Gene Co-expression Networks Across Many Microarrays

by

Michael Bankston

B.S., University of Colorado, Colorado Springs, 2007

A thesis submitted to the Graduate Faculty of the University of Colorado at Colorado Springs in partial fulfillment of the requirements for the degree of Master of Science

Department of Computer Science

2013
This thesis for Master of Science degree by

Michael Bankston

has been approved for the

Department of Computer Science

by

Dr. Jugal Kalita, Chair

Dr. Lisa Hines

Dr. Rory Lewis

Date
Bankston, Michael

M.S., Computer Science

Thesis directed by Dr. Jugal Kalita
Dedicated to my wife, Lacey
Acknowledgments

First, I would like to acknowledge my thesis advisor, Dr. Jugal Kalita, who originally inspired me to go down the research path of microarray meta-analysis and field of bioinformatics in general, and who was always available for questions and feedback on such short notice. Also, to the two graduate students, Connor Clark for his contributions to the graph comparison algorithm implementations and literature review, and Tri Doan for his thorough research into the many possible routes of future work to extend the results of this thesis.

And lastly, I would like to acknowledge my wife, Lacey Bankston, whose knowledge of biology I relied on to strengthen the relevancy of the work, and to her incredible patience in allowing me the time I required to finish this work under a very short timeline.
TABLE OF CONTENTS

1 Introduction

1.1 Objective .. 2
1.2 Accomplishments ... 3
1.3 Outline of Thesis ... 4

2 Biological Background .. 6
2.1 Trp53 Example ... 7

3 Microarray Combination ... 8
3.1 Background ... 8
3.2 Approach ... 10
 3.2.1 Normalizing Value Ranges 10
 3.2.2 Combining Platforms 11

4 Gene Regulatory Network Modeling 16
4.1 Background ... 16
4.2 Approach ... 16
 4.2.1 Static Bayesian Networks 17
 4.2.1.1 Experiment Introduction 21
 4.2.1.2 *Escherichia coli* Experiment 21
 4.2.1.3 Large-Scale Human Microarray Experiment 23
 4.2.2 Dynamic Bayesian Networks 27
 4.2.2.1 Time Series Interpolation 28
 4.2.2.2 *Escherichia coli* Experiment 33
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3 Conclusion</td>
<td>35</td>
</tr>
<tr>
<td>5 Gene Network Graph Comparison</td>
<td>37</td>
</tr>
<tr>
<td>5.1 Background</td>
<td>37</td>
</tr>
<tr>
<td>5.2 Approach</td>
<td>38</td>
</tr>
<tr>
<td>5.2.1 Frequent Subgraphs Experiment</td>
<td>39</td>
</tr>
<tr>
<td>5.2.2 Graphlet Degree Similarity Experiment</td>
<td>40</td>
</tr>
<tr>
<td>6 Microarray Meta-Analysis Tool</td>
<td>42</td>
</tr>
<tr>
<td>6.1 Introduction</td>
<td>42</td>
</tr>
<tr>
<td>6.2 Demo Walkthrough</td>
<td>43</td>
</tr>
<tr>
<td>6.3 Conclusion</td>
<td>50</td>
</tr>
<tr>
<td>7 Conclusion</td>
<td>51</td>
</tr>
<tr>
<td>7.1 Future Work</td>
<td>52</td>
</tr>
<tr>
<td>7.1.1 Microarray Combination</td>
<td>52</td>
</tr>
<tr>
<td>7.1.2 Gene Regulatory Networks</td>
<td>54</td>
</tr>
<tr>
<td>7.1.3 Time Series Combination</td>
<td>55</td>
</tr>
<tr>
<td>References</td>
<td>57</td>
</tr>
<tr>
<td>Appendix A Software Packages and Versions</td>
<td>61</td>
</tr>
<tr>
<td>Appendix B All Sub-Graphs</td>
<td>62</td>
</tr>
</tbody>
</table>
3.1 Platform Summary .. 15

3.2 Platform Combination Comparison 15

4.1 Large-Scale Microarray Summary 27

5.1 Intra-species Graphlet Degree Scores 41
FIGURES

2.1 TF Family p53 in Mouse ... 7
4.1 SOS Regulation .. 22
4.2 SOS Regulation Run 1 ... 24
4.3 SOS Regulation Run 2 ... 24
4.4 SOS Regulation Run 3 ... 25
4.5 Dynamic SOS Regulation Run ... 36
5.1 Frequent Subgraph 1 ... 40
5.2 Frequent Subgraph 2 ... 40
6.1 Opening Screen .. 43
6.2 New Project ... 44
6.3 New Experiment .. 45
6.4 Add Platforms and Microarrays 46
6.5 Probe Selection .. 47
6.6 Running the Experiment ... 48
6.7 Graph View ... 49
B.1 All Sub-Graphs ... 62
CHAPTER 1
INTRODUCTION

Gene expression analysis is a very important topic in biological studies. In humans, there are between 20,000 and 23,000 genes [43], each of which is mapped to one or more gene products. When genes express themselves, the gene products are usually proteins, but can also include functional RNA (fRNA). In the presence of certain gene products, genes can also alter the expression levels of other genes.

Since the expression level of one gene may determine the expression level of another, the relationship between two or more genes is called co-expression. It is possible to record levels of co-expression in individual cells at various points in time. One method to do this is through the use of a DNA microarray, which will contain relative expression levels from one or more genes over multiple time points.

If gene co-expression levels are accurately determined for a given function, then a Gene Regulatory Network (GRN) can be inferred for that function. Accurate GRNs are extraordinarily important in understanding the methods of how genes interact with each other in both normal organic processes and in the development of disease. This knowledge and understanding can help to predict possible disease susceptibility in individuals or help in the research of new pharmaceutical drugs.

Although GRNs can sometimes be deduced through other experimental means, a popular method is through the analysis of DNA microarrays by using data mining techniques to determine the correlations between the expression levels of various genes. There are many techniques in computational biology for inferring GRNs from this correlation data,
but a common problem is the very specific nature of an individual microarray. Even if a correlation is found in a single microarray, it is still very unlikely that correlation will continue to be found when compared to a selection of other microarrays; as low as a 2.2% chance [27]. A typical gene expression microarray dataset consists of relatively few time points (often <20) in comparison to the number of genes, generally in the thousands. This scarcity of time-course data is the so-called *dimensionality problem*, making the problem of determining GRN structure from a single microarray an ill-posed problem [55].

With the rapid increase in publicly available microarray data, such as the Gene Expression Omnibus (GEO) [3] and ArrayExpress [37] archives, there is an abundance of data covering many different experiments. Although these microarrays can be developed with different goals in mind, there is a great overlap in gene co-expression data from microarray to microarray, so that confidence and robustness in determining expression correlations between genes can be greatly increased through finding similar correlations across multiple datasets. However, combining microarray datasets is not a straightforward process, as experiments are commonly conducted in different laboratories with different equipment can lead to inherent biases in the data that are not always removed in processing the data [51].

Finding methods to predict accurate and robust gene co-expression networks from multiple microarrays is currently an important topic in bioinformatics with much work still ahead of it.

1.1 Objective

The overall objectives of this research is to find and compare microarray meta-analysis techniques, then use these sets of combined gene expression levels to infer Gene Regulatory Networks. Static networks will be generated on very large sets of disparate combined ex-
periments with no regard to time, while dynamic networks will be generated using smaller time series microarray experiments combined using both microarray meta-analysis techniques and interpolated time points to fill in time gaps created after combination. A small, simple GUI tool will be built for configuring and running these experiments to allow for easier microarray meta-analysis for non-computer experts, since the need for such a tool is great.

1.2 Accomplishments

The accomplishments presented in this thesis lays the groundwork for a great deal of future work by solving various problems in the course of producing and comparing GRN graphs and implementing a large library of useful functions and GUI tools designed for microarray meta-analysis.

Microarray combination is accomplished by creating parsers to ingest both individual microarray samples and microarray matrix files in SOFT format. Microarray platform files, also in SOFT format, is used to map probes to genes. An algorithm developed for combining platforms together using metadata analysis allows for probe mapping across microarrays from different platforms. Then, gene expression value normalization runs across these microarrays to make them comparable against each other, even if originating from different experiments and/or platforms.

Using combined microarray data as observations, Bayesian networks are inferred through a learning algorithm and tested for sparseness, with several experiments run and compared. Time series microarrays are also combined into time-based observations through another algorithm developed to fill in gaps in time through interpolation. All time series microarray experiments are then used as training observations for a dynamic Bayesian net-
work learning algorithm after interpolated to have the same time step size. An example experiment to test this process is shown with results.

Two graph comparison algorithms are implemented for the use of inter-species and intra-species GRN graph comparison. The first, to find sub-graphs in two graphs from the same species, is tested with some human GRNs under different conditions. The second, to find a graph similarity measure, uses combinations of several different species and the results are tallied.

The Microarray Meta-Analysis Tool (MMAT), developed during the course of this work, is intended for use by non-computer expert scientists to use in custom microarray meta-analysis experiments. Several screenshots and instructions are given.

Since a very large literature review was done in the course of this work, a very substantial future work section is included to help give ideas to others on how to extend upon this work.

1.3 Outline of Thesis

Chapter 2 presents the biological background for gene expressions and the use of microarrays for measuring them. Chapter 3 explains the difficulty of and various possible solutions to the problem of combining disparate microarray experiments for the use in microarray meta-analysis. It also outlines the exact methods used for microarray meta-analysis in later chapters. Chapter 4 describes the process of inferring Gene Regulatory Networks from a meta-analysis of many disparate microarray data sets. Here, it is shown how a static Bayesian network can model a gene co-expression network, while using a Dynamic Bayesian Network (DBN) extends a static Bayesian network to model gene expression cycles and feedback loops from multiple time series data. In Chapter 5, the comparison of the graphs built
from static Bayesian networks is shown using two different graph comparison algorithms. First, an algorithm for finding subgraphs in two graphs with identical labels, and second, an algorithm that compares only the structure of two graphs giving a similarity measure. The first algorithm is run for inter-species graphs, while the second is run against graphs for multiple species. The Microarray Meta-Analysis Tool (MMAT) GUI is introduced in Chapter 6, with a brief example of how to use it. Chapter 7 concludes the work with a summary and substantial future work section.
CHAPTER 2

BIOLOGICAL BACKGROUND

A gene is a string of genomic information written in the DNA of an organism that encodes for possible gene products. These products include proteins (from protein coding regions), and functional RNA, such as ribosomal RNA (rRNA) and transfer RNA (tRNA), that are used for many basic biological purposes. When a gene expresses itself, the possible products of the gene are produced, which can have a wide variety of effects both on the organism’s state and on other genes. This process, called gene expression, is the fundamental level where genotype propagates to the phenotype.

When genes express together, called gene co-expression, the changes made to the biological processes of an organism are commonly different than if only one of the gene expresses individually. More interestingly, two or more genes expressing together can bring about biological effects that cannot be determined by treating the gene products generated by both as independent. New proteins, functional RNA, and sudden changes in other gene expressions, both downward and upward, can be caused by two or more genes co-expressing.

The co-expression of genes also hints at a deeper regulation network that genes employ to control the products of other genes. One or more genes strongly expressing can cause other genes to express more strongly, up-regulation, or more weakly, down-regulation. These regulatory effects on genes, in turn, combined with other environmental situations in the cell and the expression levels of yet more genes, can then affect more expression levels of other genes. These regulatory processes of gene affecting gene gives rise to a entire regulation
network where genes work, not as independent units, but as part of an entire connected system.

This regulation network, commonly called a Gene Regulatory Network (GRN), describes many of the mechanics at work in a cell of an organism, and is key to understanding both healthy processes and an organism’s response to disease, chemical stressors, different environments, and many other events, both internal and external.

2.1 Trp53 Example

An example of a real mouse GRN is shown in Figure 2.1\(^1\). The gene \textit{Trp53} encodes tumor protein p53, which responds to diverse cellular stresses to regulate target genes that induce cell cycle arrest, apoptosis, senescence, DNA repair, or changes in metabolism. Mice deficient for this gene are developmentally normal but are susceptible to spontaneous tumors [12]. The yellow hexagon represents a gene cluster of 108 other genes.

\(^1\)Figure retrieved from: http://rulai.cshl.edu/TRED/GRN/p53.htm
CHAPTER 3
MICROARRAY COMBINATION

3.1 Background

A DNA microarray, also commonly known as a DNA chip or biochip, is used to measure the expression levels of many genes at once. Individual DNA microarray experiments are used to monitor and record gene expression levels at various key points in an organism’s state. Some common uses for microarray experiments include showing the difference in healthy and diseased states of an organism, such as cancerous versus non-cancerous, the effect of various treatments of medical conditions versus a control, and using a time series of microarrays to follow gene expression as it changes in time in a particular environment.

Microarray experiments are usually done as a series of measurements with a common platform. A microarray platform consists of probes, which can number in the tens of thousands, where the purpose of each is to bind to a particular strand of cDNA or RNA. In this way, each probe can measure the density or rate of specific strands within a cell or other biological environment. These measurements can help to determine the level of expression of a gene at a particular point in time by tracing back a gene product to its original source. These expression levels are usually measured as log ratio floating point values, but the range of values are determined by the type and specific bias of the experiment and the platform used.

An entire microarray experiment that results in a series can then be thought of as a large matrix, where rows are genes (either canonical or alternatively spliced), and columns are individual measurements. When trying to determine when two or more gene co-express
together using various machine learning algorithms, each column can be treated as a separate observation when using supervised and unsupervised learning approaches.

A microarray series usually consists of two or more, possibly hundreds, of individual measurements, or samples. However, the number of gene products measured can easily reach to 20,000 or more with popular platforms. This discrepancy between dimensions in microarray series data, the dimensionality problem [55], makes determining co-expression links an ill-posed problem with so few observations.

One method to solve the dimensionality problem is to merge multiple microarray experiment series into a single matrix, thereby greatly increasing the number of observations. This method, called microarray meta-analysis, is an integrative data analysis method is traditionally defined as a synthesis of results from datasets that are independent but related [35]. Not only can many microarray experiment series be combined through meta-analysis, but even intersecting genes from different microarray platforms can be combined.

Many researchers have embraced microarray technology in recent years, and due to their extensive use, there has been an explosion in publicly available datasets online. Several Internet repositories have been set up for the public with anonymous downloading for research use. Examples of such repositories include the Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) [3], ArrayExpress (http://www.ebi.ac.uk/microarray-as/ae/) [37], and the Stanford Microarray Database (SMD, http://genome-www5.stanford.edu/) [16]. Literally tens of thousands of datasets are free to download, and such a deluge of information makes this a golden opportunity for new techniques in meta-analysis to be developed.
3.2 Approach

The ultimate goal of the research described in this thesis is to use as many microarray datasets as possible in the attempt to infer Gene Regulatory Networks. With this in mind, a dataset aggregation meta-analysis strategy is needed that can scale to thousands of microarray samples or more. The two main obstacles to microarray combination are: expression value ranges and biases between datasets and the use of different microarray platforms. An overall strategy for combining microarrays that solves both problems is needed before processing all the data.

3.2.1 Normalizing Value Ranges

Value ranges on individual gene expression within a microarray sample can vary a great deal from dataset to dataset due to systematic variations arising from variation in the technology rather than biological variations. The scale differences between microarray experiments can differ substantially from reasons such as a changes in the photomultiplier tube settings of the scanner and others [50].

Scale-normalization is a commonly used method for the simple scaling of the log ratios from a series of arrays so that each array has the same median absolute deviation [36]. This method has been shown to be quite effective as an aggregation strategy when used for the purposes of determining Gene Regulatory Network structures in the past [51]. The scale-normalization formula used to transform each log ratio value is as follows:

$$M_{ij}' = \frac{M_{ij} - \text{median}_i}{MAD_i}$$ (3.1)
where M_{ij} is the log ratio of the jth gene in the ith array and the median absolute deviation MAD_i is defined as the median absolute deviations from the median: $MAD_i = \text{median}_i(|M_{ij} - \text{median}_i|)$.

Scale-normalization not only has the advantage of preparing microarray samples for comparison within datasets, but also theoretically allows arrays between datasets to be comparable as well. Therefore, this method can be used to combine many microarrays together, which can be treated as a single dataset [51]. The drawback is that bias and artifacts may still be present in the data after scale-normalization. However, this variance due to experimental bias and error, in theory, could be interpreted as observational noise that can be statistically canceled out when scaling up to thousands of microarray samples.

3.2.2 Combining Platforms

Microarray platforms, such as the Affymetrix Human Genome U133A Array and the Agilent-014850 Whole Human Genome Microarray, are both designed to measure expression levels of the entire human genome as it is understood today, but have completely different probe structures. The challenge is to match up different platforms such as these so that microarray samples that use one or another can be combined.

Probe ID’s from platform to platform generally have no correlation to each other whatsoever, so that when analyzing a single microarray sample that uses these probe ID’s, it is unknown which probe ID matches one platform or another. However, platform description files, such as platform SOFT (Simple Omnibus Format in Text) files from the Gene Expression Omnibus repository, do contain metadata associated with each probe. In theory, it should be possible to mine this metadata to match one probe from one platform
to another probe in another platform so as to create a mapping data structure that can be referenced when ingesting microarray samples.

The algorithm for matching platform probes to other platform probes relies on the existence of one or more pieces of metadata that can each be recorded and compared to every other probe on another platform. If metadata matches in some manner between two probes from two platforms, then a multi-platform that forms a union of probes from both platforms can be built.

More formally, given platform A with I probes and platform B with J probes, let p_{A_i} be a probe in A and let p_{B_j} be a probe in B. Each probe has one or more metadata m_n that can be compared. Multi-platform X has probe p_{X_k} if and only if $p_{A_i}(m_n) = p_{B_j}(m_n)$ for some subset of n and some measure of equality between metadata. This means that multi-platform probe count $K \leq I, J$. Once a multi-platform is built from two platforms, it can be treated as a single platform to join with another platform.

An algorithm for producing a multi-platform map that can recognize microarrays from any platform in the mapping and trace it back to a single gene was originally developed in the course of this work. This algorithm to determine a multi-platform from N platforms is shown in Algorithm 1.

There are many types of metadata that is possible, including, but not limited to:

- Probe name
- Primary gene label
- Alternate gene synonyms
- Chromosome number
- Nucleotide sequence begin/end
Algorithm 1: BuildMultiPlatform

Data: I platforms P_i, each with n probes and m metadata; metadata equality score threshold E

Result: Multi-platform X with $k \leq n$ probes

$X \leftarrow \emptyset$;

foreach platform P do

 if P is first platform then
 add all probes along with metadata to X;
 else

 foreach probe p in P do

 foreach probe x in X do

 $e \leftarrow \text{metadataEqualityScore}(p(m), x(m))$;

 if $e \geq E$ then
 add name key and all metadata from p to x;
 break;

 endforeach

 endforeach

 foreach probe x in X do

 if P does not contain x then
 remove x from X;

 endforeach

end
• Sequence type

• Free text gene description

• Free text biological process/molecular function description

• ID’s from various gene/transcript databases.

Each piece of metadata, when compared to others, must be treated and scored differently. The `metadataEqualityScore()` function in Algorithm 1 will return a different score depending on what metadata is being processed and score combination strategy. For the purposes of producing Gene Regulatory Network structures in later chapters, only Primary gene label and Alternate gene synonyms were used when combining platforms\(^1\). Popular microarray platforms containing these two metadata fields were chosen specifically to test this algorithm.

Given platforms A and B, the return value of `metadataEqualityScore()` was 1 if Primary gene label of a probe in A matched with either the Primary gene label or any of the Alternate gene synonyms of a probe in B, and 0 otherwise. Metadata equality score threshold E was set to 1.

The three platforms used for testing included three popular whole genome platforms where probes were tied to specific genes. Statistics on all three platforms are shown in Table 3.1. The results of combining three platforms all four combinations are shown in Table 3.2. GEO ID’s are the accession numbers given to the platforms on the Gene Expression Omnibus.

\(^1\)The ability to expand to other pieces of metadata is available, and is described in the Future Work section of Chapter 7.
Table 3.1: Platform Summary

<table>
<thead>
<tr>
<th>Platform GEO ID</th>
<th>Full Platform Name</th>
<th>Probe Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPL96</td>
<td>Affymetrix Human Genome U133A Array</td>
<td>20,967</td>
</tr>
<tr>
<td>GPL8490</td>
<td>Illumina Human Methylation27 BeadChip</td>
<td>27,551</td>
</tr>
<tr>
<td>GPL6480</td>
<td>Agilent-014850 Whole Human Genome Microarray</td>
<td>30,936</td>
</tr>
</tbody>
</table>

Table 3.2: Platform Combination Comparison

<table>
<thead>
<tr>
<th>Platform GEO IDs</th>
<th>Retained Probes</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPL96 + GPL8490</td>
<td>9,730</td>
</tr>
<tr>
<td>GPL96 + GPL6480</td>
<td>12,436</td>
</tr>
<tr>
<td>GPL8490 + GPL6480</td>
<td>11914</td>
</tr>
<tr>
<td>GPL96 + GPL8490 + GPL6480</td>
<td>9581</td>
</tr>
</tbody>
</table>
CHAPTER 4

GENE REGULATORY NETWORK MODELING

4.1 Background

A Gene Regulatory Network (GRN) describes a series of interactions in a cell between genes (or DNA segments) through indirect means, such as RNA and protein expression products. These interactions control gene product expression levels either upward or downward, which, in turn, can change the expression levels of other gene products. These gene to gene interactions can be thought of as a casual network which describes each gene affecting one or more other genes. The attempt to model this interaction network with enough fidelity to be useful has been a long time research challenge.

4.2 Approach

The use of as many microarrays as possible to infer GRNs is one of the primary goals of this research, and the methods of combining microarray studies in mass as described in Chapter 3 are used to produce gene expression observations. From these observations, machine learning techniques can be used to learn from the data and find gene to gene connections. The two machine learning techniques used in this thesis for building the GRN casual network are static and dynamic Bayesian networks, which have some distinct advantages over other techniques.

Gene expression is an inherently stochastic process since they directly or indirectly depend on probabilistic collisions between molecules [40]. Even if the underlying systems was deterministic, it may appear to be stochastic because of our inability to perfectly mea-
sure all of the variables. Because of this, the variables measured in microarray experiments are not expected to be perfectly accurate, but instead quite noisy. Finding the most probable model should be the goal, since even if a GRN were a perfect Boolean network in reality, the inherent difficulty in measuring all variables in the system makes it impossible to model with perfect certainty [31].

Since the landmark work of Friedman et al. [19], Bayesian networks have been popular for modeling many different biological processes due to their ability to describe complex stochastic processes and because they provide a clear methodology for learning from noisy observations. They are part of a family of models called probabilistic graphical models and are well suited for describing any arbitrary combinatorial gene regulation because they are not limited to pair-wise or linear interactions between genes. Since they describe interactions in a probabilistic manner, Bayesian networks are robust to noisy data, cleanly handle missing data, and allow for unobserved factors to be represented by latent variables [22].

4.2.1 Static Bayesian Networks

A Bayesian network is a representation of a joint probability distribution consisting of two components. The first component, G, is a directed acyclic graph (DAG) where its nodes correspond to the set of random variables $\chi = X_1, ..., X_n$. Each variable X_i can take values from a finite set, $Val(X_i)$. The second component, θ, are the links of the graph that correspond to direct influence from one variable to another. A directed link from variable X_i to variable X_j defines variable X_i as a parent of variable X_j. Every node of the DAG corresponds to a conditional probability distribution (CPD) that represents $p(X_i|Pa(X_i))$ where $Pa(X_i)$ designates the parents of X_i in G.
The graph G represents a conditional independence assumption, also known as the Markov Assumption: every variable X_i is independent of its non-descendants, given its parents in G. Therefore, there is a unique joint probability distribution over X from G:

$$p(X_1, \ldots, X_n) = \prod_{i=1}^{n} (p(X_i \mid Pa^G(X_i))).$$ \hspace{1cm} (4.1)

For modeling GRNs, it makes sense to interpret a Bayesian network as a causal network where all the links from parent to child variables denote that each parent causally influences the values of the child variables. In this way, each gene can be represented by a random variable of the DAG, with every link representing the probability of influence of one gene on another [19]. Since GRNs are to be inferred from microarray data, the Bayesian network must be learned rather than constructed by expert knowledge. It is certainly possible to do both simultaneously, but for the purposes of this research, the goal is to use as many microarrays as possible to learn a Bayesian network modeled GRN from scratch\(^1\).

The problem of learning a Bayesian network involves finding a network $B = (G, \theta)$, when given a training set $D = x^1, \ldots, x^N$ of independent instances of χ, that best matches D. However, the task of finding Bayesian network structure that describes the observed data the most is proven to be an NP-hard problem [9]. For this reason heuristic algorithms are used for learning structure, and there are many different approaches. Of these techniques, greedy-hill climbing and simulated annealing are the most popular to use with biological data. For this research approach, simulated annealing was chosen for its past success in GRN Bayesian model searches [22].

\(^1\)A possible method for combining expert knowledge with learning is outlined in the Future Work section of Chapter 7.
The task of inferring the structure of a Bayesian network is typically expressed using Bayes’ rule, where the posterior probability of a given network structure G after having observed data D is given by:

$$P(G|D) = \frac{P(D|G)P(G)}{P(D)}.$$ \hspace{1cm} (4.2)

During Bayesian network learning, a scoring function will evaluate how accurately a given network G matches the data D. So, with a particular scoring function, the best Bayesian network is the one that maximizes this scoring function. Many choices exist, such as the Maximum Likelihood (ML), Bayesian Information Criterion (BIC) [47], Akaike Information Criterion (AIC) [1], and Bayesian metric with Dirichlet priors and equivalence (BDe) [23].

Empirical data indicates that biological gene networks are sparsely connected, with the average number of regulators acting on genes is less than two [26]. With this in mind, a scoring function that minimizes network complexity is needed. Maximum Likelihood scoring does not penalize network complexity, but the other scoring functions do. For the purposes of the experiments in this thesis, the BDe metric was chosen due to its common use in the existing literature on learning GRNs. However, BIC, along with the very similar AIC, have also been successfully used, and would be good choices for future comparison work.\(^2\)

Each value in a microarray is a measurement of expression, and a continuous value. Although algorithms for learning Bayesian networks for continuous variables exist, for the purposes of learning GRNs, discretization of the values prior to learning is the usual method practiced in the literature. This has the advantage of reducing the dimensionality of the

\(^2\)The extra scoring function options are mentioned in the Future Work section of Chapter 7.
problem, and as argued in Hartemink’s Ph.D dissertation [20], gene transcriptional regulation can be thought of as being in a limited number of states, such as none-low-high. As he argues in his dissertation, there seems to be no added benefit of increasing the number of degrees of freedom in learning continuous variables due, in part, to the noise inherent in microarray analysis.

Two simpler discretization methods include quantile and interval discretization. For the tests in this thesis, quantile discretization was chosen due to the fact that under quantile discretization, the number of observations corresponding to the each discretization level is guaranteed to be equal. In contrast, interval discretization can produce vectors where many discretization levels may be represented too frequently, while others may not be represented at all [20].

In quantile discretization, N sorted observations are divided into D discretization levels by placing an equal number of observations into each of the D discretization levels. Obviously, this has to mean that $D \leq N$. The observation with index i is discretized as level j if and only if:

$$\left\lfloor \frac{jN}{D} \right\rfloor < i \leq \left\lfloor \frac{(j+1)N}{D} \right\rfloor.$$ \hspace{1cm} (4.3)

For all the tests in this thesis, quantile discretization levels of 3 and 5 were both tried with very similar results for all networks learned. Presumably, when combining enormous numbers of microarray probe values, increasing the number of discretization levels from 3 to 5 does little to change the underlying structure in the data. However, exploring other discretization values, along with other discretization methods could be valuable future work in microarray combination3.

3As outlined in the Future Work section of Chapter 7.
4.2.1.1 Experiment Introduction

Static Bayesian networks model causality without regard to time, so they are better suited for learning gene co-expression links from hundreds, or thousands, of disparate microarray experiments whether they are part of a time series, treatment versus control, or other type. With this in mind, two experiments were devised for determining links from many microarrays.

The first experiment attempts to infer a particular known regulatory network and find its accuracy using a certain number of microarrays. The second experiment uses as many microarrays as possible, using only the most active genes to find which connections stand out over a very large number of microarrays.

For both experiments, the Banjo Bayesian network learning software was used\(^4\). Banjo is a Java library designed and implemented by Hartemink, a professor of Computer Science at Duke university, and is able to learn both static and dynamic Bayesian networks. One of its original purposes was to learn from biological data, and it has been used in other research before in the inference of GRNs \([28] \ [21]\).

4.2.1.2 *Escherichia coli* Experiment

The first experiment devised for learning a GRN from many microarrays involves attempting to learn and model the SOS response gene regulatory pathway in *Escherichia coli* (*E. coli*) bacteria. SOS response is a global response to DNA damage where a protein produced from the *RecA* gene, inactivates a repressor enzyme produced from the *LexA* gene. This repressor enzyme reduces the expression levels of at least six other genes, *sulA*, *unmC*, *unmD*, *uvrA*, *uvrB*, and *uvrD* \([4]\). In this experiment, different combinations of microarray

\(^4\)Banjo homepage: http://www.cs.duke.edu/ amink/software/banjo/
Figure 4.1: SOS Regulation

experiments are combined in the attempt to model this process. The measure of success was in the networks’ accuracy in modeling the \textit{RecA} gene affecting the \textit{LexA} gene, with \textit{LexA} enzyme product affecting every other gene. A graphical representation of this regulatory network is shown in Figure 4.1.

Microarray data was gleaned from the GEO database, and the two most popular platforms for measuring gene expression in \textit{E. coli} bacteria: Affymetrix \textit{E. coli} Antisense Genome Array (GEO Accession GPL199) and the Affymetrix \textit{E. coli} Genome 2.0 Array (GEO Accession GPL3154). Between these two platforms, a total of 1614 microarrays were used for gene expression observational data.

Three runs were performed in the attempt to infer a gene expression network that gave links in a biologically realistic manner. Each run was allowed 1 hour for a simulated annealing search, although in each run, the top scoring network was found within the first 10 minutes. Interestingly, the \textit{RecA} to \textit{LexA} connection was found in every run quickly and existed in the top ten scoring networks every time. It is assumed this means that this connection was likely very common and easy to find in the data.
For the first run, only microarrays from the GPL3154 platform, totaling 676, were used. The resulting highest scoring Bayesian network is shown in Figure 4.2. The biologically realistic connection of RecA affecting LexA was found during this run, but many other spurious connections were found as well, and RecA is not at the top.

For the second run, 938 microarrays from the GPL199 platform were used. The resulting highest scoring Bayesian network is shown in Figure 4.3. Again, the connection of RecA affecting LexA was found, but like the first run, many other connections were found. As in the first run, RecA is not at the top, and is near the bottom instead.

After the first two runs, it was obvious that the connection between RecA and LexA was easy to find in the data, but not the influence of LexA on the rest. The third run attempted to use an enormous number of microarrays, 1614 in total, to find a more accurate network model. All microarrays from both of the first two runs were combined using the multi-platform algorithm in Chapter 3. The highest scoring network found is shown in Figure 4.4. This is an obvious improvement over the first two runs, as it not only shows the link between RecA and LexA, but also showing the regulatory process with RecA as the top parent variable, as it should be [4]. Other connections were also found between the other genes, but it is unknown whether these links exist or not in the true network [51].

4.2.1.3 Large-Scale Human Microarray Experiment

The second experiment was devised to use as many microarrays as possible for finding gene to gene connections. Microarrays from three different platforms were used: Affymetrix Human Genome U133A Array, Illumina Human Methylation27 BeadChip, Agilent-014850 Whole Human Genome Microarray. However, the total number of genes in common on all three platforms was still at 9,581, far too high for learning on any available computer due
Figure 4.2: SOS Regulation Run 1

Figure 4.3: SOS Regulation Run 2
to space requirements. Memory requirements for learning Bayesian networks uses $O(n2^n)$ space by the number of variables, but only $O(n)$ by the number of observations\[^5\], so a method to reduce the number of genes was needed.

Most genes are very inactive in most microarray experiments. Some genes only express strongly under very rare circumstances, or never express strongly at all. It would be more interesting to look at only the most active genes over a large number of microarrays. With this goal in mind, a total of 574 genes with the largest ranges in values over the entire

\[^5\]Memory requirements using Banjo. There are other learning methods that may reduce this memory requirement [29].
microarray dataset were used in every test. The memory requirements for even this number of genes approached 5 gigabytes for the largest dataset.

The goal of this test was to create networks that had real biological significance. Leclerc et al., found that the average number of transcriptional regulators per gene to be $1.5 - 2.0$ [26] in most organisms, so a sparse network would be preferred over a dense one in theoretical results.

In this experiment, gene regulatory Bayesian networks were learned from three different sizes of microarray multi-datasets, 489, 881, and 2509. The chosen datasets represented a variety of experiments to try to capture both common and uncommon gene regulation events. This includes cancer studies, treatment and control of various conditions, specific tissue studies, and several time-series experiments. Since the search space for these networks is intractably large, the *Time to Learn* metric was defined as when a better network was not found in the time it took for the best network so far to be found. In other words, if a best scoring network takes t time to learn, the search is stopped at $2t$.

The results of all three runs are shown in Table 4.1. It is obvious from the results that as the number of samples goes up, so does the number of gene connections. However, it does not appear to be a linear relationship, and could be reaching an asymptote as samples rise, but more data and longer tests would be needed to verify. The largest dataset in this test was the limit to what could be done on hardware available. However, the largest test’s number of average arcs per gene is within the $1.5 - 2.0$ range, giving a promising result. Of course, with only a subset of the most active genes, some connections could not be made to non-included genes, and some of the connections that do exist could possibly be spurious.
Table 4.1: Large-Scale Microarray Summary

<table>
<thead>
<tr>
<th>Samples</th>
<th>Total Connections</th>
<th>Average Connections Per Gene</th>
<th>Time to Learn (h:m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>489</td>
<td>568</td>
<td>\sim 0.99</td>
<td>3:03</td>
</tr>
<tr>
<td>881</td>
<td>644</td>
<td>\sim 1.12</td>
<td>3:57</td>
</tr>
<tr>
<td>2509</td>
<td>949</td>
<td>\sim 1.65</td>
<td>8:01</td>
</tr>
</tbody>
</table>

4.2.2 Dynamic Bayesian Networks

An extension of Bayesian networks, known as Dynamic Bayesian networks (DBNs), add a time component to the network model, allowing for modeling time delay between gene expression values. The use of dynamic Bayesian networks for modeling Gene Regulatory Networks has been an extremely popular method in past research [32] [53] [24] [19] [42]. The advantage Dynamic Bayesian networks have over static networks is in their ability to model possible feedback loops in gene regulation where the up or down regulation of a target gene by a regulatory gene may mean another up or down regulation from the target gene back to the regulatory gene. These feedback loops are a common and essential part of any biological system, including GRNs [33].

Like a static Bayesian network, a DBN has a set of random variables $\chi = X_1, \ldots, X_n$, but each variable is assigned a time index t, where the number of time points is dependent on the Markov lag chosen. In a first-order Markov model, a variable X_{t+1} is directly dependent on the previous time point X_t, but not on earlier time points. This is the first-order Markov property, which states that the future is independent of the past given the present.
In modeling GRNs, DBNs are well-suited for learning from microarray time series data, where an experiment will track a particular organism’s gene expression levels over a series of time points. In theory, it should be possible to infer dependencies of the expression level of one gene from another gene earlier in time. DBNs have the added benefit of modeling the transcription lag inherent in gene expression, since instant gene regulation is biologically unrealistic. Additionally, DBNs can model gene regulation feedback loops through variable arcs that cycle in time. As an example, if modeling two variables, A and B, a conditional dependency can exist between A_{t-1} and B_t followed by another conditional dependency from B_t to A_{t+1}. A influences B, which in turn influences A, completing the cycle. The DBN model of cyclic gene regulation can also model arbitrarily more complex gene regulation cycles between three or more genes.

4.2.2.1 Time Series Interpolation

A challenge in using time series microarray data is that time lag between data points need not be uniform. For example, one experiment may measure gene expression at 0 minutes, 30 minutes, 1.5 hours, and 3 hours. The assumption made in learning a DBN from time series data is that each observation has the same time lag from the previous observation. This irregular sampling rate is very prevalent across time series microarray experiments, and a solution is needed before constructing DBNs from the data. The approach taken in this thesis is to use B-spline interpolation to produce gene-expression points at regular intervals from non-uniform time series microarrays.

B-splines are a type of piecewise polynomial that generalize linear interpolation so that reconstructed data can consist of quadratic, cubic, or higher-order curves [15]. B-splines also have the added benefit of acting as a filter, eliminating extremes in reconstructed
data which can result from using noisy data as input [45]. B-splines have already been successfully used for gene regulation modeling from time series microarray experiments in previous work [2], and was chose due to their advantages over other interpolation methods when considering the specific problem of noisy microarray data.

When working in two dimensional space of time series gene expression values, there is the independent variable t, representing time and the dependent variable x, representing expression value. The spline is a weighted sum of a set of basis splines, which are a set of curves defined by two parameters: the order k of the splines, and a vector τ of points of discontinuity in the t dimension, called knots. All values of t are bounded by the first and last knot values:

$$\tau_1 \leq t \leq \tau_{|\tau|}. \quad (4.4)$$

The B-spline contains n bases, where:

$$n = |\tau| - k. \quad (4.5)$$

The basis splines are formally defined from the Cox-de Boor regression formulas [15]:

$$b_{i,1}(t) = \begin{cases}
1 & \text{if } \tau_i \leq t \leq \tau_{i+1} \\
0 & \text{otherwise}
\end{cases} \quad (4.6)$$

$$b_{i,k}(t) = \frac{t - \tau_i}{\tau_{i+k-1} - \tau_i} b_{i,k-1}(t) + \frac{\tau_{i+k} - t}{\tau_{i+k} - \tau_{i+1}} b_{i+1,k-1}(t) \quad (4.7)$$

where $b_{i,k}$ is the ith basis of order k.

The choice of knots in the t time dimension will have a large effect on the interpolating B-spline calculated. In the work done by Bar-Joseph et al. [2], knots were assumed to be uniform before fitting the splines. However, in Smith’s Ph.D dissertation [49], he argues that with microarray gene expression values, the splines can oscillate too much while trying to fit the observations and can lead to unsolvable equations when data is too sparse.
Instead, he argues that knots should be chosen on the actual time points of the expression measurements, so this is the method implemented by the work in this thesis.

According to Smith’s dissertation, a large difference in accuracy is seen when increasing the order k from 2 to 3 but little difference in accuracy is seen when increasing the order beyond 3, and was sometimes worse [49]. A k value of 3 is known as a quadratic spline, and is the value used for all interpolating runs.

Using math functions available in the Apache Commons Math Java library\(^6\), a B-spline interpolation algorithm is used to fill in missing observations at key points in time. These extra observations between real observation points are referred to as pseudo-observations, and are used to simulate a regular sampling rate for a given microarray sample. The rate of sampling, T, is an adjustable parameter that will determine at what points in time and how many pseudo-observations will be added to the DBN learning data.

For example, given a microarray time series with sampling time points 0 minutes, 30 minutes, 1.5 hours, and 3 hours, with $T = 30\text{m}$, and interpolation knot τ_1 set to 0, all four real observations are used, plus psuedo-observations at 1 hour, 2 hours, and 2.5 hours interpolated from the data. This gives a total of 7 observations for a learning set from this microarray time series: $|\tau| = 7$.

The algorithm for producing and building a data structure for all these observations given a particular time series microarray experiment is shown in Algorithm 2.

Because of the goal of using as many microarray experiments as possible for use as training data, combining time series microarrays from separate experiments is needed. Now that all the building blocks are in place, fusion of multiple time series microarrays into one large observational set is possible.

\(^6\)Found at http://commons.apache.org/proper/commons-math/
Algorithm 2: UniformObservationsBSplineInterpolation

Data: Microarray time series S with p_1, \ldots, p_P probes and N observations ordered by time; Time step $step$

Result: Microarray time series R with $\geq N$ observations ordered by time with uniform time distance $step$ between time points

$first \leftarrow$ first time point in S;

$last \leftarrow$ last time point in S;

$totalCount = \text{floor}(\frac{last - first}{step}) + 1$;

foreach $p_i \in S$ do

\[T \leftarrow \text{set of N times in } S; \]

\[G \leftarrow \{S(p_i, T_1), \ldots, S(p_i, T_N)\}; \]

\[\text{polynomialSplineFunction()} \leftarrow \text{bSplineInterpolate}(T, G); \]

for $time = first ; time \leq last ; time = time + step$ do

\[R(p_i, time) \leftarrow \text{polynomialSplineFunction}(time); \]

The process of preparing the observational data is as follows:

1. If multiple platforms are used, a multi-platform probe mapping is calculated using Algorithm 1 from Chapter 3.

2. All microarray samples that will be used for observations are value-normalized against each other as explained in Chapter 3.

3. A time-step is chosen (one that will intersect with the maximum number of real observations to minimize interpolation error is a good choice).
4. Each microarray time series is transformed by Algorithm 2 so that every time series has the same number of observations with the same time lag between values.

5. Combine all observations by lining up equal time points from each time series

In theory, this method would allow for an arbitrary number of microarray time series to be combined to be used as a learning data set for a DBN. As far as the author knows, there is no other existing method of combining multiple time series microarray experiments together into one observational dataset, making this a first of its kind. It should be kept in mind that different experiments do have different biases, environmental conditions, test assumptions, etc, that may add extra error to the end result. Any experiment set up using these methods would need to take into account any special considerations of the particular microarray datasets used and adjust/interpret accordingly.

One possible problem with this method of microarray combination is the use of experiments with very different time ranges. Ideally, all time series datasets used would have the same start and end time, but this is commonly not the case. In combining one time series with another, there may be time points available for one dataset that's not available for another. There are two basic ways to handle this situation: only use time points from every time series dataset that are in common (truncate), or attempt to predict missing time points outside of the time window available. The approach taken in this research was the former, but interesting future research could try to find a new method of prediction that makes sense for time series microarrays since this problem is still unexplored in the existing literature.\footnote{As explained in the Future Work section of 7.}
4.2.2.2 *Escherichia coli* Experiment

As an experiment for combining multiple time series microarrays, the *E. coli* experiment using static Bayesian networks is revisited, but with only time series data. Again, the goal is to re-construct the SOS response gene regulatory pathway where 8 gene products are involved. In the static Bayesian network experiment, over 1600 microarrays were used since there was no restriction on the type of microarray dataset samples used. However, in this experiment, only time series microarrays are allowed, and there are far fewer available in public repositories.

The ability to combine multiple platforms was very helpful in finding more data, since there was no restriction to use only a single platform. All microarray datasets were found in the GEO database, using the two most popular platforms for measuring gene expression in *E. coli* bacteria: Affymetrix *E. coli* Antisense Genome Array (GEO Accession GPL199) and the Affymetrix *E. coli* Genome 2.0 Array (GEO Accession GPL3154). In total, 16 time series datasets, from either one or the other platform, were combined into a single training set.

There is no standard method in which researchers annotate time series datasets with time points, so it was necessary to interpret the description of each dataset separately and hand-label every sample within a time series with a time. Some datasets are so badly annotated and described, it is necessary to go back to the original research paper associated with the time series to find the time values. Also, only time series that had time steps similar to each other made sense to use. Some were too short (< 5 minutes) while some were too long (> 24 hours). Ultimately, only datasets with time point lags of around 30-60 minutes were used since there were a larger number of them available.
A T value of 30 minutes was used, and since the dataset with the smallest time range was 3.5 hours, all others were truncated down to this range (the maximum was 6 hours). At 30 minute increments, every dataset contained 8 temporal observations, interpolated where needed. This means a total of $16 \times 8 = 128$ observations are used for a DBN training set. This is still a small number of observations, so great results with such noisy data is not expected. However, the goal was to pull something biologically relevant from the data.

For learning DBN structure, it was decided to use a minimum Markov lag of 1 and a maximum Markov lag of 2. The rationale behind this is that the transcription lag under realistic biological settings would never include a gene regulating another instantly in time. It’s certainly possible that two genes could co-express at the same time, but there should be no casual link between the two, since it would be assumed that some other, unknown variable actually caused both to co-express at some earlier point. A Markov lag of 1 under this experiment means a temporal casual link of 30 minutes, while a Markov lag of 2 means a casual link of 1 hour.

The search for the best fitting DBN to the data was run for about 10 minutes, but seemed to converge to a best solution within a minute. Presumably, this is because of the extremely small variable and microarray size. The results are shown as a three time slice graph in Figure 4.5.

The results are good, since they only show biologically validated connections. *LexA* is casually affecting two gene products in the second time slice, and one more in the third time slice. *LexA* is known to affect the regulation of these genes [4]. *RecA* is shown to connect to *uvrD* in the next time slice, which simply skips a step. *RecA* affects *LexA* which then affects *uvrD*, but with 30 minute time slices, the *RecA* to *LexA* regulation may simply be between time slices too many times to show up in the observations. The full SOS gene
regulation network may not be inferrable from a dataset of this size and/or type. This is expected when working with smaller observational datasets with a lot of noise.

4.3 Conclusion

Using microarray scale-normalization and multi-platform techniques introduced in Chapter 3, both static and dynamic Bayesian networks were used to infer GRNs under several different circumstances. It was shown that not only is it possible to scale up a very large number of genes and microarrays for large experiments, but experiments to find low level regulation networks between only a small number of genes is also possible.
Figure 4.5: Dynamic SOS Regulation Run
CHAPTER 5
GENE NETWORK GRAPH COMPARISON

5.1 Background

Comparing gene network graphs can be a very useful tool for discovering similarities and differences in both inter-species and intra-species gene networks. The considerations for the comparison of networks from the same species versus multiple species are very different. For graphs from the same species, gene names are the same and certain assumptions can be made about their function in each of the graphs can be made. However, graph comparison between species requires a different set of assumptions due to genes named differently, and commonly no direct one-to-one relationship between genes from one species to the other.

Inter-species comparison of biological networks has the potential to discover similarities in the functionality and organization of genes across species. Comparing the gene coexpression network of a well understood organism to a poorly understood organism could allow the discovery of analogous coexpression behavior in different species, and suggest the function of previously uncharacterized genes. For this reason, it is advantageous to explore methods to compare the gene coexpression networks that are produced.

To compare gene networks across species, several hurdles must be overcome. First of all, there is no obvious one-to-one mapping from genes in one species to genes in another—if there were, interspecies comparison would be unnecessary. While some orthological information is available, it is incomplete, and may not be available for some pairings of species. Therefore, gene orthology cannot be relied on to map one network to another. Instead, finding similarities in the topologies of the networks is the primary goal. This rules out some
alignment techniques previously used on protein-protein interaction networks. The second problem is that finding an accurate injective mapping from the genes of one network to the genes of another is computationally difficult. This is the subgraph isomorphism problem, which is NP-hard [13].

When comparing gene networks generated from the same species, it is common that all networks have nodes corresponding to genes with the same labels. In this case, exactly comparing graphs becomes computationally tractable. A simple and effective algorithm has been published by Koyutürk et al. for finding frequent common subgraphs in graphs with labeled nodes [25]. This algorithm could be employed to compare results from different experiments, or perhaps be used to combine several gene networks into a single network of high confidence interactions.

5.2 Approach

Two different gene network graph comparison algorithms were used on a variety of learned graphs. The first, a frequent subgraph algorithm, finds smaller subgraphs common to two graphs, but only works over graphs with the same node labels. The second, a graphlet degree similarity algorithm, is used to compare topology only between two graphs. A few experiments were devised to show how different learned gene networks compared with each other.

Koyutürk, et al.’s frequent subgraph algorithm is the approach taken for comparing within species. It relies on nodes in two graphs being compared to be labeled identically, which will be true for two gene networks of the same species that model the same genes. To find these subgraphs, it uses a mining approach that starts with candidate edgesets, which are only the single edges between individual nodes in the beginning, and attempts to extend
these candidates out by one edge at a time. If the extended edgeset is common to both
graphs, it is kept and edges are added once again. Once an edgeset cannot be extended
further, the algorithm stops extending it. All edgesets remaining from both input graphs
are the output, and are called *frequent subgraphs*.

The graphlet degree similarity algorithm used was developed by Pržulj [44], and is
useful for comparing topology of graphs developed for two different species since it does not
rely on node labels. This algorithm uses a greedy *seed and extend* approach that computes
the pairwise similarity of nodes in two graphs, aligns the most similar pair of nodes first, and
then works outward to the neighbors of nodes that have already been aligned. Similarity
between two nodes is computed by comparing their graphlet degrees. Graphlet degree is a
generalization of the standard graph theoretic concept of node degree. It counts, for a given
small graph called a *graphlet* and a given node in the network being compared with, how
many unique subgraphs of the network are isomorphic to the given graphlet and contain the
given node. Computing the graphlet degree of each node for many different graphlets gives
a highly discriminative characterization of the topology around a given node. The graphlet
degrees for each node are combined into an aggregate score called the Graphlet Degree
Distribution (GDD) between 0 and 1, where 0 is no similarity and 1 is perfect similarity.

5.2.1 Frequent Subgraphs Experiment

To test the implementation of Koyutürk, et al.’s frequent subgraph algorithm, two
large cancer-related microarray datasets were used. The first dataset contained 10 different
microarray series dealing with leukemia patients totaling over 700 separate microarrays. The
second dataset was from 26 different microarray series from Breast cancer studies containing
just over 1000 microarrays. A large-scale static Bayesian network graph with 574 genes was
created for both, using methods explained in Chapter 4. Tests were run to compare the gene regulation connections present in both graphs to find their similarity. Since the datasets were both cancer related, but from two different cancers, they are expected to be similar, but not identical.

After running this algorithm on the two datasets, 29 distinct subgraphs were found with 1-4 connections each. Two examples of the discovered frequent subgraphs are shown in Figure 5.1 and Figure 5.2. All subgraphs can be found in Appendix B.

5.2.2 Graphlet Degree Similarity Experiment

The experiment for comparing gene networks of different species uses Pržulj’s graphlet degree similarity algorithm. Four different species, *homo sapien* (human), *Mus musculus* (Mouse), *Escherichia coli* (E. coli), and *Saccharomyces cerevisiae* (Yeast) are compared.
Table 5.1: Intra-species Graphlet Degree Scores

<table>
<thead>
<tr>
<th></th>
<th>Human</th>
<th>Mouse</th>
<th>E. coli</th>
<th>Yeast</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human</td>
<td>1.0</td>
<td>0.6921</td>
<td>0.7068</td>
<td>0.6956</td>
</tr>
<tr>
<td>Mouse</td>
<td>1.0</td>
<td>0.8498</td>
<td>0.8442</td>
<td></td>
</tr>
<tr>
<td>E. coli</td>
<td>1.0</td>
<td></td>
<td>0.8131</td>
<td></td>
</tr>
<tr>
<td>Yeast</td>
<td></td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>

The gene networks for all four species are generated using the methods explained in Chapter 4, using from 600-1000 microarrays for each. Each network search is run for 4 hours to converge to a high-scoring network. The results of all six one-to-one comparisons are shown in Table 5.1.
CHAPTER 6
MICROARRAY META-ANALYSIS TOOL

6.1 Introduction

During the course of this work, a Graphical User Interface (GUI) was implemented to facilitate microarray meta-analysis without the need for programming skills or difficult to use command line interfaces. Instead, a user can create and manage projects made of multiple experiments all with a simple, friendly visual interface.

This tool, the Microarray Meta-Analysis Tool (MMAT)1, was made in response to a need of the existence of such tools in the computational biology world. According to one very recent (2012) meta-analysis survey paper, “existing meta-analysis packages are relatively primitive and difficult to use” [52]. The design of MMAT is such that meta-analysis workflow is much more obvious and intuitive. It forms a good basis for a possible future expansion of features.

MMAT is a Java Swing project that utilizes the libraries written for the other work in this thesis. The only two requirements for running MMAT is an installation of GraphViz for the graphing visualization tool, and Java 7.

1Available for download at http://sourceforge.net/projects/mmatmicroarraymetaanalysistool/
6.2 Demo Walkthrough

This section gives a brief walkthrough of the various features built into MMAT, and its overall design. Although in a very alpha state, it is stable and can already be used for a variety of experiments. MMAT is distributed in a single folder, and is run by executing the RunMMAT.bat file. The opening window displayed to the user is shown in Figure 6.1.

Figure 6.1: Opening Screen
The first step to starting is to first create a new project. Either right-click on the No Project node in the Project Explorer or under the File menu and select New Project. Name your new project in the popup dialog window, and it will appear in the Project Explorer along with empty Experiment and Platforms nodes. This step with a new project named “E.coli” is shown in Figure 6.2.
Next, start a new experiment by right-clicking the Experiments node or selecting from the File menu and choose either New Static Experiment or New Time Series Experiment and naming your new experiment in the popup dialog window. The screen after making a new static experiment named "E.coli_50" is shown in Figure 6.3.

Figure 6.3: New Experiment
You will need at least one platform file to add microarrays to the experiment. Add a platform by right-clicking the Platforms node or selecting from the File menu and choosing Add Platform. Navigate the file chooser to the SOFT format platform file and click Open. At this point new microarrays can be added to the experiment, so do so by clicking Add at the bottom of the Microarrays panel. Navigate the file chooser to a microarray single sample or matrix file in SOFT format that uses your loaded platform and click Open. The result of adding two platforms and one matrix file for each platform is shown in Figure 6.4. There are 41 microarrays total, and 4276 probes in common for the two platforms after calculating the multi-platform.
Figure 6.5: Probe Selection

Since 4276 probes is a very large number of total genes, this number can be manually
reduced by checking and unchecking probes in the Selected column of the Probes table on
the right side. The Clear All and Select All buttons below the table can help with this.
Also, probes can be automatically chosen by activity by entering a number in the text field
to the left of the Most Active button and clicking the button. This will automatically
select only the specified number of probes that have the largest expression ranges in the
currently loaded microarrays. The result of choosing 50 probes and calculating the new
probe selection is shown in Figure 6.5.
The experiment is now ready to be run. Click the **Run** button outlined in red in the Run panel. A new Banjo Bayesian network learning job will start in the background. The best network will be searched for the amount of time chosen in the **hours** and **minutes** spinners in the Run panel (default 1 minute). A progress bar will update as the experiment run continues.
Once the run finishes, the **View Graph** button on the right side of the progress bar becomes usable. Click this button and the best network found is converted to *dot* format and GraphViz will produce a graph image. This is done automatically, and an image viewer pops up to show the new graph image. You can pan this image by dragging the left mouse button and zoom in and out with the mouse wheel.

Figure 6.7: Graph View
6.3 Conclusion

The MMAT tool should prove useful for running various microarray meta-analysis experiments and producing gene networks. Although it is only a simple tool now, its design allows for a great deal of expansion of features, such as extra run options, complete time series microarray dynamic network support, more probe selection assistance tools, and more.
CHAPTER 7

CONCLUSION

In this thesis, each goal accomplished led to the next.

First, a method of multi-platform microarray combination was necessary for everything else that followed. An algorithm for combining platforms together into multi-platform mappings and a normalization calculation that made microarrays from across experiments and platforms comparable were developed towards this end.

Once many microarrays could be combined, gene coexpression networks using Bayesian networks were developed after using a learning algorithm that used each microarray as an observation, and each gene as a variable. Very large scale graphs were developed using more microarrays than any other known experiment the current research, along with the rediscovery of the *E. coli* SOS gene regulatory pathway as a test.

Building on methods developed and lessons learned from creating gene coexpression networks, dynamic Bayesian networks from combined time series microarray experiments was next. This required the development of a novel interpolation and combination algorithm to align multiple time series experiments into comparable observational sets. These calculated time-based observations were used to build dynamic gene regulatory network graphs where genes could be modeled affecting each other in time. Once again the *E. coli* SOS gene regulatory pathway was modeled, but with a time component.

Now that large-scale gene networks had been produced, the next step was in comparing these graphs using two different graph comparison algorithms. Both inter-species and intra-species tests were done that showed how comparable they were.
With the entire library of methods and programming work done, a graphical user interface tool called the Microarray Meta-Analysis Tool (MMAT) was developed to help other researchers to their own experiments in a user-friendly manner that did not require any programming or command line skills.

7.1 Future Work

A great deal of future work could be accomplished that would extend all of the subjects explored in this thesis. The areas of microarray combination with multiple platforms, modeling Gene Regulatory Networks, combination of time series microarray datasets, and network comparison could all be explored on their own. There is no shortage of research paths that could branch off the work done within this thesis.

7.1.1 Microarray Combination

The work described in Chapter 3 dealt with the normalization of many microarrays so that their values could be directly compared. The method used, scale-normalization, is one of many possible methods. Also, more work could be done with platform combination that would tie more probes together with more accuracy.

- The \textit{metadataEqualityScore()} function given in Algorithm 1 could be extended to scoring gene location data, free description text, utilizing multiple gene databases to compare ID’s, DNA nucleotide strings, and others. Many of the platforms have a great deal of metadata available, and much more could be used to tie one probe from one platform to another.

- Better handling of gene transcripts. The method used in this thesis does not handle alternate gene transcripts well. The most common gene products are used to represent
a gene, but this means throwing out some extra probes when combining platforms. A better platform combining algorithm would recognize multiple probes relating to the same gene and re-label the probe with some kind of transcript ID. This way, alternative gene transcript probes in common with each other from multiple platforms could be tied together accurately.

- Some platforms use a single probe to measure multiple products where another platform will use multiple probes for the same task. A better combination algorithm could tie probes together in a one-to-many manner to take care of this situation. However, several problems would need to be overcome, such as handling multiple probe values from one platform being equivalent to a single probe value from another, and probe measurement overlap. As an example of overlap, probe \(a \) from platform \(A \) may be tied to probes \(x \) and \(y \) from platform \(B \). However, probe \(b \) from platform \(A \) may be tied to probes \(x \) and \(z \) from platform \(B \), so probe \(x \) is overlapped. A method to overcome this overlap would be needed.

- Rather than using metadata, statistics based methods could be used to find equivalent probes between two microarrays. The idea would be to find large numbers of microarrays from two or more different platforms, and use the statistical data that may be available from the experiments themselves, and statistics calculated from the values of the microarray data. The theory is that probe values that behave statistically similar should be tied together for microarray meta-analysis with multiple platforms. Some example algorithms that could perform this analysis include, Fisher’s inverse chi-square [18], GeneMeta [11], metaArray [38] [39], RankProd [5], DEDS [54], and
mDEDS [7]. Campain and Yang’s 2010 paper compares all these methods against each other on several datasets [7].

7.1.2 Gene Regulatory Networks

This thesis work described using static and dynamic Bayesian networks to model Gene Regulatory Networks, but there are many other models available. Other future work could also include different network scoring criteria and learning method, network sparsification (since GRN’s are biologically expected to be sparse), post-aggregation of networks, gene-transcript aware networks, starting from an expert knowledge base network, and gene clustering.

- Several other models have been used successfully for the modeling of a GRN besides Bayesian networks such as ordinary differential equations (ODE’s), probabilistic Boolean networks [48], Hybrid Petri nets (HPN’s) [30], and other various hybrid approaches. One recent hybrid approach, DELDBN, looks to have great promise in combining the best of ODE’s and dynamic Bayesian network’s [28].

- Other scoring criteria for Bayesian network structures besides the BDe metric used in this thesis could be used instead. Bayesian Information Criterion (BIC) [47], Akaike Information Criteria [1], Mutual Information Tests (MIT) [8], K2 [14], and BDeu [6].

- Use a different, and possibly improved, learning method for Bayesian networks, such as Annealed Importance Sampling [34].

- Network sparsification could be useful due to the expectation of sparse connection in a real GRN [26]. A flood-based information flow analysis network sparsification method has been successfully used on GRN’s very recently [41].
• It has been shown that a combination of pre-aggregation of similar microarray datasets and post-aggregation of networks learned from those datasets can be more accurate than pre-aggregation alone [51].

• Extending GRN models so that they show the transcriptional regulation of both the canonical and alternative splicing transcripts of various genes. Either they can be separate nodes, or edges can be annotated with the particular transcript that caused the regulation.

• Beginning from an already expert hand-built smaller GRN and building on it through learning methods may be more fruitful at learning very large and complicated GRN’s than starting from scratch.

• Clustering of gene in microarrays is a very popular topic in bioinformatics [10] [46], and could be used to separate genes into functional groups before learning GRN’s. This would have the benefit of reducing dimensionality of data making it simpler to learn structure, and have more interpretable results.

7.1.3 Time Series Combination

Combining time series microarray experiments together into a meta-analysis study for time-aware GRN’s is an extremely cutting edge research topic. In fact, the methods outlined in this thesis are the only multi-platform multi-time series aggregation methods known by the author at the time of writing. Much could be done to improve on this work.

• Other interpolation methods could be used, including attempting smoothing on the B-spline interpolator.
• The method taken to combine time series with different time windows in this thesis was to truncate to the time series with the smallest time window. Another method which interpolates points outside of its beginning and end times could be explored to prevent truncation.

• Although it could be useful for any kind of GRN inference, but discretization of values is especially important in time series data. Other methods of discretization of values could be beneficial in combining time series data, and two recent methods include Information-preserving Discretization (IPD) [22] and Short Series Discretization (SSD) [17]. Also, switching to continuous variables in DBN learning could be beneficial as well [32].

• Time lag estimation for transcriptional regulatory events has been effective in past research at finding gene regulation outside of any arbitrarily chosen time per Markov lag in DBN’s [56].
REFERENCES

Appendix A

SOFTWARE PACKAGES AND VERSIONS

- Banjo 2.1.0 – http://www.cs.duke.edu/~amink/software/banjo/
- GraphViz 2.2.2 – http://www.graphviz.org/
- The Apache Commons Mathematics Library 3.2 – http://commons.apache.org/proper/commons-math/
- The Apache Commons I/O Library 2.4 – http://commons.apache.org/proper/commons-io/
- The Apache Commons Exec Library 1.1 – http://commons.apache.org/proper/commons-exec/
- SwingX 1.6.5 – http://weblogs.java.net/blog/kschaefe/archive/2013/01/29/swingx-165-released/
Appendix B

ALL SUB-GRAPHS

Figure B.1: All Sub-Graphs