
Automatic Detection of Information Leakage Vulnerabilities
in Browser Extensions

Rui Zhao
University of Colorado

Colorado Springs

rzhao@uccs.edu

Chuan Yue
University of Colorado

Colorado Springs

cyue@uccs.edu

Qing Yi
University of Colorado

Colorado Springs

qyi@uccs.edu

ABSTRACT

A large number of extensions exist in browser vendors’ on-
line stores for millions of users to download and use. Many
of those extensions process sensitive information from user
inputs and webpages; however, it remains a big question
whether those extensions may accidentally leak such sensi-
tive information out of the browsers without protection. In
this paper, we present a framework, LvDetector, that com-
bines static and dynamic program analysis techniques for
automatic detection of information leakage vulnerabilities
in legitimate browser extensions. Extension developers can
use LvDetector to locate and fix the vulnerabilities in their
code; browser vendors can use LvDetector to decide whether
the corresponding extensions can be hosted in their online
stores; advanced users can also use LvDetector to determine
if certain extensions are safe to use. The design of LvDetec-
tor is not bound to specific browsers or JavaScript engines,
and can adopt other program analysis techniques. We im-
plemented LvDetector and evaluated it on 28 popular Fire-
fox and Google Chrome extensions. LvDetector identified
18 previously unknown information leakage vulnerabilities
in 13 extensions with a 87% accuracy rate. The evalua-
tion results and the feedback to our responsible disclosure
demonstrate that LvDetector is useful and effective.

Categories and Subject Descriptors

D.4.6 [Software]: Operating Systems—Security and Pro-
tection.; H.4.3 [Information Systems]: Communications
Applications—Information browsers

Keywords

Web browser extension; JavaScript; Vulnerability analysis

1. INTRODUCTION
Popular web browsers all support extension mechanisms

to help third-party developers extend the functionality of
browsers and improve user experience. A large number of

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW 2015, May 18–22, 2015, Florence, Italy.
ACM 978-1-4503-3469-3/15/05.
http://dx.doi.org/10.1145/2736277.2741134.

extensions exist in browser vendors’ online stores for millions
of users to download and use. Quite often, those extensions
are written in JavaScript; they have higher privileges than
regular webpages do, thus have become a popular vector for
performing web-based attacks [1, 2].

Because many extensions have security vulnerabilities [1,
2, 3, 4, 11, 18, 22, 24] and some extensions are even mali-
cious, browser vendors have taken stricter measures to con-
trol the extensions that can be installed on browsers. For
example, Google bans Windows version chrome extensions
found outside the Chrome Web Store starting from January
2014, and inspects the extensions in the Chrome Web Store
to exclude the malicious ones.

Researchers have extensively studied privilege escalation
related vulnerabilities in JavaScript-based extensions and
shown that a lack of sufficient security knowledge in devel-
opers is one of the main reasons for many vulnerabilities [1,
2, 3, 18, 24]. However, an often overlooked problem is that
extensions may accidentally leak users’ sensitive information
out of the browsers without protection.

Many browser extensions process sensitive information com-
ing from either user inputs or webpages. For example, some
extensions save users’ website passwords, some extensions
remember users’ shopping preferences, and some extensions
manage users’ bookmarks. If such sensitive information is
leaked out of the browser without protection, it can be used
by unauthorized parties to illegally access users’ online ac-
counts, steal their online identities, or track their online be-
haviors. Therefore, banning extensions that may leak users’
sensitive information is also necessary and important.

Yet detecting information leakage in JavaScript-based web
browser extensions is especially challenging. One source of
the challenges is JavaScript itself, an interpreted prototype-
based object-oriented programming language with just-in-
time code loading/generation [27, 28, 29, 41] and dynamic
uses of functions, fields and prototypes [6, 21, 26]. The other
source of the challenges is the highly complex interactions
among browser extensions, internal components of browsers,
and webpages [2, 3, 18, 24]. Only a handful of solutions have
been proposed to address the problem of information leakage
in JavaScript-based browser extensions [4, 11, 22]; however,
they took either pure dynamic approaches or pure static ap-
proaches, thus suffering from many limitations (Section 5).

In this paper, we present a framework, LvDetector, that
combines static and dynamic program analysis techniques
for automatic detection of information leakage vulnerabil-
ities in legitimate browser extensions. LvDetector focuses
on legitimate browser extensions because lots of them are



used by millions of users [14, 5], thus the impact level of
their information leakage vulnerabilities is high. LvDetector
does not aim to be sound at the whole program level (Sec-
tion 3.1); it aims to be a practical and accurate utility by
(1) using a dynamic scenario-driven call graph construction
scheme to reduce the overall false positives in the analysis
as much as possible, and (2) using static analysis based on
each dynamically constructed call graph to extensively an-
alyze the corresponding scenario. Extension developers can
use LvDetector to locate and fix the vulnerabilities in their
code; browser vendors can use LvDetector to decide whether
the corresponding extensions can be hosted in their online
stores; advanced users can also use LvDetector to determine
if certain extensions are safe to use. Note that detecting po-
tentially malicious code or intentional vulnerabilities is out
of the scope of the current LvDetector framework.

The design of LvDetector is not bound to specific web
browsers or JavaScript engines, and can adopt other pro-
gram analysis techniques. We implemented LvDetector in
Java and evaluated it on 28 popular Firefox and Google
Chrome extensions. LvDetector identified 18 previously un-
known information leakage vulnerabilities in 13 extensions
with a 87% accuracy rate. The evaluation results and the
feedback to our responsible disclosure demonstrate that LvDe-
tector is useful and effective.

The main contributions of this work include: (1) a dy-
namic scenario-driven call graph construction scheme, (2)
a formulation of transitive relations and function/program-
level static analysis algorithms for effective exploration of
information flow paths in browser extensions, (3) a unique
framework that combines static and dynamic program anal-
ysis techniques for automatic detection of information leak-
age vulnerabilities in JavaScript-based browser extensions,
and (4) an effectiveness evaluation of LvDetector.

The rest of the paper is organized as follows. Section 2
uses an example to illustrate the vulnerability analysis prob-
lem targeted by this paper. Section 3 presents the details
of the LvDetector framework. Section 4 evaluates the effec-
tiveness of LvDetector. Section 5 discusses the related work.
Finally, Section 6 makes a conclusion.

2. MOTIVATING EXAMPLE
Many legitimate browser extensions process sensitive in-

formation coming from either user inputs or webpages. If
such sensitive information is leaked out of the browser with-
out protection, it can be used by unauthorized parties to
illegally access users’ online accounts, steal their online iden-
tities, or track their online behaviors. Figure 1 depicts a code
excerpt of a real example browser extension that manages
users’ website passwords. In the code excerpt, this exten-
sion obtains the website password and username of a user in
the save() function, encodes the password and username in
the encode() function, and sends the encoded string to the
remote server of the extension through the send() method
of an XMLHttpRequest object in the post() function.

When this example extension was submitted to the exten-
sion web store of a browser vendor, the developers claimed
that they cannot know users’ website passwords. The browser
vendor wants to verify this claim and identify potential in-
formation leakage vulnerabilities in this extension, but man-
ually inspecting about 26,000 lines of code in this extension
is time and effort consuming. The browser vendor can use
LvDetector to easily perform this inspection task in three

function save() {
var pwd = document.getElementById("pwd").value;
var usr = document.getElementById("usr").value;
var str = encode(pwd, usr);
post(str);

}
...
function encode(pwd, usr) {
return encodeURI(pwd) + encodeURI(usr);

}
...
function post(content) {
var req = new XMLHttpRequest();
var url = "https://www.remoteserver.com/"
req.open("POST", url);
req.send(content);

}

Figure 1: Code excerpt of a real example extension

steps: (1) runs LvDetector to instrument this extension, (2)
executes a website password saving scenario using the instru-
mented extension, and (3) runs LvDetector to automatically
detect potential information leakage vulnerabilities and gen-
erate a report. The browser vendor can also directly perform
the third step by using the execution traces supplied by other
LvDetector users (Section 3.2.1).

The generated vulnerability report contains a vulnera-
ble information flow record: the website password assigned
to the “pwd” variable in the save() function is propagated
through the encode() function to the “content” variable in
the post() function, and is leaked out in a send() method
call. All the detailed operations in this vulnerable informa-
tion flow are also provided in the report.

A user’s website password should only be known by the
user and the corresponding website - sending the unpro-
tected website password to the remote server of the exten-
sion allows server-side attackers to directly obtain the user’s
website login information. LvDetector correctly identifies
this vulnerability, providing evidence for the browser ven-
dor to disprove the extension developers’ claim.

3. OVERALL FRAMEWORK
Our key objective is to design LvDetector as a framework

that can be easily used by analysts (extension developers,
browser vendors, or advanced users) to automatically detect
information leakage vulnerabilities in browser extensions.

3.1 Design Overview and Rationale
The overall workflow of LvDetector can be organized into

three phases as shown in Figure 2.
The first phase, call graph and variable use analysis, starts

with an instrumentation component that takes a browser ex-
tension as the input and instruments the extension for col-
lecting execution traces. The call graph analysis component
collects the traces generated from each scenario-driven exe-
cution of the instrumented extension to build a call graph.
Meanwhile, the SSA builder component builds the SSA IR
(Static Single Assignment form Intermediate Representa-
tion [10]) of each function in the extension source code, and
the SSA IRs [10] in turn are fed into the variable use anal-
ysis component to generate variable use graphs. The vari-
able use analysis component will automatically identify (1)
commonly used cryptographic functions (e.g., AES encryp-
tion/decryption and SHA hash functions), (2) source vari-
ables that accept values from either user inputs or webpages



Figure 2: The overall workflow of the LvDetector framework (the shaded components are ours)

(e.g., through form fields), and (3) sink variables that con-
tain values either saved to the local disk (e.g., through the
setItem() method call of the localStorage object in HTML5)
or sent across the network (e.g., through the send() method
call of an XMLHttpRequest object). Sink variables are ex-
tracted from the sink statements, which are either common
or specific to different browsers and are XMLHttpRequest,
window object, SQLite database, file, local storage, book-
mark, and password manager related statements. These
criteria for identifying standard/nonstandard cryptographic
functions, source variables, and sink variables in Google
Chrome and Firefox extensions are included in a rule file.

The second phase, transitive variable relation analysis,
computes a transitive summary of the relations among each
pair of the source and sink variables. Specifically, the function-
level relation analysis component iteratively computes a function-
level relation summary for each function based on its vari-
able use graph, the call graph, and the labeled cryptographic
functions; the program-level relation analysis component com-
putes the program-level relation summary based on the call
graph and the function-level relation summaries.

Finally, the third phase, vulnerability analysis, identifies
all the potential vulnerable information flows that may lead
to sensitive information leakage. It analyzes vulnerabili-
ties based on the program-level relation summary and the
source-sink variable pairs, and generates an intuitive re-
port with a list of classified vulnerability records for each
scenario-driven execution.

The overall workflow takes a hybrid approach to analyze
JavaScript browser extensions. It uses scenario-driven exe-
cution traces to dynamically and accurately construct a call
graph; it then statically performs variable use analysis and
transitive variable relation analysis based on SSA IR [10]
to summarize the overall information flows among variables
both within a single function and across function boundaries.
The dynamic aspects of our approach accurately capture in-
tricate across-function-boundary information flows that of-
ten occur in JavaScript extensions due to reflection, func-
tion objects, event handlers, asynchronous calls, DOM in-
teractions, and so on. The static aspects of our approach
extensively extract both explicit and implicit information
flows within each function. This hybrid approach is supe-
rior to pure static approaches by effectively reducing false
positives in the construction of call graphs [26], which are
often the foundation of the overall program analysis. This
approach is not bound to specific web browsers or JavaScript
engines; it is superior to pure dynamic approaches by avoid-
ing users’ or browsers’ responses to runtime alerts, incom-
plete information flow exploration, runtime overhead, and
browser-specific instrumentation [1, 11, 31, 36].

Most analysis tools for statically typed programming lan-
guages choose to be sound rather than complete. How-

ever, due to the complexity and dynamic features of the
JavaScript language (Section 1), achieving soundness in the
static analysis of the full JavaScript language is very diffi-
cult or impossible [16, 25, 26]. Meanwhile, LvDetector bases
its static analysis on the call graphs constructed from the
scenario-driven execution traces, which may not cover all
the possible execution paths in the program. Due to these
reasons, LvDetector does not aim to be sound at the whole
program level; it aims to be a practical and accurate util-
ity. Note that scenario-driven execution traces can be more
extensively collected as discussed in Section 3.2.1.

3.2 Call Graph and Variable Use Analysis
In this phase, LvDetector performs browser extension in-

strumentation, and call graph and variable use analysis.

3.2.1 Instrumentation and Call Graph Analysis

While call graph construction has been commonly used in
whole program analysis of C and Java code [15, 38], accu-
rately constructing call graphs for JavaScript code is very
challenging due to its extremely dynamic (1) code loading
and generation [27, 28, 29, 41], (2) uses of functions, fields,
and prototypes [6, 21, 26], and (3) interactions with other
components of the browsers and webpages [2, 3, 18, 24].

To accurately construct call graphs that are the founda-
tion of the overall analysis, we take an instrumentation ap-
proach to dynamically extract call relations among different
functions within a browser extension. As shown in Figure 2,
this instrumentation component takes a browser extension
as input, automatically inserts program tracing statements
to the extension, and outputs the instrumented extension.

Specifically, it (1) formats the source code of the exten-
sion so that each line contains one JavaScript statement,
(2) adds unique prototype names to the functions (includ-
ing methods) that do not have explicit ones so that all
the functions can be uniquely identified, (3) inserts print
statements before each function/method call so that the de-
tailed callsite information such as the prototype name of
the caller, the call statement, and the callsite position can
be recorded, and (4) inserts a print statement at the entry
point of each function definition so that the detailed infor-
mation about the callee can be recorded. Because these
transformations are simple and minimal, they do not in-
terfere with the original program functionality and seman-
tics. In the cases that some extensions use the dynamic fea-
tures of JavaScript such as the eval() function to obfuscate
their original source code, this instrumentation component
uses the Closure Compiler [7] and the ScriptEngine class in
Java to evaluate the eval() statements and de-obfuscate the
source code before performing the aforementioned transfor-
mations. The de-obfuscated extension source code does not
further contain any eval() as observed in our experiments



(Section 4), indicating that JavaScript in legitimate browser
extensions rarely uses multi-level obfuscation.

An analyst can install and run such an instrumented ex-
tension to generate the execution traces for each particular
use scenario. Because the execution traces only contain the
call relations and do not contain any information from users,
they can also be shared (e.g., in a repository along with the
extensions) among the analysts to further cover more execu-
tion paths of the extension. For example, extension devel-
opers can run LvDetector and contribute execution traces
based on their test cases, browser vendors can run LvDe-
tector and contribute execution traces based on their in-
spection tasks, and advanced users can run LvDetector and
contribute execution traces based on their trial runs. All
these traces can be leveraged to automatically perform or
replicate the actual vulnerability analysis.

The call graph analysis component analyzes the dynam-
ically generated execution traces to build a call graph that
precisely reflects the actual call relations in the real use
scenario. The output call graph is a directed graph. Its
nodes and edges are all the functions and call relations tra-
versed in a scenario-driven execution, respectively. Such a
call graph can accurately capture the complex and dynamic
function/method calls that often occur in JavaScript ex-
tensions due to reflection, function objects, event handlers,
asynchronous calls, DOM interactions, and so on.

3.2.2 Variable Use Analysis

The purpose of this component is to construct a graph
that precisely defines the immediate value flow relations
among variables in each function, based on an SSA IR [10]
constructed from the source code of the browser extension.

For each function, its variable use graph is a directed
graph with nodes representing all the variables defined/used
in the function, and edges representing the operations used
to propagate values among variables. The direction of an
edge represents the value flow direction. Since the input
program is converted to its SSA IR, each variable is stati-
cally and precisely defined once and thus is associated with
a single value. Therefore, the static definition and uses of
every variable in the program can be precisely correlated.

Our variable use analysis directly employs the output from
an existing SSA builder [8]. The IR output of the SSA
builder contains mappings between SSA variables and the
original JavaScript variables, and mappings between SSA
instructions and the original JavaScript statements. This
mapping information will be used in the vulnerability anal-
ysis phase to generate intuitive vulnerability reports.

The main step of the variable use analysis is to extract
the operands and operators from the instructions in SSA
IR. Each operand represents a unique variable in SSA IR,
and each operator represents an operation that may prop-
agate values among variables. The operations include ob-
ject field reference, getters/setters, string operation, array
access, binary/unary operation, global variable reference,
assignment operation, Φ-function [10], and function call.
The variable use graph is then constructed in a straight-
forward fashion to precisely record such immediate explicit
and implicit (via Φ-functions) value flow relations. Mean-
while, a list of global variable references will also be main-
tained. This list will be used in the transitive variable re-
lation analysis phase to compute information flows across
functions. Based source/sink variable and crypto-function

identification rules in the rule file (Section 3.1), this com-
ponent also automatically identifies all the source/sink vari-
ables and cryptographic functions, and feeds them to the
next two analysis phases.

Figure 3(a) illustrates the three variable use graphs for

the code excerpt in Figure 1. Here the edge v10
+
−→ v13 in

the variable use graph for the encode() function represents
a value flow from v10 to v13 through a string concatenation

operation, and the edge v3
encode()
−−−−−→ v7 in the variable use

graph for the save() function represents a value flow from v3
to v7 through the encode() function call.

3.3 Transitive Variable Relation Analysis
This phase summarizes the transitive relations between

each pair of source and sink variables at both the function-
level and the program-level.

3.3.1 Function-level Relation Analysis

This component iteratively computes a function-level re-
lation summary for each function based on its variable use
graph, the call graph, and the labeled cryptographic func-
tions. Such a summary contains the transitive relations be-
tween each pair of variables in that function.

We formulate the dynamically generated call graph as G
in Formula 1. We categorize the original operators in a vari-
able use graph into a set of abstract operators, Operator,
defined in Formula 2. For example, the string concatenation
and substring operators are categorized as “STRING OP”,
the arithmetic operators are categorized as “BINARY OP”,
the calls to the labeled encryption functions are catego-
rized as “ENCRYPT”, the calls to the labeled decryption
functions are categorized as “DECRYPT”, the calls to the
JavaScript global functions (e.g., encodeURI()) are catego-
rized as “JS GLOBAL”, and the calls to all other JavaScript
functions are initially categorized as “UNKNOWN”. The Φ-
function used in SSA IR [10] is categorized as“Φ”. We define
the updated variable use graph for function f as F f in
Formula 3, in which each original operator in a variable use
graph is replaced with its corresponding abstract operator
to simplify the graph representation. In Formula 4, E rep-
resents the updated variable use graphs of all the functions
in the call graph G.

G = {fi
s
−→ fj | s is a callsite from function fi to fj} (1)

Operator = {ENCRY PT, DECRY PT, JS GLOBAL,

PROTOTY PE, CONSTRUCT, F IELD OP,

ATTRIBUTE OP, ARRAY OP, STRING OP

UNARY OP, BINARY OP, Φ, UNKNOWN} (2)

F f = {xf op
−−→ yf | x, y are variables referenced in f,

f ∈ G, relation y = op(x) is in f, op ∈ Operator} (3)

E =
⋃

f∈G

F f (4)

The value of a variable in a caller function may be passed
to a variable in a callee function; we use an abstract opera-
tor CALL to represent this type of value passing operation,
and define Cforward in Formula 5 as the set of all such call
value flows extracted from the call graph G. The value of a
variable in a caller function may be also updated with the
return value from a callee function; we use an abstract oper-
ator RETURN to represent this type of value return opera-
tion, and define Cbackward in Formula 6 as the set of all such



(a) Variable use graphs (b) Function-level relation analysis result (c) Program-level relation analysis result

Figure 3: The analysis results for the code excerpt in Figure 1. The dashed lines in (b) and (c) represent the
computed transitive relations; to simplify the figure, we only kept the operators and omitted the variables in
the labels of those dashed lines, and we only drew the two newly computed transitive relations in (c).

return value flows extracted from the call graph G. In For-
mula 7, E+ defines the extended variable use graphs, and
it is the union of E, Cforward, and Cbackward. In Formula 8,
Operator+ defines the extended set of abstract operators,
and it is the union of Operator and {CALL,RETURN}.

We use Formula 9 to define the transitive relation sum-
mary Qf for function f , which is the set of transitive re-
lations between each pair of variables x and y in the same
function f . Each transitive relation is represented by a
sequence of abstract operators and variables through which
a value is passed from x to y. In Formula 10, Q defines the
function-level relation summaries for all the functions
in the call graph G.

Cforward = {argfi
CALL
−−−−→ parafj | fi

s
−→ fj ∈ G,

argfi is the argument of the callsite s in fi,

parafj is the corresponding parameter of fj} (5)

Cbackward = {retfj
RETURN
−−−−−−−→ recfi | fi

s
−→ fj ∈ G,

retfj is the variable returned in fj , recfi accepts

the returned value from callsite s in fi} (6)

E+ = E ∪ Cforward ∪ Cbackward (7)

Operator+ = Operator ∪ {CALL, RETURN} (8)

Qf (x, y) = {(xf , op1, v
f1
1 , op2, v

f2
2 , · · · , v

fk−1

k−1 , opk, y
f ) |

f, f1, f2, . . . , fk−1 ∈ G, op1, op2, . . . opk ∈ Operator+,

xf op1−−→ v
f1
1 , v

f1
1

op2−−→ v
f2
2 , . . . , v

fk−1

k−1

opk−−→ yf ∈ E+} (9)

Function level relation summaries Q =
⋃

f∈G

Qf (10)

Figure 4 illustrates the function-level relation analysis al-
gorithm for computingQ. The algorithm consists of two pro-
cedures. The Compute-ExtendedVariableUseGraphs proce-
dure constructs the variable use graphs E (Formula 4) from
line 2 to line 4, constructs Cforward (Formula 5) from line
5 to line 8, constructs Cbackward (Formula 6) from line 9 to
line 12, and finally returns the extended variable use graphs
E+ (Formula 7) at line 14.

The Compute-FunctionLevelRelations procedure initial-
izes each transitive relation summary Qf for function f with
its updated variable use graph F f at line 2 in the first for

loop. In the following do-while loop, for each function f

in the post-order traversal of G, this procedure updates Qf

with the newly computed transitive relations for each pair of
variables in that function f from line 6 to line 7. The post-
order traversal is used at line 5 so that callee functions are
analyzed prior to their caller functions whenever possible.
This update is an iterative process, and the do-while loop
terminates when no more update occurs to any Qf . The
union of all the Qf s is returned at line 10.

The compute transitive summary sub-procedure is capa-
ble of summarizing paths and cycles to compute transitive
relations on a graph, based on the transitive operations de-
fined for a given problem. In this sub-procedure, cycles are
summarized using their equivalent directed acyclic graphs
(DAGs) [40], and“UNKNOWN”operators are replaced with
their corresponding transitive relations in the callee func-
tions; therefore, the do-while loop from line 4 to line 8 must
terminate. Many existing transitive closure computation
algorithms such as [40, 39] could be adapted to implement
this sub-procedure. We implement this sub-procedure in
our framework by adapting the algorithm in [40], which is
an efficient algorithm with a time complexity linear to the
number of nodes and edges in the input graph.

Figure 3(b) illustrates the function-level relation analysis
result for the code excerpt in Figure 1. For example, the
computed transitive relation from v3 to v7 is labeled with
“CALL,JS GLOBAL,BINARY OP,RETURN”; we only kept
these operators and omitted the variables in the label to sim-
plify the figure.

3.3.2 Program-level Relation Analysis

The purpose of the program-level relation analysis is to
compute program-level relation summary based on the call
graph and the function-level relation summaries. Specifi-
cally, it aims to further summarize transitive relations be-
tween each pair of the specified source and sink variables,
irrespective of whether the pair of variables are defined in
the same function or in different functions.

It is important to note that partial cross-function rela-
tions (i.e., Cforward and Cbackward) have been included in
the function-level relation analysis algorithm shown in Fig-
ure 4. Computing function-level relation summaries based
on small-size and localized extended variable use graphs be-



Compute-ExtendedVariableUseGraphs (P , G)
// P : program; G: call graph.

1 E = Cforward = Cbackward = ∅;
2 for each function f ∈ G do

3 F f = get updated var use graph(P , f);
4 E = E ∪ F f ;

5 for each edge fi
s
−→ fj ∈ G do

6 argfi = argument of callsite(s);
7 parafj = parameter of function(fj);

8 Cforward = Cforward ∪ (argfi
CALL
−−−−→ parafj );

9 for each edge fi
s
−→ fj ∈ G do

10 retfj = return var of function(fj);
11 recfi = accept return value var(s);

12 Cbackward = Cbackward ∪ (retfj
RETURN
−−−−−−−→ recfi);

13 E+ = E ∪ Cforward ∪ Cbackward;
14 return E+;

Compute-FunctionLevelRelations (P , G, E+)
// P : program; G: call graph;
// E+: extended variable use graphs.

1 for each function f ∈ G do

2 Qf = F f = get updated var use graph(P , f);
3 varsf = get nodes in(F f );
4 do

5 for each function f in the post-order traversal of G do

6 for each pair of variables src, dst ∈ varsf do

7 Qf (src, dst) =
compute transitive summary(E+, src, dst);

8 while at least one Qf is updated
9 Q =

⋃
f∈G Qf ;

10 return Q;

Figure 4: Function-level relation analysis algorithm

fore computing program-level relation summary is critical
for the LvDetector framework to efficiently analyze large
and complex extensions; otherwise, directly analyzing tran-
sitive relations on a program-level graph consisting of many
extended variable use graphs with complex cycles and paths
will be very inefficient. This is the key reason for us to ex-
plicitly divide the transitive variable relation analysis into
two steps at the function-level and program-level.

The value of a variable in a function may be passed to
another variable in another function through global vari-
ables or JavaScript events. We use an abstract operator
GLOBAL to represent the type of value passing through
global variables, and define Cglobal in Formula 11 as the set
of all such global value flows extracted from the whole pro-
gram P ; we use an abstract operator MESSAGE to rep-
resent the type of value passing through JavaScript events,
and define Cmessage in Formula 12 as the set of all such
message value flows extracted from the whole program P .
In Formula 13, E′ defines the further-extended variable use
graphs, and it is the union of E+, Cglobal, and Cmessage;
in Formula 14, Operator′ defines the further-extended set
of abstract operators, and it is the union of Operator+ and
{GLOBAL,MESSAGE}.

Formula 15 defines the transitive relation summary, T fi,fj ,
which is the set of transitive relations from any variable x

in function fi to any variable y in function fj . Formula 16
defines the program-level relation summary , T , which is
the output of the program-level relation analysis component.

Cglobal = {vfi
GLOBAL
−−−−−−−→ vfj |

global variable v is defined in fi and used in fj} (11)

Cmessage = {argfi
MESSAGE
−−−−−−−−→ parafj |

an event is dispatched in fi, and processed in fj ,

argfi is the argument to this event,

parafj is the corresponding parameter of fj} (12)

E′ = E+ ∪ Cglobal ∪ Cmessage (13)

Operator′ = Operator+ ∪ {GLOBAL, MESSAGE} (14)

T fi,fj (x, y) = {(xfi , op1, v
f1
1 , · · · , v

fk−1

k−1 , opk, y
fj ) |

fi, f1, . . . , fk−1, fj ∈ G, op1, . . . opk ∈ Operator′,

xfi
op1−−→ v

f1
1 , . . . , v

fk−1

k−1

opk−−→ yfj ∈ E′} (15)

Program level relation summary T =
⋃

fi,fj∈G

T fi,fj (16)

Compute-ProgramLevelRelations (P , Q, E+, sV ars, dV ars)
// P : program; Q: function-level relation summaries;
// E+: extended variable use graph;
// sV ars: a set of source variables;
// dV ars: a set of destination (sink) variables.

1 Cglobal = Cmessage = ∅; T = Q;
2 for each global variable v in P do

3 defs = get definitions(v); uses = get uses(v);
4 for each pair of vfi ∈ defs and vfj ∈ uses do

5 Cglobal = Cglobal ∪ (vfi
GLOBAL
−−−−−−−→ vfj );

6 for each event evt dispatched in fi and processed in fj do

7 argfi = argument of event(evt);
8 parafj = parameter of function(fj);

9 Cmessage = Cmessage ∪ (argfi
MESSAGE
−−−−−−−−→ parafj );

10 E′ = E+ ∪ Cglobal ∪ Cmessage;
11 for each pair of src ∈ sV ars and dst ∈ dV ars do

12 T fi,fj (src, dst) = // src is in fi, dst is in fj
compute transitive summary(E′, src, dst);

13 return T ;

Figure 5: Program-level relation analysis algorithm

Figure 5 illustrates the overall program-level relation anal-
ysis algorithm for computing T . It constructs Cglobal (For-
mula 11) from line 2 to line 5, constructs Cmessage (For-
mula 12) from line 6 to line 9, builds the further-extended
variable use graphs E′ (Formula 13) at line 10, updates T

with the newly computed transitive relations from line 11
to line 12 for each pair of variables constructed from the
input sets sV ars and dV ars, and finally returns T . The
compute transitive summary sub-procedure at line 12 is the
same one that is used in the function-level relation anal-
ysis algorithm (Figure 4). It is worth mentioning that in
the program-level relation analysis, the number of edges
will not increase exponentially because paths and cy-
cles were summarized in the compute transitive summary
sub-procedure, and the transitive relations computed in the
function-level analysis will not be computed again in the
program-level analysis.

Figure 3(c) illustrates the program-level relation analysis
result for the code excerpt in Figure 1. The source vari-
ables are v3 and v6, and the sink variable is v14. Two
new transitive relations are computed from v3 to v14 and
from v6 to v14, respectively; both of them are labeled with
“CALL,JS GLOBAL,BINARY OP,RETURN,CALL”.



3.4 Vulnerability Analysis
The purpose of this phase is to analyze vulnerabilities

based on the program-level relation summary and the source-
destination (sink) variable pairs as shown in Figure 6. For
all the relations from a source variable to a destination (sink)
variable, currently LvDetector reports vulnerabilities based
on two rules. One is that the ENCRYPT abstract oper-
ator does not appear in a relation (line 3); the other is
that both the ENCRYPT and DECRYPT abstract oper-
ators appear in a relation, but no ENCRYPT abstract op-
erator appears after the last DECRYPT abstract operator
(line 5). Otherwise, LvDetector simply records a relation
as a non-vulnerable information flow (line 8). Application
developers may misuse cryptographic primitives as demon-
strated by Egele et al. [13]. The current version of LvDetec-
tor does not further examine cryptographic misuses such as
using constant keys or non-random initialization vectors in
browser extensions, thus its vulnerability detection is more
like a lower-bound analysis.

Analyze-Vulnerability (T , sV ars, dV ars)
// T : program-level relation summary;
// sV ars: a set of source variables;
// dV ars: a set of destination (sink) variables.

1 for each pair of src ∈ sV ars and dst ∈ dV ars do

2 for each relation r ∈ T (src, dst) do
3 if the ENCRYPT operator does not appear in r then

4 report vulnerability(r);
5 else if the DECRYPT operator appears in r but no

ENCRYPT appears after the last DECRYPT then

6 report vulnerability(r);
7 else

8 record non vulnerable flow(r);

Figure 6: Vulnerability analysis algorithm

The report vulnerability sub-procedure automatically clas-
sifies the source variables into two categories. All the source
variables that accept sensitive information (e.g., the pass-
word type inputs, cookies, and bookmarks) either from user
inputs or webpages are in the sensitive category, and the rest
are in the other category. This sub-procedure also groups
the sink variables into the network category and the local
disk category, with their values sent across the network or
saved to the local disk, respectively. It further classifies the
reported vulnerabilities as high-severity, medium-severity,
and unranked ones as shown in Table 1. Those vulnera-
bilities that leak information from the sensitive source vari-
ables to the network sink variables are classified as high-
severity. Those vulnerabilities that leak information from
the sensitive source variables to the local disk sink variables
are classified as medium-severity because unprotected sen-
sitive information on a user’s local disk can also lead to se-
curity breaches due to, for example, bots [33]. The rest are
classified as unranked because their source variables are not
automatically classified as sensitive; an analyst can further
classify these unranked ones based on whether the source
variables can be considered as sensitive.

Each vulnerability report contains a list of high-severity,
medium-severity, and unranked vulnerability records for each
scenario-driven execution. Each record includes the com-
plete information flow, and highlights the original variables
and operations to provide more intuitive information. For
example, for the code excerpt in Figure 1, the information
flow from the variable “pwd” in the save() function to the

Table 1: Vulnerability classification
❤
❤
❤
❤
❤
❤
❤

❤
❤
❤
❤

Source Vars
Sink Vars

Network Local disk

Sensitive High-severity Medium-severity
Other Unranked Unranked

variable “content” in the post() function is identified as a
high-severity vulnerability, and the corresponding record is:

v3(pwd)
CALL(encode())
−−−−−−−−−−−→ v9(pwd)

JS GLOBAL(encodeURI())
−−−−−−−−−−−−−−−−−−−→ v10()

BINARY OP (+)
−−−−−−−−−−−−→ v13()

RETURN(encode())
−−−−−−−−−−−−−−→ v7(str)

CALL(post())
−−−−−−−−−→

v14(content ). Note that the contents in the parentheses such
as “pwd”, “+”, and “encode()” are the original variables, op-
erations, and function calls in the source code. In addition,
the locations (i.e., file names, function names, and line num-
bers) of the original variables, operations, and function calls
are also provided in each record. This intuitive information
can help analysts easily locate the reported vulnerabilities
in the extensions.

4. EVALUATION
We implemented LvDetector in Java. We also integrated

two popular compilers into the LvDetector framework. In
the instrumentation component, we used Closure Compiler [7]
to identify all the functions and callsites. We chose WALA
Compiler [8] as the SSA builder to generate SSA IRs. We
evaluated LvDetector on 28 most popular or top rated exten-
sions that belong to six categories as shown in Table 2; 17 of
them were selected from the Firefox extension store [14], and
11 of them were selected from the Google Chrome extension
store [5]. The main criteria for choosing these extensions
are: they must use cryptographic functions; they must have
sensitive source variables and network sink variables so that
high-severity vulnerabilities may exist (Section 3.4). In the
following subsections, we detail one case study, the overall
analysis results for 28 extensions, the responsible disclosure
and feedback, and the performance results; we also further
discuss the false positives and false negatives.

4.1 Case Study of RoboForm
RoboForm (Lite) is a Firefox extension that can help users

remember and auto-fill their website passwords [30]. It pro-
vides a master password mechanism to further protect users’
website passwords. We used LvDetector to analyze Robo-
Form on six use scenarios.

Scenario 1 : A user provides the master password in a
‘password’ type input field to RoboForm to protect the saved
website passwords. The master password is automatically
classified as sensitive; it should only be known by the user
and should not be sent out even to the remote server of
RoboForm. LvDetector identified one high-severity vulnera-
ble information flow, in which the master password is leaked
out through one sink statement, the send() method call of
an XMLHttpRequest object, without the protection of any
cryptographic function. We verified that this information
flow is indeed vulnerable.

Scenario 2 : A user allows RoboForm to save a website
password to its remote server. The website password is au-
tomatically classified as sensitive; it should only be known by
the user and the corresponding website. LvDetector identi-
fied two high-severity vulnerable information flows, in which
the website password is leaked out through the same sink
statement as in scenario 1 without the protection of any



cryptographic function. They are two flows because they
take different code branches. We verified that these two
information flows are indeed vulnerable.

Scenario 3 : A user allows RoboForm to save a website
password to the local disk without using a master pass-
word. LvDetector identified one medium-severity vulnerable
information flow, in which the website password is leaked
out through one sink statement, the write() method call of
a FileOutputStream object, without the protection of any
cryptographic function. We verified that this information
flow is indeed vulnerable.

Scenario 4 : A user allows RoboForm to save a website
password to the local disk with the protection of a mas-
ter password. LvDetector identified two information flows
and simply recorded them as non-vulnerable: one saves the
website password to the local disk after performing an AES
encryption, the other saves the master password to the local
disk after performing a DES encryption. We verified that
these two information flows are indeed non-vulnerable.

Scenarios 5 and 6 : A user creates (scenario 5) and types
(scenario 6) a RoboForm login account in a dialog box. The
RoboForm login password is automatically classified as sen-
sitive; it should only be known by the user and RoboForm.
LvDetector identified one high-severity vulnerable informa-
tion flow in each of the two scenarios. The RoboForm login
password is leaked out through the same sink statement as
in scenario 1 without the protection of any cryptographic
function. However, these two information flows should not
be identified as vulnerable because the RoboForm login pass-
word is sent only to the remote server of RoboForm.

4.2 Overall Results
Table 2 summarizes the overall analysis results on the 28

extensions. The second column lists the number of the use
scenarios chosen in each extension. The third column lists
the number of analyzed statements over the total number
of statements in each extension. The fourth column lists
the number of different cryptographic functions identified in
each extension. The fifth column lists the number of the
source variables in each extension for all the chosen scenar-
ios. The sixth column lists the number of the sink variables
in each extension for all the chosen scenarios. The seventh
column lists the number of true positives (TP) that are
vulnerable information flows correctly identified by LvDe-
tector; correspondingly, the eighth column lists the number
of false positives (FP) that include nonexistent flows and
non-vulnerable existent flows. The ninth column lists the
number of true negatives (TN) that are non-vulnerable
information flows correctly identified by LvDetector; corre-
spondingly, the last column lists the number of false nega-
tives (FN) that are vulnerable information flows incorrectly
identified by LvDetector as non-vulnerable. These TP/F-
P/TN/FN numbers come from our examination of the infor-
mation flows reported/recorded by LvDetector (Figure 6).

For example, we chose six scenarios in the RoboForm case
study (Section 4.1). LvDetector analyzed 6880 out of the
total 26120 lines of code. LvDetector automatically iden-
tified six different cryptographic functions, and automati-
cally identified seven source variables and 19 sink variables,
LvDetector detected six vulnerable information flows with
four true positives and two false positives, and recorded two
non-vulnerable information flows with two true negatives
and zero false negative.

The following five formulas present the precision, recall,
F-measure, accuracy, and false positive rate calculations for
the results in Table 2.

Precision(Pre) =
TP (18)

TP (18) + FP (6)
= 75% (17)

Recall(Rec) =
TP (18)

TP (18) + FN(0)
= 100% (18)

F −measure =
2×Rec(100%) × Pre(75%)

Rec(100%) + Pre(75%)
= 86% (19)

Accuracy =
TP (18) + TN(23)

TP (18) + TN(23) + FP (6) + FN(0)
= 87% (20)

FalsePositiveRate =
FP (6)

FP (6) + TN(23)
= 21% (21)

A good analysis framework should achieve high precision
and high recall. However, a tradeoff often exists between
high precision and high recall because achieving one may
compromise the other and vice versa. To combine precision
and recall, the harmonic mean of them, F-measure, is often
used. Accuracy is the overall success rate of the analysis.

From these calculations, we can conclude that LvDetec-
tor is an effective framework. It achieves a high precision
rate (75%), indicating that the majority of the identified
vulnerable flows are indeed vulnerable. It achieves a high
recall rate (100%), indicating that LvDetector can identify
the majority of the actually vulnerable flows for the executed
scenarios. It also achieves a high F-measure rate (86%) and
a high accuracy rate(87%). The false positive rate is 21%;
however, the detection results of LvDetector will be used by
analysts to more easily identify information flow vulnerabil-
ities. This usage is different from that of other systems such
as intrusion detection or online malware detection systems,
in which the detection results will be used to make immedi-
ate decisions such as dropping network packets or removing
malicious programs. Therefore, a 21% false positive rate will
not cause too much inconvenience to the analysts.

Overall, LvDetector identified 18 true information leakage
vulnerabilities in 13 extensions. These vulnerabilities are
previously unknown, and they exist in 46% of the analyzed
extensions. Nine of them are high-severity vulnerabilities,
and seven of them are medium-severity vulnerabilities. The
remaining two are unranked because their source variables
that accept users’ notes are not automatically classified as
sensitive; they can be further classified as one high-severity
and one medium-severity vulnerabilities, respectively, since
users’ notes and tasks may contain sensitive information.
We examined that three main reasons account for those 18
vulnerabilities: developers did not realize the importance
of protecting sensitive data before sending or saving them,
protection was not applied to all the code branches for sen-
sitive information flows, code had bugs such as sending or
saving plaintext rather than ciphertext. These information
leakage problems deserve serious attention from extension
developers, browser vendors, researchers, and users.

4.3 Responsible Disclosure and Feedback
Among the 13 extensions that have vulnerabilities, 12 of

them contain contact information on their websites or ex-
tension store webpages. We emailed those 12 developers
asking if they would like to know the details about the vul-
nerabilities in their extensions, and received eight replies.



Table 2: Analysis results on 28 Firefox * and Google Chrome + extensions
Extensions Num

of Use
Sce-
narios

Num of
Statements
(Analyzed
/ Total)

Num of
Different
Crypto
Functions

Num of
Variables

Num of
Positives

Num of
Negatives

Source Sink True
(TP)

False
(FP)

True
(TN)

False
(FN)

Feeds, News & Blogging

1. Gmail Manager NG * 1 455 / 1482 4 1 3 0 0 1 0

2. Email Notifier * 1 212 / 1680 1 1 11 1 0 0 0
Shopping

3. Shoptimate * 1 287 / 10612 1 1 2 2 0 0 0
4. EFT Pass + 1 735 / 4466 4 1 5 0 0 0 0

Privacy & Security

5. Autofill Forms * 1 3490 / 3524 1 1 1 1 4 1 0

6. Cookies Manager * 1 419 / 3753 2 1 1 1 0 3 0
7. Secure Bookmarks + 1 2028 / 2569 2 1 5 0 0 6 0

8. Lazarus * 2 3525 / 7610 2 2 65 0 0 3 0

9. RoboForm * 6 6880 / 26120 6 7 19 4 2 2 0

10. QuickPasswords * 1 2082 / 2170 2 1 8 0 0 0 0

11. Link Password * 1 984 / 984 3 2 3 0 0 3 0

12. uPassword * 1 1467 / 3803 1 2 2 0 0 0 0

13. MD5 Reborned Hasher * 1 504 / 504 2 1 1 0 0 0 0

14. Encrypted Communication * 1 404 / 404 2 2 1 0 0 2 0

15. EverSync * 1 3868 / 6273 2 1 7 1 0 0 0
Productivity

16. Add Tasks to Do It + 1 351 / 467 1 1 6 1 0 0 0
17. Tab Wrangler + 1 228 / 3659 1 1 1 1 0 0 0
18. Any.do + 3 442 / 12980 1 3 14 2 0 0 0
19. 123 Password + 1 128 / 418 2 1 1 0 0 0 0
20. ChromePW + 1 307 / 787 1 1 2 0 0 1 0

Social & Communication
21. X-notifier + 1 846 / 5220 4 1 4 1 0 0 0

22. Simple Mail * 1 5013 / 9832 2 1 13 0 0 1 0
23. Inbox Ace + 1 15682 / 20251 1 1 19 0 0 0 0

24. Google Plus Follower Stats * 1 600 / 5532 1 1 1 0 0 0 0

25. FoxToPhone * 1 1342 / 1771 1 1 15 1 0 0 0

26. FB Chat History Manager * 1 102 / 560 3 1 1 0 0 0 0
Accessibility

27. Smart Bookmarks + 1 1038 / 2818 1 1 1 1 0 0 0
28. AnnoPad + 1 566 / 10533 1 1 6 1 0 0 0

Total 36 53965 / 150783 18 40 218 18 6 23 0

We further provided the detailed vulnerabilities to the eight
developers respectively. Two of them patched their exten-
sions in the online stores; one of them removed his extension
from the Google extension store; four of them did not fur-
ther respond to us; one of them disagreed with our analysis
result, and mentioned that tons of extensions persist much
more sensitive data all over the place and his extension does
not encrypt data because the browser’s storage APIs do not
provide encryption options.

4.4 Performance Results
We measured the running time of LvDetector in analyzing

the vulnerabilities in each extension on a desktop computer
with 2.83GHz CPU, 2.96GB memory, 32-bit Windows 7 op-
erating system, and Java Runtime Environment 1.7. For the
vulnerability analysis of the 36 use scenarios (Table 2), the
maximum running time is about 48 minutes (correspond-
ing to the scenario 1 of the RoboForm case study described
in Section 4.1), the minimum running time is less than one
minute, the median running time is six minutes, and the av-
erage running time is 12 minutes with a standard deviation
of 13. Because LvDetector is an offline analysis framework,

such a running time performance is quite acceptable. Note
that the running time is not linear to the Lines of Code, and
it is often related to the code complexity.

4.5 Discussion
False positives may come from a few sources. First, in the

variable use analysis, the conditions in the control flow of the
SSA IR are not currently considered; therefore, extra (i.e.,
nonexistent) information flows could be later included in the
function-level relation analysis. Second, in the variable use
analysis, the individual elements in a collection type of ob-
ject such as array or linkedlist are not further differentiated
from each other - the analysis granularity is only at the ob-
ject level; therefore, extra information flows could be later
included in the function-level relation analysis. Third, in the
program-level relation analysis, all possible edges are created
between global variable definitions and their uses; therefore,
extra information flows could be included. Fourth, if the
value of a sensitive variable is leaked to an intended remote
server for further processing, this type of leakage should not
be identified as vulnerable. Among the 6 false positives re-
ported in our evaluation results (Section 4.2), four of them



come from the first source, and the remaining two come from
the fourth source as explained in the scenarios 5 and 6 of the
RoboForm case study (Section 4.1). Although in our eval-
uation we did not observe any false positive coming from
the second and the third sources, analysts should still pay
attention to these sources when they use LvDetector.

False negatives may occur due to reasons such as the mis-
uses of cryptographic primitives [13], which are not further
examined by the current version of LvDetector (Section 3.4).
In addition, because LvDetector builds call graphs from the
scenario-driven execution traces, vulnerabilities will not be
identified for the scenarios that are not executed by analysts.

In the future, we plan to consider the conditions in the
control flow of the SSA IR, differentiate the elements in an
Array from each other, and refine the mappings between
global variable definitions and their uses; with these en-
hancements, we expect that false positives can be reduced.
We also plan to investigate potential cryptographic mis-
uses [13] in browser extensions and other path exploration
techniques such as [23, 32] to see if LvDetector can identify
more vulnerabilities.

5. RELATED WORK
Existing research on analyzing the security of JavaScript-

based extensions mostly focused on identifying privilege es-
calation related vulnerabilities that could lead to web-based
attacks or malware installation. Researchers applied static
information flow analysis techniques [1] and dynamic taint
analysis techniques [12] to identify privilege escalation re-
lated vulnerabilities in buggy browser extensions. Guha et
al. proposed a new model for secure development, verifica-
tion, and deployment of browser extensions to limit potential
over-privilege problems [18]. Barth et al. designed a new ex-
tension system for Google Chrome that uses least privilege,
privilege separation, and strong isolation mechanisms [2].
Carlini et al. manually reviewed and evaluated the effective-
ness of those three mechanisms in a set of Google Chrome
extensions [3]. Liu et al. revealed that malicious attacks
can still violate the least privilege and privilege separation
mechanisms of the Google Chrome extension system, and
proposed some countermeasures [24].

Only a handful of existing solutions [4, 11, 22] aimed to
address the same problem targeted by our LvDetector, but
they took either pure dynamic approaches or pure static ap-
proaches. In [4], Chang and Chen proposed a framework,
iObfus, to dynamically protect against the potential sensi-
tive information leakage through browser extensions. iOb-
fus marks sensitive web elements, obfuscates the sensitive
information before performing any I/O operation, and de-
obfuscates the information only for trusted domains. In [11],
Dhawan and Ganapathy proposed a framework, Sabre, to
dynamically track information flows in JavaScript-based Fire-
fox extensions. Sabre associates security labels with JavaScript
objects, tracks the propagation of those labels at runtime in
the SpiderMonkey JavaScript engine of Firefox, and raises
an alert if an object with a sensitive label is written to a low-
sensitivity sink point. These frameworks are not publicly
available for comparison. However, generally speaking, only
using online dynamic techniques without performing a static
analysis in advance suffers from three main drawbacks: (1)
asking users to respond to runtime alerts may not be wise,
while using default response options may become too restric-
tive [1]; (2) it is not possible to detect all information flows

dynamically [31, 36]; (3) performance and memory overhead
can often be incurred to the system [1]. In addition, dynamic
approaches are often browser-specific and require high in-
strumentation effort [11]. In [22], Kashyap and Hardekopf
proposed an abstract interpretation approach to validate the
pre-defined security signatures for browser extensions; how-
ever, pure static analysis of JavaScript-based extensions can
often incur high false positives as we discussed in Section 3.1.
Our LvDetector combines both static and dynamic program
analysis techniques, and aims to automatically identify in-
formation leakage vulnerabilities in browser extensions be-
fore they are released to users.

Static and dynamic program analysis techniques have also
been used to address other JavaScript security problems in
web applications. On the one hand, static program anal-
ysis techniques have been used to detect JavaScript mal-
ware [6, 9], detect web application vulnerabilities such as
injection and cross-site scripting [17], and examine a re-
stricted version of JavaScript that enables the API con-
finement verification [34]. Static techniques can provide a
comprehensive code coverage, but may over-estimate the ac-
tual execution paths and incur false positives. On the other
hand, dynamic program analysis techniques have been used
to enforce information flow security for a set of core fea-
tures in JavaScript [19], detect privacy-violating informa-
tion flows such as cookie stealing and history sniffing [20],
and identify client-side code injection vulnerabilities [32].
Dynamic techniques can capture the precise program exe-
cution information, but may overlook certain potential exe-
cution paths and incur false negatives. Static and dynamic
program analysis techniques have also been combined to pre-
vent cross-site scripting attacks [35, 36], track information
flow in JavaScript code injection attacks [21], and extract
the dynamically generated code for analyzing script injection
attacks [37]. Our LvDetector uses both static and dynamic
program analysis techniques but focuses on addressing a dif-
ferent problem than those addressed by this body of work.

6. CONCLUSION
In this paper, we present a framework, LvDetector, that

combines static and dynamic program analysis techniques
for automatic detection of information leakage vulnerabili-
ties in legitimate browser extensions. Extension developers
can use LvDetector to locate and fix the vulnerabilities in
their code; browser vendors can use LvDetector to decide
whether the corresponding extensions can be hosted in their
online stores; advanced users can also use LvDetector to de-
termine if certain extensions are safe to use. LvDetector is
not bound to specific web browsers or JavaScript engines;
it follows a modular design principle, and can adopt other
program analysis techniques. We implemented LvDetector
in Java and evaluated it on 28 popular Firefox and Google
Chrome extensions. The evaluation results and the feedback
to our responsible disclosure demonstrate that LvDetector
is useful and effective.

7. ACKNOWLEDGMENTS
The authors sincerely thank anonymous reviewers for their

valuable suggestions and comments. The first two authors
were supported in part by NSF grants CNS-1359542 and
DGE-1438935. The third author was supported in part by
NSF grant CCF-1261811.



8. REFERENCES

[1] S. Bandhakavi, S. T. King, P. Madhusudan, and
M. Winslett. Vex: Vetting browser extensions for
security vulnerabilities. In Proc. of USENIX Security
Symposium, pages 339–354, 2010.

[2] A. Barth, A. P. Felt, P. Saxena, and A. Boodman.
Protecting browsers from extension vulnerabilities. In
Proc. of NDSS, 2010.

[3] N. Carlini, A. P. Felt, and D. Wagner. An evaluation
of the google chrome extension security architecture.
In Proc. of USENIX Security Symposium, 2012.

[4] W. Chang and S. Chen. Defeat information leakage
from browser extensions via data obfuscation. In Proc.
of ICICS, 2013.

[5] Google Chrome Extensions.
https://chrome.google.com/extensions/.

[6] R. Chugh, J. A. Meister, R. Jhala, and S. Lerner.
Staged information flow for javascript. In Proc. of
ACM PLDI, pages 50–62. ACM, 2009.

[7] Closure Compiler.
https://developers.google.com/closure/compiler/.

[8] WALA Compiler.
http://wala.sourceforge.net/wiki/index.php.

[9] C. Curtsinger, B. Livshits, B. G. Zorn, and C. Seifert.
Zozzle: Fast and precise in-browser javascript malware
detection. In Proc. of USENIX Security Symp., 2011.

[10] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman,
and F. K. Zadeck. Efficiently computing static single
assignment form and the control dependence graph.
ACM Trans. Program. Lang. Syst., 13(4), 10 1991.

[11] M. Dhawan and V. Ganapathy. Analyzing information
flow in javascript-based browser extensions. In Proc. of
ACSAC, pages 382–391, 2009.

[12] V. Djeric and A. Goel. Securing script-based
extensibility in web browsers. In Proc. of USENIX
Security Symposium, 2010.

[13] M. Egele, D. Brumley, Y. Fratantonio, and
C. Kruegel. An empirical study of cryptographic
misuse in android applications. In Proc. of CCS, 2013.

[14] Firefox Extensions. https://addons.mozilla.org/.

[15] D. Grove, G. DeFouw, J. Dean, and C. Chambers.
Call graph construction in object-oriented languages.
In Proc. of ACM OOPSLA, pages 108–124, 1997.

[16] S. Guarnieri and B. Livshits. Gatekeeper: Mostly
static enforcement of security and reliability policies
for javascript code. In Proc. of USENIX Security
Symposium, pages 151–168, 2009.

[17] S. Guarnieri, M. Pistoia, O. Tripp, J. Dolby,
S. Teilhet, and R. Berg. Saving the world wide web
from vulnerable javascript. In Proc. of ISSTA, 2011.

[18] A. Guha, M. Fredrikson, B. Livshits, and N. Swamy.
Verified security for browser extensions. In Proc. of
IEEE S&P Symposium, pages 115–130, 2011.

[19] D. Hedin and A. Sabelfeld. Information-flow security
for a core of javascript. In Proc. of IEEE CSF, 2012.

[20] D. Jang, R. Jhala, S. Lerner, and H. Shacham. An
empirical study of privacy-violating information flows
in javascript web applications. In Proc. of CCS, 2010.

[21] S. Just, A. Cleary, B. Shirley, and C. Hammer.
Information flow analysis for javascript. In Proc. of
ACM PLASTIC Workshop, pages 9–18, 2011.

[22] V. Kashyap and B. Hardekopf. Security signature
inference for javascript-based browser addons. In Proc.
of IEEE/ACM CGO Symposium, pages 219–229, 2014.

[23] C. Kolbitsch, B. Livshits, B. Zorn, and C. Seifert.
Rozzle: De-cloaking internet malware. In Proc. of
IEEE S&P Symposium, pages 443–457, 2012.

[24] L. Liu, X. Zhang, G. Yan, and S. Chen. Chrome
extensions: Threat analysis and countermeasures. In
Proc. of NDSS, 2012.

[25] B. Livshits, M. Sridharan, Y. Smaragdakis,
O. Lhoták, J. N. Amaral, B.-Y. E. Chang, S. Z.
Guyer, U. P. Khedker, A. Møller, and D. Vardoulakis.
In defense of soundiness: A manifesto. Commun.
ACM, 58(2):44–46, 2015.

[26] M. Madsen, B. Livshits, and M. Fanning. Practical
static analysis of javascript applications in the
presence of frameworks and libraries. In Proc. of
ESEC/FSE, pages 499–509, 2013.

[27] N. Nikiforakis, L. Invernizzi, A. Kapravelos,
S. Van Acker, W. Joosen, C. Kruegel, F. Piessens, and
G. Vigna. You are what you include: Large-scale
evaluation of remote javascript inclusions. In Proc. of
CCS, pages 736–747, 2012.

[28] G. Richards, C. Hammer, B. Burg, and J. Vitek. The
eval that men do - a large-scale study of the use of eval
in javascript applications. In Proc. of ECOOP, 2011.

[29] G. Richards, S. Lebresne, B. Burg, and J. Vitek. An
analysis of the dynamic behavior of javascript
programs. In Proc. of ACM PLDI, 2010.

[30] RoboForm. http://www.roboform.com/.

[31] A. Sabelfeld and A. C. Myers. Language-based
information-flow security. IEEE JSAC, 21(1), 2003.

[32] P. Saxena, D. Akhawe, S. Hanna, F. Mao,
S. McCamant, and D. Song. A symbolic execution
framework for javascript. In IEEE S&P Symp., 2010.

[33] B. Stone-Gross, M. Cova, L. Cavallaro, B. Gilbert,
M. Szydlowski, R. A. Kemmerer, C. Kruegel, and
G. Vigna. Your botnet is my botnet: analysis of a
botnet takeover. In Proc. of CCS, 2009.

[34] A. Taly, U. Erlingsson, J. C. Mitchell, M. S. Miller,
and J. Nagra. Automated Analysis of Security-Critical
JavaScript APIs. In Proc. of IEEE S&P Symp., 2011.

[35] O. Tripp, P. Ferrara, and M. Pistoia. Hybrid security
analysis of web javascript code via dynamic partial
evaluation. In Proc. of ISSTA, pages 49–59, 2014.

[36] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda,
C. Kruegel, and G. Vigna. Cross site scripting
prevention with dynamic data tainting and static
analysis. In Proc. of NDSS, 2007.

[37] S. Wei and B. G. Ryder. Practical blended taint
analysis for javascript. In Proc. of ISSTA, 2013.

[38] W. E. Weihl. Interprocedural data flow analysis in the
presence of pointers, procedure variables, and label
variables. In Proc. of ACM POPL, 1980.

[39] M. Weiser. Program slicing. In Proc. of ICSE, 1981.

[40] Q. Yi, V. Adve, and K. Kennedy. Transforming loops
to recursion for multi-level memory hierarchies. In
Proc. of ACM PLDI, pages 169–181, 2000.

[41] C. Yue and H. Wang. A measurement study of
insecure javascript practices on the web. ACM
Transactions on the Web, 7(2):7:1–7:39, 2013.


