
system is represented by an m-by-m distance matrix D, whose
ith column is the coordinate of host H;

D=[d,....d,] 2)

Here D is a nonsymmetric square matrix with zero diagonal en-
tries. This representation is quite simple and intuitive, but con-
tains too much redundant information as every host defines its
own dimension in the coordinate system.

To reduce the redundancy of the above representation, we
then represent the network distances between hosts in a geo-
metric coordinate system. In this paper, we will study how to
construct a coordinate system of the least possible dimension,
while retaining as much topological information as possible.
Under the assumption that a host H; has the coordinate x; in
a coordinate system, the network distance d;; from the host H;
to a host H; can be estimated without direct measurement by
computing a distance metric function f¢, (i.e., dij = (i,;j =
f4(xi,x;)). The generalized distance metric function [8] is de-
fined as

r

Ly(xi,x;) = le’ik—%‘klp . (3)
k=1

Some of the most important metrics are the Manhattan distance
L1, the Euclidean distance Lo, and the Chebyshev distance L.
In particular, it has been shown that L., can be expressed as

Loo(Xi,Xj) = plll};o Lp(Xi,Xj) = Hl,?JX |$ik — xjk|~

Note that for a coordinate based approach, violation to the tri-
angle inequality of network distance measurements may de-
grade the performance of the distance estimation. Fortunately
it has been shown in [6] that violation to the triangle inequality
violations is not particularly frequent through various measure-
ment data sets.

III. RELATED WORK
A. Methods in the Distance Data Space

Several methods have been proposed to estimate the network
distance between hosts on the Internet. These methods envision
an infrastructure in which servers (beacon nodes) measure net-
work distances between one another, and a client H, (ordinary
host) infers its distance to some other host H; based on the dis-
tance information between servers. Hotz defined, for a host H,,,
a distance vector d, = [da1,- .-, dum)’ [4], where d,; is the
measured distance to the ith beacon node for i € {1,...,m}
and m is the number of beacon nodes. Then, the network dis-
tance d,; between hosts H, and H; was shown to be bound by

max |dai - d})i| S dab S mln(d(ll + dbi)- (4)

Note that the lower bound is the Chebyshev distance between
the two vectors, d, and d;. Hotz also showed that the average
of the upper and lower bounds generally gives a better estimate
of the distance than either bound. Guyton et al. later applied
Hotz’s triangulation method to calculate the distances to various
servers and to locate nearby ones on the Internet [5].

A global architecture for estimating Internet host distances,
called the Internet Distance Map Service, IDMaps, was first pro-
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posed by Francis et al. [2]. The architecture separates beacon
nodes (called tracers) that collect and distribute distance infor-
mation from clients that use the distance map. Each tracer mea-
sures the distances to IP address prefixes (APs) that are close to
itself. A client first determines its own AP and the autonomous
system (AS) the AP is connected to. The client then runs a span-
ning-tree algorithm over the distance information gathered by
tracers to find the shortest distance between its AS and the AS
that the AP of the destination belongs to. This distance is taken
as the estimated distance. Methods of this type (i.e., methods
that represent network distances in a data space) neither analyze
delay measurements nor infer network topology. Consequently,
their performance depends heavily on the number and place-
ment of beacon nodes. If the number of beacon nodes is small,
the estimation performance may not be good.

In order to extract topological information, Ratnasamy et al.
[9] proposed a binning scheme. A bin is defined as the list of
beacon nodes in the order of increasing delay. The bin of a host
indicates the relative distances to all the beacon nodes. For ex-
ample, if the bin of a host is H,H.H}, beacon node H, is the
closest to the host, and H;, is the farthest from the host. The
authors applied the binning scheme to the problems of con-
structing overlay networks and selecting servers. A host joins
an overlay network node or selects a server whose bin is most
similar to its own bin.

B. Methods in the Geometric Coordinate System

Ng et al. proposed a coordinate-based approach, called
Global Networking Positioning (GNP) [3]. Instead of using the
raw network distances, GNP represents the location of each
host in a geometric space, in which the distance between two
hosts is defined as a distance function f?. The major advantage
of representing network distances in a coordinate system is its
capability to extract topological information from the measured
network distances. As a result, the accuracy in estimating
the distance between two arbitrary hosts will be improved
especially in the case that the number of beacon nodes is small.

Two optimization problems have been considered in GNP in
order to obtain the coordinates of beacon nodes and hosts in the
coordinate system. The first problem obtains the coordinates of
beacon nodes in GNP by minimizing the following objective
function:

Ti =" Edij, f4(xi%;)) ©)

0]
where £ is an error function (e.g., square error), d;; is the mea-
sured distance between the ith and jth beacon nodes, and x; is
the coordinate of the ith beacon node in the coordinate system.
The second optimization problem determines the coordinate of
an ordinary host H;, by minimizing the following cost function:

Jo = E(dni, f4(xi,x1)) (6)

where dj,; is the measured distance between host H and the ith
beacon nodes, and x;, is the coordinate of the host H. GNP
tackles both optimization problems using the Simplex Down-
hill method [10]. Unfortunately, the Simplex Downhill method

only gives a local minimum that is close to the starting value
and does not guarantee that the result is unique in the case that
the cost functions are not (strictly) convex. (The cost functions
expressed in (5) and (6) are not strictly convex.) It is stated in [3]
that the first optimization problem may have an infinite number
of solutions, and any solution is sufficient. If the solution to the
first optimization problem is a good approximation of a global
minimum, the coordinates of beacon nodes thus calculated suf-
fice in the first problem. However, this is not the case in the
second optimization problem. A host in GNP may have different
coordinates depending on the starting values used in the Sim-
plex Downhill method. The fact that ordinary hosts may have
nonunique coordinates may lead to estimation inaccuracy. We
demonstrate the problem in the following example.

Example 1: (Problem With GNP): Consider four hosts, two
of which are located in one autonomous system (AS), and the
other two in another AS. Also assume (for demonstration pur-
pose) that the distance between two hosts in the same AS is 1
while the distance between two hosts in different ASs is 3. Then
the topology can be expressed using the following distance ma-
trix D:

01 3 3
1 0 3 3
D_3301
33 10

In the Euclidean space model of GNP, the first cost function .J;
in two-dimensional coordinate system can be written as

We solve the optimization problem using the ‘fminsearch’
function in Matlab, which implements the Simplex Down-
hill method, with the starting values, x; = [0,0]7,x5 =
[1,1]7,x5 = [-1,-1]7, and x; = [0,0]7. The coordi-
nates of the beacon nodes calculated with this set of starting
values are x; = [0.4433,2.0048]7, xo = [1.2262, 1.4248]7,
x3 = [-0.5137,—-0.9240]T, and x4 = [—1.2966, —0.3440]7 .
Note that L2(X17X2) =0.9743 ~ 17 LQ(X17X3) =3.0812~3
and so on.

Now assume that a host H measures its distances to four
beacon nodes, and obtains a distance vector d;, = [1,4,1,4]T.
The cost function .J, of the second optimization problem in (6)
becomes

> (@ik — zar)?

k=1

Fig. 1 depicts the cost function .J, with respect to xp1
and ;2. The cost function has two local minima at
(1.2866,—0.9130) and (—1.3571,1.9938). Therefore, xj
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Fig. 1. Cost function for the coordinate of an ordinary host in Example 1.

can be either [1.2866, —0.9130]7 or [-1.3571,1.9938]% de-
pending on the starting values of the Simplex Downhill method.
If the starting value is (1, —1), the Simplex Downhill method
renders the former local minimum (1.2866, —0.9130). This
implies that GNP does not guarantee a unique mapping from
the raw distance vector to the Cartesian coordinate.

Our proposed approach, ICS, shares the similarity with GNP
in that it also represents locations of hosts in a Cartesian coordi-
nate system instead of a raw distance space, and consequently,
can extract topological information from measured network dis-
tances. ICS, however, provides a unique mapping from the dis-
tance space to the Cartesian coordinate system (and thus yields
a more accurate representation). In addition, it has the following
advantages:

e With the use of principal component analysis (PCA), a
host can calculate its coordinates by means of basic linear
algebra (e.g., the singular value decomposition and matrix
multiplication). The computational overhead is reduced.

* Unlike all the other previous work, a host does not have to
measure its distance to all the beacon nodes, but instead
to a subset of beacon nodes. The measurement overhead
is reduced.

It has come to our attention that Tang and Crovella [6] also
applied principal component analysis to project distance mea-
surements into a Cartesian coordinate system with smaller di-
mensions. The authors considered the coordinate of a host in the
coordinate system as the distances to virtual landmarks while
the coordinate in the distance data space represents the distances
to actual beacon nodes (landmarks). For the sake of scalability,
the authors also devised a coordinate exchanging method among
multiple coordinate systems.

Another technique that embeds the Internet graph into a
vector space is lighthouse [7]. Similarly, lighthouse uses a
linear transformation to compute the coordinates of hosts.
However, unlike ICS and virtual landmarks, lighthouse applies
the Gram-Schmidt process to compute an orthogonal basis
based on the intra-lighthouses distances. This is achieved
through the QR decomposition as opposed to singular value
decomposition (SVD, used in principal component analysis).
The key advantage of lighthouse is that a host has flexibility
in choosing its set of landmarks (termed as lighthouses) in a
distributed manner.
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Fig. 2. Example of the principal component analysis.

IV. PRINCIPAL COMPONENT ANALYSIS (PCA)

We now discuss how to extract topological information from
the distance matrix D in (2). In Example 1, the dimension of the
distance matrix D is four. As hosts in the same AS are very close
to each other, the distance can be represented in a two-dimen-
sional space by projecting their coordinates into two-dimen-
sional space. The dimensionality depends not on the dimension
m of the distance matrix D but on the network topology, and
can be much smaller than m.

We apply principal component analysis (PCA) [11], [13], [14]
to reduce the dimension of the distance matrix while retaining
as much topological information as possible. In a nutshell, PCA
transforms a data set that consists of a large number of (possibly)
correlated variables to a new set of uncorrelated variables, prin-
cipal components, which can characterize the network topology.
The principal components are ordered so that the first several
components have the most important features of the original
variables. In particular, the kth principal component can be in-
terpreted as the direction of maximizing the variation of pro-
jections of measured distance data while orthogonal to the first
(k — 1)th principal components [13]. We use the following ex-
ample to illustrate the concept.

Example 2: Fig. 2 gives an example of performing PCA for
two correlated variables,  and y. With the use of PCA, we
obtain two principal components, pc; and pc,. As shown in
Fig. 2, the first principal component pc, represents the direction
of the maximum variance. The one-dimensional linear represen-
tation is calculated by projecting the original data onto pc;. [

Now the question is how to determine these principal com-
ponents. The most common approach is to use singular value
decomposition (SVD). Specifically, the SVD of D in (2) is ob-
tained by

D=U-W.V7,
g1
g2

W= ’ 7 @

Om

where U and V are column and row orthogonal ma-
trices, and o;’s are the singular values of D in the de-
creasing order (i.e., o; > o if ¢ < 7). Note that
DD = (UWVHT(UWVT) = V(WITW)VT. This
means that the eigenvectors of D7D make up V with the
associated (real nonnegative) eigenvalues of the diagonal of
WTW [12]. Similarly, DD = UT(WW7Y)U. The columns
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of the m x m matrix U = [uy,...,u,,] are the principal
components and the orthogonal basis of the new subspace. By
using the first n columns of U denoted by U,,, we project the
m-dimensional space into a new n-dimensional space:
C,‘,:Ug'di:[U17...,un]T'd1‘,. (8)
We re-visit Example 1 to illustrate the procedure.
Example 3: (Example Revisited): Consider the four hosts
and the corresponding distance matrix in Example 1. We ob-

tain the principal components via singular value decomposition
in (7):

r_1 1 1
-3 3 0
_1 o1 1
u=|"2 "2 "»
=1 1 g0 _ |
2 2 V2
11 9 L
L 2 2 V2
70 0 0
05 0 0
W=1001o0
Lo 0 01

The original distance vector of the firsthostis d; = [0, 1,3, 3]T.
With the use of (8), we can calculate the coordinate of the first
host in a two-dimensional coordinate system as

0
. 11 o117 |y _7
a=Updi=| 1 1 12} 3 :[f}
2 T2 2 2 2
3
Similarly ca2(= ¢1) = [-3.5,25]7 and ¢35 = ¢4 =

[-3.5, —2.5]T". Note that PCA assigns the same coordinate to
the two hosts in the same AS because of the low dimension-
ality. When n = 4,Uy; = U,¢; = [-3.5,2.5,-0.7071, 0],
cy = [-3.5,2.5,0.7071,0], ¢ = [-3.5,—2.5,0,0.7071],
and ¢4 = [-3.5,-2.5,0,—0.7071]. In this case (n = m),
the mapping ¢; = U7 - d; is isometric (e.g., La(d1,d3) =
Ly(cq,c3) = 5.0990), and thus the two spaces spanned by d;’s
and c;’s are the same from the perspective of geometry (i.e.,
Lg(di7dj) = LQ(Ci7 Cj)).

5,
5,

A. Dimensionality

Another important issue that should be addressed in repre-
senting network distances in a n-dimensional coordinate system
is how to determine the adequate degree, n, of dimensions in
the coordinate system. This problem has not been extensively
studied, and is usually application-dependent [15]. One of the
commonly adopted criteria is the cumulative percentage of vari-
ation that selected principal components contribute to [11]. The
percentage, tj,, of variation accounted for by the first & principal
components is defined by

k
Zj:l 0j

Zj:l gj

C))

TABLE 1
AVERAGE PROXIMITY IN ORIGINAL GEOMETRY SPACE D

Metric | NPD (m = 33) | NLANR (m = 113)
I 5318 6.964
Lo 6.545 6.495
Loo 12.151 5.504

One may pre-determine a cut-off value, ¢t* of cumulative per-
centage of variation, and calculate n to be the smallest integer
such that ¢,, > t*. In the previous example, t; = 50%,ts =
85.7%,t3 = 92.9%, and t4 = 100%. If t* is set to 80%, then
the degree of dimensions should be set to n = 2.

B. Experimental Results

To investigate whether or not PCA can be used to transform
network distances on the Internet to coordinates in a coordinate
system of smaller dimensions and still retain as much topolog-
ical information as possible, we apply PCA to two real-life data
sets:

¢ NPD-Routes-2 data set [16]: contains Internet route mea-
surements obtained by traceroute. The measurements
were made between 33 Internet hosts in the Network
Probe Daemon (NPD) framework from November 3,
1995, to December 21, 1995. We obtain the distance
matrix D in (2) by taking (for each pair of hosts) the
minimum value of measured RTTs in order to filter out
the queuing delay.

* NLANR: contains the RTT, packet loss, topology, and
on-demand throughput measurements made under the Ac-
tive Measurement Project (AMP) at National Laboratory
for Applied Network Research (NLANR). More than 100
AMP monitors are used to make the measurements [17].
The RTTs between all the monitors are measured every
minute, and are processed once a day. We use one of the
NLANR RTT data sets measured between 113 AMP mon-
itors on April 9, 2003.

We first compare different distance metrics with respect to
their quality of representing topological information. Given that
the number of hosts in the data set is m, each host has an m di-
mensional distance vector as its coordinate in the raw distance
space, and an n dimensional distance vector in the coordinate
system obtained by PCA (1 < n < m). We calculate for each
host the distances L1, Lo, and L, in (3) to all the other hosts,
and determine its closest host based on the distance calculated
in the coordinate system. As the “closest” host calculated under
the various distance metrics may not be the actual closest host,
we define the notion of proximity to measure the quality of rep-
resenting topological information. If the host calculated to be
the closest is the kth closest, the proximity is set to k, & > 1.
We average, for each distance metric used, the proximity over
all the hosts.

Table I gives the average proximity in the raw distance space,
whose dimension is m = 33 and 113 for the NPD and NLANR
data sets, respectively. In the NPD data set, L1 gives the best per-
formance — the host calculated to be the closest is the 5.818th
closest host averagely. In the NLANR data set, L., gives the
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Fig. 3. Average proximity for the NPD data set and the NLANR data set under
different distance metrics. (a) NPD. (b) NLANR.

best performance. These results show that the accuracy of repre-
senting topological information in a raw distance space depends
heavily on the distance metric.

Next we study the (in)effectiveness of using PCA to repre-
sent network distances. Fig. 3 gives the average proximity with
respect to the number of principal components for the NPD and
NLANR data sets. As shown in Fig. 3(a), when the number of
principal components is greater than 3, the proximity is almost
the same as that in the raw distance data space. This means that
the topological information can be effectively represented in a
three-dimensional space instead of in a 33-dimensional space.
Another important observation is that the average proximity in
the new coordinate system of smaller dimensions remains the
same regardless of the distance metric used. The reason why
the proximity is independent of the distance metric used is due
to the fact that PCA finds a set of uncorrelated bases to represent
the topological information. A similar trend can be observed in
Fig. 3(b) in which the proximity is almost the same as that in
the distance space when the number of principal components is
larger than 10.

Fig. 4 plots the eigenvalues and their corresponding cumula-
tive percentage of variation. The largest eigenvalues are 4760.0
and 7787.3, respectively, for the NPD and NLANR data sets. If
we set a cut-off threshold of t* = 80%, the smallest value of
n that achieves the threshold for each data set is, respectively,
9 and 7. In this case, 09 = 354.7, and the average proximity
is 6.54 for the NPD data set, and 07 = 325.2 and the average
proximity is 7.49 for the NLANR data set.
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Fig. 4. Eigenvalues and cumulative percentage of variation for the NPD data
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In summary, we show in this section that the network distance
on the Internet can be represented, with the use of PCA, in a
Cartesian space that uses a (smaller) set of uncorrelated bases.
Moreover, we show that the new coordinate system is less sus-
ceptible to the distance metrics used in representing topological
information.

V. INTERNET COORDINATE SYSTEM

A. Overview

We first present a basic architecture for the Internet Coordi-
nate System (ICS). As mentioned in Section I, the objectives of
ICS are: i) to infer the network topology based on delay mea-
surement, and ii) to estimate the distance between hosts without
direct measurement. Succinctly, the architecture for ICS con-
sists of a number of beacon nodes that collect and analyze the
distance information. Fig. 5 gives an example architecture of
ICS with five beacon nodes. Beacon nodes periodically measure
RTTs to other beacon nodes and construct a coordinate system.
The coordinates of beacon nodes are then calculated, with the
use of PCA, based on the measured RTT data among the five
beacon nodes. We will elaborate on how to calculate the coor-
dinates of beacon nodes in Section V-B.

An ordinary host determines its own location in ICS by mea-
suring its delays to the entire or partial set of beacon nodes and
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beacon 3

Fig.5. Example architecture for the proposed Internet Coordinate System (five
beacon nodes and three ordinary hosts).

obtains a distance vector. As exemplified in Fig. 5, host 1 mea-
sures its distance to five beacon nodes, and obtains a five-di-
mensional distance vector. The location of the host in ICS is
then calculated by multiplying the distance vector with a trans-
formation matrix. (We will elaborate on how the transformation
matrix is derived and distributed in Section V-C.) After calcu-
lating its own coordinate, host 1 may report its coordinate to a
DNS-like server that keeps coordinates of ordinary hosts. To es-
timate the network distance to some other host, host 1 may query
this DNS-like server which then determines the estimated dis-
tance as long as the coordinate of the other host is kept at the
server. In the same manner, host 1 can also infer which other
host is closer to itself.

B. Calculating the Coordinates of Beacon Nodes

‘We now elaborate on how we construct ICS based on the mea-
sured network distances between m beacon nodes, and apply
PCA (Section 1V) to “transform” the raw distance space to a
new coordinate system of (much) smaller dimensions.

Each beacon node measures its distances to the other beacon
nodes, and obtains a m-dimensional distance vector d; in (1),
of which the jth element d;; is the measured distance to the
jth beacon node. An administrative node, which can be elected
among beacon nodes, aggregates the distance vectors of all the
beacon nodes, and obtains the distance matrix D in (2). Then,
the distance matrix is decomposed into three matrices U, W,
and V in (7). Using the first n principal components, the coor-
dinate of a beacon node is calculated as ¢; = U,,d; in (8). As
shown in Section I'V-B, this coordinate preserves topological in-
formation.

Note that the distance between two beacon nodes calculated
by (8) does not coincide with its actual measured distance. For
instance, L2(c1,¢3) = 5 # di3 = 3 whenn = 2 in Ex-
ample 3. To use the coordinates for distance estimation, we
apply a simple linear operation, ¢; = ac; + (3, so as to min-
imize the discrepancy between the distance represented in the
coordinate system and the measured distance. As a translation
operation does not affect the distance between two coordinates,
we only consider the scaling operation with a scaling factor «,
i.e., f = 0. The optimal scaling factor a*(n) that minimizes
the discrepancy between the Euclidean distance in the new co-

ordinate system of dimension n and the measured delay, i.e.,
Ly(E;,¢j) =~ d;j foralliand j € {1,..., m}, can be deter-

’ ’

mined by minimizing the following objective function J(«):

J(a) = Z Z(Lg(aci, ac;) — di;)?. (10)

After a few algebraic operations, the positive solution, a*, can
be shown to be

_ X X dila(eiscj)
i 2y La(eis i)?

The transformation matrix U,, from a distance vector in the dis-
tance space to the coordinate in ICS is then defined as

_ Sy digli
Un = a*<n)U’n = ZL mZJ m ]2 ’
Zi Zj lij

where /;; = L2(UZd;,UZd;) and the transformation matrix
U, = [ui,...,u,] is obtained from the distance matrix D
between beacon nodes and its SVD. The coordinates of beacon
nodes are then calculated as &; = UZd, foralli € {1,...,m}.

In summary, the procedure taken to calculate the coordinates
of beacon nodes is as follows:

Y

a”(n)

U, (12)

S1) Every beacon node measures the RTTs to the other
beacon nodes periodically.

S2) Anadministrative node aggregates the delay information
and obtains the distance matrix D in (2).

S3) The administrative node applies PCA in (7) to obtain the
transformation matrix U.

S4) The administrative node determines the dimension of the
coordinate system using the cumulative percentage of
variation defined in (9) (with a pre-determined threshold
value).

S5) The administrative node calculates the transformation
matrix U, in (12) from (7) and (11).

Note that the administrative node may be replicated (perhaps
in a hierarchical manner) to enhance fault tolerance and avail-
ability. This subject is outside the scope of this paper, but is war-
rant of further investigation. We illustrate the above procedure
by revisiting Example 1.

Example 4: Assume that the four hosts in Example 1 are
beacon nodes. When n = 2,¢; = ¢o = [-3.5,2.5], and
c3 = ¢4 = [—3.5,—2.5]T. By (11), the scaling factor « is 0.6,
and the transformation matrix Us is

g, [-03 —03 —03 —03]"
27 1-03 -03 03 03
Therefore, ¢4 = € = [-2.1,1.5], and €3 = ¢4 =

[-2.1, —1.5]. The distances between two hosts in different
ASs is exactly 3. When n = 4, = 0.5927, Ly(c4,
62) = L2(63,64) = 08383, and Lg(él,ég) = Lg(él,
€4) = Lo(Ca, €3) = Lo(T2,T4) = 3.0224. O

C. Determining the Coordinate of a Host

The procedure that a host takes to determine its coordinate in
ICS is as follows:
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A host H,

H1) obtains the list of beacon nodes and the transformation
matrix U, in (12) from the administrative node.

H2) measures the network distances, 1, = [la1,. ., lam
to all the beacon nodes using ping or traceroute, where
lq; denotes the delay measured between host H, and
the 2th beacon node. (We will discuss how to reduce the
number of measurements in Section V-D.)

H3) calculates the coordinate, x,, by multiplying the mea-
sured distance vector with the transformation matrix,
ie,x, = UT.1,.

]T

)

Example 5: Consider the ICS system in Example 4. Assume
that host H,, is closer to the AS where the first two beacon nodes
reside, and obtains a distance vector of 1, = [1,1,4,4]7. In
(H3), x, = [-3,1.8]7. In the case of n = 2, the estimated
distances between host H,, and beacon nodes are L (€1,X,) =
LQ(EQ,XG) = 094, and Lg(ég,xa) = L2(64,Xa) = 3.42.
Assume that host Hj is far from all four beacon nodes, and
obtains a distance vector of 1; = [10, 10, 10, 10]%". In this case,
xp = [—12,0]T, and La(€;,x;) = 10.01 fori =1,...,4. O

D. Reducing the Number of Measurements

To discover accurately the topology of the Internet, a suffi-
cient number of beacon nodes should be judiciously placed on
the Internet. (Note that PCA is able to extract essential topolog-
ical information from a set of (perhaps correlated) delay mea-
surements. However, it does not preclude the important task of
placing beacon nodes properly on the Internet so as to represent
the network topology accurately. We will comment on this issue
in Section V-E.) On the other hand, for the sake of scalability,
it is not desirable that a client has to measure its RTTs to all the
beacon nodes. To reduce the measurement overhead incurred by
a host, it would be desirable that a host measures the distance
from itself to only a subset of beacon nodes. This also allows
ICS to operate even in the case that some of the beacon nodes
are not available (due to, for example, transient network parti-
tion and/or node failure).

In (H3), the transformation matrix IjTTL and the original dis-
tance vector 1, are needed to calculate the coordinate of a host.
The transformation matrix is fixed in ICS once it is calculated by
the administrative node. If host H, makes delay measurements
only to a subset, N, of beacon nodes, the missing elements in
l,, i€, lq;, i € N, have to be inferred.

The procedure for partial measurement is as follows: Host
‘H,, randomly chooses k beacon nodes (k < m) and measures
its distances to this subset, A, of beacon nodes. (In our experi-
ments, we will investigate the effect of the value of £ on the esti-
mation performance.) Instead of calculating the coordinate by it-
self, host H, transmits the distance vector 1, with m—k missing
elements to the administrative node. For each missing element
l,; in1,, the administrative node (i) selects in V' a beacon node
(say the jth beacon node) that is closest to the sth beacon node,
(ii) replaces the missing element [,; with a function of [,; (to
be discussed below), and (iii) calculates the coordinate on the
behalf of host H,.

The performance of the partial measurement method depends
heavily on how well the missing elements in 1, are represented
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[step (ii)]. In order to improve the performance, instead of di-
rectly using the network distance measured to the closest beacon
node, we can leverage Hotz’s triangulation method (Section III)
as follows: As a beacon node H,, that is not in A/ has already
measured its distances to other beacon nodes, the distance be-
tween host H, and node H;, can be estimated using Hotz’s tri-
angulation method.

E. Enhancing ICS by Clustering

If beacon nodes are well distributed and selected with respect
to a certain clustering criterion, the performance is expected
to be better [3] because the basis of the coordinate system is
constructed based on the measurements between beacon nodes.
There are essentially two aspects in which the notion of clus-
tering can be applied in selecting beacon nodes. On the one
hand, if the distances among hosts that are available to serve
as beacon nodes can be measured, a clustering algorithm can be
applied to group hosts that are close to one another into clus-
ters [18]. Each host is initially assigned to its own cluster, and
pairs of neighboring clusters are repeatedly merged into a single
cluster until & clusters remain. The median node in each cluster
is selected as a beacon node. This approach serves as a guideline
for placement of beacon nodes.

On the other hand, if the beacon nodes have been placed a
priori, the clustering technique can be incorporated into the par-
tial measurement method (Section V-D) as follows: Instead of
randomly selecting of beacon nodes in Section V-D, the admin-
istrative node specifies, for a host H,, a list of beacon nodes
to which host H, should make delay measurements. The ad-
ministrative node applies the clustering technique to form clus-
ters among beacon nodes, and selects for each cluster a median
beacon node. The administrative node then sends host H,, a list
of median beacon nodes. The rest of the operations follow the
procedure given in Section V-D.

VI. EMPIRICAL STUDY

To validate the effectiveness of ICS in inferring the Internet
topology, we conduct experiments using both an empirical data
set (NLANR) [16] and a synthetic data set (GT-ITM) [19]. As
discussed in Section IV-B, the NLANR data set contains real
delay data measured by ping. The GT-ITM data set, on the other
hand, is obtained using the GT-ITM topology generator [19]
and the ns-2 simulator [20]. The quality of a coordinate system
can be affected by several factors such as the number and dis-
tribution of beacon nodes and the complexity of the network
topology. With the use of the GT-ITM topology generator, we
are able to study ICS under a wide variety of network topologies,
and investigate the effect of network topology on the perfor-
mance of ICS. For each data set, we randomly select m beacon
nodes (3 < m < 30).

We compare ICS against with IDMaps, Hotz’s triangulation,
and GNP with respect to the average of estimation errors &;;
defined as
ol = LG,

i =
J dij
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triangulation. (b) GNP and ICS.

fori,j € {1,...,H} and i # j. Here H is the number of
hosts in the data sets, d;; is the measured distance, and L(i, j)
is the estimated distance between the 7th and jth hosts. IDMaps,
Hotz’s triangulation, GNP, and ICS are implemented as follows:

* IDMaps: Suppose hosts H,, and H,, are close to the sth and
the jth beacon nodes (called tracers in IDMaps), respec-
tively, and their corresponding distances are denoted as
dq; and dy;. Then the estimated distance is d; +dy; +d;,
where d;; is the distance between the ith and jth beacon
nodes.

* Hotz’s triangulation: With (4), we calculate three Hotz’s
distances, i.e., the lower bound (denoted as /b), the upper
bound (denoted as ub), and the average of the two bounds
(denoted as avg).

* GNP: We solve the two optimization problems mini-
mizing J; in (5) and J in (6) using the ‘fminsearch’
function in Matlab (which implements the Simplex
Downhill method). We vary the dimension of the coor-
dinate system from n = 2 to 10, and report the most
representative results.

* ICS: We evaluate both the full and partial measurement
methods in a coordinate system with dimension varying
from n = 2 to 10. In the partial measurement method,
we compare the performance between the cases where
beacon nodes are randomly selected and are determined
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Fig. 7. The effect of the dimension of the coordinate system on the
performance of ICS and GNP for the NLANR data set (n: dimension of
coordinate system). (a) ICS. (b) GNP.

by clustering. The number of beacon nodes which a host
measures its distance to is setto k = n + 1, 2n, and 3n,
where n is the dimension of the coordinate system. In
the partial measurement method, the missing elements in
the distance vector 1, of host H, are estimated by Hotz’s
triangulation (as was discussed in Section V).

A. Results for the NLANR Data

1) Comparison in Terms of Estimation Errors: Fig. 6(a)
gives the estimation errors of IDMaps and Hotz’s triangulation.
The error obtained by IDMaps is quite large, but gradually de-
creases from 1.32 at m = 3 to 0.40 at m = 30. As the estimate
is calculated by the sum of the three distances dq; + dp; + d;, if
the two beacon nodes are on the shortest path, the estimate well
approximates the network distance. This accounts for the fact
that the estimate becomes more accurate as mn increases. The
upper bound of Hotz’s triangulation exhibits the same trend
as IDMaps. As m increases, the probability that the beacon
nodes are on the shortest path between two hosts also increases.
The lower bound is quite accurate when m is small. However,
the estimation error increases as m increases. Consistent with
the findings in [5], the average of the two bounds renders a
more accurate estimate of the network distance, and is less
susceptible to the number of beacon nodes.

Fig. 6(b) gives the estimation errors of GNP, ICS with the full
measurement method, and Hotz’s triangulation with the average
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Performance of ICS with the partial measurement method for the NLANR data set (n2: the dimension of coordinate system, k: the number of measurements,

and m: number of beacon nodes). (a) k = min(n + 1, m). (b) kK = min(2n,m). (¢) k = min(n + 1,m). (d) ¥ = min(2n, m).

of the two bounds. GNP performs better than Hotz’s triangula-
tion when the number of beacon nodes is small (. < 15). How-
ever, its estimation error increases as m increases, and becomes
almost the same as that of Hotz’s triangulation. This is prob-
ably due to the fact that a local minimum (rather than a global
minimum) is selected in the optimization problems. Consider,
for example, the case that there exist twenty beacon nodes and
the dimension of the coordinate system is five. The cost function
J1 is minimized in a hundred-dimensional vector space, i.e., the
number of variables in the coordinates of beacon nodes is 100.
In general, an optimization problem of high dimensions easily
converges to a local minimum, which in turn leads to inaccu-
racy in the coordinates of hosts, as explained in Section III-B.
ICS gives the best performance. Considering that the RTT mea-
surement between two hosts usually exhibits a large variation
(the average of the standard deviation of RTT measurements is
approximately 32% of the RTT measurement), the delay esti-
mated by ICS is quite accurate. In most cases, it incurs lower
estimation errors than IDMaps. It gives the same performance
as GNP when m < 15 and better performance when m > 15.
Here, we select the dimension of the coordinate system to be
five as the improvement is marginal when n > 5 as shown in
the next figures.

2) Effect of the Coordinate System Dimension on the Perfor-
mance: Fig. 7 depicts the effect of the dimension of the coor-
dinate system on the performance of ICS [Fig. 7(a)] and GNP
[Fig. 7(b)]. The estimation error of ICS is the largest when the
dimension of the coordinate system is two (n = 2), and im-

proves as the network topology is represented in higher dimen-
sional space. However, the improvement levels off when n > 6.
Note that the cumulative percentage tg for n = 6 is 78.14%
in Fig. 4. The estimation error of GNP is the smallest when
n = 4, and is even slightly better than that of ICS in the range of
5 < m < 16. Note also that the estimation error of GNP when
n = 6 is much larger than that when n = 4. This is again due to
the reason that the number of variables increases as n increases.
This shows that the accuracy of GNP depends on the selection
of the dimension of the coordinate system.

Fig. 8 gives the results of ICS with the use of partial mea-
surement method. Among m beacon nodes, k£ beacon nodes are
either randomly selected [Fig. 8(a) and (b)], or determined by
the clustering technique [18] [Fig. 8(c) and (d)]. The number of
measurements made by a host is now proportional to the co-
ordinate dimension n, i.e., ¥ = min(n + 1,m) in Fig. 8(a)
and (c), and k& = min(2n,m) in Fig. 8(b) and (d). As shown
in Fig. 8(a), when n = 6, a client measures its distances to
six beacon nodes regardless of the value of m, and the average
of the estimation errors is increased by 20.2% [from 0.3287 in
Fig. 7(a) to 0.3951]. When the number of measurements is dou-
bled in Fig. 7(b), the average of the estimation errors is increased
only by 6.0% [as compared to Fig. 7(a)] in the case of n = 6.
An encouraging result is that the estimation error does not sig-
nificantly increase even when the number of measurements is
small (i.e., m > k). This is perhaps due to the fact that mea-
surements made in a coordinate system with the use of more
beacon nodes are more accurate. As shown in Fig. 8(c) and (d),
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Fig.9. Comparison between ICS and GNP with respect to computational costs
incurred in calculating the coordinates of beacon nodes and ordinary hosts (n:
dimension of coordinate system). (a) Beacon nodes. (b) Ordinary hosts.

when the median node of each cluster is chosen as a beacon
node, the estimation errors are comparatively smaller than those
in Fig. 8(a) and (b), respectively. This implies that the partial
measurement method benefits from choosing most representa-
tive beacon nodes (i.e., the median node of each cluster).

3) Comparison Between ICS and GNP in Terms of Compu-
tational Costs: To study the computational costs incurred by
ICS and GNP, we have implemented their functions of com-
puting coordinates with the ‘svd’ and ‘fminsearch’ functions
in Matlab, and made the measurement by using the ‘cputime’
function on an IBM Thinkpad T30 (with a single 1.8 GHz Pen-
tium I'V processor and 512 MBytes main memory) that runs Mi-
crosoft Windows XP. Fig. 9 shows the average CPU time con-
sumed in computing the coordinates of beacon nodes Fig. 9(a)
and ordinary hosts Fig. 9(b) under ICS and GNP. As shown in
Fig. 9(a), as the number of beacon nodes increases, the com-
putation time of GNP for calculating the coordinates of beacon
nodes exponentially increases. When the dimension is 6 and the
number of beacon nodes is 30, the computation time of GNP is
884.06 s (about 15 min). With ICS, the maximal computation
time is approximately 17.1 ms. Similarly, as shown in Fig. 9(b),
the computational time incurred in calculating the coordinate of
an ordinary host can be up to 1.2 s under GNP, while remaining
less than 30 s for all cases under ICS. This suggests that ICS
incurs at least an order of magnitude smaller computation over-
head in calculating the coordinates than GNP.

We now investigate the effect of topology complexity on the
estimation. As mentioned in [19], the GT-ITM topology gener-

ator can be used to create three types of graphs: flat random
graphs, hierarchical graphs, and transit-stub graphs. We gen-
erate two-level and three-level hierarchical graphs, each with
400 nodes. Note that each graph has the same number of nodes;
however, three-level hierarchical graphs represent more com-
plex network topologies.

B. Results for the GT-ITM Data

1) Effect of Topology Complexity on the Perfor-
mance: Fig. 10(a) and (b) depict the performance of IDMaps,
Hotz’s triangulation, GNP, and ICS under the two-level
hierarchical topology. As shown in Fig. 10(a), methods that
represent the network topology in a distance space give
large estimation errors when the number of beacon nodes
m 1is small, and their performance gradually improves as m
increases. Among IDMaps and the three versions of Hotz’s
triangulation, the lower bound of Hotz’s triangulation gives
the best performance. As shown in Fig. 10(b), between the
two coordinate-system-based approaches, GNP renders large
estimation errors, and the errors increase as m increases. The
estimation error of ICS, on the other hand, is 0.30 at m = 5,
decreases as m increases, and becomes 0.17 at m = 30.

As shown in Fig. 10(c) and (d), all the approaches, except
ICS, give larger estimation errors under three-level hierarchical
topologies. In particular, the performance of GNP deteriorates
quite significantly. ICS gives almost the same performance as
in two-level hierarchical topologies. This result shows that PCA
(upon which ICS is built) can effectively extract topological in-
formation than the minimization optimization of cost functions
J1 and J5 in (5) and (6) used in GNP.

2) Effect of the Dimension of Coordinate Systems on the Per-
formance: Fig. 11 depicts the effect of the coordinate system
dimension on the performance of ICS with the full and partial
measurement methods. The number of measurements made in
the partial measurement method is set to & = min(2n,m), and
beacon nodes to which the distance measurement is made are
randomly selected among 1 beacon nodes. Under all the cases,
as the dimension, 7, of the coordinate system increases, the esti-
mation errors decrease. As shown in Fig. 11(a), there is virtually
no performance improvement when n > 3, which implies that
a three-dimensional coordinate space is sufficient to represent
the two-level hierarchical topology. However, when the partial
measurement method is applied, the estimation error increases
from 0.209 to 0.407 in the case of n = 3. This means that even
though a three-dimensional space is sufficient to represent the
network topology, the number of measurements required should
be larger than six in order to determine the coordinates of hosts
accurately. As shown in Fig. 11(c), the estimate made by ICS is
quite accurate under the three-level hierarchical topology, and
the errors decrease as n increases. As shown in Fig. 11(d), the
estimation errors become larger when partial measurement is
made, but if the number of measurement is larger than k = 12,
the estimation error can be controlled to fall below 0.32.

In summary, IDMaps and the upper bound of Hotz’s triangu-
lation are inaccurate in the case that the number, m, of beacon
nodes is small. Their performance improves as m increases. In
contrast, the lower bound of Hotz’s triangulation is accurate
in the case that m is small for the NLANR and GT-ITM data
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sets, and the errors become larger for the NLANR data set as
m increases. As compared with the two bounds of Hotz’s trian-
gulation, the average of the two bounds is less sensitive to the
number of beacon nodes. GNP can estimate distances accurately
only when the number of variables in the corresponding opti-
mization problems is small, i.e., the number of beacon nodes and
the dimension of the coordinate systems are small. ICS provides
accurate estimates under most cases, regardless of the number
of beacon nodes (as long as it exceeds a certain threshold), the
dimension of the coordinate systems, and the level of topology
complexity. ICS with the partial measurement method reduces
the number of measurements required, while not significantly
degrading the performance. This is especially true when the
number of beacon nodes and the dimension of the coordinate
systems are large. Moreover, more accurate estimation can be
made with the partial measurement method if beacon nodes are
chosen with respect to a certain clustering criterion.

VII. CONCLUSION

In this paper, we present a new coordinate system, called
the Internet Coordinate System (ICS), for measuring the net-
work distance over the Internet. We show that the principal com-
ponent analysis (PCA) technique can effectively extract topo-
logical information from delay measurements between beacon
hosts. Based on PCA, we devise a transformation method that
projects the raw distance space into a new coordinate system
of (much) smaller dimensions. The transformation retains as
much topological information as possible and yet enables end
hosts to determine their locations in the coordinate system based
on a small number of measurements. We show via experiments
with both real-life and synthetic data sets that ICS can make ac-
curate and robust estimates of network distances between end
hosts and is much less computationally expensive, regardless of
the number of beacon nodes, the dimension of coordinate sys-
tems, and the level of topology complexity. Finally, we show the
number of measurements made by a host can be further reduced
without significant loss of accuracy.
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