Abstract
Past approaches to translate a phrase in a language L_1 to a language L_2 using a dictionary-based approach require grammar rules to restructure initial translations. This paper introduces a novel method without using any grammar rules to translate a given phrase in L_1, which does not exist in the dictionary, to L_2. We require at least one L_1–L_2 bilingual dictionary and n-gram data in L_2. The average manual evaluation score of our translations is 4.29/5.00, which implies very high quality.

1 Introduction
This paper tackles the problems of phrase translation from a source language L_1 to a target language L_2. The common approach translates words in the given phrase to L_2 using an L_1–L_2 dictionary, then restructures translations using grammar rules which have been created by experts or are extracted from corpora. We propose a new method for phrase translation using an L_1–L_2 dictionary and n-gram data in L_2, instead of grammar rules, with a case study in translating phrases from Vietnamese to English. We note that the given Vietnamese phrases for translation do not exist in the dictionary. For example, we translate Vietnamese phrases “bộ môn khoa học máy tính”, “thẻ thu nhập cá nhân” and “dời một chút” to English: “computer science department”, “individual income tax”, and “wait a little”, respectively. In particular, given a Vietnamese phrase, our algorithms return a list of ranked translations in English.

One purpose of the phrase translations in our work is to support language learners. Assume that, using a Vietnamese-English dictionary, a learner has looked up translations of “bộ môn”, “khoa học” and “máy tính” as “department/faculty”, “science” and “calculator/computer”, respectively. Now, he wants to obtain the translation of “bộ môn khoa học máy tính”, a phrase which does not exist in the dictionary. We present a method to generate phrase translations based on information in the dictionary.

2 Overall Vietnamese morphology
Vietnamese is an Austroasiatic language (Lewis et al., 2014) and does not have morphology (Thompson, 1963) and (Aronoff and Fudeman, 2011). In Vietnamese, whitespaces are not used to separate words. The smallest meaningful part of Vietnamese orthography is a syllable (Ngo, 2001). Some examples of Vietnamese words are shown as following:

\begin{itemize}
 \item Single words: “nhà”- house, “lụa”- silk, “nächt”- pick up, “mua”- buy and “bán”- sell.
\end{itemize}

Thus, what we call a word in Vietnamese may consist of several syllables separated by whitespaces.

3 Related work
The two methods, commonly used for phrase translation, are dictionary-based and corpus-based. In
dictionary-based approaches, (Abiola et al., 2014) generate translation candidates by translating the given phrase to the target language using a bilingual dictionary. The candidates are restructured using grammar rules which are developed manually or learned from a corpus. In corpus-based approaches, a statistical method is used to identify bilingual phrases from a comparable or parallel corpus (Pecina, 2008), (Koehn and Knight, 2003), and (Bouamor et al., 2012). Researchers may also extract phrases from a given monolingual corpus in the source language and translate them to the target language using a bilingual dictionary (Cao and Li, 2002), and (Tanaka and Baldwin, 2003). Finally, a variety of methods are used to rank translation candidates. These include counting the frequency of candidates in a monolingual corpus in the target language (Pecina, 2008), standard statistical calculations (Pecina, 2008), or even Naïve Bayes Classifiers and TF-IDF vectors with the EM algorithm (Cao and Li, 2002). (Mariño et al., 2006) extract translations from a bilingual corpus using an n-gram model augmented by additional information, target-language model, a word-bonus model and two lexicon models.

More pertinent to our work is (Hai at al., 1997), who introduced a phrase transfer model for Vietnamese-English machine translation focusing on one-to-zero mapping, which means that a word in Vietnamese may not have appropriate single-word translation(s) and may need to be translated into a phrase in English. They translate Vietnamese words to English using a bilingual dictionary, then use conversion rules to modify the structures of the English translation candidates. The modifying process builds phrases level-by-level from simple to complex, restructures phrases using a syntactic parser and additional rules, and applies measures to solve phrase conflict.

4 Proposed approach

This section introduces a new simple and effective approach to translate from Vietnamese to English using a bilingual dictionary and n-gram data. An entry in n-gram data is a 2-tuple \(<w_E, frq>\), where \(w_E\) is a sequence of \(n\) words in English and \(frq\) is the frequency of \(w_E\). An entry in a bilingual dictionary is also a 2-tuple \(<w_s, w_t>\), where \(w_s\) and \(w_t\) are a word or a phrase in the source language and its translation in the target language. If the word \(w_s\) has many translations in the target language, there are several entries such as \(<w_s, w_{t1}>, <w_s, w_{t2}>, \text{ and } <w_s, w_{t3}>\). We note that an existing bilingual dictionary may contain phrases and their translations. Our work finds translations for phrases which do not exist in the dictionary. The general idea of our approach is that we translate each word in the given phrase to English using a Vietnamese-English dictionary, then use n-gram data to restructure translations. Our work is divided into 4 steps: segmenting Vietnamese words, filtering segmentations, generating ad hoc translations, selecting the best ad hoc translation, and finding and ranking English translation candidates.

4.1 Segmenting Vietnamese words

A Vietnamese phrase \(P\), consisting of a sequence of \(n\) syllables \(<s_1 s_2 ... s_n>\), can be segmented in different ways, each of which will produce a segmentation \(S\). A segmentation \(S\) is defined as an ordered sequence of words \(w_i\) separated by semicolons “;”, such as \(S \equiv <w_1; w_2; w_3; ...; w_i; ...; w_m>\), where \(m\) is the number of words in \(S\), \(m \leq n\) and \(1 \leq i \leq m\). We note that a word may contain one or more syllables \(s\). Generally, we have \(2^{n-1}\) possible segmentations for a Vietnamese phrase \(P\). For example, the phrase “khoa khoa hoc” - science department/faculty, has 4 possible segmentations: \(S_1 = <khoa; khoa; hoc>\), \(S_2 = <khoa; khoa hoc>\), \(S_3 = <khoa khoa; hoc>\), and \(S_4 = <khoa khoa hoc>\).

4.2 Filtering segmentations

Each word in each segment may have \(k \geq 0\) translations in English. The total number of English translation candidates for a Vietnamese phrase, with \(m\) words, is \(O(2^{n-1} \times m^k)\). To reduce the number of candidates, we check whether or not every Vietnamese word in each segmentation has an English translation in a Vietnamese-English dictionary. If at least one word does not have a translation in the dictionary, we delete that segmentation. For example, we delete \(S_3\) and \(S_4\) because they contain the words “khoa khoa” and “khoa khoa hoc” which do not have translations in the dictionary. As a result, the phrase “khoa khoa hoc” has 2 remaining seg-
mentations: \(S_1 = \text{<khoa; khoa; hoc>} \) and \(S_2 = \text{<khoa; khoa hoc>} \).

4.3 Generating ad hoc translations

To generate an ad hoc translation \(T \), we translate each word in a segmentation \(S \) to English using the Vietnamese-English dictionary. The ad hoc translations of a given phrase are the translations of segmentations. For instance, the translations of the segmentation \(S_1 \) for “khoa khoa hoc” are \(<\text{faculty; faculty study}> \), \(<\text{department; department study}> \), \(<\text{subject of study; subject of study; study}> \); and the translations for \(S_2 \) are \(<\text{faculty; science}> \), \(<\text{department; department; study}> \), \(<\text{subject of study; science}> \). Therefore, the six ad hoc translations of “khoa khoa hoc” are \(T_1 = \text{“faculty faculty study”} \), \(T_2 = \text{“department department study”} \), \(T_3 = \text{“subject of study subject of study; study”} \), \(T_4 = \text{“faculty science”} \), \(T_5 = \text{“department science”} \), and \(T_6 = \text{“subject of study science”} \).

4.4 Selecting the best ad hoc translation

We have generated several ad hoc translations by simply translating each word in the segmentations to English. Most are not grammatically correct. We use a method, presented in Algorithm 1, to reduce the number of ad hoc translations. We consider words in each entry in the English n-gram data as a bag of words \(NB \) (lines 1-3), i.e., the words in each entry is simply considered a set of words instead of a sequence. For example, the 3-gram “computer science department” is considered as the set \{computer, science, department\}. Each ad hoc translation \(T \), created in Section 4.3, is also considered a bag of words \(TB \) (lines 4-6). For every bag of words \(TB \), we find each bag of words \(NB' \), belonging to the set of all NBS, such that \(NB' \) contains all words in \(TB \) (lines 7-9), i.e., \(TB \subseteq NB' \). Each bag of words \(TB \) is given a score \(score_{TB} \) which is the sum of frequency of all bags of words \(NB' \) (line 10). The bag of words \(TB \) with the greatest score is considered the best ad hoc translation (lines 12-18).

After this step, only one ad hoc translation \(T \) will remain. For example, we eliminate 5 ad hoc translations (viz., \(T_1, T_2, T_3, T_4 \) and \(T_6 \)) of the Vietnamese phrase “khoa khoa hoc”, and select “department science” \((T_5) \) as the best ad hoc translation of it. We note that the best ad hoc translation may still be grammatically incorrect in English.

Algorithm 1 Selecting the best ad hoc translation

Input: all ad hoc translations \(T_s \)

Output: the best ad hoc translation \(bestAdhocT ran \)

```plaintext
1: for all entries \( N \in \text{n-gram data} \) do
2:     generate bags of words \( NB \)
3:     end for
4: for all ad hoc translations \( T \) do
5:     generate bags of words \( TB \)
6:     end for
7: for all \( TB \) do
8:     \( score_{TB} = 0 \)
9:     Find all \( NB' \in \text{set of all} \ NBs \text{that contain all words in} \ TB \)
10: \( score_{TB} = \sum \text{Frequency}(NB') \)
11: end for
12: \( bestAdhocT ran = TB_0 \)
13: for all \( TB \) do
14:     if \( score_{TB} > score_{bestAdhocT ran} \) then
15:         \( bestAdhocT ran = TB \)
16:     end if
17: end for
18: return \( bestAdhocT ran \)
```

4.5 Finding and ranking translation candidates

To restructure translations, we use n-gram data instead of grammar rules. We take advantage that the n-gram information implicitly “encodes” the grammar of a language. Having the best ad hoc translation \(TB \) and several corresponding bags \(NB' \) from the previous step, we find and rank the translation candidates. For every \(NB' \), we retrace its corresponding entry in the n-gram data, and mark the words in the entry as a translation candidate \(cand \). Then, we rank the selected translation candidates:

- If there exists one or many \(cand \) such that the sizes of each \(cand \) and \(TB \) are equal, these \(cand \) are more likely to be correct translations than other candidates. We simply rank \(cand \) based on their n-gram frequencies. The candidate \(cand \) with the greatest frequency is considered the best translation. For example, the best ad hoc translation of “khoa khoa hoc” is “department science”. In the n-gram data, we find an entry \(<”\text{science department”}, 112> \) which contains exactly the same words in the best ad hoc translation found. We accept “science department” as a correct translation of “khoa khoa...
học” and its rank is 112, which is the n-gram frequency of “science department”.

- The rest of the candidates are ranked using the following formula:
 \[
 \text{rank}(cand) = \frac{\text{Frequency}(cand)}{|\text{size}(cand) - \text{size}(TB)| + 100}.
 \]

 Our motivation for the rank formula is the following. If a candidate has a greater frequency, it has a greater likelihood to be a correct translation. However, if the size of the candidate and the size of \(TB \) are very different, that candidate may be inappropriate. Hence, we divide the frequency of \(cand \) by the difference in the number of words between \(cand \) and \(TB \). To normalize, we divide results by 100.

5 Experiments

We work with the Vietnamese-English dictionary obtained from EVbcorpus\(^1\). The dictionary contains about 130,000 entries. We also use the free lists of English n-gram data available at the ngrams.info\(^2\) Website. The free lists have the one million most frequent entries for each of 2, 3, 4 and 5-grams. The n-gram data has been obtained from the corpus of contemporary American English\(^3\).

Currently, we limit our experiments to translation candidates with equal or smaller than 5 syllables. We obtain 200 common Vietnamese phrases, which do not exist in the dictionary, from 4 volunteers who are fluent in both Vietnamese and English. Later, these volunteers are asked to evaluate our translations using a 5-point scale, 5: excellent, 4: good, 3: average, 2: fair, and 1: bad.

The average score of translations created using the baseline approach, which is simply translating words in segments to English, is 2.20/5.00. The average score of translations created using our proposed approach is 4.29/5.00, which is quite high. The rating reliability is 0.72 obtained by calculating the Intraclass Correlation Coefficient (Koch, 1982). Our approach returns translations for 101 phrases out of the 200 input phrases. This means the precision and recall of our translations are 85.8% and 50.5%, respectively.

We also compute the matching percentage between our translations and translations performed by the Google Translator. The matching percentage of our translations for phrases is 42%. The translations marked as “unmatched” do not mean our translations are incorrect. A few such examples are presented in Table 1.

<table>
<thead>
<tr>
<th>Vietnamese phrase</th>
<th>Meaning of the Vietnamese phrase</th>
<th>Our translation</th>
<th>Google translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ca sĩ nổi tiếng</td>
<td>a famous singer</td>
<td>famous singer</td>
<td>diva</td>
</tr>
<tr>
<td>gia cả thi trường</td>
<td>the price at which buyers and sellers trade the item in an open marketplace</td>
<td>prices on the world market</td>
<td>market prices</td>
</tr>
<tr>
<td>con chim non</td>
<td>young bird not yet fledged</td>
<td>a bird</td>
<td>not with chim</td>
</tr>
<tr>
<td>dân mình phương Tây</td>
<td>alliance in the West</td>
<td>alliance with the West</td>
<td>Western allies</td>
</tr>
<tr>
<td>thú phố</td>
<td>rent a room</td>
<td>rent a room</td>
<td>rent</td>
</tr>
<tr>
<td>người trẻ tuổi</td>
<td>a young person</td>
<td>young man</td>
<td>young people</td>
</tr>
<tr>
<td>khả năng tư duy</td>
<td>the ability to think</td>
<td>thinking ability</td>
<td>thinking</td>
</tr>
<tr>
<td>tắt lửa</td>
<td>put out, as of fires, flames, or lights</td>
<td>put out the fire</td>
<td>quench</td>
</tr>
<tr>
<td>leo cây</td>
<td>to climb a tree</td>
<td>climb a tree</td>
<td>climbing tree</td>
</tr>
</tbody>
</table>

Table 1: Some translations we create are correct but do not match with translations from the Google Translator.

The average score of our translations is high; however, the recall is low. If our algorithms can return a translation for an input phrase, that translation is usually specific, and is evaluated as excellent or good in most cases. Our approach relies on an existing bilingual dictionary and n-gram data in English. If we have a dictionary covering the most common words in Vietnamese, and the n-gram data in English is extensive with different lengths, we believe that our approach will produce even better translations.

6 Conclusion and future work

We have introduced a new method to translate a given phrase in Vietnamese to English using a bilingual dictionary and English n-gram data. Our approach can be applied to other language pairs that have a bilingual dictionary and n-gram data in one of the two languages. We plan to compute Vietnamese n-gram data from a Wikipedia dump and try to translate phrases from English to Vietnamese next.

\(^1\)https://code.google.com/p/evbcorpus/
\(^2\)http://www.ngrams.info/
\(^3\)http://corpus.byu.edu/coca/
References

