Implementation of IETF RFC 2782: Using DNS SRV Resource Records for specifying the location of services

Nicholis Bufmack

December 8, 2007

Abstract

The Network Working Group Request for Comments number 2782 specifies a DNS
resource record (RR) which specifies the location of the server or servers for a specific protocol
and domain. RFC 2782 outlines a methodology whereby clients can obtain the address of
servers providing a requested service on a specific domain without having to know the
exact
address of servers providing that specific service. Another feature of RFC 2782 is the ability to
provide weight and priority information to clients requesting service and protocol records. In
this way, a generalized method for client-side intelligent routing can be provided.

Current implementation of RFC 2782 is restricted solely to the server providing address
resolution services to clients; for example, BIND versions 8 and 9 and Windows Server 2003
allow domain administrators to provide clients with DNS RR when queried. However, client
side implementation is practically non-existent, as is service provider implementation.

The present work seeks to provide an example service implementation model for RFC 2782;
that of the web server and web browser. Multiple web servers, using a simple weight and
priority scheme, update a name server and a web browser, after requesting the service's DNS
RR routes to the web server with the highest priority (meaning lightest load).

Overview

Using 6 virtual machines running on a virtual network, a network consisting of 3 web servers, a
single name server, and 2 clients was constructed. The name server was modified to provide
SRV RR records for the HTTP service and to allow updates from the primary authority for the
web server cluster. Additionally, the primary domain web server ran a service that queried the
secondary web servers for service load details, updating the weight field before updating the
name server's SRV RR record for the domain. Finally, a web browser was modified to allow for
the processing of SRV RR fetched from the name server and a simple attempt at generating
random traffic, to prompt changes in the web servers' loads, was implemented.

Similar Work

RFC 2872 is currently implemented in all modern name servers of wide spread use, such as
BIND 8, BIND 9, and Windows Server 2003. Additionally, the same name servers allow for
dynamic DNS record updates. However, no client (especially web browser) implements RFC
2872. [2, 7]

Introduction

RFC 2872 defines a RR describing the location of the server(s) for a specific protocol and
domain, allowing administrators to use several servers for a single domain, to freely move
services from host to host, to designate a host as primary for a given service and others as
secondary, and to provide server load information to clients. [4]

The basic process is as follows: A client asks for a specific service and protocol in a specific

domain. In response, the client receives the names of any available servers for that service and
protocol within the domain along with a relative priority and weight for each server. This is in
contrast to both the current “contact the first record received mechanism” used by clients and
with the round-robin load balancing mechanism used by the name server; RFC 2872 replaces
this with a dynamic, intelligent approach on the client end and with a hands-off approach on the
name server end. [1]

In this project, the specific process for name resolution is as follows: The web browser sends a
request to the DNS server, requesting HTTP service information for the domain. The lookup
query sent is formatted as follows: _http._tcp.testnet.com. Note that this is not the standard
lookup request sent by most web browsers, though it is sent in the same way. The response to
the lookup consists of the usual response fields (overhead, echoing the query string, the IP4 or
IP6 address records of the host, etc.) plus a
SRV RR for each host providing the requested
server in that domain. The web browser then sorts the SRV RR returned and selects the one with
the highest priority, using the address record for the selected host to establish a connection. [4]

More specifically, the following algorithm, as required by the RFC is followed, albeit in a
slightly modified format (the mechanism for selection based on priority and weight was
simplified):

· Do a lookup for QNAME = _service._protocol.target, QCLASS=IN, QTYPE=SRV.

· If the reply is NOERROR, ANCOUNT>0 and there is at least one SRV RR which specifies the requested service and protocol in the reply:

· If there is precisely one SRV RR and its target is “.”, abort. Else, for all RR's, build a list of (priority, weight, target) tuples.

· Sort the list by weight with the lowest number first.

· Select the element with the highest weight (the one at the end of the list).

· Use the address record found in the response section of the SRV RR to connect to the (protocol, address, service). [4]

SRV RR

The central idea behind RFC 2872 is the SRV RR. The format of the SRV RR follows.

_Service._Proto.Name TTL Class SRV Priority Weight Port Target

Service

 The symbolic name of the desired service. For this project, _HTTP was used.

Proto

The symbolic name of the desired protocol. For this project, _TCP was used.

Name

The domain that the RR refers to. The test domain in this project was

testnet.com.

TTL

Time to live, indicative of how long to keep the record alive.

Class

SRV records are members of the IN class.

Priority

The priority of the target host. A SRV RR aware client must attempt to connect to

the target with the lowest-numbered (and therefore, highest) priority. In this

project, each SRV RR was given a priority of 0.

Weight

A server selection mechanism, used to select a target from those with equal

priority. For the purposes of this project, the weight was dynamically adjusted

based on the relative load of the target at sample time. A value of 655535 (the

highest) was assigned to the target with the least number of HTTP GET

requests in the web server log and 0 was assigned to the target with the most

entries. With multiple servers in a normal production environment, a probabilistic

mechanism is implemented where the relative weight of a target is determined as

compared to the sum of the available target's weight. A random number can then

be generated and compared to the computed probability for each target, with the

matching host being selected for contact. As previously noted, a more

deterministic approach was taken in this project.

Port

The port of the service on the target host. The value used in this project was 80

(the port associated with HTTP and the web).

Target

The domain name of the target host. Address records must exist for the target,

can be of type A or AAAA, and are returned as additional data with the SRV RR.

Implementation

Network

To implement the request for comments, a simple network was constructed. The overall goal of
the network was one of simplicity in so far as the network is only needed to provide the
framework for the example implementation. To this end, the network topology was kept simple:
6 virtual machines, each running Fedora Core 7 and existing within Virtual Box by Innotek
Technologies. Each machine possessed 2 network interfaces, each connected to a different one
of the two constructed networks: a redirected network using NAT that is used to connect to the
Internet for update purposes during virtual machine setup and an internal network, inaccessible
from outside the virtual environment. Details of the virtual machine internal network can be
found in Table 1. The NAT network is not included and used DHCP to resolve addresses.

Host Name
IP Address

ifc7dns1
192.168.1.10

ifc7web1
192.168.1.20

ifc7web2
192.168.1.21

ifc7web3
192.168.1.22

ifc7client1
192.168.1.30

ifc7client2
192.168.1.31

Table 1: Virtual machine internal network.

ifc7client1 and ifc7client2 were set to use ifc7dns1 as their primary DNS server. The default

gateway for each was set to the gateway specified by the internal virtual network as
implemented by the Innotek service: 192.168.1.1. The topology of the network can be found in

Figure 1.

[image: image1.png]fc7web1

fc7dns1
fc7web2 fc7web3

fc7client1 fcTtraffict

Hosts

Each host consisted of an Intel x86 Duo Core virtual machine running as a Fedora Core 7 guest
inside a Innotek server on a Windows Vista Premium platform. Each was given an 8 GB hard
drive,
256 MB of RAM, and 2 network adapters, as discussed previously. Specific details for
each host are provided in the following sections.

ifc7client1

In addition to the above configuration, ifc7client1 had a version of Mozilla Firefox 2.0 installed
that contained customized address resolution code. The exact modifications to the code can be
obtained at the web site accompanying this report and referenced in the references section of
this document. However, the details of the algorithm are worth noting here.

Normally, Firefox, like most web browsers, handles address resolution requests in a
straightforward manner. First, a URL is obtained, either by being entered by the user or by
virtue
of being linked inside of a document or from a book mark. The browser then packages
an address resolution request through the TCP/IP stack. Typically, this is done by sending a
host name to the DNS server associated with the network interface on the host machine.
The
browser then waits for a response to be handed to the application layer on which it listens
from the same port (53) as the lookup request. The data returned to the browser consists
of an IP address that the browser then uses to connect to the remote server. [5]

For the purposes of this project, this process has been modified. The modified algorithm works
as follows:

1. Package a service request for the domain and address it to the DNS server of record.

2. Hand the service request to the TCP/IP network stack.

3. Wait until either a response is received or the timeout period has passed.

4. If a timeout has occurred, report an error, else process the returned record.

5. Connect to the IP address retrieved from the SRV RR after processing.

Finally, the modified SRV RR is processed according to the algorithm discussed above.

ifc7client2

Configured as above, this host modeled traffic to the web servers. It did not process DNS
records or even contact the DNS server. Instead, it used code to connect to one of the two web
servers at random and download the image file. Note that this is not a very accurate modeling
of network traffic. A better approach would have been to use a network traffic generation tool or
to create one based on historic, observed HTTP traffic patterns as they exist in the web. The

code can be found on the companion web site.

ifc7web1

Similarly configured, this host served as the primary authority for the testnet.com domain. A
custom service, written in Perl and using the Net::DNS::Update [3, 6] package periodically
queried the other two web servers, retrieved the Apache access_log, determined which
server
had the most HTTP GET entries, assigned the correct weight values, and updated the DNS zone
records. The Perl code written for this purpose can be found on the companion web site.

ifc7web2 and ifc7web3

On top of the default configuration used for all hosts in this project, both of these ran Apache 2.
They were configured to to serve a single image file, 1 MB in size.

ifc7dns1

Configured as above, this host served as the name server for the project. It ran BIND 9,
accepting updates from ifc7web1 and servicing lookup requests from ifc7client1 by returning
SRV RR. The named.conf file and the zone records used are on the project web page.

Results and Analysis

The modifications made to the Mozilla Firefox 2.0 web browser worked, though in a buggy
fashion. The browser would hang on occasion, requiring that the application be closed and
restarted. However, it did connect to both ifc7web2 and ifc7web3 when
http://192.168.1.20/pic.jpg was entered in the address bar, showing that processing of the
SRV RR was occurring. However, I was unable to correlate the behavior of the web browser
with the activity of ifc7client2. If I had been able to do so, verifying that the model was
correctly working would have been possible.

Similar, unverified evidence exists to show that the DNS update mechanism worked as desired.
The verification mechanism mentioned above would also have allowed for verification of this
portion of the project.

Retrieval times for the 1 MB image were excessive. This may have been a result of using
the chosen virtual machine software to host the simulation.

It is worth noting that there probably exists additional overhead associated with calculating load
metrics and updating the DNS SRV RR with fresh information. This is worth investigating, as it
may cause significant delay and possibly make the whole dynamic updating mechanism
not
worth implementing in a real-world environment.

Future Work

Future work on this topic could include:

· Implementing more than 2 service providing hosts.

· Implementing more than 1 service and protocol.

· Comparison of this mechanism with the round-robin mechanism currently in use.

· Implementing the defined target selection algorithm as specified in the RFC.

· Applying a measurement system based on real-world metrics to evaluate how effectively the approach used would work in a real-world environment.

· Evaluating the effectiveness of historical load information verses real-time load information as it relates to updating the RR weight field.

References

[1] Cheshire, S., & Krochmal, M (2006, August 10). DNS-Based Service Discovery. Retrieved

October 3, 2007 from http://files.dns-sd.org/draft-chesire-dnsext-sd.txt

[2] DNS, BIND Nameserver, DHCP, LDAP, and Directory Services. Retrieved September 23,
2007 from http://www.bind9.net

[3] Drukman, J. (1999, February). Dynamic DNS Updates with Perl. The Perl Journal.
Retrieved October 22, 2007 from http://foo.be/docs/tpj/issues/vol4_4/tpj0404-013.html

[4] Gulbrandsen, A., et. al. (2000, February). IETF 2782: A DNS RR for specifying the location
of services (DNS SRV). The RFC Archive. Retrieved September 17, 2007 from http://www.rfc-
archive.org/getrfc.php?rfc=2782

[5] Hacking Mozilla. Retrieved September 23, 2007 from http://www.mozilla.org/hacking

[6] Patterson, G (2002, June 1). Examining Apache log files with Perl. PGTS Journal. Retrieved
September 19, 2007 from http://www.pgts.com.au/pgtsj/pgtsj0206a.html

[7] Windows Server 2003 R2. Retrieved October 7, 2007 from
http://www.microsoft.com/windowserver2003/default.mspx

Nicholis Bufmack – CS 622 Fall 2007 – Research Project Report

