Unsupervised Learning of Morphology of a Highly Inflectional Language

Utpal Sharma

Under the guidance of
Dr. R.K.Das
Dr. J.K.Kalita

Department of Computer Science and Information Technology
Tezpur University
Napaam - 784028, Assam, India
Chapter 1

Introduction

Computers today possess enormous computing power at affordable costs. This power has been put to diverse information processing tasks. In these tasks the input, output or stored “information” is encoded in some format (scheme) suitable for the computer. These schemes of information encoding are some kind of “languages”. Many information processing tasks of computers are over some restricted domain, and hence there are domain specific languages for representing information. Gradually, the need for computers to be able to process information in human languages has been felt. Human languages, also called natural languages, are highly versatile systems of encoding information. These can capture information of various domains. Such power of expression is achieved only with a fair amount of complexity. To enable a computer to process information in human languages, the language needs to be appropriately “described” to the computer, i.e., the language needs to be “modelled”.

Despite the complexities inherent in natural languages, human beings can learn such languages without any explicit instruction. Particularly, a child acquires his/her mother tongue primarily through exposure to “expressions” in that language. This means the necessary details of a language are acquired by the human brain automatically from evidence.

In this thesis we present an approach for acquisition of morphology of a highly inflectional language into a computational model, and our experiments for the Assamese language. It is basically an unsupervised learning approach, particularly suitable for languages with a rich concatenative morphology. We have discussed the issues that arise in such an exercise. Broadly, our work covers three tasks - acquire the morphology of Assamese from a raw (unannotated) text corpus, use the morphological knowledge to analyse words in texts provided as input, and classify words according to their morphological behaviour. As part of the first task we also build a *morphological lexicon* (a list of root words with certain morphological attributes).

A prime motivation behind this work is to eventually develop a computational linguistic model of Assamese. Though Assamese is an important and a national language of India, little computational work has been done so far for this language. Ours is one of the first effort in this regard and can
be considered pioneering. There are many such languages for which it is very important to have a suitable but inexpensive computational acquisition process. These languages receive very little attention of computational linguistic research both in terms of availability of funds and number of researchers. We however do not claim that our approach is a solution for all such languages. Different languages have characteristics that require individual research attention.

1.1 Summary

The knowledge that needs to be modelled for an NLP system has been stratified roughly as- phonology/script, morphology, syntax, semantics, discourse, pragmatics and world knowledge. Till now a major demand for NLP is for processing written expressions, where phonology is not of concern. So to build a computational model one has to start from script and morphology. Script is primarily a system of visual symbols marked on some surface to denote some linguistic expression. But in computational domain a system of numeric encoding of the visual script symbols is also important for internal representation of texts in a computer. The next level of knowledge in an NLP system is morphology. More precisely, this level of knowledge comprises vocabulary and morphology. Our efforts have been focussed on acquisition of this knowledge for Assamese.

In a natural language vocabulary is best considered as an “open” set, whereas morphology is a finite set of rules governing formation of words from more basic meaning-conveying elements. Vocabulary is an open set primarily because the domain of information keeps on changing—existing domains expand, and new domains arise. By domain we mean the entities and concepts that may be covered in an information. Apart from this, many languages have rich morphology which makes many additional words possible from the basic forms of words. A human user of a language actually learns the morphology of the language “completely” and a “relevant” subset of the vocabulary. His vocabulary grows as and when needed. In our work we have tried to follow this strategy, that is, acquire the morphology of Assamese and build a lexicon of words encountered in the training stage. Further, the system should be able to recognise new words in test inputs.

Morphology is mainly manifested as affixation and compound formation. In Assamese the predominant morphological phenomenon is suffixation. Suffixation occurs both as inflection and derivation, and is usually simple concatenative. Though prefixes are also fairly frequent, the behaviour of the resultant words are often independent. Compounds are comparatively less frequent and can be treated as independent words too. In our work we have basically tried to acquire the suffixational morphology of Assamese.

We have implemented a simple algorithm that analyses a raw corpus of Assamese text and figures out the suffixation patterns that are in use. While this involves identification of frequently occurring trailing parts in words, it requires some carefully worked out filtering criteria to eliminate noise and retain
only true suffix occurrences. The filtering criteria are general and have little
to do with a particular language. Further, a morphologically rich language
like Assamese allows multiple suffixes to occur consecutively after the root in a
word. A good analysis must identify such cases. Not all arbitrary sequences of
suffixes are valid. We have identified the particular suffixes-sequences occurring
in the input corpus. In particular, from a raw training corpus of about 300,000
words, we have identified 381 suffixes including 67 that are invalid. Of these
102 are actually words that attach with some base to form compounds, and
76 are composite suffixes, i.e., they comprise multiple suffixes in sequences. In
Assamese the distinction between of individual suffixes, suffix-sequences, and
compound-parts is often unclear. We have separately identified over 1700 suffix-
sequences.

For effective morphological analysis it is very useful to be equipped with
good morphological lexicon, i.e., a list of words, preferably with some indication
of their likely morphological behaviour. Hence, as we process the training corpus
to learn the morphology, we also accumulate the base forms of words that we
identify, along with their respective suffixation behaviour, in the form of a
morphological lexicon. The lexicon that we have built from the raw corpus has
over 15000 bases in about 26500 entries.

Since the vocabulary of a language is not finite, a lexicon cannot be
exhaustive. Moreover, in our case the lexicon incorporates the vocabulary
of only the training corpus, and the morphological information in it is not
perfect since it is acquired by an unsupervised method. We have developed an
approach, that uses the acquired morphological knowledge and the lexicon to
carry out morphological analysis of words in input texts. That is, the words in
the input text are decomposed into the constituent root and suffix parts. We
have achieved a precision and recall of over 90% on average for input texts of
diverse domains.

Words in a language are classified according to the roles they play in
expressions. The commonly identified categories of words are nouns, pronouns,
verbs, adjectives, etc. The morphological behaviour of words broadly depend
on their categories, and it should be possible to guess the category of words
by considering their morphological behaviour in a given input. In case of a
an inflectional language where the predominant morphological phenomenon
is suffixation, this means that it should be possible to guess the categories
of words from the suffixation evidence. However, it is generally seen that
there is lot of ambiguity in the evidence since within the same category the
morphological behaviour words may vary, and words of different categories
may display identical morphological behaviour to certain extent. In addition,
the suffixation evidence that we extract using unsupervised methods is often
sparse and contains noise. We have developed some methods based on set
theory, that can be used in these conditions, to classify words. The categories
of words are not pre-defined; rather they are identified by considering the
morphological evidence extracted from the training corpus. These categories
are more fine-grained than the commonly known word categories, and govern
the morphological behaviour of words more closely.
1.2 Outline

In Chapter 2 we discuss the problem of acquisition of language in general and that of morphology and vocabulary in particular. More specifically we discuss the case for unsupervised acquisition. We point out that the writing system used for a particular language determines, to a large extent, the ease of unsupervised learning of language from a text corpus.

In Chapter 3 we discuss the salient features of the Assamese language. Though we stress that our language acquisition approach do not rely on the linguistic details that a linguist may provide, still it is accepted that a certain linguistic features determine the effectiveness of a particular acquisition approach.

In Chapter 3 we also discuss the script encoding scheme that we have used. Unlike English, for which the Roman script has been so naturalised for use in a computer, for Assamese there is much standardisation to be done regarding the encoding of the script and the fonts to be used. We have had to work in an environment where different sources of corpus use different encoding schemes. So we have defined our own script encoding scheme which has certain important advantages for our purpose. To keep compatibility with the various corpus sources, we have developed the necessary transliteration software.

In Chapter 4 we discuss our approach for identification of suffixes in a language from a raw text corpus of Assamese. It starts with a simple word stemming algorithm and goes on to describe certain important filtering criteria to reduce errors. We also discuss the creation of a morphological lexicon by accumulating word information from the input corpus. The set of suffixes, suffix-sequences and the morphological lexicon are the major deliverables of our work.

In Chapter 5 we discuss an exercise of morphological analysis of the words in an input Assamese text.

In Chapter 6 we discuss some possible methods for identifying classes of words based on suffix evidence. We start with simple intuitive approaches and move on to tackle issues that arise in the task. We finally advocate a set theoretic approach that fits the problem at hand. The set of classes identified can be considered as a morphological model of the language.

In Chapter 7 we conclude by summarising our major achievements and discussing some possible future work in this line.

In Appendix A we provide a brief overview of the Assamese alphabet and the transliteration scheme that we use, for the benefit of interested but unaccustomed readers.

In Appendix C we provide the implementation outlines of some of the procedures mentioned in the main chapters.
Chapter 2

The Problem of Language Acquisition

Natural language, or human language, is one of the most important tools that makes humans more powerful than other living beings. It is unlike most other traits of humans in the sense that there is lot of variations in the languages that different groups of people use and these variations are social rather than strictly racial or locational. On one hand, each natural language contains lot of properties that apparently makes it a hard to acquire. On the other, children acquire their first language, whichever it is, so smoothly and rather fast. Early on in a person’s life language becomes his strongest and most visible intellectual capability. From a formal standpoint, a natural language contains lot of ambiguities. But in practice this create difficulties only rarely. Rather, often these ambiguities are utilized to achieve certain objectives. These factors have drawn attention of researchers to linguistics and language acquisition for a long time. After the emergence of the idea of use of natural languages in computers in the last century, linguistics and language acquisition has acquired a computational dimension.

According to the Oxford Advanced Learner’s Dictionary of Current English, language is a “system of sounds, words, patterns, etc used by humans to communicate thoughts and feelings” ([19]). It also describes language as a “manner of expressing oneself”, “system of signs, symbols, gestures, etc used for conveying information” and “system of coded instructions used in programming” (in the domain of computing). We can arrive at a generalized definition to say that “language is a system for representing information, comprising a set of elementary parts conveying some meaning and a set of rules for combining the elementary parts to convey some composite information”. In the domain of computing, language is used to represent data and logic for computations. Humans use natural language for communication and recording information.
2.1 Views on language acquisition

Human languages as a system of representation of diverse kinds of information has been a subject of considerable interest. The easy and natural acquisition of such languages by children who do not have any other significant means of communication makes the subject more interesting. One of the early schools of thought regarding language acquisition by children is that of empirism. According to this, linguistic knowledge is conceived as a product of living in an environment, a series of messages of “nurture” transmitted by other individuals and one’s surrounding culture ([13, 31]). It is acquired through perceptions. This idea was deemed insufficient by Jean Piaget. He emphasized that there must also be schemes of action. Knowledge proceeds from action, and all action that is repeated or generalized through application to new objects engenders by this very fact a “scheme” that is, a kind of practical concept ([29]). Piaget proposed the concept of genetic epistemology, according to which knowledge can be constructed only through certain inborn modes of processing available to the young child and the actual characteristics of physical objects and events. Human linguistic capacities can be considered as a product of general “constructed” intellectual development. Piaget emphasizes on adaptation, assimilation, homeostasis, and autoregulation. Through these there is a transfer of order or transfer of structure from the environment to the organism ([30]).

On the other hand, Noam Chomsky proposed the concept of innatism of linguistic knowledge ([8, 31]). According to him, knowledge is largely inborn, part of the individual’s birthright, a form of innate ideas existing in the realm of “nature”. In other words, human linguistic capacities are a highly specialized part of human genetic inheritance, largely separate from other human faculties and more plausibly viewed as a kind of innate knowledge that only has to unfold. More generally, the laws of order, including cognitive and linguistic, are inborn in an organism and are imposed by it upon the perceptible world. These laws are not derived from that world. They are species-specific and invariant over time, individuals and cultures. Linguistic studies attempt to characterize in depth and detail the internal structure in an organism through adequate abstractions from empirical observations ([30]). In course Chomsky proposed the idea of Universal Grammar (UG) ([9]): ‘the system of principles, conditions, and rules that are elements or properties of all human languages... the essence of human language’. UG is the inborn linguistic knowledge that all humans possess irrespective of which language one speaks. UG was first described specifically as Government/Binding (GB) theory. Subsequently, the principles and parameters theory became more popular in describing UG. The central claim of this theory is that language knowledge consists of principles universal to all languages and parameters that vary from one language to another. Principles are such as, structure dependency, a head parameter in each phrase, and the projection principle. More recently, the Minimalist Programme has gained attention in this line ([9, 20]). The overall aim remains making statements about human languages that are as simple and general as possible. In particular,
minimalism emphasizes Full Interpretation and Economy of representation and derivation. Full interpretation means that all elements in the structure of a sentence plays some essential role and must be interpreted in some way. The principle of Economy means that all representations and processes used to derive them should be as economical as possible.

For computational acquisition of language, both constructivism of Piaget, and innatism of Chomsky, requires us to tackle the issue of developing the fundamental structure of linguistic competence in the computer. If we adopt constructivism we shall have to suitably model and implement the “intelligence” that would assimilate the linguistic knowledge from the environment. If we adopt innatism we shall have to model and implement the innate linguistic competence that exist in humans at birth.

From the computational perspective another view that has developed is the connectionist view. Connectionist NLP means using neural networks for NLP tasks.

2.2 Evolution of languages and linguistic capabilities

On our part, we shall look at the possible evolution of languages to develop an insight into its acquisition. However, it must be understood that in general NLP looks at the language acquisition process in human only as a possible model for adoption, not the sole one. In fact, our understanding of language acquisition in humans so far is at best incomplete, and cannot yet serve as a complete model for language acquisition for a computer. For parts of the overall NLP task, theories proposed for language acquisition in humans can be realised fruitfully in a computer, and hence may be used in NLP. For the remaining portion of NLP, purely computational ideas are used. In course of its evolution each natural language develops its own peculiarities which make certain aspects of acquisition more difficult than others. The approach for acquisition of a particular language may be tailored specific to the peculiarities of that language.

Living organisms have a tendency strive for their well being. For beings such as plants this well being is basically growth and survival. This explains the growth of certain plants in such a way that would ensure more sunlight, better acquisition of nutrients, etc. For animate beings, well being also means security. This explains their tendency of aggressiveness and self-defence in adverse environments. The quest for well-being of these organisms gives rise to their social behaviour. Social behaviour can be seen in the form of care of children by parents and attachment between members of a group. These traits enhances the survivability of these beings. Animate beings, particularly humans, have memory and intelligence. They are aware of the present environment as well as the past, and can figure out the future.

Depending on the quantity of memory and intelligence the idea of well being attains different scales. Intelligence helps convert the memory contents
into knowledge. Further, intelligent beings observe that sharing of individual knowledge leads to enhancement of a pool of knowledge, and this in turn leads to more effective collective steps towards well being of the group. Sharing of individual knowledge is achieved through some means of communication.

The means of communication between members of a society depends on their intelligence and their physiological capabilities. Communication essentially requires mutually comprehensible use of gestures and symbols by the communicating parties. Some communication in animals other than humans takes place through physical gestures such as licking, movement of body parts, etc., and a few different kinds of sounds produced by the mouth, wings, etc. Rarely, if ever, multiple gestures or sounds are combined in any constructive way. The information that can be conveyed by these means is limited. Owing to low intelligence levels, and possibly, small memory, such animals generally have very limited domains of information to convey. Their communication needs arise from their instantaneous conditions such as hunger, fear, pleasure, pain, etc. Their familiarity with their languages is probably part of their inborn intelligence and physiological characteristics. With their level of intelligence they do not form ideas that are not obvious, and hence there is hardly any need for any other communication. Moreover, they lack the physiological capability to produce the variety of sounds (or any other signals) required for more versatile communication.

Humans have the rather unique combination of high intelligence and the ability to produce (and recognize) a wide range of distinct sounds. Due to a higher level of intelligence, the perception of the environment is deeper leading to a richer assortment of knowledge. Humans form non-trivial ideas and schemes for the future. Hence they need a means of communication more powerful than simple physical gestures or use of single words. Over time they have used their intelligence and their physiological capability to produce different types of vocal sounds to evolve a means of communication using different sounds, which we now call a human language. These languages have elaborate systems of rules to encode and decode information of arbitrary complexity and from different domains.

The existence of the multiple human (natural) languages instead of a single universal language, indicates that unlike other animate beings, the familiarity with a particular language is not part of their inborn intelligence. Till an infant learns a natural language, his/her language comprises simple gestures such as crying and laughing. This language is probably universal across societies and cultures, and part of the inborn intelligence of humans. Gradually in the social environment that a child grows, he/she acquires one or more natural languages.

It is natural to suppose that neither the capability to produce the wide range of sounds nor any of the present human languages emerged in a single step of evolution. The evolution paths of different languages have not been very similar. The factors for evolution of languages include intellectual contributions and maturation, convenience of usage, the domains of usage, effect of other languages, and availability of more useful alternative languages. Convenience of usage is generally that of spoken form of the language. Individual sound
elements are allowed to undergo modifications when occur with certain other sound elements. Similarly, words gradually assume forms which are more convenient to utter.

2.3 Written form of a language

The spoken and written forms of a natural language are two different information encoding schemes. Speech is the primary form of a natural language. Written form is the secondary form. In most writing systems the latter actually encodes the former, i.e., the written form simply denotes sounds that in turn convey the information. This encoding can cause some loss of information too. There are some writing systems where the written symbols directly represent entities and concepts. Such writing systems probably evolved from the use of pictures to express thoughts. Unlike the spoken form of a language, the written form is not naturally acquired by humans as part of their growing up.

The writing systems of languages generally use a set of symbols, the alphabet. Various writing systems use the symbols differently. In some, the symbols represent sounds, or phones, strictly, while in some the mapping between symbols and sounds is not very strict. In some, the symbols represent entities or concepts rather than sounds. In speech, elements like pause and tones are often used to achieve certain effects. There is generally no exactly similar devices in writing systems. Punctuation symbols and sometimes, special fonts (especially in printed text), etc. are employed for such purposes.

2.4 Language as a framework for representing information

Language is used for encoding information for the purpose of communication. The information is not necessarily sequential. For example, consider a geometrical figure of a circle inside a square whose side is as long as the diameter of the circle. This figure is not sequential, nor the information contained in it. But it is possible to describe the diagram using a natural language expressions, say, English sentences. These expressions are sequential in nature, i.e., each expression is a sequence of words. The order in which the portions of the diagram are described may not be important provided the descriptions are correct and do not contradict any information in the diagram. Natural languages usually have mechanisms to express relationships between objects and attributes. These mechanisms are different in different languages.

For NLP it can be very advantageous if a natural language can be described formally like programming languages. The description of a programming language is generally given in the form of a context free grammar (e.g., the grammar of the C language given in [23]). The keywords of the language and tokens such as arithmetic and logical operators, comma, semicolon, brackets,
etc. are of pre-specified spellings. Variables, functions, etc. are referred by programmer chosen names, often called identifiers. Constants are also chosen by the programmer. When a program is written in that language to solve a particular real-world problem, then identifiers and constants chosen by the programmer are used to denote specific computational objects (values or logic). We can consider all the fixed spelling tokens in the grammar of a programming language at the same level as fundamental tokens. (Names of data types in the language may be treated as user chosen names.) Thus the context free grammar description of the programming language essentially describes how these fundamental tokens can be used together with identifiers to create programs. The grammar often makes distinction between different identifiers based on their declaration and usage, such as function names, variable names, type names, etc. Further the grammar also specifies the implications of different portions of the program in the form of semantic description associated with the rules. The semantics is largely determined by the fundamental tokens.

Natural language expressions carry the intended meaning through the choice of the words therein and the sequence in which these words are used. In addition, in speech the meaning of an expression is significantly affected by elements such as pause, tone, etc. In written form some of these elements are roughly mapped to punctuation marks. The semantic roles of different words in a language are not same. There are the different categories of words such as nouns, verbs, adjectives, prepositions, conjunctions, etc. While some words have independent meanings, others do not. Let us, for the time being, call the former as type A words and the latter type B words. Nouns, verbs and adjectives are examples of type A words. Type B words perform certain functions in expressions in collaboration with other words, and are often referred to as function words. For example, the prepositions in English do not independently describe any object or concept from the domain of information that linguistic expressions seek to express. However, to make up an expression, prepositions play certain very important roles. We notice that in a given language the set of type B words is finite. It is the set of type A words that is not finite, and can grow as the domain of information to be encoded in the language expands.

With the above observations we consider that a natural language is a framework for representing/encoding information and the type B words are an inherent part of this framework. Type B words are part of a language’s description, whereas type A words denotes points in the information domain and are not part of the basic description of the language. The (syntactic) description of a language refers to “categories of type A words”, such as noun, verb, etc., instead of individual instances of such words. Type B words in natural languages are like the keywords of a programming language, and type A words are like the identifiers or constants that denote specific objects or concepts in the domain of information to be represented by natural language expressions.

For a proper description of the syntax of a language it is necessary to know what are the type B words in the language. To this end, we observe that type B words reflect certain universal characteristics of information that need
to be reflected when the information is represented using a language. These characteristics may be-

- temporal aspects of events or existence (the concept of tense),
- specific vs non-specific instance of object or concept, (the concept of determiner),
- relative positions and directions (the concept of sides),
- action and cause-and-affect,
- relationships amongst objects and concepts, such as owner, agent, instrument, etc.,
- attaching property/attributes/qualities with objects (the concept of adjectives/qualifiers),
- degree of properties (concept of quantification and comparision),
- conditionality (concept of if, else, but),
- multiplicity (concept of lists and conjunctions),
- count (concept of numbers),
- inquisition,
- affirmation and negation,
- etc.

The above characteristics are reflected not only through complete words, but also through other elements of expressions such as affixes. In fact, this depends on the language. Syntactic structures, morphological transformations, phonological variations (stresses and pauses), etc. are different linguistic devices for encoding the above characteristics of information. The exact mix of these devises vary across languages. For instance, the effect of prepositions in English is mostly realised by suffixes (case markers) in Assamese. This is so in several European languages as well ([37], pp 30). Even in English there are several suffixes. In the written form of a language, some punctuation symbols are also used to reflect some of the above characteristics. Hence we can extend our notion of type B words and term each of them as a fundamental element of expressions (referred to as FEE hereafter). We can visualise each FEE performing some specific linguistic function. The set of FEEs is finite for a language. The versatility of a language depends on the set of the FEEs and the gamut of functions they perform. But there is probably little difference in the versatility of different languages. Though the size of the set of FEEs might be unequal the range of functions that can be realised through them is very nearly same. This hardly comes as a surprise, since the kind of characteristics
of information (not the information itself) that each language is required to cater is universal.

As stated above, the other kind of words, i.e., type A words, used in a language depend on the domain of information that is to be represented by linguistic expressions. In our scheme of analysis, these words play the role of parameters to the linguistic functions that the FEEs perform. Hence we term them as parametric words (referred to as PW hereafter). Note that we shall use the term PW to refer to the base form of such words. This set of words is infinite. Here we make the important statement that acquisition of the FEEs and their usage is the core of a language acquisition.

Expressions in a language are built by appropriately combining FEEs and PWs. The appropriateness is at three levels- appropriate attachment of affixes to words (affixes can attach to FEEs too) and combining of multiple words (to get compounds), appropriate ordering of individual words, and semantic appropriateness. The first is morphology, the second is syntax and the third is semantics.

2.4.1 Morphology and syntax

A natural language expression represents some information from some domain. Hence there must be some PW in an expression. We also come across sentences without any PW. For example

“Have you done the homework?”
“Yes”.

Here the second sentence does not contain any PW. However, in the absence of the preceding sentence, the information conveyed by the second sentence would be expressed as “I have done the homework”. Without the query in the first sentence, the second sentence does not convey any useful meaning. That is, in a discourse sentences often take abridged forms, existing with the tacit support of surrounding sentences. For the moment let us consider the unabridged expressions. The first sentence of the above example contains the following references from the information domain- you, do, homework. The characteristics conveyed are inquisition, past perfect tense (of do) and specific instance (of homework).

Meaning of a natural language expression beyond the direct meaning of the PWs is realised by combination of-

- use of FEEs attached to words, e.g., do → done,
- use of FEEs as distinct words themselves, e.g., the homework,
- no explicit FEE, eg., in ripe mango there is a relationship between the adjective ripe before the noun mango (both are PWs). In such cases an equivalent sub-expression using suitable FEEs can be visualised- mango that is ripe.
In other words certain portion of the entire meaning of an expression is realised through the FEEs. Attaching FEEs to words is morphology, while the other two are governed by *syntax* of the language. In languages where there is more use of FEEs as attachments to words, *i.e.*, the morphology is rich, the syntax details can be small. Where not many FEEs are attached to words, the syntax must fulfil the requirements. In fact, we observe that morphology arise out of highly regular occurrence of FEEs in strict order (as against free order) around PWs.

Morphology of a language can be looked at from two perspectives— the functions that the morphological features perform, and the exact form of the morphological features. Morphological features originate from the requirement to achieve some function, *e.g.* a suffix *−s* in English originated to denote the *number* of an object. On the other hand, the form of the suffix may undergo slight variations (such as *−es*) depending on the word that it attaches to. Phonology can sometimes determine whether some pieces of morphological material are combinable at all ([7]). Again, in some cases the same function may be realised by more than one distinct morphological features. For example, in Assamese, plural of an object may be indicated by use of different suffixes such as *bor, khini, biAk, samUH, etc.* (*বোর, খিনি, বিলাক, সমুহ*).

Work done in eighties regarding lexicon led to the realization that morphology is an autonomous module at par with the phonological and syntactic modules. On the other hand, syntactic systems capable of handling word formation operations in a more restricted way were developed during that period. Such systems could avoid many of the shortcomings encountered in earlier such efforts ([4]). Leiber states that in the conceptually simplest theory, all morphology would be part of the theory of syntax ([24]). However, most researchers have come to the conclusion that describing morphology within syntax is impossible and probably undesirable too ([4]). Rewrite schema and hierarchical structures proposed for morphology are systematically incompatible with notions of phrase structure and the tree structure proposed for syntax. Chomsky too, points out that syntax has properties completely unrelated to morphology, phonology and semantics ([37], pp 15).

2.4.2 Semantics

How much semantics is actually part of a language depends on our notion of language. Ideally the meanings of individual words in an expression and the structure of the expression together determine the meaning of the expression. However, in practice the meaning of an expression also depends on the discourse, pragmatics, and relevant world knowledge, much of which cannot be governed by any linguistic description. Often a given expression can be mapped to more than one meaning and it is not possible to resolve this ambiguity only through linguistic norms (*e.g.*, [18]). Though it might be useful to have language govern the formation of meaningful sentences, it cannot be enforced always. Because “meaningfulness” often depends on the domain and unless knowledge of the domain is sufficiently accumulated in the system, meaning of expressions
cannot be verified. Hence it is safer to consider language as giving a structural framework for formation of expressions. Domain knowledge as much is available should be considered as an additional resource which might help verify the consistency of the meaning figured for a given expression.

2.5 Language model for a computer

Like a human being, as an information processing entity a computer needs to be capable of using some language. Such linguistic capability must be achieved through appropriate computational power and not simply from principles of electronics that the hardware is based upon. The most basic capability of a modern digital computer is storage and recognition of a finite number of distinct physical quantities such as voltage, magnetic polarisation, etc., and performing arithmetic and logical operations involving these physical quantities. Using theories of computation and information representation, this capability is utilised for all kinds of information processing that we see.

The computations required for making a computer capable of dealing with a language depends on the language. We can take a look at programming languages to get some insight into computational aspects of language processing. Programming languages are consciously and carefully designed by experts so that they can be comprehensively processed by software created for the purpose. Nevertheless, in general it is one of the concerns to make a programming language as natural as possible. A programming language is described in terms of the syntax, i.e., the structure of expressions in that language, and semantics which is directly mapped to syntactic constructs. The syntax description comprises usage patterns of the various keywords, operators and some other symbols. Implementation of such a language essentially means implementation of computations that can translate information from such a language to some representation that the computer can directly deal with. These languages facilitate convenient information representation for the programmer as well as for the computer. Natural languages, on the other hand, have evolved over long periods for conveying information between humans. Linguists hardly influence the evolution of the basic structure of a natural language. Some of the factors leading to the evolution of natural languages are, the need to cover an increasing domain of information, convenience of usage, influence of other languages, need to enhance the appeal of expressions that can be formed, etc. The ease of processing a language by a computer is not a factor in this evolution. Programming languages are generally unambiguous, while ambiguity is common in natural languages. Still the model of programming language can be considered as a basis for computational modelling of natural languages—firstly, describe the structural details of the language, and then the semantic implications. Different languages may vary not only in the structure, but in the type of structure- some may have elaborate rules of syntax while others may be richer in morphology. Figure 2.1 depicts this scheme of linguistic knowledge.

Possessing linguistic knowledge means being capable of mapping between
“expressions” and their “meanings”. Meaning of an expression is its information content. For such mapping to take place there must be some suitable format for representation of the information that an expression may carry. The information representation format must be suitable for the kind of use that the information may be put to, and also for storage of the information. An expression itself is a representation of information and as such a natural language defines the format of this representation ([21]). This format is suitable for communication and storage purposes. For other uses of the information, other formats become necessary. However, there are several tasks involving linguistic competence where the goal is not as involved as mapping between expressions and meanings. For example, spelling checking, word sense disambiguation, syntax checking, etc. Many such tasks requires structural knowledge of the language. In fact, such tasks are essential steps in the overall process of mapping between expressions and meanings. As shown in Figure 2.1, the structural description of a language comprises the set of words in the root forms, the set of non-word morphemes (i.e., affixes) and their usage rules, other morphological transformations rules, set of categories of words, and the syntax rules in terms of the words or categories of words. This structural description of a natural language is generally large and can be incorporated in a computer only through careful planning.
Chapter 3

The Assamese Language

The Assamese language belongs to the Indic branch (derived from Sanskrit) of the Indo-European family of languages. It is the easternmost New Indo-Aryan language used by about 15 million people in the state of Assam in north eastern India and its adjoining region (http://www.assam.org, http://www.assamcompany.org, http://www.assam.faithweb.com). There is a large volume of literary work and a rich ethnic culture based on the Assamese language. In this chapter we discuss mainly those aspects of the language that have a bearing on the problem of acquisition of the morphology and vocabulary, especially, in the unsupervised approach that we have adopted in our work.

3.1 Script

Assamese is written using the Assamese script which is one of the several Indic scripts. It comprises 11 vowels, 34 consonants, and 10 digits. In addition, there are 7 symbols corresponding to certain consonant sounds, and all but the first vowel ‘a’, has a corresponding operator symbol to use with consonants. There are no upper case or lower case in Assamese script. The punctuation symbols used are same as those used for English except for the period, which is a vertical dash instead of the dot. The Assamese alphabet is same as the one used for Bangla and Manipuri (two other Indian languages) except for one consonant that is different in Assamese, and another consonant that is found in Assamese but not in Bangla. Further, frequently ligatures (multiple consonant symbols combined into composite forms) called juktakshars are used to represent sounds that are actually combinations of the corresponding consonants.

The Assamese script is ***syllabic***. The vowel ‘a’ is inherent with all consonants. The manifestation of this implied vowel is sometimes irregular. To produce the effect of the other vowels, the corresponding vowel operators are used. In contemporary spoken form of the language, speakers make little distinction between the following-

- Hraswa-i (ৠ) and dirgha-i (ৡ), and their corresponding operators (ByUrl and ניו).
- Hraswa-u (ৡ) and dirgha-u (辿), and their corresponding operators
(० and १).

- Pratham-sa (০) and dwitiya-sa (৪),
murdhanya-ta (১) and dantya-ta (২),
murdhanya-tha (৩) and dantya-tha (৪),
murdhanya-da (৫) and dantya-da (৬),
murdhanya-dha (৭) and dantya-dha (৮),
murdhanya-na (৯) and dantya-na (০),
talabya-sa (শ), murdhanya-sa (ম) and dantya-sa (খ), and
ri-kar and ra-kar-hraswa-i-kar, e.g., prithak (প্রথক) and pritam (প্রিতম).

Though the pronunciation of Assamese words generally can be directly figured from its spelling, irregularities such as the following exist:

- The implicit vowel ‘a’ at the end of a word- e.g. মাছ is pronounced as mAs, whereas কাছ is pronounced as kAsa.

- Use of ligatures in certain situations- ligature is used to write kalpanA (কল্পনা) whereas no ligature is used to write kalgas (কল্গাস).

3.2 Grammar

The history and philology of the Assamese language was scientifically studied and presented for the first time by Dr. Banikanta Kakati in 1935 in his doctoral thesis submitted ([22]).

Assamese grammar is described in several books on the topic. The first Assamese grammar, A Grammar of the Assamese Language by William Robinson was published in 1839. In 1848, N. Brown published an Assamese Grammar, and in 1894, Prof. Nicholl published his Sketch of Assamese Grammar [22]. In modern times the more comprehensive work on Assamese grammar was by Kaliram Medhi ([26] is the 3rd edition of the work). This and later published works such as [3], [16] and [28] are more commonly used today. The basic structure of Assamese expressions has similarity with that of expressions in other Indic languages.

Assamese is a free order language to a large extent. For example, the sentence—

I shall go to school today.

can be written in Assamese in any one of the following forms-

মই আজি বিদ্যালয়ে যাম।
মই বিদ্যালয়ে আজি যাম।
মই যাম আজি বিদ্যালয়ে।
আজি মই বিদ্যালয়ে যাম।
আজি যাম মই বিদ্যালয়ে।

etc.
where, the rough translations of the words are— commence (mai) = to,

(bidJAlay) = school, now (AzI) = today, shall (jAm) = shall go, and

suffix -o (IE) = to. Some of the orderings have certain effect on the meaning
conveyed. But the fact remains that all the above orderings are grammatically

correct translations of the given English sentence.

Determiners : Assamese has a very rich set of determiners unlike most
other Indic languages (see section on Morphology below). The usage of these
determiners have some interesting aspects. Primarily the determiners are used
as suffixes to nouns and pronouns according to certain subtle linguistic norms.

Eg. mAnuhTo, phulkini, gczopA, etc. In many situations, the corresponding
noun itself is not there, and a general pronoun plays that role. eg. eiTo, eizn,
etc. In texts, determiners can also occur as separate words detached from the
object. For example, l’rA + to = l’rAtO, chowAlf + zanI = chowAlfzanI (l’s+ +
+ote = ṣaṅg, ṣaṅgili + jani = ṣaṅgiliñjiñ), mean the boy and the girl respectively.
The determiners to and zanI can occur detached from the main word too.

A very important role of determiners is to indicate number. There are
certain determiners that make the objects plural. For example, bor, khini,
brinda, biAk, (বোর, কিনি, বিকলা, ফিকলা) etc. It is useful to compare and contrast
the role of determiners of Assamese with that in other languages. In Hindi there
is no morpheme corresponding to the basic (for singular number) determiners in
Assamese, but plurality is achieved by certain affixations. For example, “boy”,
“the boy” and “the boys” in English are written in Hindi as “larkA”, “larkA”
and “larkE”. In Assamese, these would be “l’rA”, “l’rAtE”, and “l’rAbor” (शा,
शा, शा, शा, शा). In Bengali, these would be “chele”, “cheleTA” and “chele gula”
(ছোল, ছোল, ছোল). Though, in Bengali the role of determiners is similar to
that in Assamese, but the number of different determiners for different types of
objects is not as large as in Assamese.

Pronouns for second and third persons : Second person is refered to
in three different categories using different pronouns-

- tai (তই) for junior or very close second persons,
- tumi (তুমি) for peers or slightly formal second persons,
- Apani (আপনি) for senior or formal second persons.

Similarly, the pronouns for refering to third person also are different-

- si (সি) for masculine and tAi (তাই) for feminine, junior or very close second
 persons,
- teo* (তেঁষ) for peers or informal senior third persons,
- tekhet (তেঁহেত) for formal senior third persons,
- terA (তেঁরা) for religious, revered third persons.
Foreign words: Like other Indian languages Assamese texts commonly contain foreign words, phrases, and abbreviations. Most of these are from English and some other Indian languages. Sometimes these are written in the original spelling (i.e., using the foreign alphabet) and sometimes transliterated into Assamese script. Often such words are also subject to inflection. These facts put up a significant challenge in the task of creation of a computational lexicon.

Another type of words found in Indic languages is nonsense words. These words simply rhyme with a preceding actual word and roughly means and such. For example, colA tola (চোলা দোলা), where colA means shirt and tola simply means “other things like shirt”. However, such nonsense words might have a meaning in some other context.

Verbs in Assamese: Compared to English there are fewer verbs in Assamese. In English many noun word-forms are also used as verbs to indicate action involving that noun. Eg., shop, fish, present, walk, etc. In Assamese, corresponding effects, i.e., the action related to a noun, are often achieved by use of some auxiliary verbs. eg., bazA karA (বাজা করা), mA marA (মারা মারা), prAda karA (প্রদান করা), khoj karhA (খোঁজ করা), etc. In all these pairs the first word is a noun, and the second one is an auxiliary verb, and together each pair imply a particular action related to the noun. In such pairs the noun is generally not inflected. Some words such as khelA, however, are used as a noun as well as a verb. There is another kind of common ambiguity of syntactic roles—the verbs in second person imperative informal form are also used as adjectives derived from the verbs. eg. khowA, diyA, etc.

Negative of Verbs: The negative sense of a verb in Assamese is obtained by use of a prefix with the verb. There is a class of prefixes for this purpose (see section on Morphology below). In Hindi this effect is achieved by use of the word “nahl” before the verb. In Bengali, this is generally achieved by the use of the “-nA” and “-ni” (নি, নি) suffixes.

Ambiguity of words: Ambiguity of syntactic category or sense of commonly used words is less in Assamese compared to English.

A major case of ambiguity in Assamese is the common use of valid words as proper nouns, viz., names of persons, institutions, etc.

3.2.1 Morphology

A discussion on Assamese morphology is presented in [22]. Assamese is a morphologically rich language. The morphology is largely concatenative. Secondary forms of words are frequently obtained by merging of root words and by affixation. Table B.1 shows over 550 different forms of the noun l’rA (ল্রা meaning boy), obtained by suffixation. Similarly, table B.2 shows over 500 forms of the verb bH (ব্হ meaning sit). The merging of words to obtain
compounds is similar to those of other Indic languages to a large extent and generally follow the sandhi and samsas ([43]) framework. For example,

\[\text{mahAn} + \text{puruS} = \text{mahApuruS} \]
\[\text{kRhSNa} + \text{arjun} = \text{kRhSNArjun} \]

Inflection and derivation are achieved through affixation, i.e., use of prefixes and suffixes. Use of suffixes in Assamese is more common than use of prefixes, and it is more extensive than in other Indic languages and English. A preliminary study showed that about 48% words in an Assamese text of around 1600 words are inflectional or derivational whereas only about 19% words in an English text of about 1400 words are so. Similarly, in a sample Hindi text of about 1000 words, 26% were inflectional and derivational.

In Assamese suffixes are used with verbs to convey tense, person and parity (viz, agreement with toi for junior or very close second persons, tumi for peers or slightly formal second persons, and Apuri for senior or formal second persons). Suffixes with nouns and pronouns convey case, number, etc. The suffixes indicating case in Assamese are called bibhaktis ([3, 16, 36, 26]). Assamese bibhakti are distinct from bibhaktis of other Indic languages. Suffixes also go with other words such as adjectives and adverbs. Apart from the inflectional suffixes there are several derivational suffixes too. In a large number of cases of application of suffixes, spelling changes of the constituents do not occur.

A common class of suffixes in Assamese is that of the determiners. These are - To, khun, khini, zn, grAki, bor, bilAk, zopA, znI, phAl, dAl, gAl, etc. Such large number of determiners is not seen in other Indian languages and sometimes cause difficulty to non-native speakers of Assamese.

A very significant feature of Assamese morphology is the occurrence of sequences of suffixes in a single word. For example, \(l'rAkeiTakino = l'rA + keiTA + k + ei + no \). The frequent occurrence of such sequences and the large number of suffixes in some of these sequences is a phenomenon that distinguishes Assamese from most other languages. In some cases Assamese also allows certain suffixes to be detached from the base part.

Assamese inherits 20 prefixes (upasargas) from Sanskrit ([3], [26]). There are additional prefixes specific to Assamese. Most prefixes in Assamese are irregular in the sense that they cannot be applied to a class of words in general. In many cases, prefixes change the meaning of words in such a way that the derived words may be treated as root words for the purpose of including in a lexicon. There are, however, few prefixes that indicates negation, number, etc., whose use can be generalised for certain classes of words.

Prefixes for negatives of verbs: Negative forms of verbs are obtained by using one of the following prefixes with the verb- na, nA, ni, nu, ne, and no (न, न, नि, नु, ने, नो). In most cases the prefix for a given verb is selected such that the vowel in the prefix is similar to the first vowel of the verb. For example,

\[\text{na} + \text{Hay} = \text{naHay} \quad (न + है = नहै) \quad \text{means is not} \]
nA + lAge = nAlAge (না + লাগে = নালাগে) means not needed
ni + dio* = nidio* (নি + দিতে = নিদিতে) means (I) will not give
nu + buza = nubuza (নু + বুজ = নুজুড়) means (you) do not understand
ne + dekha = nedekha (নে + দেখে নেপথ) means (you) do not see
no + khole = nokhole (নো + খোলে = নোখোলে) means (it) does not open.

However, the prefix ne can also be used with verbs with A as the first vowel. e.g., nezAo*, nekAy, etc. ([নেজাও, নেখায]). There is another similar prefix nO (নো) which means (even) before. For example, nO + pao*tei [নো + পাঠিতেই] which means before (one) got (it).

Prefixes and quantification: There are certain nouns which means some object as well as they represent some quantity. This is true in Assamese as well as many other languages. For example, day, bucket, glass, etc. In Assamese there are many more such nouns. such as ghar (ঘাঁর), buku (বুকু), k'kAl (ক্কাল), which mean house, chest, waist respectively. In English these nouns can be associated with quantities by transformations such as houseful, chestful, waist- deep. Now, before such nouns a number can be placed to multiply the quantity that is represented. For example, cAri din, dui bAlti, tini gilAc which mean four days, two buckets, three glasses respectively. In Assamese the numbers one (এক ek), two (দুই dui), and six (ষেষ Cay) in such situations are often attached to the noun as prefixes. For example, একো দুইলি, সমাঃ একো বুকু, dudin and CmAH mean one chestful (esp. love), two days (duration) and six months (duration), respectively.

To denote the number of some countable noun (object), the number is placed before the determiner to be used with the noun followed by the noun itself. The determiner in these must not be ones that denote plurals. Also, the determiner TA (টা) is used with the number instead of the regular determiner To (টো). For example,
cAri+TA l'rA = cAriTA l'rA (চাক্কো লরা = চাক্কো লরা) == four boys
ek+khan desh = ekhan desh (একখান দেশ = এখান দেশ) == one country
du+zani gAy = duzani gAy (দুজানী গায় = দুজানী গায়) == two cows).

In the above examples, note that the determiners that may be normally used with l'rA (লরা == boy), desh (দেশ == country) and gAy (গায় == cow) are To (টো), khan (খান), and zani (জানী) respectively.

3.3 Lexicon

There is no existing computational lexicon of Assamese. There are several linguistic dictionaries of the language, viz., Hemkosh, Chandrakanta Abhidhan ([2, 28]), etc. The first Assamese-English Dictionary was compiled by M. Bronson and published by the American Baptist Missionaries in 1867 [22]. Hemkosh was originally published in 1900 and had over 22000 entries. Chandrakanta Abhidhan was first published in 1933 and had about 37000 entries. The later editions of both were enlarged.
3.4 Encoding of Assamese text in computer

Scripts of natural language are visual patterns on some surface. In a computer these natural language texts may be captured as images. But, for convenience of analysis, manipulation and storage, a convention of representing such texts as a sequence of numeric codes is followed. Each elementary symbol of the script is represented by a unique numeric code. Hence the entire text which is a sequence of the elementary symbols of the script, can be represented by the sequence of numeric codes. To reproduce the text internally represented inside a computer using numeric codes for human use, suitable glyphs (fonts) are produced for each numeric code value. In practice font sets are defined such that each individual font in the set can be addressed by a number. For Roman script, the ASCII encoding scheme is used and each numeric code uniquely identifies the font corresponding to it. To cater to other script systems the Unicode encoding system has been defined. However, the visual glyphs for each numeric code value are not part of the Unicode. For languages such as Assamese, reproducing the text for reading is somewhat complex since the same internal code may have to be displayed using different glyphs in different contexts. Also, the glyphs corresponding to two sequentially occurring numeric codes may require to be displayed in formations other than simply one followed by the other. Since the Unicode does not enforce a standard for the fonts, different font sets are in use which effectively imply different encoding schemes. These may be called font encodings. Presently, font encodings such as Aadarsha Ratneswar, Luit, Kamakhya, Ramdhenu, etc. are in use for Assamese texts. Any software that needs to analyse texts in these various encodings may have to first carry out transliteration of the text into a standard encoding. It is also possible to have a script system in which each Assamese letter is denoted by a distinct Roman letter or letter sequence so chosen that the text can be read out directly. Such a Roman transliteration scheme has been used in our work as a standard encoding for Assamese texts. It is described in Appendix A.
Chapter 4

Identification of Suffixes from a Text Corpus

4.1 Introduction

An NLP system must be capable of recognizing the words in expressions of the language and their meanings in order to determine the meaning of the expressions. The set of all words that occur in expressions in a given natural language is very large and a practical system has knowledge of only a subset of these words. This subset is the vocabulary of that system. In addition, it is desirable that a system gracefully deal with words outside its vocabulary. Certain linguistic features, the context of the expression and knowledge of the environment often make it possible for a system to recognise unseen words. Context is realised through analysis of the morphology, syntax and meaning of the recognized portion of the expression. Relevant knowledge of the environment, in turn, must be selected based on the context. Hence both these factors require meaning analysis of expressions. By linguistic features we mean certain language dependent surface level patterns that can help guess attributes of unseen words. These patterns may be collocations, word structure (such as affixation), and syntactic analogy, etc. Of these, word structure, i.e., morphology, is very significant in certain languages.

A word of a language has several attributes such as part-of-speech (POS), tense (if the POS is verb), number, etc. Meaning of the word is another attribute of the word, mapping the lexical form of the word to a real world object or concept. Recognizing a word implies discovering the attributes of the word. A word is only partially recognized if only some of its attributes are determined. Often during analysis of an expression, even partial recognition of some words is useful in understanding the context.
4.2 Incorporating morphological knowledge into an NLP system

Morphology determines how each word in an expression is built from component parts. A predominant form of morphology is the *concatenative morphology* where a word form is obtained by combining two or more *morphemes*. There are other morphological transformations where a word is modified without combining additional morphemes to it. Whatever is the type of transformation, for an NLP system morphology as a phenomenon is significant because–

- without a proper computation of morphology, all word forms that occur in expressions need to be recognized individually, and,
- morphology brings out the attributes of words that help in recognizing the structure of a sentence.

Recognizing all word forms is is likely to impose a huge demand on a system, and this requirement alone may make building NLP systems prohibitive. On the other hand, the morphological knowledge needed to understand the structure of the individual words used in a language is generally finite and can be quite effectively encoded in a computational system. Computational encoding of morphological knowledge enhances the capability of the system to recognize various word forms. Another fact that makes morphology significant is that each transformation performs some clear linguistic function; thus, recognizing the morphological features in a word implies recognition of some part of its meaning. In other words, morphology by itself leads to a partial recognition of a word.

To encode the morphological phenomena of a language in an NLP system, each phenomenon must first be identified. Depending on the nature of a phenomenon, it must be implemented in suitable computational terms. For the identification of the morphological phenomena in a language, one must study relevant literature published by linguists. However, often either the results of linguistic studies are not readily available, or the format of the available information is not suitable for computational purposes. Thus, approaches to morphological processing systems range from hand-coding of morphological “rules” provided by linguists in software, to automatic indentification of morphological rules from examples of text inputs. Perhaps the most widely cited work on hand-coding morphological rules is the Porter’s method for stemming ([32]). This method deals with suffixational morphology. Others have subsequently attempted to improve this method (*e.g.* [35]).

Automatic identification of morphological rules generally analyses an input corpus in order to discover the underlying morphological features. These approaches also are, in turn, of two broad types– one, the input corpus is annotated, and two, the input corpus is raw, *i.e.*, unannotated. For instance, Daelemans takes as input a POS tagged corpus for the lexical acquisition task [11].

Speech is the primary form of expression for natural languages. The evolution of linguistic features including morphology, is based on this spoken
form. Hence, one important approach to acquisition of morphology is to consider the phonological form of utterances. For example, Gasser [14] describes a connectionist approach that takes as input phones and outputs the associated roots and inflections.

4.3 Motivation

A child learns her (or his) native language by subconsciously analyzing sentences that she (or he) hears. She neither consults a dictionary nor gets any explicit instructions on grammar or vocabulary, but she can perceive the real-world entities and events in the environment that the sentences describe. That she can relate the sentences to real-world events and entities, is very important in this learning process, especially, at an early age. For example, suppose the child hears the sentences “There is a cat under the chair”, and “The cat is brown” to describe two separate situations that she sees. Because of the presence of the particular object “cat” in the two situations it becomes evident to the child that the word “cat” in the two sentences denotes that particular object. In this respect the natural language is actually an “artificial” scheme of representation of the real-world facts. This scheme is acquired by the child by identifying the correspondence between elements of the natural language expressions and the elements of the real-world situations. Thus the perception of the environment itself serves as a representation of the information, essential for the language acquisition task. In the case of a computer processing a natural language expression provided as input, generally the computer does not possess any facilities to gather relevant knowledge about the environment. Usually the system is unable to draw any relationship between natural language expressions and real world entities, events and concepts to facilitate or expedite the comprehension process. In a sense, the processing is limited to the “structure” only and does not involve its “meaning”. Further, in a child there is an inherent urge to communicate information that is drawn from the environment as well as produced within the brain. Hence a child makes effort to acquire a language. In a computer, there is no inclination for communication other than that enforced by the software that is installed. However, computers are good at processing data. As far as apparent structure of expressions is concerned, if there is any regularity in the structure, a computer program should be able to extract it. In case of the structure of a linguistic expression, the structure due to morphology is highly regular. The method that we describe here attempts to build a lexicon and learn morphological rules of a language by studying texts of the language and without any direct manual specification of the language.

A motivation for the particular approach taken in our work for morphological analysis is that in Assamese formation of derivatives from the root or base forms of words is ubiquitous, it being very inflectional. We believe

\[\text{The real object “cat” is denoted by different artificial words in different languages, such as cat in English, mekuri (মেকুী) in Assamese, and so on. Similarly, a the rules of syntax and semantics are artificial and hence they are different in different languages to describe the same real situation.}\]
that for further computational processing of Assamese text, it will be very useful to analyze words to identify the root form and the exact nature of derivation used in each case. To handle such a task, unsupervised learning of morphology is useful. Our algorithm uses techniques distinct from those described in [15].

4.4 Morphological phenomena in Assamese

As mentioned in Section 3.2.1, Assamese is a morphologically rich language. A large proportion of the words that occur in Assamese expressions are obtained through morphological transformations of base words. Assamese morphology is largely concatenative with three prominent operations, *viz.*, prefix, suffix and compound formation. These are sometimes accompanied by change in spellings of the root words, e.g.,

\[
\text{par} + \text{adhIn} = \text{parAdhIn} \quad (\text{প্রত্যুন}).
\]

In this work, we do not target analysis of compounds. The other kind of morphological phenomenon, *i.e.*, affixation is differentiated into two types, *inflectional* and *derivative* (such as in [1]), *e.g.*,.

Inflectional: \(mAnuh + e = mAnuhe\) (আনুহ, আনুহে)

Derivational: \(driha + tA = drihatA\) (দীর্ঘ, দীর্ঘত = firm, firmness)

In our exercises in acquisition of the morphology of Assamese, we treat them alike. Further, we focus on suffixes since suffixes are more common in Assamese and embody significant linguistic information. In addition, we take into account the phenomenon of *sequence of suffixes* occurring in a single word.

4.5 Terms and notations used

A word comprises one or more *morphemes*. A decomposition of a word is a representation of the word as a sequence of two or more *parts*, where each part, in turn, comprises one or more morphemes or is empty. An empty part is written as *NULL*. For example the word *cheerfully* can be decomposed as

\[
\begin{align*}
\text{cheerfully} &= \text{cheer} + \text{ful} + \text{ly} \\
\text{cheerfully} &= \text{cheerful} + \text{ly} \\
\text{cheerfully} &= \text{cheer} + \text{fully} \\
\text{cheerfully} &= \text{cheerfully} + \text{NULL}.
\end{align*}
\]

With respect to the original letter sequence of a word, we refer to the position where two parts are separated as *morpheme boundary*. In our exercise of unsupervised analysis, words may be, erroneously, broken up at points other than morpheme boundaries too. We refer to such unconfirmed points of separation of two parts of a word as *partition points*. If we keep out the cases of prefixes in words, then the first part in the sequence is the *base* of the decomposition. The portion of the sequence after the base as the *morphological extension* or simply, *extension*. The base has a distinct *independent* meaning and can generally occur as a word by itself. Sometimes the base indicated in a decomposition is not an independent word in that form. For example
where the independent word form of the base is *compute*. Alternatively we may write the base in its independent form, thus implying that the concatenation of the subsequent part is accompanied by spelling modification

$$
\begin{align*}
\text{[computer} &= \text{compute + er}] \\
\text{computing} &= \text{compute + ing}] \\
\text{computation} &= \text{compute + ation]},
\end{align*}
$$

If the spelling modification required is *regular*, the word itself need not be specified with the sequence of the constituent parts in the decomposition. On the other hand, if any spelling modification which is not obvious is required, the resultant word must be explicitly specified. Thus, a decomposition is the 3-tuple

$$< w, b, e >$$

where, w is the word being decomposed, b is the base and e is the morphological extension. The morphological extension e can be a single part, a sequence of parts, or NULL.

We denote a decomposition either as

$$[w = b + x]$$

or simply as

$$[b + e]$$

if no spelling modification, that is not obvious, is required.

Examples of decompositions of Assamese words are

$$
\begin{align*}
\text{[kar} A &= \text{kar + A]} \\
\text{baHalkE} &= \text{baHal + kE]} \\
\text{(karA = do (imperative); baHalkE = spread out / in detail (adverb))}.
\end{align*}
$$

In Assamese situations where the base does not occur as independent word, are few. For example,

$$
\begin{align*}
\text{[p_rshiXit} &= \text{p_rshiX + it]} \\
\text{[p_rshiXk} &= \text{p_rshiX + k]} \\
\text{(p_rshiXit = train-ed (adjective); p_rshiXk = train-er).}
\end{align*}
$$

where the independent word form of the base is *p_rshiXN* (শিখিত), meaning, *training (noun)*.

The morphemes in the morphological extension are broadly of two types—suffixes and compound parts. A suffix is a morpheme that does not have an independent meaning of its own, and only modifies the meaning of the portion preceding it in the word. For example, the morpheme *ly* in *cheer+ful+ly*. A compound part, on the other hand, is actually a word by itself with an independent meaning and in the given decomposition forms a compound with
the base. For example, the morpheme *over* in the following decomposition is a compound part

\[\text{[switchover} = \text{switch + over}]. \]

As a special case, we can decompose a word with itself as the base and an empty (or NULL) morphological extension. We refer to such a decomposition as a trivial decomposition. For example,

\[\text{[cheerfully} = \text{cheerfully + NULL}]. \]

is a trivial decomposition. If for a word no non-trivial decomposition is possible, the word is a root word. On the other hand, when the morphological extension in a decomposition is non-null, the word is a derived word or a derivative. A decomposition is valid if linguistically (semantically) the derivative is formed from the base with the given morphological extension.

We use the following conventions to symbolically denote items such as letters, letter strings, morphemes, words, etc.

- \(m, n, o, q \) - letter
- \(a, b, ..., k, \alpha \) - letter string
- \(\mu \) - morpheme
- \(w, \omega \) - word
- \(\beta \) - base
- \(\pi \) - root
- \(\sigma, s, t, u, v, y, z \) - suffix (single morpheme)
- \(p, \rho \) - part comprising one or more morphemes
- \(x \) - morphological extension
- \(\delta \) - decomposition.

Note that in real examples the letters do not assume the above meanings.

Wherever required, we use subscripts with the symbols to distinguish amongst them. Use of subscripts also imply that the subscripted letters are being used in symbolic sense and not as real strings. A morpheme, word, base, root, suffix and a part are special cases of letter strings. To denote a sequence of the above items (except decomposition) we use ‘+’ between the adjacent items.

A morphological extension is a sequence of one or more parts. A decomposition contains a parts-sequence, of which the first part is the base. To denote the concatenation of a sequence of items, we write them as a string without any separator in between.

We introduce the following operators involving the items mentioned above:

- \(|X| \) denotes the length of \(X \), where \(X \) is a sequence of one or more parts. Length here implies the number of letters in the non-NULL parts of the parts-sequence, plus, the number of ‘+’ preceding non-NULL parts in the sequence.

- \(\Omega(X) \) denotes the word that is decomposed in \(X \), where \(X \) is a decomposition.

- \(\beta(X) \) denotes the base of \(X \), where \(X \) is a decomposition.
• $\mathcal{E}(X)$ denotes the morphological extension of X, where X is a decomposition.

• $\mathcal{P}(X)$ denotes the parts-sequence of X, where X is a decomposition.

• $\Pi(X)$ denotes the root of X, where X is a word.

• $\Gamma(X)$ denotes the concatenation of X, where X is a parts-sequence.

We use the term *morphological expression* to refer meaningful constructs involving items mentioned above, decompositions, and operations mentioned above. The items in a morphological expression may be either symbolic or real. Thus we may have morphological expressions such as:

1. $w = \alpha$
2. $\alpha : a_1 + a_2 + f + m$
3. $[\omega = \pi + \sigma]$
4. $w = \rho \sigma$
5. $\delta : [w = p + x]$
6. $|B(\delta)| \leq |\Omega(\delta)|$

 etc.

The square brackets in morphological expression 3 above clearly mark the start and the end of the expression. In the other expressions there are no such markers. Hence, whenever necessary, we enclose an expression within the brackets ‘(‘ and ‘)’. For example,

$$(p_1 + p_2 + s)$$

is a parts-sequence with a suffix as the last part.

In real morphological expressions, the items can be either English or Assamese. Assamese items, in turn, may be either in Assamese or Roman script. Wherever necessary, to distinguish between different types of morphological expressions containing Roman letters, we attach the special subscript \mathcal{S} to symbolic morphological expressions\(^2\) and the special subscript \mathcal{A} to Assamese morphological expressions in Roman letters. For example,

$$[w = p_1 p_2 + s]_\mathcal{S} \quad \quad [\text{kar} \text{Ag} \text{E} = \text{kar} \text{A} + g \text{E}]_\mathcal{A} \quad \quad ([\text{কর্কাঞ্জলি = কর্কা + অজে}])$$

When these subscripts are to be attached to an expression consisting of more than a single string of letters (e.g., a sequence of parts), the expression must be enclosed within markers mentioned above. For an expression consisting of only a single string of letters, the markers may be omitted (e.g., $gE_\mathcal{A}$). Further, the subscripts \mathcal{S} and \mathcal{A} do not add any other distinction to the item they are used with. Hence, for example, we may refer to the first part of the sequence $(a + b)_S$ as a_S.

At times, immediately following an Assamese word or decomposition, we provide its meaning (in case of decompositions, the meaning is that of the word being decomposed, unless otherwise specified). In this we enclose the English meaning between two ‘/’ (slash) or ‘\’ (backslash) characters. For example,

\(^2\)Special subscript \mathcal{S} is required only if the symbolic items do not already have any other subscripts.
\[[kar A = kar + A]_A \quad \text{and} \quad [কব = কব + আ] \quad \text{/do (imperative)/.} \]

4.6 Acquisition of morphology from a text corpus

For acquiring morphology of a language from an unannotated text corpus we perform a surface level analysis of the corpus. An unannotated text corpus presents two kinds of information about the language—first, the lexical space of the language, i.e., of the infinite possible letter sequences, the ones that form valid words in the language, and second, the morphological phenomena, i.e., the noticeable similartiy in the structure of groups of words. In case of Assamese the predominant morphological phenomenon is suffixation. We model the morphology acquired through analysis of the input training corpus, in the form of a collection of suffixes and the criteria for identifying the presence of these suffixes in different words. This knowledge of morphology is used in building a lexicon that is compact as well as provides more insight about words than a plain listing of the words encountered does. The morphological model and the lexicon can be subsequently used for morphological analysis of words in texts.

Our first task is to identify the underlying suffixes in the language. Suppose, \(S_C \) is the set of suffixes identified by the computational process, and \(S_L \) is the set of suffixes that are actually there in the language. The ideal goal of the morphology acquisition process is to have \(S_C \) be the same as \(S_L \). However, due to the constraints on the available evidence and the methods applied, \(S_L \) is usually not the same as \(S_C \). Letter strings that are not really suffixes are identified as ones, while several valid suffixes are left unidentified. A morphology acquisition method is useful only if the \(S_C \) obtained is a close approximation of an underlying \(S_L \). Similar issues arises in the next task of our approach. The next task is to build a lexicon from a corpus—possibly, the same training corpus. We use the suffixes acquired to decompose the words in the corpus. Simply looking for matching of the suffixes at the end portion of words leads to a large number of invalid decompositions. Methods discussed in [15, 12] are representative of reported approaches to tackle the problem. In our approach, we apply heuristics based on statistics as well as other language specific and script specific aspects. We find that in case of Assamese, and possibly in other languages with similar features, our approach produces better results. We first briefly discuss the two approaches proposed by Gaussier and Goldsmith for identification of suffixes from a text corpus.

4.6.1 Gaussier’s approach

In [12] Gaussier presents a method to acquire the suffixes used in a raw text corpus. In the method, a pair of decompositions using a common base \(\beta \) is obtained for words \(w_i \) and \(w_j \) in the input corpus such that-

\[
[w_1 = \beta_1 + \alpha_1]_S \\
[w_2 = \beta_1 + \alpha_2]_S,
\]

31
where, the \(|\beta_1| \geq p, |\alpha_1| \geq 0, \) and \(|\alpha_2| > 0\). If \(|\alpha_1| = 0 \) (i.e., \(\alpha_1\) is \(NULL\)), \(\beta_1\) must be a word in the input corpus. The language independent value of \(p\) suggested is 5. The morphological extensions, \(\alpha_1\) and \(\alpha_2\), together referred to as a pseudo-suffix pair, are accepted as valid, if for some words \(w_3\) and \(w_4\) in the input, the following decompositions hold

\[
\begin{align*}
[w_3 &= \beta_2 + \alpha_1]_S \\
[w_4 &= \beta_2 + \alpha_2]_S,
\end{align*}
\]

where, \(\beta_1 \neq \beta_2\). That is, the pseudo-suffix pair is accepted if the pair applies to at least two distinct bases.

Finding a pair of morphological extensions that have occurred with the same base, ensures that the base is regular and hence likely to be valid. Then, looking for at least one more base that has occurred with that pair of morphological extensions, essentially strives to ensure that the morphological extensions are regular and are likely to be true suffixes. The criteria of having \(p = 5\) is to rule out very short prefix strings generating spurious morphological extensions. In general, the criteria involved in this method can be stated as

1. Minimum base length, \(p = 5\).
2. Minimum morphological extension co-occurrence, \(c = 2\), i.e., two suffixes occurring with the same base are considered as a pair. In other words, each base must have occurred with at least two morphological extensions\(^3\).
3. Minimum morphological extension occurrence, \(f = 2\), i.e., each morphological extension must occur with at least two bases.

The experimental results obtained upon implementing Gaussier’s method and testing on an Assamese corpus of about 1,16,000 words (corpus A) from 231 newspaper articles, are summarized in table 4.1 and shown graphically in figure 4.1.

<table>
<thead>
<tr>
<th>Base length threshold, (p)</th>
<th>B</th>
<th>C</th>
<th>Q</th>
<th>S</th>
<th>Precision (%)</th>
<th>Recall (%)</th>
<th>(f)-measure (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>463</td>
<td>398</td>
<td>323</td>
<td>160</td>
<td>25.68</td>
<td>85.56</td>
<td>39.51</td>
</tr>
<tr>
<td>4</td>
<td>203</td>
<td>206</td>
<td>244</td>
<td>149</td>
<td>42.33</td>
<td>79.68</td>
<td>55.29</td>
</tr>
<tr>
<td>5</td>
<td>94</td>
<td>67</td>
<td>149</td>
<td>120</td>
<td>56.07</td>
<td>64.17</td>
<td>59.85</td>
</tr>
<tr>
<td>6</td>
<td>34</td>
<td>27</td>
<td>110</td>
<td>90</td>
<td>72.58</td>
<td>48.13</td>
<td>57.88</td>
</tr>
<tr>
<td>7</td>
<td>15</td>
<td>5</td>
<td>73</td>
<td>54</td>
<td>78.26</td>
<td>28.88</td>
<td>42.89</td>
</tr>
</tbody>
</table>

- S: Suffix; Q: Suffix-sequence; C: Compound parts;
- B: Invalid morphological extension

Table 4.1: Summary of results of method proposed by Gaussier, with different values for \(p\)

\(^3\)One of the morphological extension in the pseudo-suffix pair can be \(NULL\), which means that the base has occurred as an independent word.
4.6.2 Goldsmith’s approach

Some unsupervised morphology acquisition methods (eg. [40]) are based on probabilistic models. A particularly interesting approach which can be seen as a special case of probabilistic idea is presented by Goldsmith ([15]). It is based on the Minimum Description Length (MDL) concept. The main intuition in this concept is that if all the morphemes, which are the basic elements of all words, involved in an input are assigned distinct numeric values in the smallest possible number space, then the input can be represented as a sequence of these numbers. Identification of morphemes can be guided by the goal of minimizing the length of the representation of the input corpus, which depends on the total number of morphemes as well as the representation lengths of the individual morphemes in number of bits.

The implementation of this approach is available as a free downloadable software called Linguistica. We test this software over the same corpus A as used for our own method as well as the method discussed in section 4.6.1. For this test the input corpus needs to be preprocessed since in the Roman script based encoding scheme used in the corpus, certain Assamese letters are represented using more than one Roman letter, and some are represented using non-alphabetic characters (see Appendix A). The results of this experiment are summarized in Table 4.2.

4.7 Our approach for morphology acquisition

To discover the set of suffixes in Assamese from a raw text corpus, our first step is somewhat similar to Gaussier’s approach (see section 4.6.1). We obtain all the decompositions in each of which a word, w_1 : of the corpus is obtained by appending a string of letters α to another word, w_2, of the corpus. That is

$$[w_1 = w_2 + \alpha]_S.$$

We refer to this exercise as initial decomposition (it is also used as a noun phrase to indicate the outcome of this exercise). The idea is that since w_2 occurs as
a word in the corpus, it has an independent meaning. Hence, it can be the base for some decomposition. Since word w_1 has w_2 as its leading portion, it is likely that w_1 is derived from w_2 with α as a morphological extension. The method of Gaussier ([12]) detects a morphological extension, x_s, if at least two bases that occur with x_s also occur with some other, possibly NULL, suffix y_s. i.e., if the words ax_s, ay_s, bx_s and by_s occur in the corpus, we get the pseudo-suffix pair $(x, y)_s$. In our initial decomposition we miss a suffix x_s even if it occurs adequate number of times unless the corresponding bases also occur independently. In Assamese this does not adversely affect the recall since given a good corpus size, bases do occur without the suffixes, too.

Suppose, the set of words in the input corpus is W. We find the set of initial decompositions, D, as

$$D : \{ [w = b + x] \mid w = bx, \text{ and } w, b \in W \}.$$

The set of morphological extensions obtained is

$$E : \{ x \mid [w = b + x] \in D \}.$$

A few sample decompositions are shown in Table 4.3. In general, it is observed that from some bases more than one derivative are obtained by adding different morphological extensions, some bases are further decomposed using other bases, some derivatives remain undecomposed, some of the morphological extensions require further break up, and some of the decompositions found are actually invalid. Also, some morphological extensions contain compound parts (e.g., line 6 in Table 4.3).

In Assamese texts sometimes the single-quote mark is used between two morphemes that are fused. This is generally seen with foreign words to which some suffix is added. For example,

$$[HAiwe'r = HAiwe + r]_A$$

[হাইও'র = হাইও + র]

/of highway/.

The single-quote used in the suffixed word does not play any role in the
Table 4.3: Some sample decompositions

pronunciation of the word, and might make ‘r_A' appear as suffix instead of
r_A. We cannot remove this mark entirely from the list of input words since it
is part of the spelling of the root word, such as
$m'H_A$
Hence, we remove the single-quote mark from the beginning and end of the
morphological extensions. We perform this for the results of the other methods
too.

Relevant statistics for finding the decompositions from corpus A of
newspaper articles is given in Table 4.4. The exercise identifies almost all the
suffixes (high recall, 99.11%), but along with too many “non-suffixes” (only
1.65% are suffixes). A morphological extension is either a suffix (i.e., single
morpheme), a composite suffix (i.e., sequence of suffixes), a compound part
possibly followed by one or more suffixes, or just invalid (none of the previous
three cases). For calculating the recall, we have not referred to any pre-defined
set of suffixes of the language. Instead, we have identified and referred to the
set of suffixes that are actually present in the corpus. A list of suffixes in a
larger corpus is given in Table 4.14.

4.8 Selecting valid suffixes from the initial decompositions

The set of morphological extensions E obtained from the initial decompositions
has a recall close to 100%, but there are several non-suffixes too. This is not to
suggest that all the remaining morphological extensions are invalid. About 21% are
either composite suffixes (suffix-sequences) or sequences with compound
parts. The decompositions involving such morphological extensions are actually
valid. Thus, about 58% of the initial decompositions are valid. In the other
methods too, especially Gaussier’s, such cases are there. Also, some invalid
decompositions have valid morphological extensions, but the derived word and
the base are not semantically related. For example, consider the decompositions
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of input words</td>
<td>116096</td>
</tr>
<tr>
<td>Number of distinct input words</td>
<td>20140</td>
</tr>
<tr>
<td>(original count was 20685, but in hyphenated words only the last components are retained).</td>
<td></td>
</tr>
<tr>
<td>Number of decompositions</td>
<td>29054</td>
</tr>
<tr>
<td>(including multiple for same word).</td>
<td></td>
</tr>
<tr>
<td>No. of distinct morphological extensions in the decompositions, n</td>
<td>13715</td>
</tr>
<tr>
<td>No. of distinct valid suffixes identified, s</td>
<td>185</td>
</tr>
<tr>
<td>No. of distinct suffixes that should be further broken up, q</td>
<td>654</td>
</tr>
<tr>
<td>No. of morphological extensions that are compounds parts</td>
<td>2218</td>
</tr>
<tr>
<td>No. of invalid morphological extensions</td>
<td>10658</td>
</tr>
<tr>
<td>Actual number of suffixes present in the input, S</td>
<td>187</td>
</tr>
<tr>
<td>No. of distinct bases that occur in decompositions</td>
<td>5186</td>
</tr>
<tr>
<td>No. of bases that occur in more than one decompositions</td>
<td>2820</td>
</tr>
<tr>
<td>No. of bases that are, in turn, decomposed, too</td>
<td>3638</td>
</tr>
<tr>
<td>No. of invalid decompositions</td>
<td>12234</td>
</tr>
<tr>
<td>Precision of single suffix idenfication (s/n)</td>
<td>1.35%</td>
</tr>
<tr>
<td>Recall of suffix idenfication (s/S)</td>
<td>98.93%</td>
</tr>
<tr>
<td>Proportion of non-invalid morphological extensions to total morphological extensions (($s + q + c)/n$)</td>
<td>22.29%</td>
</tr>
</tbody>
</table>

Table 4.4: Summary of initial decompositions from a corpus of 231 newspaper articles
1. \([bi z y = b i + z y]_A \) \[\text{[বিজয় = বিজয়]}\] /victory/
2. \([b i/ S h w z y = b i/ S h w + z y]_A \) \[\text{[বিশ্বজয় = বিশ্বজয়]}\] /world-victory/.

The morphological extension \(z y_A\) is valid in the second decomposition, but not with the base \(b i_A\) in the first. The string \(b i_A\) is not a valid word. It is actually a prefix, and it has probably occurred in the corpus as an initial in some abbreviated word, such as \(b i s e p i_A\) \[\text{[বিশ্বজয়]}\] /BJP/.

We take a sequence of measures to achieve better performance in selection of suffixes from the initial decompositions. First we try to reduce the number of invalid decompositions. Then we try to distinguish the suffixes from the other morphological extensions. We try to break up the composite suffixes to reveal the suffix constituents.

Precision, recall and f-measure of the initial decompositions:

The concept of decomposition, on which the method described so far is based, does not distinguish between single suffixes, composite suffixes and sequences with compound parts. There are a large number of valid decompositions involving composite suffixes (sequences) and compounds, the precision computed as the ratio of single suffixes to all the morphological extensions is much lower than 100%. Before we take steps to distinguish amongst the different valid morphological extensions, our immediate objective is to get rid of the invalid decompositions. Till then we compute the precision of the process as the ratio of the number of single suffixes to the number of all invalid morphological extensions. We compute the recall of the exercise as the proportion of valid suffixes identified to those actually present in the corpus. As an aggregate of precision and recall, we also compute an \(f\)-measure as--

\[
f = \frac{2 \times S \times 100}{S + B + T}
\]

where, \(S\) is the number of suffixes identified, \(B\) is the number of invalid morphological extensions, and \(T\) is the total number of suffixes present in the input.

4.8.1 Frequency of morphological extensions

A simple intuitive idea for selecting valid decompositions from the initial decompositions’ set, \(D_i\), is to look out for is regularity of the parts in the decompositions. First we try to ensure that the morphological extensions involved are regular. For this purpose, the frequency of each morphological extension (i.e., number of occurrence in different decompositions) is computed. A threshold value for this count is chosen so that only those morphological extensions that have a frequency higher than the threshold are retained. The experimental results showing the effects of such a frequency threshold are summarised in Table 4.5. and shown graphically in figure 4.2.
Total number of distinct words : 20140
Actual number of suffixes present: 187

<table>
<thead>
<tr>
<th>Morph 'Extn' frequency threshold</th>
<th>B</th>
<th>C</th>
<th>Q</th>
<th>S</th>
<th>Precision (%)</th>
<th>Recall (%)</th>
<th>f-measure (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10658</td>
<td>2218</td>
<td>654</td>
<td>185</td>
<td>1.71</td>
<td>98.93</td>
<td>3.35</td>
</tr>
<tr>
<td>2</td>
<td>866</td>
<td>494</td>
<td>353</td>
<td>173</td>
<td>16.65</td>
<td>92.51</td>
<td>28.22</td>
</tr>
<tr>
<td>3</td>
<td>281</td>
<td>214</td>
<td>247</td>
<td>155</td>
<td>35.55</td>
<td>82.89</td>
<td>49.76</td>
</tr>
<tr>
<td>4</td>
<td>154</td>
<td>123</td>
<td>186</td>
<td>142</td>
<td>47.97</td>
<td>75.94</td>
<td>58.80</td>
</tr>
<tr>
<td>5</td>
<td>84</td>
<td>74</td>
<td>144</td>
<td>131</td>
<td>60.93</td>
<td>70.05</td>
<td>65.17</td>
</tr>
<tr>
<td>6</td>
<td>57</td>
<td>45</td>
<td>119</td>
<td>121</td>
<td>67.98</td>
<td>64.71</td>
<td>66.30</td>
</tr>
<tr>
<td>7</td>
<td>40</td>
<td>36</td>
<td>101</td>
<td>113</td>
<td>73.86</td>
<td>60.43</td>
<td>66.47</td>
</tr>
<tr>
<td>8</td>
<td>30</td>
<td>29</td>
<td>86</td>
<td>108</td>
<td>78.26</td>
<td>57.75</td>
<td>66.46</td>
</tr>
<tr>
<td>9</td>
<td>26</td>
<td>24</td>
<td>78</td>
<td>101</td>
<td>79.53</td>
<td>54.01</td>
<td>64.33</td>
</tr>
<tr>
<td>10</td>
<td>22</td>
<td>14</td>
<td>71</td>
<td>93</td>
<td>80.87</td>
<td>49.73</td>
<td>61.59</td>
</tr>
<tr>
<td>11</td>
<td>18</td>
<td>13</td>
<td>68</td>
<td>88</td>
<td>83.02</td>
<td>47.06</td>
<td>60.07</td>
</tr>
<tr>
<td>12</td>
<td>14</td>
<td>10</td>
<td>64</td>
<td>80</td>
<td>85.11</td>
<td>42.78</td>
<td>56.94</td>
</tr>
<tr>
<td>13</td>
<td>10</td>
<td>6</td>
<td>59</td>
<td>74</td>
<td>88.10</td>
<td>39.57</td>
<td>54.61</td>
</tr>
<tr>
<td>14</td>
<td>8</td>
<td>4</td>
<td>55</td>
<td>69</td>
<td>89.61</td>
<td>36.90</td>
<td>52.27</td>
</tr>
<tr>
<td>15</td>
<td>7</td>
<td>3</td>
<td>52</td>
<td>65</td>
<td>90.28</td>
<td>34.76</td>
<td>50.19</td>
</tr>
<tr>
<td>16</td>
<td>5</td>
<td>3</td>
<td>46</td>
<td>63</td>
<td>92.65</td>
<td>33.69</td>
<td>49.41</td>
</tr>
<tr>
<td>17</td>
<td>2</td>
<td>2</td>
<td>46</td>
<td>60</td>
<td>96.77</td>
<td>32.09</td>
<td>48.19</td>
</tr>
<tr>
<td>18</td>
<td>2</td>
<td>2</td>
<td>44</td>
<td>59</td>
<td>96.72</td>
<td>31.55</td>
<td>47.58</td>
</tr>
<tr>
<td>19</td>
<td>2</td>
<td>1</td>
<td>43</td>
<td>56</td>
<td>96.55</td>
<td>29.95</td>
<td>45.71</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>0</td>
<td>41</td>
<td>54</td>
<td>98.18</td>
<td>28.88</td>
<td>44.63</td>
</tr>
<tr>
<td>21</td>
<td>0</td>
<td>0</td>
<td>40</td>
<td>53</td>
<td>100.00</td>
<td>28.34</td>
<td>44.17</td>
</tr>
<tr>
<td>22</td>
<td>0</td>
<td>0</td>
<td>38</td>
<td>50</td>
<td>100.00</td>
<td>26.74</td>
<td>42.19</td>
</tr>
</tbody>
</table>

S: Suffix; Q: Suffix-sequence; C: Compound parts;
B: Invalid morphological extension

Table 4.5: Effect of frequency of morphological extension in selecting valid suffixes

Figure 4.2: Effect of frequency in suffix selection
4.8.2 Base length

Many of the invalid decompositions in D involve short bases, i.e., bases with very few letters. This is because a short word may match the leading portion of a longer word, even though the two may not be semantically related. Some examples are:

1. $[der = de + r]_A$ (দএর) /one-and-a-half/
2. $[er = e + r]_A$ (এর) /leave (imperative)/
3. $[mA = mA + t]_A$ (মাত) /voice/
4. $[bAHr = bA + Hr]_A$ (বএহ্র) /camp/
5. $[deHr = de + Hr]_A$ (দএহ্র) /of body/
6. $[kiHr = ki + Hr]_A$ (কিেহ্র) /of what/.

$de_A =$ give (imperative); $mA_A =$ mother; $bA_A =$ or; $ki_A =$ what.

In the above examples, all the decompositions are invalid. In 1 and 3, the bases as well as the morphological extensions are individually valid; in 2 the base is not valid; in 4, 5 and 6 the morphological extensions are not valid. Invalid bases comprising 1 or 2 letters are usually due to abbreviations, or letters used to enumerate points in the text. To avoid such invalid decompositions providing morphological extensions, which are often spurious, we try imposing a lower limit on the length of the bases of the decompositions that are considered for suffix acquisition. It may be mentioned here that computing the length of words or portions of words must be carefully done since most of the prevalent encoding schemes for Assamese script uses a non-uniform length of representation for the different letters. For example, in Unicode special characters are inserted to indicate the formation of ligatures, in a font-based encoding the single letter আ is realised by the sequence of the symbols অ and আ, and in the Roman script based encoding we have used, the letter খ is represented by the string kh. Table 4.6 summarizes the effect of rejecting decompositions according to lengths of bases involved, and figure 4.3 presents it graphically.

![Graph](image)

Figure 4.3: Effect of base length (all letters) in suffix selection

Our intuition is that longer words are more semantically stable than shorter words. That is, if a word can be obtained by concatenating some letters to
another word, the likelihood that they are semantically related is proportional to the length of the latter. We feel that this stems from the fact that morphology of a language and semantics of words are actually based on the spoken form of the language. Longer words usually mean longer sequence of phonemes, and a long sequence of phonemes is more likely to be semantically unambiguous. Most scripts, however, do not reflect the actual phonetic length of words. For example, the words “that” and “bat” has the same number of phonemes, though the first has four letters and the second has three. Similarly in Assamese, for instance, the words *path*ₐ (পথ /path/) and *kATH*ₐ (কাঠ /wood/) have the same number of phonemes, but the number of letters is different. In Assamese script which is largely phonetic, this anomaly arises mainly because of the vowel *aₐ*. Unlike the other vowels in the script, *aₐ* does not have a corresponding operator symbol. In some cases its implicit presence is assumed while in others it is not. In the word *পথ* this vowel is assumed to be present with the first letter *প*, but not with the second letter *থ*. In *কাঠ* the vowel operator *َا* (corresponding to the vowel *আ*) is explicitly indicated, and no implicit vowel operator is assumed. In view of this, we use the following criteria to obtain a rough approximation of the *phoneme count*–

1. Each consonant is a phoneme. Each consonant in a ligature is counted independently.
2. Each vowel that occurs at the beginning of a word or after another vowel is a phoneme.

The effects of the selection of decompositions based on the phoneme length of the bases is summarized in Table 4.7, and shown graphically in figure 4.4.

Selecting decompositions based on the length of bases is one of the important criteria in the method proposed in [12] (see section 4.6.1). The value *p = 5* as proposed there for a simple letter count (as against phoneme count) seems to be a fairly reasonable.
Total number of distinct words: 20140
Actual number of suffixes present: 187

<table>
<thead>
<tr>
<th>Min. Base Length</th>
<th>B</th>
<th>C</th>
<th>Q</th>
<th>S</th>
<th>Precision (%)</th>
<th>Recall (%)</th>
<th>f-measure (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10688</td>
<td>2218</td>
<td>664</td>
<td>185</td>
<td>1.71</td>
<td>98.93</td>
<td>3.36</td>
</tr>
<tr>
<td>2</td>
<td>3255</td>
<td>1094</td>
<td>617</td>
<td>180</td>
<td>5.24</td>
<td>96.26</td>
<td>9.94</td>
</tr>
<tr>
<td>3</td>
<td>827</td>
<td>1095</td>
<td>420</td>
<td>155</td>
<td>15.78</td>
<td>82.89</td>
<td>26.52</td>
</tr>
<tr>
<td>4</td>
<td>255</td>
<td>350</td>
<td>257</td>
<td>127</td>
<td>33.25</td>
<td>67.91</td>
<td>44.64</td>
</tr>
<tr>
<td>5</td>
<td>93</td>
<td>106</td>
<td>159</td>
<td>87</td>
<td>48.33</td>
<td>46.52</td>
<td>47.41</td>
</tr>
<tr>
<td>6</td>
<td>27</td>
<td>17</td>
<td>87</td>
<td>48</td>
<td>64.00</td>
<td>25.67</td>
<td>36.64</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>5</td>
<td>45</td>
<td>36</td>
<td>78.26</td>
<td>19.25</td>
<td>39.90</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>2</td>
<td>12</td>
<td>15</td>
<td>83.33</td>
<td>8.02</td>
<td>14.63</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>11</td>
<td>100.00</td>
<td>5.88</td>
<td>11.11</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td>100.00</td>
<td>3.21</td>
<td>6.22</td>
</tr>
</tbody>
</table>

S: Suffix, Q: Suffix-sequence; C: Compound parts;
B: Invalid morphological extension

Table 4.7: Effect of base length (in phonemes) in selecting valid suffixes

Figure 4.4: Effect of base length (phonemes) in suffix selection
4.8.3 Base frequency

In line with the idea of selecting regular morphological extensions, it is intuitive to expect that a decomposition involving a base that is regular is more likely to be valid. We hypothesize that in a highly inflectional language, base words are likely to form more than one derivative, each with a different morphological extension. That is, if \(b_s \) is the base in a decomposition of a word \(bx_1s \), it is likely that \(b_s \) also occurs with some other morphological extension, say \(x_2s \). \(bx_2s \) is also a valid word which gets decomposed as \([b + x_2]s \). In other words, if a base figures in the decomposition of multiple derivatives, the base, and hence the morphological extensions are valid. To implement this idea we determine the base frequency (i.e., the number of occurrence) of each base in the decompositions in \(D \). Only the bases with at least a threshold number of occurrences are treated as valid, and only morphological extensions applying to such bases are selected. The results of selecting morphological extensions based on the base frequencies is summarised in Table D.1 and D.2. Contrary to our expectation, it is seen that base frequency does not provide any basis for selection of morphological extensions.

4.8.4 Textual context of base and derivative

An observation of the environment in which a child acquires linguistic capability and the nature of input shows that, in a given discourse in a highly inflectional language, distinct words with similar initial portions are often different derivative forms of the same root word. For a cognitive purpose this fact can be very useful. The child can notice the similarity between different words that happen to be derivatives of a word, and attempt to figure out the differences between such words. The differences between words that are found to repeat in several pairs or groups of words, can be registered, or “learnt”, as morphological phenomena. To simulate a similar learning, we identify mutually related words in small coherent portions of the corpus. More specifically, we consider one article at a time and find possible decompositions where the derived word as well as the base occur in that article. To distinguish between the two perspectives of the same corpus wherever required, we use the term segmented corpus to refer to the corpus as comprising multiple articles, and the term combined corpus to refer to the single corpus obtained by merging the individual articles. The segmented corpus helps us avoid invalid decompositions such as

\[
[kalaH = kal + aH]_A \quad (k\text{umberland}) \quad /pot/, \quad \text{where } kal_A = \text{banana},
\]

if the words \(kalaH_A \) and \(kal_A \) do not occur in the same discourse. Decompositions identified in this way from several articles, are put together, and other selection criteria can be applied to these. For the corpus A of newspaper articles mentioned earlier, the results obtained are summarised in Table 4.8.

The results of the article-by-article decomposition exercise is along expected lines. There is a vast improvement of precision from 22.29% (considering the proportion of non-invalid morphological extensions to the total number of morphological extensions produced) to 46.94 %. The recall, however, shows
Table 4.8: Summary of article-by-article decomposition of words

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of newspaper articles</td>
<td>231</td>
</tr>
<tr>
<td>Number of input words</td>
<td>116096</td>
</tr>
<tr>
<td>Average number of input words per article</td>
<td>502</td>
</tr>
<tr>
<td>Actual number of suffixes present in the input</td>
<td>187</td>
</tr>
<tr>
<td>Number of distinct decompositions</td>
<td>8585</td>
</tr>
<tr>
<td>Number of distinct morphological extensions</td>
<td>2791</td>
</tr>
</tbody>
</table>

Distinct \{S:154; Q:302; C:794; B:1481\}

Precision: 18.84 %
Recall: 82.35 %
f-measure: 16.90 %

S: Suffix; Q: Suffix-sequence; C: Compound parts; B: Invalid morphological extension

a significant decline from 98.93% to 82.35%. Thirty-two suffixes that were detected in the initial decompositions, are missed in the article-by-article decompositions. This is because a morphological extension, \(x_s \), goes undetected if no article contains two words \(w_{1s} \) and \(w_{2s} \) such that

\[w_1 = w_2 + x_s. \]

In the combined corpus \(x_s \) is detected even if \(w_{1s} \) and \(w_{2s} \) occur in two different articles.

4.9 Combination of selection criteria

From the preceding discussion, it is seen that suitable combination of multiple selection criteria for morphological extensions is likely to give better performance than any single criterion. First we take a look at the effect of frequency (occurrence counts) of morphological extensions thresholds in article-by-article decompositions. The results are summarised in table 4.9 and shown graphically in figure 4.5.

<table>
<thead>
<tr>
<th>Morph Ext B</th>
<th>C</th>
<th>Q</th>
<th>S</th>
<th>Precision (%)</th>
<th>Recall (%)</th>
<th>f-measure (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>frequency threshold</td>
<td>1481</td>
<td>94</td>
<td>62</td>
<td>154</td>
<td>9.42</td>
<td>82.35</td>
</tr>
<tr>
<td>2</td>
<td>66</td>
<td>113</td>
<td>142</td>
<td>124</td>
<td>65.26</td>
<td>66.31</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td>39</td>
<td>102</td>
<td>105</td>
<td>87.50</td>
<td>56.15</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>18</td>
<td>76</td>
<td>86</td>
<td>93.48</td>
<td>45.99</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>12</td>
<td>60</td>
<td>73</td>
<td>98.65</td>
<td>39.04</td>
</tr>
</tbody>
</table>

S: Suffix; Q: Suffix-sequence; C: Compound parts; B: Invalid morphological extension

Table 4.9: Effect of frequency of morphological extension in selecting valid suffixes from article-by-article decompositions

In table 4.9 we find that the occurrence count of the even valid morphological extensions is low in the article-by-article decomposition, and hence it is difficult to insist on a strong frequency of the morphological extension. But since the prevalence of invalid morphological extensions is low in
the article-by-article decompositions, we tried out other combinations of criteria over them. Tables 4.10 and 4.11 summarizes effects of base length thresholds. These results are shown graphically in figures 4.6 and 4.7 respectively.

<table>
<thead>
<tr>
<th>Base length threshold</th>
<th>B</th>
<th>C</th>
<th>Q</th>
<th>S</th>
<th>Precision (%)</th>
<th>Recall (%)</th>
<th>f-measure (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1481</td>
<td>794</td>
<td>302</td>
<td>154</td>
<td>9.42</td>
<td>82.35</td>
<td>16.90</td>
</tr>
<tr>
<td>2</td>
<td>1201</td>
<td>790</td>
<td>359</td>
<td>154</td>
<td>11.37</td>
<td>82.35</td>
<td>19.97</td>
</tr>
<tr>
<td>3</td>
<td>397</td>
<td>660</td>
<td>302</td>
<td>149</td>
<td>27.29</td>
<td>79.68</td>
<td>40.65</td>
</tr>
<tr>
<td>4</td>
<td>155</td>
<td>470</td>
<td>229</td>
<td>128</td>
<td>45.23</td>
<td>68.45</td>
<td>54.47</td>
</tr>
<tr>
<td>5</td>
<td>59</td>
<td>200</td>
<td>164</td>
<td>101</td>
<td>63.12</td>
<td>54.01</td>
<td>58.21</td>
</tr>
<tr>
<td>6</td>
<td>35</td>
<td>107</td>
<td>125</td>
<td>82</td>
<td>70.09</td>
<td>43.85</td>
<td>53.95</td>
</tr>
<tr>
<td>7</td>
<td>20</td>
<td>52</td>
<td>81</td>
<td>56</td>
<td>73.68</td>
<td>29.95</td>
<td>42.59</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>7</td>
<td>50</td>
<td>40</td>
<td>88.89</td>
<td>21.39</td>
<td>34.48</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>3</td>
<td>27</td>
<td>29</td>
<td>93.55</td>
<td>15.51</td>
<td>26.61</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>1</td>
<td>15</td>
<td>19</td>
<td>100.00</td>
<td>10.16</td>
<td>18.45</td>
</tr>
</tbody>
</table>

S: Suffix; Q: Suffix-sequence; C: Compound parts; B: Invalid morphological extension

Table 4.10: Effect of length (letter count) of base in selecting valid suffixes from article-by-article decompositions

Table 4.12 summarizes the effects of combinations of thresholds of base-length and frequencies of morphological extensions\(^4\), in selection of suffixes from article-by-article decompositions. We see that simply using a threshold occurrence count of, say 3, gives a fairly good result even if the base length is ignored (i.e., minimum base length is 1).

One combination of criteria that is found to provide better results than other combinations considered is—

Minimum base length : 2 phonemes,
Minimum frequency of morphological extensions : 3 in decomposition of combined corpus.

\(^4\)Number of occurrences in the decompositions from the combined corpus

Figure 4.5: Effect of suffix frequency threshold over article-by-article decompositions
Figure 4.6: Effect of base length (all letters) threshold over article-by-article decompositions

<table>
<thead>
<tr>
<th>Base length</th>
<th>B</th>
<th>C</th>
<th>Q</th>
<th>S</th>
<th>Precision (%)</th>
<th>Recall (%)</th>
<th>f-measure (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1481</td>
<td>794</td>
<td>362</td>
<td>154</td>
<td>9.42</td>
<td>82.35</td>
<td>16.99</td>
</tr>
<tr>
<td>2</td>
<td>529</td>
<td>754</td>
<td>342</td>
<td>153</td>
<td>22.43</td>
<td>81.82</td>
<td>35.21</td>
</tr>
<tr>
<td>3</td>
<td>157</td>
<td>468</td>
<td>220</td>
<td>126</td>
<td>44.52</td>
<td>67.38</td>
<td>53.62</td>
</tr>
<tr>
<td>4</td>
<td>52</td>
<td>177</td>
<td>151</td>
<td>93</td>
<td>64.14</td>
<td>49.73</td>
<td>56.02</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>49</td>
<td>96</td>
<td>68</td>
<td>77.27</td>
<td>36.36</td>
<td>49.45</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>9</td>
<td>53</td>
<td>38</td>
<td>88.37</td>
<td>20.32</td>
<td>33.04</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>2</td>
<td>24</td>
<td>28</td>
<td>93.33</td>
<td>14.97</td>
<td>25.81</td>
</tr>
</tbody>
</table>

S: Suffix; Q: Suffix-sequence; C: Compound parts; B: Invalid morphological extension

Table 4.11: Effect of length (phoneme count) of base in selecting valid suffixes from article-by-article decompositions

Figure 4.7: Effect of base length (phonemes) threshold over article-by-article decompositions
Table 4.12: Combined selection criteria for morphological extension from article-by-article decompositions

The result of the above criteria for obtaining the suffixes from the same input corpus A considered so far, can be summarised as–

\[
\begin{align*}
B &= 92, \quad C = 141, \quad Q = 197, \quad S = 140, \\
\text{Recall} &= 74.87\%, \quad \text{Precision} = 60.34\%, \quad f\text{-}\text{measure} = 66.83\%.
\end{align*}
\]

We consider this result better, because the \textit{f-measure} is about the best, and recall value is good. In table 4.5 we find a slightly better \textit{f-measure} for specific values of \textit{morphological extension frequency threshold}, but the recall in those cases is below 65\%. This lends credence to our intuition that

- two words that have identical leading portions are more likely to be semantically related if they occur in the same discourse, than if they do not;
- the phoneme count in words as defined by us in section 4.8.2, provides a good measure of semantic stability of words.

Thus, in general to select morphological extension the steps are

1. Obtain the initial decompositions \(D\) from the combined corpus.
2. Obtain the initial decompositions \(D_a\) article-by-article from the corpus.
3. From \(D_a\) retain the decompositions in which the bases have \textit{two or more phonemes}, and, the morphological extensions have occurred \(f\) (say, three) or more times in \(D\).
The threshold occurrence count \(f \) depends on the size of the corpus. Empirically it is seen that a good estimate is:

\[
f = 2, \quad n \leq 50000,
\]

and,

\[
f = \left\lceil \frac{n}{50000} \right\rceil, \quad n > 50000,
\]

where \(n \) is the number of words in the input corpus.

We observe that, over a set of criteria as above, other criteria do not significantly contribute to the selection of valid morphological extensions. Further, when only very high occurring morphological extensions are retained (Table 4.5), the number of invalid morphological extensions falls to very low levels. This implies that when the selected morphological extensions are subsequently used for morphological analysis, only a small number of words are decomposed using invalid morphological extensions. A major portion of the words are properly decomposed. Hence, we simply need a threshold occurrence count for selection of morphological extensions that gives a low (not necessarily, zero) number of invalid morphological extensions.

4.10 Identifying compound parts

We have so far ignored the case of compound parts in the process of selection of valid morphological extensions. It is generally observed that in languages such as Assamese, two or more words that frequently occur in a fixed order are often merged to form compounds. Frequent fixed order occurrence of a pair of words usually implies that the words are directly related to each other in some way, in that expression, such as, one word qualifies the other, the two may be of identical function, etc. For example,

\[
[\text{n\textasciicircum{3}} \text{dhAn} + m/\text{ntI}]_{A} \quad (\text{প্রধানমন্ত্রী}) \quad /\text{prime-minister}/,
\]

\[
[l\text{rA} + \text{chowAll}]_{A} \quad (লাবাছোলালী) \quad /\text{boy (and) girl}/.
\]

Among the sequence of words that combine to form a compound, usually, only the last may be a derived word, i.e., suffixes add to the compound as a whole.

From the results presented in sections 4.7, 4.8, and 4.9, we observe that a majority of suffixes have high occurrence counts and thus can be distinguished from the rest. By insisting on high value of the occurrence count of morphological extensions, the number of compound parts in the selected list of morphological extensions can be brought down. But doing so brings down the recall value of suffix identification. For the less frequently occurring suffixes some other detection criteria is required to distinguish from compound parts.

An intuitive criterion for distinguishing a compound part from other morphological extensions is that compound parts are likely to occur as independent words or in some other derived form, in the corpus if the corpus is sufficiently large. For example, the part \(m/\text{ntI} \) in the above example, or its other forms, such as \(m/\text{ntIr} \), occur in the corpus. However, in case of Assamese, this criterion is not suitable in situations where suffixes are also, optionally, written detached from the base, thereby making a suffix appear to be a compound part. The following examples illustrate this.
1. \([m/ntJ I + pd]_A\) (মন্ত্রীপদ) /minister’s post/
2. \([m/ntJ I + grAkI]_A\) (মন্ত্রীপদবি) /the minister/
3. \((m/ntJ I \text{ grAkI})_A\) (মন্ত্রী পদবি) /the minister/
4. \((ghrr \text{ grAkI})_A\) (গ্রহ পদবি) /house’s owner/
5. \([trJ + To]_A\) (ল্যাটো) /the boy/
6. \((sklo \text{ chAtJr})_A\) (সকলে ছাত্র) /all the students/
7. \((chAtJr \text{ sklo})_A\) (ছাত্র সকলে) /the students too/
8. \([chAtJr + sklo]_A\) (হাত্রকলা) /the students too/.

In the above examples, \(pd_A\) is a compound part. The morpheme \(grAkI_A\) in 2 and 3 plays the role of the determiner “the” like \(To_A\) in 5. \(To_A\) can only be a suffix, and hence \(grAIK_A\) in 2 and 3 is a suffix. But \(grAkI_A\) in 4 means “owner”, and cannot be attached to the preceding word. \(sklo_A\) in 7 and 8 have the same meaning and should be treated as a suffix. In fact, it is the suffix-sequence \((skl + o)_A\). But in 6, \(sklo_A\) is an independent root word with a different meaning.

The above cases show that simple word-decomposition and morpheme-occurrence analysis may not provide a comprehensive mechanism to detect compound parts. On the other hand, we realise that for the ultimate goal of identifying the structure of words, we do not lose anything if we continue to treat compound parts as suffixes. Even if we do not distinguish between compound parts and suffixes or suffix-sequences, the decompositions of words are valid. Such decompositions of compounds can help in their recognition if the constituent parts are there in the lexicon. Hence, we continue to consider compound parts and suffixes alike for the purpose of morphological analysis of words, and for determining additional attributes of words we consider only the very frequently occurring suffixes.

4.11 Suffix-sequences

A language such as Assamese allows certain suffixes to occur together in sequence in words. For example, suffixes \(s_1\), \(s_2\) and \(s_3\) may occur with a base \(\beta\) as \(\beta s_1s_2s_3\). We call a morphological extension comprising multiple suffixes a composite suffix. The constituent suffixes of a composite suffix may or may not appear in other arrangements. For example,

1. \([lrJ + To + k]_A\) (ল্যাটোক) /the boy (accusative)/
2. \([lrJ + k + To]_A\)
3. \([kitAp + r + khini]_A\) (কিটাপবিনি) /(the contents) of book/
4. \([kitAp + khini + r]_A\) (কিটাপবিনিষ) /(the books’/.

In the second example marked “*”, the suffix-sequence \([k + To]_A\) is not valid. Examples 3 and 4 have the same suffixes in alternate arrangements. The implication of the suffixes in the different arrangements are different.

Unless composite suffixes are decomposed into the sequence of suffixes, they would appear to be single suffixes and make the set of suffixes unduly
large. Identifying the individual suffixes in a composite suffix provides the
same kind of benefits as obtained upon breaking up a word into a base and
morphological extension. With the knowledge of a small set of suffixes, a much
larger set of composite suffixes can be recognized. It provides a structured
way to discover the attributes of words. When a word contains a sequence of suffixes,
the morphological analysis of the word is complete only if all the parts of the
sequence are identified.

In chapter 6, we discuss approaches for classification of words based on
use of suffixes. In such efforts, recognizing all the constituent suffixes in words
instead of composite suffixes, is very useful. Here is a simple illustration:

1. \([kukur + Tok]_A\) (কুকুরটাক) /the dog (accusative)/
2. \([crAi + To]_A\) (চরাইটা) /the bird/.

Here, unless the composite suffix \(Tok_A\) (in 2) is recognized as \((To+k)_A\) we may
not realize that the words \(kukur_A\) and \(crAi_A\) are of the same category.

We denote a suffix-sequence comprising the non-NULL suffixes
\(s_1, s_2, \ldots, s_n\) in that order as \((s_1 + s_2 + \ldots + s_n)_s\). A suffix-sequence comprising
only the NULL suffix is referred to as the NULL suffix-sequence. We call the
decomposition of a word a complete decomposition if the decomposition is valid
and none of the parts in the decomposition can be further decomposed into
multiple parts. If a part in a decomposition can be further decomposed, we call
it a composite part. If the base comprises a single morpheme, it is a root. We
call the number of non-NULL parts in a decomposition beyond the first part,
the degree of the decomposition. Thus a trivial decomposition (see section 4.5)
has degree 0, and a complete decomposition of a word has the highest possible
degree of decomposition for that word.

4.11.1 Identifying suffix-sequences

Suffix-sequences can be identified by successively replacing the base of a
decomposition by a possible non-NULL decomposition of it, as long as such
a replacement is possible. That is, if \([w_i = \beta_i + p_i]_s\) and \([w_j = \beta_j + p_j]_s\) are two
decompositions and \((\beta_i = w_j)_s\), a combined decomposition can be written as
\([w_i = \beta_j + p_j + p_i]_s\),

where we get \((p_j + p_i)_s\) as a suffix-sequence. We refer to this process as recursive
reduction of the bases. Suppose, we get the following decompositions by these
steps:

\[
[w_i = \beta_i + p_1 + p_2 + p_3]_s,
and \quad [w_j = \beta_j + p_1 + p_2]_s.
\]

These two decompositions contains the two suffix-sequences \((p_1 + p_2 + p_3)_s\)
and \((p_1 + p_2)_s\), where the latter is actually a subsequence of the former.
Since subsequences of a suffix-sequence are also valid suffix-sequences, we may
record only those suffix-sequences that are not subsequences of any other suffix-
sequence, as long as the subsequences are valid.
In practice, there can be multiple distinct decompositions for same words, using different base-suffix pairs. This can make recursive reduction of bases problematic. Hence, before recursive reduction of bases is performed, the multiple distinct decompositions of same words are unified as described in section 4.11.4. A simple implementation of the steps to identify the suffix-sequences from a given set of initial decompositions is given in section C.3. We perform this exercise over the initial set of decompositions obtained as described in section 4.7, involving morphological extensions obtained using the criteria described in section 4.9. The suffix-sequences obtained can be qualitatively classified as

A. correctly identified, e.g., the suffix-sequence \((A + b + lE)_A\) in the decomposition
\[
[krAb]E = kr + A + b + lE]_A \quad (ক্বারিল) /\text{to get done}/,
\]

B. correctly identified, but needs further decomposition, e.g., the suffix-sequence \((A + znk)_A\) in the following decomposition should actually have been \((A + zn + k)_A\)
\[
[krAznk = kr + A + znk]_A \quad (ক্বাঞ্ছন) /\text{one who does}/,
\]

C. correct but identified in inappropriate decompositions only. e.g., the suffix-sequence \((A + zn + r)_A\) is valid but the following decomposition from which it has been obtained is not valid
\[
[mHAznr = mH + A + zn + r]_A \quad (মাজনব) /\text{shop-owner’s}/,
\]

D. correct but needs further decomposition and identified in inappropriate decompositions only. e.g., the suffix-sequence \((A + zn + e)_A\) should actually be \((A + zn + e)_A\), and it has been obtained from the following decomposition which is not valid
\[
[mHAzne = mH + A + zn]_A \quad (মাজনে) /\text{shop-owner (ergative)}/,
\]

E. incorrect, e.g., the suffix-sequence \((Ai + bor)_A\) in the following decomposition is not valid
\[
[ThAibor = Th + Ai + bor]_A \quad (থাইরাব) /\text{the places}/.
\]

A suffix-sequence may be incorrect either because one or more of its constituents is not a valid suffix part, or the break-up of the sequence is not correct. If a suffix-sequence is incorrect, then all suffix-sequences of which it is a subsequence, are also incorrect, but, some of its subsequences may be correct. Hence, for the purpose of a quantitative analysis where we count the number of valid and invalid suffix-sequences, a suffix-sequence \(x_{ig}\), should not be dropped due to the presence of a longer sequence \(x_{ig}\), even if \(x_{ig}\) is a subsequence of \(x_{ig}\). Further, in such an analysis, we count the correct sequences ignoring the fact that some of them may be obtained from inappropriate decompositions only. That is, we count type A and type C decompositions together, and type B and type D decompositions together.

The outcome of our suffix-sequence identification exercise is summarised in Table 4.13. The column headings A, B, C, D, and E refers to the qualitative
classification mentioned earlier in this section. The column “A+C” gives the count of suffix-sequences that are correct and completely decomposed, the column “B+D” gives the count of suffix-sequences that are correct but require further decomposed, and the column “E” gives the count of incorrect suffix-sequences. The first row gives the numbers when the only restriction applied is that the bases of the decompositions must have at least one phoneme. Since there is much room for improvement, the subsequent rows give the outcome with different values of the minimum base length and the minimum frequency (number of occurrences) of the suffix-sequences.

<table>
<thead>
<tr>
<th>Min base length</th>
<th>Min suff.-seq. frequency</th>
<th>No. of suff.-seq. identified</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min base length</td>
<td>Min suff.-seq. frequency</td>
<td>A+C</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------------------------</td>
<td>-----</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>638</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>352</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>260</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>212</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>172</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>555</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>325</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>258</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>207</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>399</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>239</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>185</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>276</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>158</td>
</tr>
</tbody>
</table>

Table 4.13: Initial identification of suffix-sequences

While increasing the restrictions reduces the number of incorrect suffix-sequences identified (column E), the number of valid suffix-sequences also gets reduced. One important observation in the results is that most of the incorrect suffix-sequences actually has some common defective sub-sequences. For example, the suffix-sequences $\{A + kt + khn + e\}_A, (A + kt + khn + k)_A, (A + kt + khn + r)_A, (A + kt + khn + t)_A, (A + kt + khne)_A, (A + kt + khnk)_A, (A + kt + knr)_A, (A + kt + knht)_A, (A + kt + 1E)_A, (A + kt + r + e)_A, (A + kt + re)_A, (A + kt + t + c)_A$ and $(A + kt + te)_A$ all are incorrect due to the presence of the invalid subsequence $(A + kt)_A$. On the other hand, many of the suffix-sequences that need further decompositions (column “B+D”), are adequately decomposed in some other word decompositions. For example, while there are the type B suffix-sequences $(I + skle)_A, (I + slk)_A$ and $(I + sklr)_A$, there also are the type A suffix-sequences $(I + skl + e)_A, (I + skl + k)_A$ and $(I + skl + r)_A$. The reason there are sequences that need further decomposition, is simply that the suffix list used to obtain the suffix-sequences contains elements such as $sklk_A, skle_A, etc.$, which are actually suffix-sequences themselves. These elements crept into in the suffix list because our unsupervised method used to prepare the list fails to prevent some such instances. In the following sections, we discuss some approaches to make the suffix-sequence identification more effective.
4.11.2 Alternative suffix-sequences

Two suffix-sequences, \((x_a=x_{a1}+x_{a2}+\ldots+x_{am})_S\) and \((x_b=x_{b1}+x_{b2}+\ldots+x_{bn})_S\) are **alternative suffix-sequences** with respect to each other if upon concatenation they produce identical strings. That is,

\[(x_a x_{a2} \ldots x_{am} = x_{b1} x_{b2} \ldots x_{bn})_S. \]

We denote this relationship between \(x_a\) and \(x_b\) as

\[(x_a =_a x_b)_S. \]

For example,

\[(I + sklk)_A =_a (I + skl + k)_A. \]

4.11.3 Alternative decompositions

The suffix-sequence identification process described above does not necessarily produce complete decomposition of the words. Due to the nature of the process for obtaining the initial decompositions, there may be several different decompositions for the same word. If \(\delta_1\) and \(\delta_2\) are distinct decompositions of the word \(\omega\), we term them **alternative decompositions**, and represent this relationship too, as

\[\delta_1 =_a \delta_2. \]

where,

\[\delta_1 : [\omega = \beta_1 + x_1]_S \]
\[\delta_2 : [\omega = \beta_2 + x_2]_S. \]

If two alternative decompositions of a word involve the same base, then the two suffix-sequences are alternative suffix-sequences. That is, in the two decompositions above, if \((\beta_1 = \beta_2)_S\), then,

\[(x_1 =_a x_2)_S. \]

On the other hand, if the bases involved in two alternative decompositions of a word are distinct, we call the decomposition with the longer base **shallower** than the other, and the suffix-sequence in the former is **shallower** than that in the latter. That is, if,

\[|\beta_1| \leq |\beta_2|, \]

then, \(\delta_2\) is shallower than \(\delta_1\), and \(x_{2S}\) is shallower than \(x_{1S}\). We denote this **shallower** realtionship as

\[\delta_2 <=_s \delta_1, \]

and \(x_2 <=_s x_1.\)

In the suffix-sequence identification process, we can obtain \(n\) alternative decompositions from a given decomposition \(\delta\), if there are \(n\) alternative decompositions for the base \(\beta\), of \(\delta\). That is, if

\[\delta : [\omega = \beta + x]_S, \]
\[\delta_1 : [\beta = \beta_1 + x_1]_S, \]
\[\delta_2 : [\beta = \beta_2 + x_2]_S, \]
\[\vdots \]
\[\delta_n : [\beta = \beta_n + x_n]_S, \]
then,

\[
\omega = \beta_1 + x_1 + x_S ,
\omega = \beta_2 + x_2 + x_S ,
\vdots
\omega = \beta_n + x_n + x_S ,
\]

are \(n \) alternative decompositions of \(\omega \).

4.11.4 Unification of decompositions

When there are multiple alternative decompositions for a word, they can be combined to obtain a single decomposition. For this we generate a decomposition with *partition points* (see section 4.5) at all points in the original string of the word, where any of the alternative decompositions has a partition point. We call this process *unification of the decompositions*. For instance, suppose the first alternative decomposition of \(\omega \) has partition points at offsets 3 and 7, and the second has partition points at offsets 5 and 7. Upon unification, we have a decomposition with partition points at 3, 5, and 7 with respect to \(\omega \). The resultant unified decomposition has a degree at least as high as the highest degree among the alternative decompositions. A simple implementation of the process of unifying decompositions is described in section C.2.

As an example of unification of decompositions, suppose we have the initial decompositions each of degree 1:

\[
[sbhAkhn] = sbhA + khn ,
[sbhAkhn] = sbhA + khn + r ,
\]

then the unified decomposition is:

\[
[sbhAkhn] = sbhA + khn + r ,
\]

which is of degree 2. The unified decomposition contains the part \(khn \), which was not there in the given alternative decompositions.

The unification of decompositions does not necessarily produce a *complete* decomposition of the word. However, it is generally a safe way to obtain a higher degree decomposition of words, and possibly, discover new parts. It is safe because, for the given word, no new partition points are introduced. So if the given alternative decompositions are valid, the unified decomposition has valid partition points.

A decomposition implies the existence of the different words which may be obtained by adding to the base zero or more parts of the morphological extension. That is, the decomposition

\[
\delta : [\beta + x_1 + ... + x_n]_S
\]

implies the existence of the decompositions, \(\delta_i \) such that

\[
\delta_i : [\beta + x_1 + ... + x_i], \ 1 \leq i \leq n,
\]

\[
[\beta + NULL], \ i = 0 .
\]

53
We represent this relationship as
\[\delta_i \leq \delta \]
which means that \(\delta_i \) and the word that it represents can be extracted from \(\delta \). Alternatively, \(\delta \) generates \(\delta_i \) and the word that \(\delta_i \) represents. For example,
\[
\begin{align*}
[sbhA = sbhA + \text{NULL}]_A & \leq [sbhAkhn = sbhA + khn + r]_A, \\
[sbhAkhn = sbhA + khn]_A & \leq [sbhAkhn = sbhA + khn + r]_A, \\
[sbhAkhnr = sbhA + khn + r]_A & \leq [sbhAkhn = sbhA + khn + r]_A,
\end{align*}
\]
where, \(sbhA \) means meeting, \(sbhAkhn \) means the meeting, and \(sbhAkhnr \) means of the meeting. The three words too are generated by the decomposition of \(sbhAkhnr \).

For compact representation of a set of decompositions, we may leave out a decomposition if it can be extracted from another distinct decomposition in that set. For example, if we have the decomposition for \(sbhAkhnr \) as shown above, then we may leave out the decompositions for \(sbhAkhn \) and \(sbhA \) (the trivial decomposition). We refer to this process of filtering out from a set decompositions that can be extracted from other decompositions in that set, as compaction.

4.12 Boundary adjustment in word decompositions

The suffix and suffix-sequence identification method discussed above is susceptible to certain tricky morphological phenomena. For instance, suppose there are the two suffixes, \(b_s \) and \(bc_s \) in the language, and \(bc_s \) is not the sequence \((b + c)_s \). If the corpus contains the words \(a_s, ab_s, \) and \(abc_s \), we get the decompositions \([ab = a + b]_s\) and \([abc = a + b + c]_s\). That is, \((b + c)_s\) would be wrongly learnt as a suffix-sequence. The most prominent example of this phenomenon in Assamese is the case of the suffixes \(r_s \) and \(rUpe_s \) (র, কোপে). These two suffixes frequently occur with the same roots, which are nouns. For example,
\[
\begin{align*}
[mAnuHr = mAnuH + r]_A \quad \text{[মানুষের = মানুষ + র]} & \quad \text{/of human/} \\
[mAnuHrUpe = mAnuH + rUpe]_A \quad \text{[মানুষকোপে = মানুষ + কোপে]} & \quad \text{/as a human/}
\end{align*}
\]

Here, the letter string \(Upe_A \), which is not a suffix is identified as one. This happens if the derivatives \(mAnuHr \) and \(mAnuHrUpe \) occur in the corpus.

To avoid spurious breaking up of the suffix \(bc_s \) into the sequence \((b + c)_s \), we need to note that if \((b + c)_s\) is really a suffix-sequence, \(c_s \) should have some occurrence independent of \(b \) preceding it. If every occurrence of \(c_s \) is preceded by \(b_s \), there is no advantage of considering \(c_s \) individually instead of considering it as \(bc_s \). Again, suppose there is some word, say \(gbc_s \), which is decomposed as \([gbc = gb + c]_s\), and not as \([gbc = g + b + c]_s\) because the word \(g_s \) is not present in the corpus. In this case too, it is necessary to register the occurrence of \(b_s \) preceding \(c_s \). In general, after the suffixes and suffix-sequences are identified according to the method described so far, for each suffix it should be checked
if all occurrences of the suffix has a common letter sequence preceding it. If so, the suffix should be extended to include that common letter sequence preceding it. We refer to this exercise as suffix extension.

4.13 Very irregular morphological extension parts

There are certain morphological extension parts which are valid but hold only in very few cases, i.e., they are not regular. For example, the decomposition

\[\text{clothe} = \text{cloth} + e \]

is valid but the morphological extension part “e” is not regular, in the sense that only in very few cases it adds to a base to give a valid derivative. Decompositions such as, \[\text{pathe} = \text{path} + e \] (“e” added to a valid base) or \[\text{caste} = \text{cast} + e \] (a valid word decomposed using “e” as morphological extension) are not valid. In Assamese, consider the following decompositions:

1. \[\text{thiyE} = \text{thiy} + E \]
2. \[\text{krilE} = \text{kril} + E \]
3. \[\text{prilE} = \text{pril} + E \]
4. \[\text{prilE} = \text{pri} + IE \]
5. \[\text{DanGrkE} = \text{DanGrk} + E \]
6. \[\text{DanGrkE} = \text{DanGr} + kE \]
7. \[\text{kE} = \text{k} + E \]
8. \[\text{LE} = \text{l} + E \]

Decompositions 1, 7 and 8 are valid, but the part \(E \) is not a regular suffix, and decompositions such as 2 and 3 involving this morphological extension, are not valid, though the derivatives are valid words. In 2, the base too, is invalid.

A very tricky case in Assamese is the decomposition 3, where the derivative and the base are both valid words and are closely related semantically. But the decomposition is not valid as the derivative \(prilE \) is not derived from the base \(pril \). The correct decomposition is 4. Similarly, for the word \(DanGrkE \) the decomposition 6 is valid and 5 is not.

Due to the difficulty in dealing with such highly irregular morphological extension parts, we attempt to merge them with the preceding letters in the decompositions. This requires a heuristic more complex than the one mentioned for suffix extension, since the letters preceding the irregular morphological extension part in different decompositions are not identical. Hence, we use the criteria that an irregular morphological extension part has a comparatively low occurrence count (say, less than 3 times the required threshold count to accept a part) and merging it with one or more preceding letters of the decompositions produces some known morphological extension part that has a higher occurrence count\(^5\). In the example above, wherever \(E \) is preceded by \(l \) or \(k \), merging them produces \(lE \) and \(kE \) respectively, which have higher occurrence counts than \(E \). We refer to this step of merging as suffix consolidation.

\(^5\)The occurrence count considered here is that before unification of decompositions.
4.14 Orthographic peculiarities

Concatenative morphology is a phenomenon that originates from fusing adjacent morphemes according to the convenience of speakers of the language. At the point of fusion the pronunciation is sometimes represented in the written form by a changed spelling instead of the concatenation of the basic spelling of the fused morphemes. For example, the actual suffix in the following decomposition should be e_A

$$[\text{gruwe} = \text{gru} + \text{we}]_A \quad [\text{গুক্ত্রে} = \text{গুক্ত} + \text{রে}] /\text{cow (ergative)}/. $$

This kind of spelling modification affects the identification of suffixes. In this example, the unsupervised suffix acquisition identifies we_A as a suffix, whereas the actual suffix involved is nothing but the more regular e_A. In our method, we also fail to identify the presence of a suffix. For example, the actual base in the following decomposition is $kkAi_A$

$$[kkAyec = kkAi + e]_A \quad [\text{ককাইনে} = \text{ককাই} + \text{এ}] /\text{brother (ergative)}/. $$

The above examples represent peculiarities due to a script and the way it is used in a particular language. These pose difficulties in unsupervised acquisition of suffixes. We have not taken any step to deal with these difficulties. Some amount of supervision in the form of hand crafted rules to deal with such irregularities can make the process of morphology acquisition as well as morphological analysis more effective.

4.15 Consolidating the morphological features and building a lexicon

The discussion in the preceding sections, starting from 4.9 forms the basis for steps to consolidate the morphological knowledge. This knowledge comprises knowledge of suffixes, knowledge of suffix sequences, and knowledge of compounds. Knowledge of suffixes can be near-exhaustive, but possible suffix sequences and compounds can be many and it is unrealistic to expect to list them all through a computational process like the one we have discussed. To recognize suffix sequences and compounds beyond what is acquired from the training corpus, we follow some generic criteria which we discuss in chapter 5.

The morphological knowledge that we acquire is to be subsequently used for analysis of words of new texts, that we refer to as test input. Test input is most likely to be in not-so-large chunks, such as paragraphs, essays, articles, etc., consisting of about few thousands of words. In such texts, several root words may occur only a very few number of times each, in the root form or some of the possible secondary forms. For example, suppose a sports news article contains the sentence-

$$(\text{bhArte Tenict eTA meDel lAbh krile})_A$$

where the word Tenic_A occurs in an inflected form with a case marker t_A, and it is the only occurrence of the word. To analyse the word Tenic_A some other
occurrence of the root in some form is desirable. It would basically provide a confidence regarding the root. To meet this requirement a lexicon is required. A lexicon serves as a repository of knowledge of root words along with some attributes. We build a lexicon using the evidence of words seen in the training corpus. More specifically, we record the decompositions that we obtain for the words in the training corpus in the lexicon. The initial decomposition exercise does not produce all the possible decompositions for the words in the input corpus. To build the lexicon, we identify more decompositions of words using morphological extensions already acquired. This produces base words that were not there in the input. With these new words more decompositions can be identified, and this can be carried out as a boot-strapping process.

The use of a lexicon (or dictionary) invariably requires searching. The most common search key is a word, but search for specific sub-word morphemes is also required sometimes. Again, in many applications addition of new entries to a dictionary, and deletion of existing entries is continuously done. To facilitate dynamic addition and deletion of entries along with efficient search for existing entries suitable data structures, such as, AVL trees, hash tables, etc. can be used ([10]). AVL trees are binary search trees and searching an entry requires $O(\log_2 n)$ time, where n is the number of entries in the lexicon. Hash tables can give better performance, but both performance and space requirements can be unpredictable. In our case, we assume that the lexicon built with the evidence from the “large” training corpus is static, and we do not update it dynamically. Hence, we prepare only for searching of entries, and maintain the lexicon as a linear sequence of entries sorted on the search key, that is, the word. A search in such a lexicon can be accomplished in $O(\log_2 n)$ time. Moreover, such a lexicon can be more easily rearranged to facilitate efficient search on other keys. An entry of our lexicon has the following format-

$$<\text{word}> <\text{base}> <\text{morphological extension}> <\text{other attributes}>,$$

where “other attributes” is additional information such as category of the base, etc., that may be added separately.

The analysis of a word as recorded in the lexicon depends on the presence of other related words (words derived from the same root, or words having similar morphological extensions) in the training corpus. If for a particular word, adequate number of related words are not present, its analysis may be incomplete or even incorrect. For example, if the lexicon contains the words $bipd_A$ (বিপদ /danger/) and $bipdznk_A$ (বিপড়নকভাবে /dangerous/), both together may be recorded as a single entry in the lexicon-

$$<\text{bipdznk} \quad \text{bipd} \quad zn+k>_A$$

which is incorrect. The correct morphological extension is znk_A. If the corpus contained the word $bipdznkbbAwe_A$ (বিপড়নকক্ষেত্রে /dangerously/) too, the lexicon entry would have been

$$<\text{bipdznkbbAwe} \quad \text{bipd} \quad zn+bbAwe>_A$$

which is correct.

We summarize the steps that we follow, starting from the initial

⁶ sorted on another key
decomposition, to consolidation of the morphological knowledge acquired and creation of a lexicon, below. Let the set of words in the input corpus be W.

4.15.1 **Prepare initial set of suffixes, S_1**

First we obtain the initial set of suffixes according to the steps outlined in section 4.9.

1. Obtain the initial decompositions, D_{ia}, for the words in the corpus article-by-article.

2. Obtain the initial decompositions, D_{ic}, for the words in the combined corpus.

3. Perform suffix extension over the decompositions in D_{ia} (see section 4.12).

4. Let S_1 be the set of morphological extensions that have occurred with bases with at least $p (=2)$ phonemes in D_{ia}, and have occurred in at least f distinct decompositions in D_{ic}.

4.15.2 **Get comprehensive set of decompositions, D**

Next, we use the set of suffixes S_1 to further decompose the input words in a boot-strapping way.

1. Let $W_1 = W$.

2. Obtain the set, D_1, of all possible decompositions $w = b + s$, such that $w \in W_1$ and $s \in (S_1 \cup \{NULL\})$.

3. Obtain a set of decompositions, D by selecting from D_1 those decompositions which are either trivial or the base involved occurs in at least two decompositions, i.e.,

 if $[w_i = b + s_i]_S \in D_1$ then
 \[D := D \cup \{[w_i = b + s_i]_S \} \text{ iff} \]
 \[s_i = NULL, \text{ or, } \exists [w_j = b + s_j]_S \in D_1, \text{ where } w_i \neq w_j. \]

4. If there are bases involved in decompositions in D, which are figured words, i.e., they are not in W_1, then include such bases in W_1 and goto step 2.

5. Perform suffix consolidation over the decompositions in D (see section 4.13).

4.15.3 **Obtain higher degree decompositions, D_2**

The initial set of suffixes S_1 contains several composite suffixes too. Hence some decompositions in D may have scope for further decompositions. We process them to decompose further to obtain a set of higher degree decompositions, D_2.
1. Initialize set D_2 by unifying decompositions in D (see 4.11.4). Due to
unification some suffix-parts that are not there in S_1 may be produced.

2. Recursively reduce the bases of the decompositions in D_2 (see section
4.11.1). That is,

$$\text{if } \{[w = b_i + x_i], [b_i = b_j + x_j]\}_s \subset D_2, \text{ and } x_j \neq \text{NULL}, \text{ then}$$

$$D_2 := (D_2 - \{[w = b + x_i]\}_s) \cup \{[w = b_j + x_j + x_i]\}_s \}.$$

3. Perform compaction of the decompositions set D_2 (see section 4.11.4).
That is,

$$\text{if } \{[w = b + x_i + x], [w_i = b + x_i]\}_s \subset D_2, \text{ and } x_i, x \neq \text{NULL}, \text{ then}$$

$$D_2 := (D_2 - \{[w_i = b + x_i]\}_s) \}.$$

4.15.4 Verify new suffix-parts

Since S_1 is obtained from the initial decomposition exercise, each morphological
extension in S_1 occurs as the final part of some input word. Suppose S_2 is the
set of suffix-parts occurring in D_2. S_2 may contain new suffix-parts that are not
in S_1. Since D_2 is originally taken from D, some of the decompositions in D_2
may be of figured words, i.e., words not in W. A new suffix-part might be the
final part of figured word. For example, suppose D_2 contains the decomposition

$$[s b h A k h n r = s b h A + k h n + r]_A \quad (সর + খন + ব) \quad \text{/of the meeting/}$$

due to unification of the following decompositions in D:

$$[s b h A k h n r = s b h A + k h n]_A \quad (সর + খন) \quad /\text{of the meeting/},$$

$$[s b h A k h n r = s b h A k h n + r]_A \quad (সরাখন + ব) \quad /\text{of the meeting/}.$$

If the word $s b h A k h n r_A$ is a figured word, then the new suffix $k h n_A$ is the final
part of the figured word. If a new suffix-part in S_2 occurs as the final part of
figured words only, then we eliminate that new suffix-part by merging it with the
part following it7 in the decompositions where it occurs. That is,

suppose, $s \in (S_2 - S_1)$ and $\delta_i : [w_i = b_i + x_i + s]_s$, $\delta_i \subseteq \delta, \delta \in D_2$

if $w_i \notin W \forall \delta_i$, then

$$\forall \delta : [w = b + x_i + s + p_i + x_j]_s$$

$$D_2 := (D_2 - \{\delta\}) \cup \{[w = b + x_i + sp_i + x_j]\}_s \}.$$

(x_i_s and x_j_s are, possibly NULL, parts-sequences.)

4.15.5 Generate more likely alternative decompositions, D_3:

In building the lexicon, our primary lookout is to have decompositions that
are valid and have a high degree8. For validity of a morphological extension,
we define a threshold value, q, for the minimum occurrence count9 of valid

7A new suffix-part would always occur as a non-final part in an unified decomposition.
8High degree implies more number of morphemes present are identified.
9Occurrence is counted for distinct words formed.
morphological extensions. Empirically, we find that the suitable value of
q is 3 for a corpus larger than 100,000 words. For each decomposition in
D_2 we consider the alternative morphological extensions that contain all the
partition points of the original morphological extension. For example, for the
decomposition

$$[mAnuHznprAHr = mAnuH + zn + prAHr]_A$$

(মানুষত্বব্যপায়) /only from the person/,

we get the additional decompositions

$$[mAnuHznprAHr = mAnuH + zn + r + prAHr]_A$$
$$[mAnuHznprAHr = mAnuH + zn + pr + AHe]_A$$

If such a morphological extension is not valid, we successively merge its initial
parts with the base until the remaining morphological extension is valid or is
$NULL$. For example, from the invalid decomposition

$$[bzArkhnrprAHr = bzA + r + khn + r + prA + He]_A$$

(ব্জাণ্ড্যন্যান্ত্র ব্যবহার) /only from the market/,

we get the valid decomposition

$$[bzArkhnrprAHr = bzA + r + khn + r + prA + He]_A$$

From the alternative decompositions thus obtained, we select the one with the
shortest base, and highest degree, in that order. If there are more than one
such decompositions, we unify them. More specifically,

1. Suppose, $C(X)$ denotes the occurrence count of the morphological
 extension X in D_2.
 Suppose, $δ : [ω = β + x]_S$ is a decomposition in D_2.
2. Find the decompositions
 $δ_i : [ω = β + x_i]_S$
 such that $x_i = a x_S$.
3. If $C(x_j) < q$
 Suppose $x_j = (a_1 + a_2 + ... + a_n)_S$
 then modify $δ_j$ as
 $δ_j : [ω = β_k + x_j]_S$
 where, $(x_j)_S = (a_k + ... + a_n)_S$, $β_k = (β_{a_k}...a_{k-1})_S$
 $C((x_j)_S) ≥ q$, and $C((a_{k-1} + ... + a_n)_S) < q$.
4. From $δ_i$ select the one that has the shortest base. If there are more than
 one such decomposition, from among them select the one that has the
 highest degree. If there are more than one such decomposition, unify
 them to get a single decomposition.

Actually, the step 3 above is required only if none of the alternative
decompositions obtained in the previous step are valid, since in step 4 we prefer
the decomposition that has a shorter base.
4.15.6 Final suffix and suffix-sequence sets

D_3 is the final decomposition set obtained from the input corpus. It is the lexicon that may be used for morphological analysis of any other text. The set of suffix-sequences, Q in D_3, is the final set of suffix-sequences obtained, and the set of suffix parts, S_2 in Q is the set of suffixes obtained.

When the above process is run over the newspaper corpus A, the summary of the results is-

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of words in the input corpus</td>
<td>116096</td>
</tr>
<tr>
<td>Number of distinct words in the input corpus</td>
<td>20140</td>
</tr>
<tr>
<td>Number of entries in the lexicon D_3</td>
<td>15707</td>
</tr>
<tr>
<td>Number of bases in the lexicon</td>
<td>10203</td>
</tr>
<tr>
<td>Number of morphological extension parts in S_2</td>
<td>428</td>
</tr>
<tr>
<td>Actual number of suffixes present</td>
<td>187</td>
</tr>
<tr>
<td>Precision of suffix identification</td>
<td>65.71%</td>
</tr>
<tr>
<td>Recall of suffix identification</td>
<td>73.80%</td>
</tr>
<tr>
<td>f-measure</td>
<td>69.52%</td>
</tr>
<tr>
<td>Number of suffix sequences in Q</td>
<td>810</td>
</tr>
</tbody>
</table>

When the exercise is carried out over a corpus of 301271 words (corpus B) from 525 news articles, in the initial suffix list S_1 we have,

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of entries in the initial suffix list S_1</td>
<td>500</td>
</tr>
<tr>
<td>No. of valid suffixes, s</td>
<td>136</td>
</tr>
<tr>
<td>No. of compound parts, c</td>
<td>89</td>
</tr>
<tr>
<td>No. of composite suffixes, q</td>
<td>188</td>
</tr>
<tr>
<td>No. of invalid morphological extensions, b</td>
<td>87</td>
</tr>
<tr>
<td>Actual no. of suffixes present, n</td>
<td>190</td>
</tr>
<tr>
<td>Precision, $(s/(s + b))$</td>
<td>60.99%</td>
</tr>
<tr>
<td>Recall, (s/n)</td>
<td>71.58%</td>
</tr>
<tr>
<td>f-measure</td>
<td>65.86%</td>
</tr>
</tbody>
</table>

The final lexicon obtained from the corpus B can be briefly summarised as:
Total number of words in the input corpus : 301271
Number of distinct words in the input corpus : 34559
Number of entries in the lexicon D_3 : 26509
No of words extractible from the lexicon : 39098
Number of bases in the lexicon : 15094

Number of entries in final suffix list S_2 : 381
No. of valid suffixes, s : 136
No. of compound parts, c : 102
No. of composite suffixes, q : 76
No. of invalid morphological extensions, b : 67
Number of suffix sequences in Q : 1741

Actual number of suffixes present, n : 190
Precision of suffix identification $(s/(s + b))$: 67.00%
Recall of suffix identification (s/n) : 71.58%
f-measure : 69.21%

The number of suffix-sequences is large compared to the number of individual suffixes, and the occurrence counts of most of these are low. This implies the possibility that there can be valid suffix-sequences other than those we have included in Q. In section 5.8 we discuss an approach to deal with suffix-sequences not encountered during training.

Like the suffix-sequences, the D_3 may not provide the complete decompositions for some words. This is because, the decomposition of each word depends on the presence of its other related words. Words whose sufficient number of other related forms have not occurred may be left incompletely decomposed. Hence, in a subsequent morphological analysis exercise of a test text, the decompositions in D_3 may be re-analysed taking into consideration the evidence from the test input.

4.16 Summary

In this chapter we have looked at some existing methods for unsupervised acquisition of morphology from a text corpus, and seen that the results from these methods leave scope for improvement. The issues involved can be broadly put in three categories— inherent issues of corpus based techniques, language specific issues, and issues due to the script and its usage for a particular language. The prominent issues inherent in corpus based techniques are— presence of noise in the form of non-words, foreign words and abbreviations, sparseness of some features, and ambiguity. Some language specific issues are— suffixes occurring detached from the base, presence of composite suffixes (suffix-sequences), and presence of compounds in addition of suffixed words. Also, in case of certain words there is ambiguity as to whether they are suffixed words or compounds. Since morphology manifests primarily in the spoken form of words, its acquisition from a text corpus depends on how faithfully the phonological content of the words reflected by the script used. In this respect the effectiveness
of different scripts and their usage for a particular language is different. We have discussed a series of steps that takes care of most of the issues that arise in an attempt of unsupervised morphology acquisition for Assamese.

After initial experiments with an Assamese corpus of about 1,16,000 words, through which we define the steps required to effectively acquire the morphology of the language, we finally take a corpus of about 3,00,000 words for training using the steps developed. Through this training we define the set of suffixes in the language, as well as, build a morphological lexicon of the language. These deliverables serve as computationally suitable representation of the morphological elements in evidence in the corpus and the way these elements combine to form words of the corpus. In the subsequent chapters we use this representation for morphological analysis of test input and to carry out further analysis of the evidence.
(Table 4.14 of suffixes in the corpus B:)

<table>
<thead>
<tr>
<th>/dwy</th>
<th>/sth</th>
<th>/sthit</th>
</tr>
</thead>
<tbody>
<tr>
<td>/znY</td>
<td>A _likes (A)</td>
<td>A/ntr_likes (A)</td>
</tr>
<tr>
<td>A/nwit</td>
<td>A/tmk_likens (A)</td>
<td>Ab_likes (A)</td>
</tr>
<tr>
<td>Ami</td>
<td>AwH_likens (A)</td>
<td>Ay_likes (A)</td>
</tr>
<tr>
<td>Ayn</td>
<td>H*eten_likens</td>
<td>H*k_likens</td>
</tr>
<tr>
<td>H*</td>
<td>Hn_isn't</td>
<td>He_isn't</td>
</tr>
<tr>
<td>Hi</td>
<td>i_(in)</td>
<td>It_isn't (in)</td>
</tr>
<tr>
<td>Iy</td>
<td>IyA_isn't (in)</td>
<td>N isn't</td>
</tr>
<tr>
<td>Ni</td>
<td>TA_isn't</td>
<td>Ti_isn't</td>
</tr>
<tr>
<td>To</td>
<td>Xm_isn't</td>
<td>ai_isn't</td>
</tr>
<tr>
<td>ao</td>
<td>ao*_isn't</td>
<td>aowA_isn't</td>
</tr>
<tr>
<td>b</td>
<td>b/ddh_likens</td>
<td>bA_likens</td>
</tr>
<tr>
<td>bAd</td>
<td>bAr_likes</td>
<td>bHul_likes</td>
</tr>
<tr>
<td>bRh/nd_likens</td>
<td>big_likes</td>
<td>bhAwe_likes</td>
</tr>
<tr>
<td>bhi/ntik</td>
<td>blu/kt_isn't</td>
<td>bi_isn't</td>
</tr>
<tr>
<td>bHIn</td>
<td>bid_isn't</td>
<td>bilAk_isn't</td>
</tr>
<tr>
<td>bor</td>
<td>brN_isn't</td>
<td>cAm_isn't</td>
</tr>
<tr>
<td>ch</td>
<td>chA_isn't</td>
<td>che_isn't</td>
</tr>
<tr>
<td>chil</td>
<td>cho_isn't</td>
<td>chowA_isn't</td>
</tr>
<tr>
<td>con</td>
<td>dAr_isn't</td>
<td>dhrNe_isn't</td>
</tr>
<tr>
<td>dhrN</td>
<td>di_isn't</td>
<td>e_isn't</td>
</tr>
<tr>
<td>ere</td>
<td>gE_isn't</td>
<td>gN_isn't</td>
</tr>
<tr>
<td>g/ret_likens</td>
<td>grAkI_likens</td>
<td>gt_likens</td>
</tr>
<tr>
<td>i</td>
<td>ib_likes</td>
<td>ik_isn't</td>
</tr>
<tr>
<td>ikA</td>
<td>il_isn't</td>
<td>ile_isn't</td>
</tr>
<tr>
<td>ilo</td>
<td>im_isn't</td>
<td>it_isn't</td>
</tr>
<tr>
<td>itA</td>
<td>je_isn't</td>
<td>jogJ_isn't</td>
</tr>
<tr>
<td>joge</td>
<td>ju/kt_isn't</td>
<td>k_isn't</td>
</tr>
<tr>
<td>k/lpe</td>
<td>kAmI_isn't</td>
<td>kAr_isn't</td>
</tr>
<tr>
<td>kArI</td>
<td>kArk_isn't</td>
<td>kE_isn't</td>
</tr>
<tr>
<td>Suffix</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>kN</td>
<td>कन</td>
<td></td>
</tr>
<tr>
<td>keiTA</td>
<td>केइटा</td>
<td></td>
</tr>
<tr>
<td>keigrAkI</td>
<td>केइग्राकी</td>
<td></td>
</tr>
<tr>
<td>keizn</td>
<td>केइजन</td>
<td></td>
</tr>
<tr>
<td>kn</td>
<td>कन</td>
<td></td>
</tr>
<tr>
<td>krN</td>
<td>कर्न</td>
<td></td>
</tr>
<tr>
<td>IE</td>
<td>इई</td>
<td></td>
</tr>
<tr>
<td>lgIyA</td>
<td>ल्गियए</td>
<td></td>
</tr>
<tr>
<td>lok</td>
<td>लोक</td>
<td></td>
</tr>
<tr>
<td>mAn</td>
<td>मान</td>
<td></td>
</tr>
<tr>
<td>mokorA</td>
<td>मोकोरा</td>
<td></td>
</tr>
<tr>
<td>mukhI</td>
<td>मुखी</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>न</td>
<td></td>
</tr>
<tr>
<td>nly</td>
<td>नली</td>
<td></td>
</tr>
<tr>
<td>no</td>
<td>नो</td>
<td></td>
</tr>
<tr>
<td>ok</td>
<td>ओक</td>
<td></td>
</tr>
<tr>
<td>pUrN</td>
<td>पुर्ण</td>
<td></td>
</tr>
<tr>
<td>pUd</td>
<td>पुद</td>
<td></td>
</tr>
<tr>
<td>pu/ST</td>
<td>पु/स्ट</td>
<td></td>
</tr>
<tr>
<td>rUp</td>
<td>रूप</td>
<td></td>
</tr>
<tr>
<td>rt</td>
<td>र्त</td>
<td></td>
</tr>
<tr>
<td>sHItE</td>
<td>स्हिटे</td>
<td></td>
</tr>
<tr>
<td>shAll</td>
<td>शाली</td>
<td></td>
</tr>
<tr>
<td>smUH</td>
<td>समुह</td>
<td></td>
</tr>
<tr>
<td>tlya</td>
<td>तल्या</td>
<td></td>
</tr>
<tr>
<td>to</td>
<td>तो</td>
<td></td>
</tr>
<tr>
<td>uowA</td>
<td>उोवा</td>
<td></td>
</tr>
<tr>
<td>witI</td>
<td>विटी</td>
<td></td>
</tr>
<tr>
<td>yA</td>
<td>या</td>
<td></td>
</tr>
<tr>
<td>yo</td>
<td>यो</td>
<td></td>
</tr>
<tr>
<td>zAtIy</td>
<td>जातीय</td>
<td></td>
</tr>
<tr>
<td>zn</td>
<td>जन</td>
<td></td>
</tr>
<tr>
<td>znk</td>
<td>जनक</td>
<td></td>
</tr>
<tr>
<td>zuri</td>
<td>जूरि</td>
<td></td>
</tr>
</tbody>
</table>

Table 4.14: Suffixes in the corpus B (of about 300000 words)
Chapter 5

Morphological Analysis of Words in a Text

5.1 Introduction

In the process of figuring out the meaning of a natural language expression, morphological analysis is one of the first steps. Morphological analysis facilitates recognition of words that appear in expressions, since if the composition (or structure) of a word matches some known morphological framework, then several attributes of the word can be guessed. The result of morphological analysis is immediately useful in syntax analysis of expressions, and also in subsequent semantic analysis. For a language where concatenative morphological phenomenon is extensive, the problem of morphological analysis is primarily that of determining the decompositions that give the root words and additional morphemes that make up each word in a text. In a way, this is just what was attempted in Chapter 4. The important difference is that in there our main objective was to identify the morphological extensions, and in this chapter we try to identify the roots of the words in an input text. The method described in Chapter 4 required a large input corpus for the purpose, whereas, the general need is to carry out morphological analysis for much smaller pieces of texts. So the whole scheme is that the exercise described in Chapter 4 is a training phase, during which enough knowledge is accumulated in the system in the form of a set of suffixes and suffix-sequences and a lexicon. This knowledge is then used for morphological analysis of words in new text passages. In this chapter, we address the general problem of morphological analysis using the resources obtained through the previous exercise.

5.2 Word stemming

The problem of morphological analysis is commonly studied as the word stemming problem in the following problem context: given a text of a language and a list of suffixes in the language, decompose the words in the corpus into roots and suffixes wherever applicable. The first step towards this task may
be simply to check the applicability of each suffix in each word, as is done in the well known Porter’s method ([32]). Breaking up of word by simply suffix-matching is likely to result in several incorrect decompositions too. For instance,

\(\text{sender} = \text{send} + \text{er} \) is a correct decomposition whereas \(\text{gender} = \text{gend} + \text{er} \) is not. Correctness of a decomposition means that (1) the root identified by stripping a suffix from a given word is a valid word, and (2) the given word is actually derived from the identified root by applying that suffix. In Porter’s and other similar methods ([32, 35]), this problem is addressed by specifying criteria for applicability of the suffixes. These criteria are based on the structure (spelling pattern) of the base part, and are manually formulated. For instance, the rule \(\text{SSES} \rightarrow \text{SS} \) means strip suffix \(\text{ES} \) if the root ends in \(\text{SS} \). Similarly, the rule \(\text{(*v*)ING} \rightarrow \text{(NULL)} \) means strip suffix \(\text{ING} \) if the root contains a vowel. Such rules prohibit indiscriminate stripping of suffixes from word endings, and are found to be effective in preventing many invalid decompositions. In Assamese a noticeable feature is the extensive inflection of nouns, including proper nouns. In such words there are hardly any patterns that would facilitate specification of criteria like those given above. Moreover, it requires careful study of the morphology of the language to define such criteria, whereas, we would like the system to carry out stemming with minimum direct linguistic input.

In our unsupervised approach, we have relied on gathering support from similar words during decomposition of words, unlike the Porter’s method where each input word is considered in isolation for applicability of the suffixes. But this means that in our method decomposition of a word is possible only if there are adequate number of similar words in the input. This may be too big a demand while processing small or moderate sized texts. Hence to achieve effectiveness applying the method, we fall back upon the lexicon that was built in the previous exercise. This lexicon is maintained in a format that would facilitate easy morphological analysis of texts. In this chapter, we discuss a method of morphological analysis that uses the lexicon as well as the occurrence of possibly related words in the input text, to obtain the analyses of the words. We also discuss an approach to handle words for whose decomposition, adequate support is not found in the training corpus as well as in the input text.

5.3 Measuring the performance of morphological analysis

The goal of our morphological analysis exercise is to identify the root and the suffix morphemes in each word of the input text. To this end, on one hand, we strive to identify as many morphemes as possible in the input words, and on the other, we exercise caution to avoid identifying wrong morphemes. An effective parameter to quantify the performance of this exercise is the number of partition points (see section 4.5) in each word. We compare the number of partition points that should ideally be identified in each word with the partition points identified by our exercise. Recall represents the ratio of the number
partition points identified to the number of partition points actually present in the input. Similarly, precision represents the ratio of the number of valid partition points identified in the input to the total number of partition points identified in the analysis. For example, the correct decomposition for the word \(HAtIr \) is

\[
[HAtIr = HAtI + r]_A \quad ([\text{হাতি} = \text{হাতী} + \text{ব})] /\text{of elephant}/.
\]

Suppose in our analysis we obtain the decomposition

\[
[HAtIr = HAt + I + r]_A.
\]

Here one of the two partition points identified in the analysis is valid. That is, the precision is 50%. Again, the single valid partition point in the word has been identified in the analysis. That means, the recall is 100%.

To extend the concept of precision and recall to the entire input text, we have to count the actual as well as the identified partition points of all the words in the input, and compute the above ratios. In a text some words occur multiple times and in our morphological analysis method, we consider only the distinct words in the input. Hence to get the actual and identified partition point counts of all the words in the text, we multiply the counts associated with each distinct word by their respective occurrence counts. Thus, if in a corpus of \(n \) distinct words, word \(w_i \) occurs \(m_i \) times in the input, the actual number of partition points present in it is \(p_{ia} \), and the number of partition points identified in the analysis of the word is \(p_{ic} \), of which \(p_{iv} \) are valid, then,

\[
Recall = \frac{\sum_{i=1}^{n} p_{iv} \cdot m_i}{\sum_{i=1}^{n} p_{ia} \cdot m_i}
\]

\[
Precision = \frac{\sum_{i=1}^{n} p_{iv} \cdot m_i}{\sum_{i=1}^{n} p_{ic} \cdot m_i}.
\]

5.4 Morphological analysis of new texts

For the words of a given text, morphological analysis can be carried out by identifying decompositions with the available suffixes and suffix-sequences. Hence, a word \(w_s \) in the input text may be decomposed as

\[
\delta : [w = b + x]_s,
\]

where \(x_s \) is a known suffix or suffix sequence. This decomposition is valid if the base \(b_s \) is valid. For example, of the following decompositions

1. \([mAnuHzn = mAnuH + zn]_A \) (মানুষজন) /the person/
2. \([pMyozn = pMyo + zn]_A \) (প্রয়োজন) /need/,

the first one is valid and the second is not. There is no word \(pMyo[A] \), and \(pMyozn[A] \) is a root word. If an exhaustive lexicon is available, the occurrence of the base in the lexicon can be taken as the sufficient condition for validity of the base. When a lexicon is not available or we do not find the base in the lexicon, we consider the set of words in the input text, as an additional source
of information. Still, for some valid decompositions, we may not find the base either in the lexicon or as a word in the input text. We refer to such a base as a fresh base. For a fresh base, we rely on the fact that in a highly inflectional language like Assamese, most root words have more than one inflected form. For instance, there are several inflected forms of the root $m\text{Anu}\text{H}_A$, such as $m\text{Anu}\text{Hr}_A$ (/of human/), $m\text{Anu}\text{Hk}_A$ (/human, accusative/), $m\text{Anu}\text{Hbor}_A$ (/the people/), and so on. Hence, corresponding to an inflected word in an input text, other inflected forms of a root too are likely to occur in the input text. The decompositions of these words would also involve the same base. So, even if we do not have direct evidence of the base either in the lexicon or in the input text, we can accept it as valid if there are multiple decompositions of input words involving that base. In general, for a word w_s in the input text the decomposition δ as shown above is considered as valid if

1. the base b_s can be extracted from an available lexicon, or

2. there are at least $t \geq 2$ words, $w_{i=1..t}$, in the input text for which we can obtain the decompositions

 \[w_i = b + x_i \]

 where, x_i is a known suffix or suffix sequence, or \textit{NULL}.

If for a particular base b_s, there are s possible distinct decompositions for input words or words extracted from the lexicon, we say that the base is supported by the s decompositions. Alternatively, we say the support for the base b_s is s. Insistence on good support improves the precision of the process. Usually, a minimum threshold value 2 for support is adequate. A higher threshold may cause valid bases to be discarded.

Considering suffix-sequences along with single suffixes while figuring out decompositions of input words is useful since it can provide the essential support value for some bases. If s_1, s_2 and s_3 are suffixes and s_2s_3 is a suffix-sequence, and if the words b_s1 and b_s2s_3 occur in the corpus, the support for the base b_s is 2. For, example, due to the decompositions

1. \[m\text{Anu}\text{Hzn} = m\text{Anu}\text{H} + zn \]
 \[\text{(মানুসজ্ঞন) /the person/} \]

2. \[m\text{Anu}\text{Hborr} = m\text{Anu}\text{H} + bor + r \]
 \[\text{(মানুছেছোরে) /of the people/} \]

the support for the base $m\text{Anu}\text{H}_A$ is 2. Here, the second decomposition is possible because of a suffix-sequence.

5.4.1 Shortcomings of support

Support of the base of a decomposition is essentially an indication of whether there is evidence of the base being part of some other word too. Though the support gives a good estimation of the validity of a base as well as that of the decomposition, there is room for other criteria too, for improving the performance of the exercise. Broadly, we have to consider the following situations-
1. There can be some valid base words which take very few suffixes, or in a
given input text a base might occur with an inadequate number of different
suffixes. For example, it is desirable to recognize the word $teishTA_A$ as
$[teishTA = teish + TA]_A$ (טײָשַׁת) /twenty-three number of/, but the base which is a number written in words, is unlikely to occur with
any other suffix (except NULL) in a given text passage, and is declared as
invalid. Discarding such decompositions reduces the recall of the exercise.
In section 5.9 we discuss an approach to deal with such bases.

2. A decomposition involving a base with adequate support may also be
invalid. It is possible that the base is invalid despite its adequate support.
For example, the following two decompositions are invalid:

$$
[coLA = co + IA]_A \quad (כּוְלָא) \quad /shirt/
$$

$$
[cor = co + r]_A \quad (כּוְרֶב) \quad /thief/.
$$

The above decompositions are invalid despite the support for the base
being 2. The base co_A is an invalid base. In general it is difficult to
entirely prevent such decompositions from being selected. Still, to reduce
the possibility of such decompositions we can adopt the following criteria-

if the base of an decomposition is shorter than a threshold, say
2 phonemes, then compute support for it within the given input
text.

The idea behind this criteria is that short letter strings are comparatively
less stable semantically (see section 4.8.2) and may appear as the leading
portion of unrelated words too. On the other hand, if the base of a
decomposition has occurred as part of some other word within that same
discourse, the words are more likely to be have been derived from that
base. Hence to offset the uncertainty associated with a short base its
support is computed within the same discourse. Accordingly, the two
invalid decompositions in the example above will be rejected unless the
two words $coLA_A$ (/shirt/), and cor_A (/thief/) occur in the same input
text.

3. A decomposition involving a valid base can also be invalid. For example,
the decomposition

$$
HAtI = HAt + I \quad \text{הָאִי = הָאָת + אין}
$$

is invalid even though HAt is a valid base. The base is occurring as the
leading part of two unrelated words. According to our argument in point
2, this may happen with short bases, and the selection criteria specified
above would filter out most such cases. The effectiveness of the criteria
depends on the threshold length of the base for considering it as a short
base. In the example above, the base has 2 phonemes, and hence escape
the criteria. Increasing the threshold causes some valid decompositions
to be discarded, and if the two words occur in the same discourse, the
filtering criteria will be ineffective since the base will have the requisite
support. In short, the possibility of producing such erroneous can only be reduced, not eliminated.

5.5 Decomposition evidence from the lexicon

It is important to take into account the nature of the decomposition evidence that the lexicon created through the process described in the last chapter (refer to section 4.15), provides. The following are some deficiencies of the lexicon:

1. Some words that can be extracted from the lexicon are not independent words in the language. For example, due to the two words $Alcna_A$ (আলোচনা /discussion/), and $Alcit_A$ (আলোচিত /discussed (participle)/), in the training corpus, and the suffixes nA_A and it_A we can have the lexicon entries:

 \[
 < Alcna \quad Alc+nA >_A \\
 < Alcit \quad Aloc+it >_A
 \]

 though the base $Aloc_A$ is not actually a valid word in Assamese.

2. Some decompositions in the lexicon are incomplete, e.g., in the decomposition

 \[
 [Agraya = Agr + e + prA]_A \quad (\text{আগ্রাযা}) \quad \text{/since the past/}
 \]

 the base can be further decomposed as

 \[
 [Agr = Ag + r]_A \quad (\text{আগ্র}) \quad \text{/of past/}.
 \]

 This happens because the extent to which a word is decomposed depends on the presence of different words derived from the same root, and also on whether the suffix-sequence in a deeper decomposition has adequate occurrence count during the training phase.

3. Some decompositions in the lexicon are invalid because the suffix list used in building the lexicon contains few invalid suffixes too. For example,

 \[
 [u_sAH = u_sA + AH]_A \quad (\text{উৎসাহ}) \quad \text{/encouragement/}.
 \]

4. Some decompositions in the lexicon are invalid though they involve valid bases and morphological extensions. For example, the following decomposition in the lexicon is invalid since HAt_A means “hand” and $HAtI_A$ means “elephant”:

 \[
 [HAtI = HAt + I]_A \quad ([হাত = হাত + ই])
 \]

5.6 Multiple decompositions for a word

For figuring out the possible morphological analyses of the input words, we use the set of suffixes as well as suffix-sequences. So, if an input word has a suffix sequence in it, it will be possible to decompose it with only the final suffix in it, and also with one or more suffix-sequences. For example, for the word $gAlHiHe^n\text{tenne}_A$ (গালিহিইতেনে /would (you) have come and sung (inquision)/) the following decompositions can be figured:
1. \([g\text{AliHiHe}^\text{tenne} = g\text{AliHiHe}^\text{tenne} + \text{NULL}]_A\)
2. \([g\text{AliHiHe}^\text{tenne} = g\text{AliHiHe}^\text{ten} + ne]_A\)
3. \([g\text{AliHiHe}^\text{tenne} = g\text{AliHi} + \text{He}^\text{ten} + ne]_A\)
4. \([g\text{AliHiHe}^\text{tenne} = g\text{Ali} + Hi + \text{He}^\text{ten} + ne]_A\)
5. \([g\text{AliHiHe}^\text{tenne} = g\text{A} + li + Hi + \text{He}^\text{ten} + ne]_A\).

Trivial decompositions, such as 1 above, are always valid, but they are useful only when no valid higher degree decompositions are possible. From the possible non-trivial decompositions we have to select the one that is valid and identifies the largest number of constituent parts in the word. In other words, we seek the decomposition that gives the highest precision and recall.

In [39], it was suggested that a good precision can be obtained by selecting the decomposition with the highest support for the base and longest length of base.

5.6.1 Context in decompositions

In the previous example all the candidate analyses shown are valid decompositions of the given word. It may also happen that of the multiple decompositions figured for a word some are invalid. For example, the second decomposition shown below for the word \(\text{bipdznk}_A\) (বিপদজনক /dangerous/) is not valid:

1. \([\text{bipdznk} = \text{bipd} + \text{znk}]_A\)
2. \([\text{bipdznk} = \text{bipd} + \text{zn} + k]_A\).

An useful criterion for selecting an analysis from multiple possible morphological analyses of a word is to take into account the context in decompositions. The context can provide clues for the selection of the correct decomposition. To understand this, consider the following two valid decompositions that are produced during the training phase:

1. \([\text{AmodznkbhAwe} = \text{Amod} + \text{znk} + \text{bhAwe}]_A\)
 \((\text{আমোদ} + \text{জনক} + \text{ভাবে})\) /amusingly/
2. \([\text{mAnuHznk} = \text{mAnuH} + \text{zn} + k]_A\)
 \((\text{মানুষ} + \text{জন} + \text{ক})\) /the person (accusative)/.

These decompositions imply that \(\text{zn}_A, \text{znk}_A, \text{k}_A, \text{and bhAwe}_A\) are suffixes, and \((\text{znk} + \text{bhAwe})_A\) and \((\text{zn} + k)_A\) are two valid suffix-sequences. Further, in the training phase we do not come across any decomposition that involves the suffix sequence \((\text{zn} + k + \text{bhAwe})_A\) since no single root word in Assamese takes the suffixes \(\text{zn}_A, \text{znk}_A\) and \(\text{znk} + \text{bhAwe}_A\). Now, if the test input contains the words \(\text{shikzknk}_A\) (শিখকজনক /the teacher (accusative)/), \(\text{bipdznk}_A\) (বিপদজনক /dangerous/), and \(\text{bipdznk} + \text{bhAwe}_A\) (বিপদজনকভাবে /dangerously/), we have the following analyses (or decompositions) for them using the available suffixes and suffix-sequences:

72
1. \[shixkznk = shixk + znk]_A
2. \[shixkznk = shixk + zn + k]_A
3. \[bipdznk = bipd + znk]_A
4. \[bipdznk = bipd + zn + k]_A
5. \[bipdznkhhAwe = bipdznk + bhAwe]_A
6. \[bipdznkhhAwe = bipd + znk + bhAwe]_A.

For the word \(shixkznk_A\) decomposition 2 should be retained, while for \(bipdznk_A\) decomposition 3 should be retained. For \(bipdznk_A\) decomposition 4 is not selected because it is not consistent with the analysis of the word that can be extracted from the decomposition 6. However, if the word \(bipdznkhhAwe_A\) is not there in the input, we would select decomposition 4 since it has a higher degree than decomposition 3. Even the lexicon might contain analysis 4 for the word \(bipdznk_A\) if the training corpus contains the words \(bipd_A\) and \(bipdznk_A\) but not \(bipdznkhhAwe_A\).

To generalize the above criteria, let us call the a decomposition of a word a non-terminal decomposition if it can be extracted from a longer available decomposition. If no longer decomposition is available we call it a terminal decomposition. For example, if the input text contains the word \(bipdznkhhAwe_A\), decomposition 3 for \(bipdznk_A\) is a non-terminal decomposition, and decomposition 4 is a terminal decomposition since it cannot be extracted from any other longer decomposition. The required criterion is then, in the presence of a non-terminal decomposition, a different terminal decomposition for a word should be discarded. In other words, if a word in the input can be obtained by adding a morphological extension to a shorter word, then the shorter word should not be decomposed in a way that it cannot be extended to obtain the longer word. This follows the intuition that the longer word provides a stronger context for decomposition of the shorter word. The important implication of this criteria is that, even a decomposition available in the lexicon may be discarded if the words in a given input text so requires.

5.7 Steps for morphological analysis

In the light of the above discussion, we now summarize the steps for morphological analysis. *Though for most cases, the choice of analyses for a given set of words may be made through simple steps, in some cases a careful consideration of the input conditions as well as prior knowledge in the lexicon, is necessary.* We refer to the set of words in the input text as \(T\), and the set of suffixes and composite suffixes (i.e., concatenated suffix-sequences) as \(S\).

5.7.1 Produce decompositions relating different input words

We assume that the input is a coherent text so that words with similar initial letter-strings are derived from the same base if the differing trailing portions match known suffixes or suffix-sequences. So we identify decompositions

\[
\delta : [w = b + x_1 + \ldots + x_n]_S
\]
such that, $x_{i=1...n} \in (S \cup \{NULL\})$, b_s has a support greater than 1, and each of the word longer than b_s that can be extracted from δ is in the input. That is, $bx_{i}...x_{i} \in T$, $1 <= i <= n$. To obtain such decompositions, the steps may be-

1. Identify decompositions, $[w = b + x]_s$, where, $w_s \in T$, $x_s \in S$, and support of b_s is greater than 1.

2. **Recursively reduce** the bases of the decompositions (see section 4.11.1).
 If a decomposition of a word is included in some other decomposition of that word, drop that decomposition.

3. Perform **compaction** of the decompositions (see section 4.11.4).

Let us refer to the set of decompositions so obtained as D_1. We note that some morphological extension parts in D_1 may be composite suffixes from S, and must be broken up eventually.

5.7.2 Find lexicon entries for decompositions in D_1

The degree of the decompositions in D_1 is limited by the evidence available in the input text. For some of these decompositions higher degree decompositions can be actually possible. For example, if the input text contains the words, $rA/ST \cdot IyA$ (বাংলা/national) and $rA/ST \cdot IytAbAdIsklrA$ (বাংলাভাষার/ of the nationalists/) then we have the following decomposition in D_1:

$$\delta : [rA/ST \cdot IyA + tAbAdIsklr]_A$$

We consider two cases of available lexicon entries:

Case 1: The lexicon contains the decomposition

$$\delta_{l1} : [rA/ST \cdot IyA + tAbAdIsklrHe]_A$$

which contains all the partition points present in the decomposition δ. In this situation, we take the relevant portion of the decomposition in the lexicon, i.e.,

$$[rA/ST \cdot IyA + tAbAdIsklr]_A$$

Case 2: Instead of δ_{l1} the lexicon contains the decomposition

$$\delta_{l2} : [rA/ST \cdot IyA + tAbAdI + skl + r]_A$$

Here, δ_{l2} is shallower (i.e., it has a longer base) than δ, but its morphological extension portion contains all the partition points present in the corresponding portion of δ. Hence we take the relevant portion of the decomposition δ_{l2} and unify it with the decomposition δ (see section 4.11.4) to obtain the decomposition

$$[rA/ST \cdot IyA + tAbAdI + skl + r]_A$$

Let us refer to the set of decompositions we obtain by the above steps as D_2. Recall that D_1 may contain more than one distinct decomposition for some words. So D_2 may also contain more than one distinct decomposition.
for some words. The reason why we seek lexicon entries only after forming the decompositions in \(D_1 \) is that we want to take into account the longest context available in the input for the shorter words. As explained in section 5.6.1, lexicon entries for shorter words might be incorrect.

5.7.3 Words not decomposed in \(D_2 \)

The set \(D_2 \) provides analyses of words for which evidence is available in the lexicon. For input words for which no non-trivial decomposition is provided by \(D_2 \), we revert back to \(D_1 \) and look for decompositions in it. Recall that in \(D_1 \) there may be morphological extension parts that are composite suffixes (see section 5.7.1) which should be broken up. Suppose such a decomposition in \(D_1 \) is

\[
\delta : [w = b + x_1 + ... + x_n]_s
\]

where one or more of the \((x_{i=1...n})_s \) are composite suffixes. If there exist any alternative suffix sequence for \((x_1 + ... + x_n)_s \) which contain all its partition points, using them we obtain all the alternate decompositions for \(w_s \) (see section 4.11.2). Otherwise, for these decompositions we obtain new alternative suffix sequence as described in section 5.8. From the alternative decompositions, we select the ones with longest sibling match with some decomposition in \(D_2 \). If there are more than one such decompositions, we select the one that has a degree not higher than the others. We add the selected decompositions in the set \(D_2 \).

5.7.4 Root words and compound decompositions

For those words for which no non-trivial decomposition is found, we try to identify compound decompositions, that is, decompose into two parts both of which can be extracted from the lexicon or \(D_1 \). From among the undecomposed words left, the ones for which no decomposition using the given set of suffixes is possible, irrespective of the support of the base involved, are confirmed roots. Those words for which decompositions are possible but the bases involved have very poor support (i.e., base has not occurred in any other decomposition), we consider the number of occurrence of the word. If the word has occurred several times, say more than 10 times, that word may be considered as root. In section 5.9 we discuss this in little more detail.

Summary of above the steps

The important underlying assumption in the above analysis exercise is that the input text is a single coherent discourse such that if one input word can be obtained by appending a known suffix or suffix-sequence to another input word, then the two words are actually related. In the steps in section 5.7.1 we put together related words to form longest decompositions possible. These long decompositions provide context-evidence which can help in avoiding invalid decomposition. The decompositions that we obtain may have scope for further
break-up. In section 5.7.2 we seek relevant evidence from the lexicon to further analyse the input words represented in the decompositions. In section 5.7.3 we deal with the words for which suitable decomposition evidence is not found in the lexicon. Some of the words that are left undecomposed after this may be compounds. In section 5.7.4 we attempt to recognize compounds that are formed from other known words. From the words that are still left unanalysed, we declare as roots the words that have occurred several times in the input.

5.8 New suffix-sequences

As pointed out in section 4.15.6, though the given set of suffixes can be almost exhaustive, the set of suffix-sequences may not be so. During analysis of words in a test passage we may encounter new suffix-sequences. Consider the decomposition \(\delta \) of section 5.7.1-

\[\delta : [w = b + x_1 + \ldots + x_n]_s . \]

Let \(x_s \) denote the parts-sequence \((x_1 + \ldots + x_n)_s\). If \(x_s \) is not a known suffix-sequence, but there are known alternative suffix-sequences of \(x_s \) that contain all the partition points of the latter, \(w_s \) is decomposed using such suffix-sequences. Otherwise, \(x_s \) is a new parts-sequence, which we assume to be valid, since each individual part in \(x_s \) is valid and \(\delta \) is obtained from words that we assume are related. To obtain suitable suffix-sequences from \(x_s \) we first replace the composite suffix parts in it with their respective equivalent suffix-sequences. Some composite suffixes can have more than one equivalent suffix-sequence (e.g., the composite suffix \(znk_s \) has two equivalent suffix-sequences– \(znk_s \) and \((zn + k)_s \)). Hence for \(x_s \) we may obtain more than one alternative suffix-sequences, none of which is already known. For example, suppose we have the decomposition

\[\delta : [\text{bipdznkhAweHe} = \text{bipd} + \text{znk} + \text{bhAweHe}]_A \]

(কিন্তুকেন্দ্রভাবে) /rather dangerously/,

where the parts-sequence \((znk + bhAweHe)_A\) is not a known suffix-sequence. The parts \(znk_A \) and \(bhAweHe_A \) are composite suffixes. From \(\delta \) we then obtain the decompositions

1. \([\text{bipdznkhAweHe} = \text{bipd} + \text{znk} + \text{bhAwe} + \text{He}]_A\)
2. \([\text{bipdznkhAweHe} = \text{bipd} + \text{zn} + \text{k} + \text{bhAwe} + \text{He}]_A\),

involving new suffix-sequences. The second decomposition above is invalid since the suffix-sequence \((zn + k + bhAwe + He)_A\) is invalid. To determine whether a suffix-sequence \(x_s \) is valid we verify whether each 2-part sub-sequence in \(x_s \) is a known suffix sequence. If each 2-part sub-sequence is known, then the suffix-sequence \(x_s \) is valid, otherwise it is invalid.

In general, to verify if the suffix-sequence \(x_s : (x_1 + \ldots + x_n)_s \) is valid, we verify each \(l \)-part subsequence of \(x_s \),

\((x_1 + \ldots + x_l)_s, (x_2 + \ldots + x_{l+1})_s, \ldots, (x_{n-l+1} + \ldots + x_n)_s\).

If each such sub-sequence is a known suffix-sequence, or has adequate support in the analysis generated for the given input text, then \(x_s \) is valid.
5.9 Decomposition involving base with poor support

At the end of the analysis of the words we have some words for which some decomposition is possible but the support for the bases in them is very poor. A close examination shows that the likelihood of such decompositions being valid is related to the number of times these words have occurred in the input, i.e., the frequency of the words. If in a text a word has high frequency, it roughly implies that the word is prominent in that discourse. If the decomposition of a prominent word is valid, then it means that the base of the decomposition is also semantically prominent in that discourse. In a highly inflectional language, a prominent base is likely to occur with multiple distinct suffixes. That means the support of the base should be good. Conversely, if the support for a supposedly prominent base is low, the base is probably invalid. So, we can say that if the support of the base involved in the decomposition of a word is low despite a high frequency of the word, that decomposition discarded as invalid. On the other hand, if the support for a base is low, i.e., it has occurred the decomposition of very few (say, only one) words, but those words too have occurred only a small number of times in the input (inadequate evidence), it is not clear whether the base (and the decomposition) are invalid.

We observe the above phenomenon in the experimental analysis of a moderate sized corpus of about 49000 words. In this experiment we consider the frequency of words for which the possible decompositions involve bases with \textit{support} = 1. The results are summarized in Table 5.1. We observe that among the decompositions with smaller base frequencies there are more valid decompositions compared to those with larger base frequencies. Also, fewer decompositions have very high frequencies of base and more have small frequencies of base. We present a small example from the experiment:

Example

In the decomposition
\[kumAr = kumA + r \] \text{ (kusar=kusar) } /boy/
\(kumA \) which is not a valid base has a support value only 1, but its frequency is 74 (since \(kumAr \) occurs 74 times). Similarly, in the decomposition
\[kthA = kth + A \] \text{ (koth=koth) } /matter(conveyed)/
\(kthA \) is not a valid base and its support is 1 and frequency is 160. On the other hand, in the decomposition
\[AgDokhrte = AgDokhr + te \] \text{ (agaDokhrte=agaDokhrte) } /at the front portion/
the base \(AgDokhr \) is actually a valid base despite the support being 1. We find that its frequency is 1.
Table 5.1: Quality of decompositions with low (=1) base support

<table>
<thead>
<tr>
<th>Base Freq</th>
<th>No. of decompositions</th>
<th>No. of valid decompositions</th>
<th>Precision (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3081</td>
<td>1068</td>
<td>34.66</td>
</tr>
<tr>
<td>2</td>
<td>599</td>
<td>142</td>
<td>23.70</td>
</tr>
<tr>
<td>3</td>
<td>292</td>
<td>46</td>
<td>15.75</td>
</tr>
<tr>
<td>4</td>
<td>158</td>
<td>16</td>
<td>10.12</td>
</tr>
<tr>
<td>5</td>
<td>95</td>
<td>9</td>
<td>9.47</td>
</tr>
<tr>
<td>6</td>
<td>66</td>
<td>4</td>
<td>6.06</td>
</tr>
<tr>
<td>7</td>
<td>56</td>
<td>9</td>
<td>16.07</td>
</tr>
<tr>
<td>8</td>
<td>30</td>
<td>2</td>
<td>6.66</td>
</tr>
<tr>
<td>9</td>
<td>26</td>
<td>1</td>
<td>3.84</td>
</tr>
<tr>
<td>10</td>
<td>25</td>
<td>4</td>
<td>16.00</td>
</tr>
<tr>
<td>11</td>
<td>24</td>
<td>1</td>
<td>4.16</td>
</tr>
<tr>
<td>12-191</td>
<td>168</td>
<td>14</td>
<td>8.33</td>
</tr>
</tbody>
</table>

Figure 5.1: Precision of decompositions with low (=1) base support

5.10 Results of morphological analysis experiment

We have tested the morphological analysis approach outlined in section 5.7 over text chunks from different sources. We have used the lexicon and set of suffixes and suffix-sequences obtained through the process described in chapter 4 from the corpus B of about 301271 words (see page 61). Corpus B is a collection of 525 newspaper articles that include general news, sports news and editorial articles. For testing we have run our process over 84 other newspaper articles totalling 32271 words from the same newspaper source, and 66 articles from the Emille corpus for Assamese (http://www.ling.lancs.ac.uk/corplang/emille/zipfiles/assamese.zip) totalling 138131 words. The Emille corpus articles used for testing are from various domains, namely, agriculture, anthropology, astrology, astronomy, biographies, business, industry, media, music, novels, stories, translated literature, travel, etc.
First we observe the effectiveness of our process quantitatively. For this, for each input text we take the following counts:

- Number of words in the input text that are in the training corpus too.
- Number of words in the input text that can be obtained from the lexicon already produced from the training corpus.
- Number of words in the input text that can be obtained through the morphological analysis method discussed in section 5.7.

Morphologically analysed words are not necessarily decomposed words. They are words whose structures have been decided through the analysis process. Unmatched words, i.e., the words that are not analysed, are words which have not occurred in the training corpus, and have occurred very few number of times (mostly only once) in the test passages. Many of these words are actually root words and hence do not require any decomposition.

The quantitative results of the experiment are summarized in Tables 5.2 and 5.3, and depicted graphically in figures 5.2 and 5.3.

(a) *Distribution of test input words' recognition percentage from training words.*

<table>
<thead>
<tr>
<th>Recognition (%)</th>
<th>100</th>
<th>99</th>
<th>98</th>
<th>97</th>
<th>96</th>
<th>95</th>
<th>94</th>
<th>93</th>
<th>92</th>
<th>91</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of files</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>7</td>
<td>10</td>
<td>11</td>
<td>8</td>
<td>11</td>
<td>10</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

(b) *Distribution of test input words' recognition percentage from lexicon.*

<table>
<thead>
<tr>
<th>Recognition (%)</th>
<th>100</th>
<th>99</th>
<th>98</th>
<th>97</th>
<th>96</th>
<th>95</th>
<th>94</th>
<th>93</th>
<th>92</th>
<th>91</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of files</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>7</td>
<td>10</td>
<td>10</td>
<td>7</td>
<td>15</td>
<td>5</td>
<td>7</td>
<td>4</td>
</tr>
</tbody>
</table>

(c) *Distribution of test input words' recognition through our morphological analysis.*

* Fractional part of percentage values are truncated.

Table 5.2: Word recognition performance for 84 newspaper articles

To evaluate the result of our morphological analysis tests qualitatively, we have to verify the analysis produced for each word in the input as described in section 5.3. Since this requires intensive manual effort, we have chosen to
<table>
<thead>
<tr>
<th>Recognition* (%)</th>
<th>83</th>
<th>82</th>
<th>81</th>
<th>80</th>
<th>79</th>
<th>78</th>
<th>77</th>
<th>76</th>
<th>75</th>
<th>74</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of files</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recognition* (%)</th>
<th>73</th>
<th>72</th>
<th>71</th>
<th>70</th>
<th>69</th>
<th>68</th>
<th>67</th>
<th>66</th>
<th>65</th>
<th>64</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of files</td>
<td>6</td>
<td>3</td>
<td>6</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recognition* (%)</th>
<th>63</th>
<th>62</th>
<th>61</th>
<th>60</th>
<th>59</th>
<th>58</th>
<th>57</th>
<th>56</th>
<th>55</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of files</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

(a) Distribution of test input words’ recognition percentage from training words.

<table>
<thead>
<tr>
<th>Recognition* (%)</th>
<th>83</th>
<th>82</th>
<th>81</th>
<th>80</th>
<th>79</th>
<th>78</th>
<th>77</th>
<th>76</th>
<th>75</th>
<th>74</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of files</td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>2</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>1</td>
<td>6</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recognition* (%)</th>
<th>72</th>
<th>71</th>
<th>70</th>
<th>69</th>
<th>68</th>
<th>67</th>
<th>66</th>
<th>65</th>
<th>64</th>
<th>57</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of files</td>
<td>4</td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

(b) Distribution of test input words’ recognition percentage from lexicon.

<table>
<thead>
<tr>
<th>Recognition* (%)</th>
<th>97</th>
<th>96</th>
<th>95</th>
<th>94</th>
<th>93</th>
<th>92</th>
<th>91</th>
<th>90</th>
<th>88</th>
<th>87</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of files</td>
<td>3</td>
<td>3</td>
<td>11</td>
<td>11</td>
<td>14</td>
<td>13</td>
<td>11</td>
<td>5</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

(c) Distribution of test input words’ recognition through our morphological analysis.

* Fractional part of percentage values are truncated.

Table 5.3: Word recognition performance for 66 Emile corpus articles
(a) Distribution of test input words’ recognition percentage from training words.

(b) Distribution of test input words’ recognition percentage from lexicon.

(c) Distribution of test input words’ recognition through our morphological analysis.

Figure 5.2: Word recognition performance for 84 newspaper articles
(a) *Distribution of test input words’ recognition percentage from training words.*

(b) *Distribution of test input words’ recognition percentage from lexicon.*

(c) *Distribution of test input words’ recognition through our morphological analysis.*

Figure 5.3: Word recognition performance for 66 Emille corpus articles
perform the verification for samples taken from the analysis results. We have taken samples of different types of test inputs, \textit{viz.}, different types of newspaper articles, and different types of articles from the Emille corpus. For the words of a particular input text, we manually prepare the correct analyses of all the words in that text, and compare the counts and appropriateness of the partition points with those produced by our morphological analysis method (see 5.3). More specifically, we compute the following:

- Total words in the input file (Column T in Table 5.4)
- Total partition points generated (Column A in Table 5.4)
- Spurious partition points generated (Column B in Table 5.4)
- Total root recognitions (Column C in Table 5.4)
- Actual partition points required (Column D in Table 5.4)
- Actual roots (Column E in Table 5.4)
- Valid partition points missed (Column F in Table 5.4)
- Precision \(\frac{(A+C-B)}{(A+C)}\) in Table 5.4
- Recall \(\frac{(A+C-B)}{(D+E)}\) in Table 5.4

Table 5.5 shows a small sample input text and the morphological analysis produced by our method as well as manually. As mentioned at the beginning of this chapter, other methods such as the ones by Gaussier ([12]) and Goldsmith ([15]) work with large input corpus. On the other hand, methods such as Porter’s ([32]) use hand coded rules. The nature of the problem we tackle is thus, distinct. So we do not compare the result of those methods with ours.

5.11 Summary

In this chapter we have described an approach for morphological analysis of text of a highly inflectional language. We have presented intermediate results as well as final results of such morphological analysis trials for Assamese texts. The final results show that on an average we have been able to carry out the task of morphological analysis of Assamese texts with both precision and recall of around 90\% (Table 5.4). This is significant, because our entire approach has been an unsupervised one. From one point of view we have achieved what has been our primary goal. In this chapter we have assumed that the input text that we process is correct in terms of spellings and morphology. In the next chapter we move on to, what we would call, a “higher” level of morphological processing, \textit{i.e.}, word classification based on their morphological behaviour. We opine that the results of the classification can be used to take care of morphologically incorrect words to some extent.
(a) Evaluation for newspaper articles

<table>
<thead>
<tr>
<th>File id</th>
<th>T</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>Precision</th>
<th>Recall</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>350</td>
<td>197</td>
<td>36</td>
<td>198</td>
<td>181</td>
<td>196</td>
<td>20</td>
<td>90.89</td>
<td>95.23</td>
</tr>
<tr>
<td>2.</td>
<td>615</td>
<td>358</td>
<td>38</td>
<td>331</td>
<td>366</td>
<td>317</td>
<td>46</td>
<td>94.48</td>
<td>95.31</td>
</tr>
<tr>
<td>3.</td>
<td>468</td>
<td>246</td>
<td>30</td>
<td>263</td>
<td>262</td>
<td>248</td>
<td>46</td>
<td>94.11</td>
<td>93.92</td>
</tr>
<tr>
<td>4.</td>
<td>213</td>
<td>109</td>
<td>17</td>
<td>122</td>
<td>101</td>
<td>123</td>
<td>9</td>
<td>92.64</td>
<td>95.54</td>
</tr>
<tr>
<td>5.</td>
<td>351</td>
<td>228</td>
<td>20</td>
<td>173</td>
<td>242</td>
<td>165</td>
<td>34</td>
<td>95.01</td>
<td>93.61</td>
</tr>
<tr>
<td>6.</td>
<td>419</td>
<td>296</td>
<td>47</td>
<td>207</td>
<td>296</td>
<td>203</td>
<td>47</td>
<td>90.66</td>
<td>91.38</td>
</tr>
<tr>
<td>7.</td>
<td>292</td>
<td>190</td>
<td>43</td>
<td>153</td>
<td>180</td>
<td>147</td>
<td>24</td>
<td>90.09</td>
<td>94.50</td>
</tr>
<tr>
<td>8.</td>
<td>770</td>
<td>438</td>
<td>63</td>
<td>395</td>
<td>426</td>
<td>403</td>
<td>51</td>
<td>92.44</td>
<td>92.88</td>
</tr>
<tr>
<td>9.</td>
<td>792</td>
<td>437</td>
<td>65</td>
<td>441</td>
<td>416</td>
<td>437</td>
<td>44</td>
<td>92.60</td>
<td>95.31</td>
</tr>
<tr>
<td>10.</td>
<td>514</td>
<td>322</td>
<td>36</td>
<td>271</td>
<td>356</td>
<td>245</td>
<td>70</td>
<td>93.93</td>
<td>92.68</td>
</tr>
</tbody>
</table>

(b) Evaluation for Emile corpus articles

<table>
<thead>
<tr>
<th>File-id/Type</th>
<th>T</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>Precision</th>
<th>Recall</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Mu</td>
<td>2195</td>
<td>1177</td>
<td>251</td>
<td>1273</td>
<td>1248</td>
<td>1187</td>
<td>322</td>
<td>89.76</td>
<td>90.31</td>
</tr>
<tr>
<td>2. Mu</td>
<td>2079</td>
<td>1072</td>
<td>198</td>
<td>1175</td>
<td>1154</td>
<td>1063</td>
<td>280</td>
<td>91.19</td>
<td>92.42</td>
</tr>
<tr>
<td>3. Cm</td>
<td>1644</td>
<td>871</td>
<td>141</td>
<td>971</td>
<td>887</td>
<td>924</td>
<td>157</td>
<td>92.35</td>
<td>93.93</td>
</tr>
<tr>
<td>4. Cm</td>
<td>1734</td>
<td>902</td>
<td>189</td>
<td>1004</td>
<td>907</td>
<td>1000</td>
<td>194</td>
<td>90.08</td>
<td>90.04</td>
</tr>
<tr>
<td>5. As</td>
<td>2037</td>
<td>1036</td>
<td>205</td>
<td>1190</td>
<td>1080</td>
<td>1124</td>
<td>249</td>
<td>90.79</td>
<td>91.70</td>
</tr>
<tr>
<td>6. As</td>
<td>1893</td>
<td>948</td>
<td>204</td>
<td>1092</td>
<td>985</td>
<td>1044</td>
<td>241</td>
<td>90.00</td>
<td>90.49</td>
</tr>
<tr>
<td>7. Bg</td>
<td>1961</td>
<td>1095</td>
<td>244</td>
<td>1119</td>
<td>1121</td>
<td>1052</td>
<td>270</td>
<td>88.98</td>
<td>90.66</td>
</tr>
<tr>
<td>8. Bg</td>
<td>2049</td>
<td>1150</td>
<td>243</td>
<td>1182</td>
<td>1277</td>
<td>1036</td>
<td>370</td>
<td>89.58</td>
<td>90.32</td>
</tr>
<tr>
<td>9. Nv</td>
<td>2395</td>
<td>1418</td>
<td>349</td>
<td>1290</td>
<td>1610</td>
<td>1136</td>
<td>541</td>
<td>87.11</td>
<td>85.91</td>
</tr>
<tr>
<td>10. Nv</td>
<td>2423</td>
<td>1695</td>
<td>394</td>
<td>1184</td>
<td>1743</td>
<td>1079</td>
<td>442</td>
<td>86.31</td>
<td>88.06</td>
</tr>
<tr>
<td>11. St</td>
<td>2334</td>
<td>1311</td>
<td>263</td>
<td>1313</td>
<td>1528</td>
<td>1096</td>
<td>480</td>
<td>89.98</td>
<td>90.38</td>
</tr>
<tr>
<td>12. St</td>
<td>2391</td>
<td>1511</td>
<td>290</td>
<td>1229</td>
<td>1737</td>
<td>1055</td>
<td>516</td>
<td>89.42</td>
<td>87.75</td>
</tr>
<tr>
<td>13. Tr</td>
<td>3041</td>
<td>1657</td>
<td>298</td>
<td>1660</td>
<td>1758</td>
<td>1555</td>
<td>399</td>
<td>91.02</td>
<td>91.13</td>
</tr>
<tr>
<td>14. Tr</td>
<td>2889</td>
<td>1550</td>
<td>242</td>
<td>1652</td>
<td>1711</td>
<td>1526</td>
<td>403</td>
<td>92.44</td>
<td>91.44</td>
</tr>
<tr>
<td>15. Tr</td>
<td>1901</td>
<td>1122</td>
<td>199</td>
<td>1033</td>
<td>1204</td>
<td>974</td>
<td>281</td>
<td>90.09</td>
<td>90.27</td>
</tr>
<tr>
<td>16. Md</td>
<td>1516</td>
<td>845</td>
<td>218</td>
<td>822</td>
<td>783</td>
<td>850</td>
<td>156</td>
<td>86.92</td>
<td>88.73</td>
</tr>
<tr>
<td>17. Ot</td>
<td>3133</td>
<td>1719</td>
<td>314</td>
<td>1731</td>
<td>1873</td>
<td>1567</td>
<td>468</td>
<td>90.90</td>
<td>91.16</td>
</tr>
<tr>
<td>18. Ot</td>
<td>1320</td>
<td>680</td>
<td>115</td>
<td>733</td>
<td>730</td>
<td>678</td>
<td>165</td>
<td>91.86</td>
<td>92.19</td>
</tr>
<tr>
<td>19. Ag</td>
<td>1271</td>
<td>700</td>
<td>151</td>
<td>724</td>
<td>729</td>
<td>669</td>
<td>180</td>
<td>89.40</td>
<td>91.06</td>
</tr>
<tr>
<td>20. An</td>
<td>2427</td>
<td>2444</td>
<td>239</td>
<td>1439</td>
<td>1394</td>
<td>1280</td>
<td>389</td>
<td>91.09</td>
<td>91.40</td>
</tr>
<tr>
<td>21. An</td>
<td>2493</td>
<td>1261</td>
<td>201</td>
<td>1457</td>
<td>1444</td>
<td>1321</td>
<td>384</td>
<td>92.60</td>
<td>91.03</td>
</tr>
<tr>
<td>22. An</td>
<td>2273</td>
<td>1129</td>
<td>178</td>
<td>1272</td>
<td>1190</td>
<td>1200</td>
<td>239</td>
<td>92.59</td>
<td>93.01</td>
</tr>
<tr>
<td>23. An</td>
<td>2328</td>
<td>1103</td>
<td>234</td>
<td>1374</td>
<td>1139</td>
<td>1326</td>
<td>272</td>
<td>90.55</td>
<td>90.91</td>
</tr>
<tr>
<td>24. An</td>
<td>2369</td>
<td>1482</td>
<td>172</td>
<td>1263</td>
<td>1632</td>
<td>1177</td>
<td>322</td>
<td>93.73</td>
<td>91.60</td>
</tr>
<tr>
<td>25. TL</td>
<td>2086</td>
<td>1121</td>
<td>211</td>
<td>1199</td>
<td>1233</td>
<td>1085</td>
<td>323</td>
<td>90.91</td>
<td>90.98</td>
</tr>
<tr>
<td>26. TL</td>
<td>1400</td>
<td>826</td>
<td>198</td>
<td>776</td>
<td>853</td>
<td>712</td>
<td>225</td>
<td>87.64</td>
<td>89.71</td>
</tr>
<tr>
<td>27. TL</td>
<td>1650</td>
<td>954</td>
<td>192</td>
<td>906</td>
<td>1040</td>
<td>809</td>
<td>278</td>
<td>89.68</td>
<td>90.21</td>
</tr>
</tbody>
</table>

Columns:
- **T:** Total input words;
- **A:** Total partition points generated;
- **B:** Spurious partition points generated;
- **C:** Total root recognitions;
- **D:** Actual partition points required;
- **E:** Actual roots;
- **F:** Valid partition points missed;

File types:
- Mu: Music;
- Cm: Commerce;
- As: Astrology;
- Bg: Biography;
- Nv: Novel;
- St: Story;
- Tr: Travel;
- Md: Media;
- Ot: Other;
- Ag: Agriculture;
- An: Anthropology;
- Bs: Business;
- TL: Translation literature;

Table 5.4: Evaluation of morphological analysis
(a) Portion of original text:

(b) Analysis by our method:

(c) Manual analysis:

Table 5.5: Sample morphological analysis of an input text portion
Chapter 6

Classification of Words

6.1 Introduction

In the process of figuring out the meaning of a natural language expression morphological analysis is one of the first steps. The immediate aim of morphological analysis is to facilitate syntax analysis in which the words in the expression are grouped as phrases and then successively into some known structures. This grouping of words is done not on the basis of the exact meanings of the words, but on the basis of certain attributes of the words. Several words of the language may share the same attributes and hence their individual roles in sentence formation are identical. Thus words are generally classified into categories which govern their role in sentence formation. Traditionally words are classified as nouns, verbs, adjectives, adverbs, conjunction, etc. However, for proper syntax analysis of sentences further more precise classification is often done. For instance, there are proper nouns, countable nouns, etc. Verbs may be transitive, non-transitive or bi-transitive. In addition, in morphologically rich languages some other attributes, such as number, tense, etc., may also be reflected by modification of the word forms.

Though classification of words into categories may not be explicitly performed by a human user of a language, there is no doubt that in a formal linguistic analysis, such as syntax or semantic analysis (e.g., [1]), the knowledge of the category of each word is important. This knowledge is useful in part-of-speech (POS) tagging in processing a natural language text. In traditional linguistic exercises, the categories of the words are determined manually using different sources of information – from existing catalogs (dictionaries) to context of usage of each word. In computational linguistics, the task is not simple because often the required catalogs are not available in a computationally useful form, and the mechanisms to analyse the context of the usage of the words are not adequate. Most of the reported work in POS tagging are based on the use of some existing computational lexicon and a pre-defined tagset. However, there are languages, such as Assamese, for which no suitable computational lexicon that can provide the class information of words is available. Our objective is
to develop a lexicon where the classes of the words are indicated, using the evidence available in a text corpus. To this end, in the preceding chapters, we have discussed methods to identify the suffixes in the language from a raw text corpus, and then to decompose words in a given text into base and suffix-sequences. Using these methods we developed a morphological lexicon of Assamese from a text corpus (page 61). In this chapter we discuss some computational methods that consider the evidence of affix usage in the training corpus to identify the underlying classes of words in the language. The classes identified are not exactly POS classes (e.g., [25]) used for tagging words in a text; POS classes are more syntactic. The classes we identify determine the morphological behaviour of the words. The morphological behaviour depends on, apart from the potential syntactic roles of the word, other factors such as

- the phonetic structure of the word. For instance, the ergative case marker in Assamese depends on the way the base is pronounced, e.g.,

$$[guru = gru + we]_A$$ (গুরু) /cow (ergative)/
$$[crAyi = crAi + ye]_A$$ (চির্যিথা) /bird (ergative)/
$$[kAch = kAch + ai]_A$$ (কাচ) /tortoise (ergative)/
$$[mAch = mAch + e]_A$$ (মাছ) /fish (ergative)/.

- empirical criteria. For instance, the choice of suffix as determiners for nouns in Assamese is sometimes empirical, e.g.,

$$[ndIkhn = ndI + khn]_A$$ (নদীখন) /the river/
$$[rA/stATo = rA/stA + To]_A$$ (রাজাটো) /the road/.

The category we identify for a word can be included as an attribute of the word in the lexicon. Though we have carried out our experiments for Assamese, but we strongly feel that the methods are general and applicable for most inflectional languages.

6.2 Word sense and classification

Linguistic categories of words, such as noun, verb, adjective, etc., reflect meaning of the words, although to a very limited extent. For example, if a word is categorized as a noun, it implies that the word denotes an object, either physical or abstract. From one perspective, the entire meanings of words can be viewed as successive classification, though classification beyond a point is not explicitly done. For example,

pen: category: noun, physical;
usage: writing;
dimension: 10-15 cm long;
inscription material: ink; (relevant to writing)

etc.

This might seem to imply that classification of words requires the knowledge of the meanings of the words. Many computational methods take as input a pre-determined list of word categories or parts-of-speech, and pre-specified criteria
to classify the words into these categories (e.g., [5, 42]). *Is it possible to classify words when no prior information about either the meanings of the words, or the underlying categories of words, is available?* This is often a problem in computational linguistics.

The solution to the computational problem given above probably lies in the analysis of the structure of the words and their usage in sentences or phrases. Either or both of these display some *patterns* that can help in categorizing the words to a certain extent, though the final meaning may not be inferred from the structure of the word or the sentence alone. Various approaches have been taken by researchers that make use of such observations as well as related statistics for word classification. (eg. [5, 6, 17, 42, 34, 27, 41]). These approaches generally adopt one of the two broad approaches - rule-based and stochastic. Further, they either use unsupervised or supervised training. However, most such work target part-of-speech identification, rather than a general context-independent categorization of the words.

In this chapter, we discuss identification of underlying categories of base words in a language and then the classification of words into these categories by considering the morphology, and more specifically, the use of suffixes in the words. Unlike many other approaches, we do not consider the context (neighbouring words) for each word, but the suffixed (inflected) forms of each base in a corpus, to guess the category of the base word. A suffixed word can be seen as a sequence of the morphemes, and thus an *n-gram*. We consider multiple available n-grams where the base is the same, to guess the category of the inflected word or the base morpheme. The category identified for a root word is expected to be useful in a lexicon being built for the language.

6.3 Classification of words by suffix evidence

Each suffix in a language affects a base word making it suitable to play a *specific role* in a sentence. For example, in the English word *play-ed*, the suffix *-ed* makes the base word *play* suitable to represent an action in the past. It is also understandable that such an effect by a suffix can be expected for words of a certain type of meaning only. In the above example, the suffix *-ed* applies to words representing action, *i.e.*, *verbs*. By considering the application of suffixes to words carefully, we can guess the categories of base words. Of course, there can be ambiguities too in this. For example, the suffix *-s* in English applies to verbs and nouns with different roles. In this discussion our notion of linguistic category is - *two words are in the same category if the set of suffixes that they can take is the same*. Accordingly we try to identify the set (or group) of suffixes corresponding to each category of the base words. For a hypothetical language *L*, the grouping of suffixes by the category of base words can be depicted pictorially as in Figure 6.1. The suffixes *c, d, e, f, g* do not clearly imply any distinct category for the words that take these suffixes, and the suffixes *h, i* do not indicate different categories. On the other hand, the suffixes *a, b, c, h, i* unambiguously imply the categories 1, 2, 3, 4, 4 respectively.
The letters a, b, c, d, e, f, g, h, i denote different suffixes, and the ellipses numbered 1, 2, 3, and 4, enclosing the letters denote linguistic categories of words that occur with those suffixes.

Figure 6.1: Suffixes and linguistic categories of words for language L

In a highly inflectional language like Assamese, the word categories identified by suffix applicability can be more precise than the usual linguistic categories, such as noun, verb, etc. That is, say, within nouns we may be able to find subclasses. For instance, in Assamese different determiners are allowed with different categories of nouns. The idea of such categorization of words is considered in [33] for the purpose of morpho-syntactic parsing. However, input and output of the system described there is different from those of our method. In a computational linguistic exercise, it is often the case that the input to the system is only a text corpus, and possibly, with a break-up of words into base and suffix wherever applicable. Definitions of the word categories in terms of suffixes are not given to the system. The problem is to identify the underlying linguistic categories of words (1, 2, 3 and 4 in Figure 6.1) in the language and classify the words into these categories.

Identification of patterns of affixation in words in a corpus, termed as signatures, has been described in [15]. Words are grouped according to such signatures invoking the principles of Minimum Description Length (MDL) framework. Since each individual word in a corpus do not always occur with all affixes valid for it, such groupings based on direct evidence from a corpus may not hold beyond that corpus. What is required is some further analysis of the affixes.

As in the case of acquisition of the suffixes described in Chapter 4 and morphological analysis of words in Chapter 5, in our approach we attempt to identify the word categories in the language from a sufficiently large training corpus, and then carry out classification of words of a given text. In suffix-based classification of base words, the set of suffixes that are seen with the base word is of prime significance. We call the set of suffixes seen with a word its suffix characteristic, or simply characteristic of the word. Some simple approaches for categorising words in a corpus according to their suffix characteristics have been mentioned in [39]. We discuss them briefly in sections 6.3.1 thru’ 6.3.3. In
the experiments reported in these sections, we have considered the suffixation
evidence in the lexicon obtained from the training corpus B. Since the lexicon
is obtained by our unsupervised morphology acquisition approach (see page
61), hence the suffixation evidence in it is not completely valid—there are
some invalid suffixes as well as invalid decompositions in it. To minimize such
evidence during classification, we have considered only those suffixes which have
occurred in at least \(t \) different decompositions. The value of \(t \) chosen depends
on the size of the corpus. Again, to make the evidence “richer” in terms of
number of suffixation cases, we have considered suffixed words as bases when
such words have further suffixes added to them (cases of suffix sequences). For
example, if the lexicon contains the decomposition \(- [s h h A + k h n + r]_A \), we
count two bases, \(s h h A \) and \(s h h A k h n A \) with the suffixes \(k h n A \) and \(r_A \)
respectively. Briefly, the evidence has the following dimensions—

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size of the training corpus</td>
<td>301271 words (corpus B)</td>
</tr>
<tr>
<td>Threshold frequency of suffixes, (t)</td>
<td>12</td>
</tr>
<tr>
<td>Number of suffixes with adequate frequency</td>
<td>122</td>
</tr>
<tr>
<td>Number of distinct bases with selected suffixes</td>
<td>12530</td>
</tr>
</tbody>
</table>

6.3.1 Direct classification based on characteristics

The simplest idea for classification of words is to form groups of words with
exactly matching suffix characteristics. However, this leads to too many classes
of words, because in a corpus many words are likely to occur only with a subset
of the set of linguistically valid suffixes for it. Different words of the same
linguistic category can occur with different subsets of suffixes in the input.
Hence their characteristics are different and they are classified into different
categories. In an experiment of this idea using the suffixation evidence described
above, we obtain—

Number of categories of words identified : 1987.

6.3.2 Identifying subsets of characteristics

One attempt to overcome the drawback of the direct classification method is
to assume that at least some words from each true linguistic category will
occur with all or almost all valid suffixes for that category. We call such a suffix
characteristic a *master characteristic*. The characteristics of all words which are
of the same linguistic category will be subsets of a master characteristic. For
example, suppose \(w_s \) occurs with all possible suffixes for its linguistic category,
and \(w_1 \) and \(w_2 \) with two different subsets of the suffixes with \(w \). Thus the
characteristics of \(w_1 \) and \(w_2 \) will be subsets of the characteristic of \(w_s \). We
classify \(w_s, w_1 \) and \(w_2 \) into the same class. In our experiment we obtain—

Number of categories of words identified : 641.

The number of word categories identified is large in this case too, and many of
the categories are superfluous. This is mainly because, in most cases the suffix
characteristics we consider as masters are actually subsets of the exhaustive
suffix sets of real word categories.
6.3.3 Merging overlapping characteristics

The drawback of the idea of subsets described above is that for a linguistic category, hardly any word occurs with all valid suffixes for that class. To overcome this we modify the idea and compute a synthesized master characteristic of each linguistic category by taking union of its tentative subsets. A pair of tentative subsets of a synthesized master are identified as two characteristics that have at least k common elements. We call this synthesized master characteristic, a closure, where k is the degree of closure. We start by selecting the largest of all characteristics, and assume that it is the closure. Then sequentially for each remaining characteristic, C, we determine if C has at least k elements common with the closure or C has less than k elements which are all common with the closure. If so, we update the closure by taking its union with C. If during one pass of such testing of characteristics the closure actually gets updated, we perform another pass considering the characteristics that failed the test in the previous pass(es). This continues till the closure is not updated in a particular pass. Then, we proceed to generate another closure by starting with the largest characteristic from among the ones not included in the previous closures. Higher degree of closure leads to more categories to be identified. In our experiment using the evidence described above, the results can be summarized as:

<table>
<thead>
<tr>
<th>Closure degree (k)</th>
<th>No. of categories of words</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>18</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
</tr>
<tr>
<td>6</td>
<td>41</td>
</tr>
</tbody>
</table>

The major drawback of the results obtained is that with each value of k, one of the categories obtained contains too many suffixes, including suffixes from distinct linguistic categories, whereas most of the remaining categories have too few suffixes. For example, with $k = 5$ the set of suffixes attributed to one category is–

\[
\{ \text{zuri, zorA, zn, zJoti, yo, ye, y, we, wAn, w, u, tw, tA, t, smUH, skl, shII, sh, sbhA, sH, s/mp/nn, s排行, rUp, rAz, r, pti, pt_r, p_rAd, p_rA/pt, p_r/nt, pUrN, oA, o, ni, nAth, n, my, mukhI, mu/kt, mte, m_rme, mUlk, mAn, m/nt_rI, m, IE, l, krN, khn, khini, keizn, kei_kh, keiTA, k_rme, kE, kAr, kA, k, ju/kt, joge, it, inGr, ik, ichil, i, grAki, ghr, gE, g, ere, e/shwr, e', d, din, dhrNe, dAn, ch, bor, blgIyA, birodI, bi_Ak, bid, biHIn, bhi/itik, bhAwe, bAsI, bAr, bAd, b, ao, aichil, aiche, ai, Xet_r, To, Ti, TA, N, J, IyA, Iy, I', I, Hi, He, HIn, H^t, H^teten, E, Ar, Al, A, /sth, /g_r/st, /dwy, #i, # }_S, \]

and with $k = 2$ the set of suffixes attributed to one category is–

\[
\{ yA, ch \}_S. \]
Neither of the above is a close approximation of the set of suffixes of a real category of words in the language. The larger set shown above contains suffixes, such as $H \ast t_A$ and $H \ast eten_A$, which do not ever occur with the same base. On the other hand, the smaller set shown above is inadequate; it should also include suffixes such as, $m_A, ye_A, blgIyA_A$, etc., that can be applied to the same bases. Using a large value of k, the size of the one large set of suffixes is reduced, but the number of inadequate small sets of suffixes increases.

From the results of the simple ideas in [39] it is seen that the problems in classification arise because of the following broad reasons:

- evidence provided by individual words in a corpus, is often sparse,
- suffix ambiguity—certain suffixes can be applied to words of different categories, and,
- word sense ambiguity—certain words actually belong to multiple linguistic categories. In Assamese word sense ambiguity is comparatively rare, though not altogether absent. For example, kar_A (কর) in one sense means “tax” (noun) and in another it means “do” (verb, imperative).

Before we discuss some approaches to address these issues we define a concept of co-occurrence of suffixes.

6.4 Co-occurrence of suffixes

Definition: a suffix a_s is said to co-occur with suffix b_s if there is at least one base word in the available evidence which occur with both suffixes.

For a suffix we define its simple co-occurrence list (or simple co-occurrence set), as the set of suffixes that co-occur with it. We denote the simple co-occurrence list of suffix a as $C^s(a)$. Let each suffix occur in its own simple co-occurrence list. That is,

$$\sigma \in C^s(\sigma).$$

If the corpus is large enough, we expect that the simple co-occurrence lists of all suffixes are exhaustive. For example, in case of the language L, the exhaustive simple co-occurrence list of suffix a is $\{ a, d, e, f \}$. This is not to say that there is necessarily some word in the corpus that occur with all the suffixes a, d, e and f. Again, some suffixes in a language are generally infrequent. For such suffixes the simple co-occurrence lists may not be exhaustive even if with a large corpus. Hence, for classification purposes only those suffixes that have occurred more than a threshold, t number of times in the training corpus. The value of t can be selected according to the size of the training corpus. In our experiments with an corpus B of about 300000 words as input, we are considering suffixes that have occurred at least 12 times (see page 90).
6.5 Suffix characteristic extension by co-occurrence

The major drawback of a closure obtained by merging overlapping characteristics (section 6.3.3) is that it contains suffixes which have not co-occurred with each other. To address this issue a possible approach is to take a suffix characteristic, C, and extend it by including all suffixes that have co-occurred with all the suffixes in C. Let the extended characteristic be C'. Using our notion of co-occurrence sets, C' can be obtained by taking an intersection of the simple co-occurrence sets of all the suffixes in C. That is,

$$\text{if } C = \{\sigma_1, \sigma_2, ..., \sigma_n\}$$

$$\text{then } C' = \bigcap_{i=1}^{n} C^s(\sigma_i).$$

That $C' \supseteq C$ can be seen from the fact that since C is a characteristic set, every suffix in C occurs with the base of which C is the characteristic set. That is, each suffix in C co-occurs with all other suffixes in C (due to that base). That is, the simple co-occurrence set of each suffix in C contains all the suffixes in C. Hence, the intersection of the simple co-occurrence sets of the suffixes in C will include all the suffixes in C. Now, suppose we have two characteristic sets C_1 and C_2 for bases b_1 and b_2 respectively, and $C_2 \subset C_1$. In simple words, this means that b_2 can belong to the same category as b_1, but we have more suffixation information about b_1 than we have about b_2. Hence, once we compute C_1', the extended characteristic of C_1, we need not compute C_2' for C_2. Going a step further, if a characteristic set C is found to be the subset of an already computed extended characteristic (not simply a characteristic set), we do not compute the extended characteristic of C.

To implement this idea, we take up one by one the characteristic sets and compute the corresponding extended characteristic sets, provided the characteristic is not a subset of an already computed extended characteristic set. In doing so we take up the larger characteristic first.

Experimental results

When we tried the above method over the input evidence described in page 90, the results can be summarised as—

Number of categories of words identified : 246

Some of the extended characteristics are—

$$\{ \text{zuri, zorA, t, smUH, sbhA, r, m/nt}, lE, l, \text{khn, keikh}, k, e, \text{bor, bAsI, ai}, \} \times$$

$$\{ t, \text{smUH, r, plAr}, o, n, mte, mIrme, lE, l, kIrme, kAr, k, \text{joge, e, bor, ao, To, He}, \} \times$$

\footnote{$C_1' \subseteq C_2'$, since more intersection operations are required to obtain C_1' which has more suffixes in it than C_2'}
The extended characteristics obtained are more realistic than the suffix sets obtained through the previous methods. However, there are still some groups of non-cooccurring suffixes in some of the extended characteristics. For example, the suffixes HI_{n_A} and skl_A do not co-occur, but they figure together in some extended characteristic set. We discuss this issue section 6.7.

6.6 Pivot suffixes and word classification

An approach for word classification distinct from the ones discussed above is to consider pivot suffixes of word categories ([38]). We observe that in a language some suffixes apply to words of a distinct category, and others apply to words belonging to more than one category. For example, in English the suffix ed applies only to verbs, but the suffix s applies to verbs as well as nouns. Similarly, in Assamese the suffix skl_A applies only to nouns, but the suffix e_A applies to nouns as well as verbs. We define a pivot suffix as a suffix that applies only to words of a distinct linguistic category. Thus in English ed is a pivot suffix and s is not, and in Assamese skl_A suffix and e_A is not. (In practice we find finer word categories for nouns in Assamese and skl_A may not be a pivot suffix then.) For language L of figure 6.1, a, b, c and h (or i) are pivot suffixes. So if a word occurs with any of these pivot suffixes, we can conclusively determine that the word belongs to the linguistic category represented by that pivot suffix. Now, our task is to identify the underlying word categories and the corresponding pivot suffixes.

Let us consider the situation depicted in figure 6.1. We observe that the pivot suffixes figure in only one linguistic category each, and the other occur in more than one category. We claim that among the suffixes of a given linguistic category, the pivot suffix(es) have the least number of co-occurring suffixes, and this number is exactly the number of suffixes in that linguistic category. For example, for the category denoted by the ellipse 1, the suffixes are a_s, e_s, d_s and f_s. The pivot suffix of this category is a_s and it has exactly these four suffixes in its co-occurrence list. This is true in general, because all non-pivot suffixes occur with at least one suffix from another category, in addition to the suffixes of the category that we are considering. Thus, among all the suffixes in the language, the one with the least number of co-occurring suffixes is a pivot suffix and it represent one word category. This implies that none of the other suffixes in the simple co-occurrence list of this suffix will be the pivot suffix of any other word category. To find a pivot suffix for another word category, we simply have to apply the same criteria (of lowest number of co-occurring suffixes) to the list of suffixes minus the already identified pivot suffixes and their co-occurring suffixes. Proceeding like this, we can identify a pivot suffix for each word category. At any stage if we find more than one suffix having the
least number of co-occurring suffixes, we may select any one of them as pivot and proceed as usual.

Each of the pivot suffixes identified by the above steps represents a distinct morphological category of words based on their suffixational behaviour. These word categories may not correspond to part-of-speech (POS) classes which are related to the structure of a sentence rather than the morphology of the words. The co-occurrence list of a pivot suffix is the set of suffix applicable to the word category that it represents. A suffix that has the same simple co-occurrence list as that of a pivot suffix is considered a co-pivot of that pivot suffix. A pivot suffix and its co-pivot suffixes have the same significance in classification of words. Finally, each pivot suffix and the co-pivot suffixes occur in the simple co-occurrence list of only one pivot suffix. For the language of Figure 6.1 we identify \(a_s, b_s, c_s \) and either \(h_s \) or \(i_s \) as pivot suffixes.

Once the pivot suffixes, the co-pivot suffixes, and their simple co-occurrence lists are identified, the words in the training corpus or some other test corpus (where the words are already decomposed to reveal the presence of suffixes) can be classified into the categories corresponding to the pivot suffixes. In all the classification approaches, a base word can be put in a unique category only if it has occurred with adequate number of suffixes in the given evidence. Otherwise, there shall be more than one tentative categories for the word. In the pivot suffix based classification approach, if a base occurs with a pivot suffix or a co-pivot suffix, its classification will be definite, i.e., the base can be classified into a unique category. Otherwise, the classification will be tentative, i.e., more than a single category will be predicted for the base.

The steps for identification of pivot suffixes can be summarised as:

1. Form a list of suffixes \(S \) in the training corpus that have occurred more than \(t \) (threshold) number of times, i.e.,
 \[
 S = \{s_1, s_2, \ldots, s_m\}_S.
 \]

2. For each suffix \(s_i \) such that \(s_i \in S \), prepare the simple co-occurrence list, \(C_i \). Note that \(C_i \subset S \) and \(s_i \in C_i \).

3. Mark the suffix that has the smallest simple co-occurrence list as the first pivot suffix \(p_1 \). Mark the other suffixes in its simple co-occurrence list as non-pivot suffixes.

4. Successively from the set of un-marked suffixes, mark the suffix with the smallest simple co-occurrence list as the next pivot suffix. Mark the other suffixes in its simple co-occurrence list as non-pivot suffixes.

5. For each suffix in the simple co-occurrence list of each pivot suffix, check if it occurs in the simple co-occurrence list of any other pivot suffix. If it does not, then mark it as a co-pivot of the pivot suffix.

The steps for classification of base words can be summarised as:
1. If base b_s in the input word list W, has occurred with a pivot or co-pivot suffix, s_s, put b_s in the class represented by the pivot (or co-pivot) suffix s_s. This classification is definite. Else,

2. If for a base, b_s, with suffix characteristic C ($C \subset S$), no definite classification is possible, then tentatively put it in each class represented by a pivot suffix s_s, such that C is a subset of the simple co-occurrence list of s_s.

This classification is tentative, i.e., in the absence of any pivot suffix associated with the word, we simply predict that the word can eventually occur with the pivot suffix corresponding to any of the categories that we tentatively put the word in.

Performance Analysis If there are m input words and n suffixes in the language then the complexity of phase 1 is $O(mn + n^2)$ and that of phase 2 is $O(mn)$. Since m is expected to be larger than n, hence the overall complexity of the process is $O(mn)$.

6.6.1 Experimental results

We have tried the above method over the input described in page 90. Since the input is a morphological lexicon built with an unsupervised method, it contains invalid suffixes as well as invalid decompositions too. The results can be summarised as–

<table>
<thead>
<tr>
<th>Number of pivot suffixes</th>
<th>26</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of co-pivot suffixes</td>
<td>0</td>
</tr>
<tr>
<td>Number of definite classification of words</td>
<td>744</td>
</tr>
</tbody>
</table>

The pivot suffixes identified are:

(#, /dwy, /g, r/st, Al, H*eten, H*t, I, aiche, bAr, bhAwe, bid, bIgyA, e, ere, ik, inGr, it, kA, k_rme, ke, keiTA, ne, owA, p.rsAd, s/mp/nn, yA)

(#, o, t, smUH, sH, rAz, r, pti, o, ni, m, lE, khn, kAr, k, joge, i, ghr, e/shwr, e, bor, birodI, biAk, b, ao, ai, To, Ti, N, Ig, I, E, A, #)

The '-' marks in the suffixes listed in Assamese fonts indicate the position of the last letter of the base.

The simple co-occurrence sets of the pivot suffixes are presented below (enclosed within braces { }) along with some example base words, and a rough criteria for applicability of the pivot suffix:

#$_A$: {zn, t, smUH, sH, rAz, r, pti, o, ni, m, lE, khn, kAr, k, joge, i, ghr, e/shwr, e, bor, birodI, biAk, b, ao, ai, To, Ti, N, Ig, I, E, A, #}A

Example bases: dl$_A$, kl$_A$.

Remark: #$_A$ is an invalid suffix.
/dwyₐ : {zn, yo, ye, y, tw, t, skl, sbhₐ, sh, rUp, r, o, lE, l, keizn, k, grAkI, gbr, e, biAk, ao, ai, Iy, He, /dwy}_ₐ
Example bases: netₐₐ, shi/lpₐₐ.
Remark: /dwyₐ is used with nouns (not proper nouns) indicating persons.

/gᵣ/stₐ : {y, t, smUH, r, o, n, my, mu/kt, kAr, k, ju/kt, i, ai, To, HIn, A, /gᵣ/st}_ₐ
Example bases: durnItₐ, At#kₐ.
Remark: /gᵣ/stₐ is used with nouns indicating conditions that prevail over some person, object or place.

A₁ₐ : {zn, r, o, khn, grAkI, ei, e, TA, E, Al}_ₐ.
Example bases: bishₐ, zIwnₐₐ.
Remark: A₁ₐ is an invalid suffix.

H*etenₐ : {t, skl, r, prij/nt, o, n, lE, l, gE, e, ao, ai, To, Hi, He, H*eten}_ₐ
Example bases: thkₐₐ, pAleₐ.
Remark: H*etenₐ is used with verbs in past tense or participle forms.

H*tₐ : {yo, y, w, skl, sh, r, o, l, k, grAkI, e, bor, ao, ai, Iy, He, H*t}_ₐ
Example bases: shishuₐ, jwxtIₐ, te/NDulkArₐ.
Remark: H*tₐ is used with nouns indicating persons.

I’ₐ : {t, smUH, sh, r, o, n, lE, l, khn, k, e/shwhr, e, birodHl, ao, To, I’, I, He}_ₐ
Example bases: k#/gᵣchₐ, crkArₐ.
Remark: The single-quote in I’ₐ is superfluous. This suffix is used with nouns that can be transformed into adjectives.

aiCheₐ : {zn, y, t, skl, r, ni, n, m, l, kE, k, gE, b, aichil, aiche, ai, To, He}_ₐ
Example bases: powₐₐ, lgₐₐ.
Remark: aicheₐ is used with verbs forms that end with a vowel, to convert them to present continuous forms.

bArₐ : {zn, u, t, sh, s#khJk, r, o, mAn, l, khn, k, grAkI, e, din, dhrNe, bor, bAr, b, ao, ai, To, Ti, TA, N, A}_ₐ
Example bases: pA*cₐ, tiniₐ.
Remark: bArₐ is used with words denoting numbers.

bhAweₐ : {zn, u, tw, tA, t, smUH, skl, s#khJk, rUp, rAz, r, o, n, mUlK, krN, khn, kE, kAr, k, i, e, dhrNe, bor, bhAwe, bAd, ao, ai, Xetₐ, I, He, Ar, A}_ₐ
Example bases: bhulₐ, adhikₐ.
Remark: bhAweₐ is used with words that denote some quality and can be used as nouns too.

bidₐ : {y, t, shI, r, mukI, mUlK, m/ntxI, lE, l, k, g, dAn, bid, bhi/ttik, ao, ai, Xetₐ, To, He}_ₐ
Example bases: bhASKₐ, ci/ntAₐ.
Remark: bidₐ is used with words that indicate some subject or profession.

blgIyₐ : {ye, y, t, skl, pUrN, mte, m, l, k, dhrNe, ch, blgIyₐ, b, ao, aichil, ai, To, N, He}_ₐ
Example bases: krₐ, znₐₐ.
Remark: blgIyₐ is used with verbs in present tense.
$e^{'A} : \{zn, w, u, t, sm\text{UH}, sH, r, pt\text{r}, pU\text{v}N, o, n, mu/kt, mte, lE, l, khn, k, ichil, i, e/shuv, e', e, dAn, bor, To, J, I, He, H\text{I}n, E, A, \#i\}_A$

Example bases: $m\text{An}_A$, $s\#kT_A$.

Remark: The single-quote in $e^{'A}$ is superfluous. This suffix is used with nouns (as ergative case marker) as well as verbs in the present imperfect forms. As such this is not an appropriate pivot suffix linguistically.

$ere_A : \{t, sm\text{UH}, r, p_rA/pt, my, lE, khn, keikhn, kAr, k, ere, bor, A\}_A$

Example bases: $s\#gI_A$, nAT_k_A.

Remark: ere_A is used with nouns that can act as an “instrument” for some action.

$ik_A : \{zJoti, t, sm\text{UH}, r, pU\text{v}N, o, mukhI, m/nt\text{-}l, k, keikhn, k, joge, ik, i, e, dAn, bhi/ttk, ai, To, I, A\}_A$

Example bases: $sAHi\text{t}J_A$, $bJwsA_y_A$.

Remark: ik_A is used with nouns that denote some subject or profession (the suffix bid_A is not used with these nouns).

$inGr_A : \{y, u, t, sm\text{UH}, r, prj/nt, o, khini, k, inGr, ichil, i, e, dAn, ch, To, Ar, A, \#i\}_A$

Example bases: bl_A, $bhoT_A$.

Remark: $inGr_A$ is the English suffix ”-ing”, and used with English words.

$it_A : \{y, u, t, sm\text{UH}, rUp, r, o, n, mu/kt, mte, krN, k, it, e, ao, ao, i, IyA, I, H\text{I}n, A\}_A$

Example bases: $p_r\text{bh}A_w_A$, $niym_A, An/nd_A$.

Remark: it_A is used with nouns that can be converted to adjectives.

$kA_A : \{zuri, t, r, o, n, l, kA, i, e, dAn, ch, b, N, H\text{I}n, E, A, /st\}_A$

Example bases: tAr_A, $tul_i_A, bhUmi_A$.

Remark: kA_A is an invalid suffix.

$k_rme_A : \{y, t, sm\text{UH}, r, pt\text{-}r, o, n, mte, m\text{h}rme, mUl{k}, lE, l, k_rme, kAr, k, joge, e, bor, ao, ai, To, He\}_A$

Example bases: $si/ddhA/nt_A$, $ni\text{r}desh_A$.

Remark: k_rme_A is used with words that can be used as to denote some plan.

$ke_A : \{yo, t, sH, r, pti, lE, khn, ke, e, ao, ai, He\}_A$

Example bases: $kAilE_A$, $bidhA\text{nsh}hA_A$, $pribeshTo_A$.

Remark: In most cases ke_A is the composite suffix $k + e_A$. Hence it is not a suitable pivot suffix.

$kei\text{TA}_A : \{zuri, zorA, ye, y, t, sm\text{UH}, rUp, r, pt\text{-}r, o, m\text{h}rme, m, lE, l, kei\text{TA}, k, joge, i, e, dAn, bor, bAsI, ao, ai, To, N, Iy, I, He, H\text{I}n, A\}_A$

Example bases: bch_r_A, dIn_A.

Remark: $kei\text{TA}_A$ is used with countable nouns with which the determiner To_A can be used.

$ne_A : \{tA, re, r, o, ne, lE, i, ai, Hi, A\}_A$

Example bases: $nkr\text{ib}_A$, $bi/shwAsjogJ_A$, $zAne_A$, $pArileH + eten_A$.

Remark: ne_A is used to indicate inquisition. It can be used with different words. Hence it is not a suitable pivot suffix.
owA_A : \{wAn, w, u, tA, t, smUH, sbhA, rAz, r, p\u0101j/nt, owA, o, ni, n, mukhI, mAn, m/nt\rI, m, l, khn, k, ichil, i, e/shwr, e, din, dAn, ch, bor, birodhI, bAsI, ai, To, I, He, E, A\}_A
Example bases: zn_{A}, khel_{A}.
Remark: owA_A is used with verbs that end with a consonant, in the simple present tense form.

p_{rsAd}_A : \{zJoti, y, we, u, tA, t, rAz, r, p_{rsAd}, nAth, k, i, e/shwr, e, bAd, ai, To, I, A\}_A
Example bases: d\u00e9w_{A}, stJ_{A}.
Remark: p_{rsAd}_A is infact a compound part, used with nouns that denote some revered entity.

s/mp/nn_A : \{wAn, t, smUH, sh, s/mp/nn, r, p\u1d05iN, o, mAn, l, khini, k, ju/kt, g, e, bor, biHI\u1d02, ao, ai, I, HI\u1d02, A\}_A
Example bases: g\u00e9u_{A}, p\u00e9rtibh_{A}.
Remark: s/mp/nn_{A} is used with nouns that denote some quality.

y_{A} : \{yA, skl, r, n, ch\}_A
Example bases: zur_{I_A}, ngr_{I_A}.
Remark: y_{A} is an invalid suffix.

Though the experimental results show reasonably good classification of the base words, several issues become clear too. Some pivot suffixes are invalid, and some others are not suitable pivot suffixes. Again, in most cases there are no base words to which all the suffixes in a given simple co-occurrence sets of a pivot suffix can be applied. Some of the drawbacks are due to noise in the input evidence prepared by an unsupervised method, while others are due to ambiguity of words.

6.6.2 Support of suffix co-occurrence

A common manifestation of noise in the suffixation evidence is in the form a suffix incorrectly associated to some base. This results in suffix characteristics with spurious elements, which in turn, causes spurious elements in the simple co-occurrence sets. An approach that we adopt to reduce such effects is to record the co-occurrence of two suffixes only if their co-occurrence is seen in at least a threshold number of bases. We refer to this threshold as the minimum support of the co-occurrence. The idea is that while a valid co-occurrences will be seen in many bases, co-occurrence of a suffix-pair due to noise will usually be seen only in very few bases. Hence insisting on a minimum support for co-occurrence can filter out most of the invalid co-occurrence. Like other support based criteria, this too runs the risk of disqualifying valid cases. Hence, the minimum co-occurrence support value selected should not be too high. In our experiments reported below, we have tried using minimum co-occurrence support value of 2 besides the default value 1.
6.6.3 Theoretical weaknesses of the model

Some of the problems of the pivot suffix based classification arise because pivot suffixes do not cover all the situations that the set-theoretic model can present. Consider the situation for a hypothetical language L' as shown in Figure 6.2. Compared to language L (see Figure 6.1), in L', c does not exist, there is another suffix j which has b, e, f and g as co-occurring suffixes, and there is a category of words that takes only suffix f. There is no single pivot suffix for the categories corresponding to ellipses 3 and 6, and our algorithm fails to detect these categories. In fact we get the pivot suffixes a, b and h and their simple co-occurrence sets $\{ a, d, e, f \}, \{ b, f, e, j \}$ and $\{ h, g, i \}$.

![Diagram of suffixes and linguistic categories](image)

Figure 6.2: Suffixes and linguistic categories of words for language L'

Some other such complex situations are depicted in Figure 6.3.

![Complex co-occurrences](image)

(a) (b)

Figure 6.3: Complex co-occurrences

The important point to be observed is that the simple co-occurrence set of an individual suffix cannot be considered as the set of suffixes for a category.
of words. In the following section, we describe a more general consolidation of suffix co-occurrence evidence for identifying word categories.

6.7 Complete co-occurrence sets

In the procedure described in section 6.5, a suffix characteristic, C, is extended by taking an intersection of the simple co-occurrence sets of all the suffixes in C. Such extended co-occurrence sets might contain suffixes that do not co-occur with each other. This is illustrated in example 6.1

Example 6.1. Suppose the input evidence provides us the following suffix characteristics for the bases $a_s, b_s, c_s \& d_s$:

$$
\begin{align*}
a_s & : \{ s_1, s_2 \} \\
b_s & : \{ s_1, s_3 \} \\
c_s & : \{ s_2, s_4 \} \\
d_s & : \{ s_3, s_4 \} \\
e_s & : \{ s_2, s_3 \}
\end{align*}
$$

Then the extended characteristic for suffix e_s will be

$$\{s_1, s_2, s_3, s_4\}$$

though there is no evidence of co-occurrence of s_1 and s_4.

The pivot suffix based classification approach too has a similar problem. The simple co-occurrence lists (or sets) are computed by considering for each suffix the set of suffixes that have co-occurred with it. Simple co-occurrence sets might contain non-co-occurring suffixes, as illustrated in example 6.2.

Example 6.2. Suppose the input evidence has the words $as_1, as_2, bs_1, bs_3, etc.$ Then the simple co-occurrence set of s_1 will be

$$C^s(s_1) = \{s_1, s_2, s_3\}.$$

If s_1 is eventually identified as a pivot suffix, then the suffix-set $\{s_1, s_2, s_3\}$ will be taken as the set of suffixes for a category of words, whereas there is probably no evidence of co-occurrence of s_2 and s_3. So, it may not be useful to consider the simple co-occurrence list (of s_1, in this case) as the set of suffixes that a particular category of words takes.

The set of suffixes for a category of words should be a co-occurrence set such that every suffix in it has has co-occurred with every other suffix in it. Let us call such a co-occurrence set a *complete co-occurrence* set or list. We symbolically denote a complete co-occurrence set by an upper-case Roman letter with the superscript c. Each set containing a single suffix is complete co-occurrence set, but that is trivial. We are interested in co-occurrence sets that contain all the suffixes that words of a given category takes. More precisely, we are interested in *maximal complete co-occurrence* (MCC) sets of suffixes, i.e., complete co-occurrence sets to which no suffix can be added without violating the complete co-occurrence property. We note that complete co-occurrence sets are subsets of simple co-occurrence sets of the elements of the former. That is,

$$C^c \subseteq C^s(s) \ \forall s \in C^c.$$
One simple idea to obtain an *useful* complete co-occurrence set to is to "clean-up" a simple co-occurrence set C to obtain the largest subset C^c that satisfies the condition of complete co-occurrence set. Suppose, C is the simple co-occurrence set of suffix s_s. That is,

$$ C = C^s(s) = \{s_1, s_2, ..., s_n \}.$$

Let us for the moment, refer to each s_i as a C-suffix. The set C may require to be cleaned-up because a C-suffix s_m may not co-occur with another C-suffix s_n. An intuitive greedy approach to obtain C^c is to successively identify and remove from C the suffixes that do not co-occur with the maximum number of remaining suffixes in C. This may be done until C is a complete co-occurrence set. Suppose C_i is the simple co-occurrence set of the C-suffix s_i. The suffix s_s is present in both C and C_i, since s_s and s_i co-occur. Other than that, both C and C_i may contain elements that are not present in the other. If C-suffix s_m does not co-occur with s_i, then C_i does not contain s_m, and if s_i co-occurs with a suffix s_v that does not co-occur with s_s, C_i will contain suffix s_v that is not in C. Let $|C_i|_C$ is the number of C-suffixes in the set C_i, i.e.,

$$ |C_i|_C = |C_i \cap C|.$$

If there is some suffix s_j for which $|C_j|_C$ is smaller than $|C|$, the suffix s_j for which this count is the lowest deserves to be removed first from C. Let

$$ C' = C - \{s_j\}_s.$$

In the next iteration, take C' in place of C and repeat this process till the simple co-occurrence set of each element of C contains all the elements of C.

Though the method described above is driven by a simple intuitive idea, there are several drawbacks. One is that, there may not be an unique largest subset of C that is a complete co-occurrence set. In the example 6.2, $\{s_1, s_2\}_s$ and $\{s_1, s_3\}_s$ are both complete co-occurrence sets. This drawback actually arises in the step where we identify s_j from among the suffixes of C as the one which has the least number of elements of C in its simple co-occurrence set. There may be more than one such suffix, and taking one and leaving the others in the last iteration implies foregoing possible complete co-occurrence sets as large as the one finally obtained.

The above malady is actually deeper. The subset C^c of C detected by the method may not be the largest possible complete co-occurrence subset of C. In fact, C^c may not be a *maximal* complete co-occurrence subset of C. This is illustrated in example 6.3.

Example 6.3. Suppose C, the simple co-occurrence set of suffix s_s is $\{s_1, s_2, s_3, s_4, s_5, s_6, s_7, s\}_s$, and the following pairs do not actually co-occur (see Fig. 6.4)–

$$ (s_1, s_2)_s, (s_3, s_4)_s, (s_5, s_6)_s, (s_2, s_7)_s, (s_4, s_7)_s \text{ and } (s_6, s_7)_s.$$

The method first removes the suffix s_7 since it does not co-occur with three other suffixes from the simple co-occurrence set of s_s. Subsequently, one suffix each from the pairs $s_1, s_2)_s, (s_3, s_4)_s \text{ and } (s_5, s_6)_s$ is also dropped. Hence, C^c contains four suffixes including s_s. But we observe that $\{s, s_1, s_3, s_5, s_7\}_s$ with five elements is a larger complete co-occurrence subset of C.

Actually, the problem of finding the largest complete co-occurrence subset
Each edge in the graph connects a pair of non co-occurring vertices

Figure 6.4: Example showing non co-occurring pairs

of the simple co-occurrence set C is equivalent to the well known clique problem ([10]) which is an NP-complete problem.

Another important drawback of the above method of finding complete co-occurrence sets is that certain co-occurrences between suffix pairs may not be reflected in any of the complete co-occurrence sets obtained through this method. This is illustrated in example 6.4

Example 6.4. Suppose the set of input words is

$$\{as_1, as_2, as_3, bs_3, bs_4, c_4, c_5, c_6\}$$

where $s_1, s_2, s_3, s_4, s_5, s_6$ are suffixes. The simple co-occurrence sets of the suffixes are

$$s_1 = \{s_1, s_2, s_3\}$$
$$s_2 = \{s_1, s_2, s_3\}$$
$$s_3 = \{s_1, s_2, s_3, s_4\}$$
$$s_4 = \{s_3, s_4, s_5, s_6\}$$
$$s_5 = \{s_4, s_5, s_6\}$$
$$s_6 = \{s_4, s_5, s_6\}.$$

In the complete co-occurrence set for s_3, we drop s_4 since s_4 has never co-occurred with s_1, or s_2. Similarly, in the complete co-occurrence of s_4, s_3 is dropped. The complete co-occurrence lists for each suffix are

$$s_1 = \{s_1, s_2, s_3\}$$
$$s_2 = \{s_1, s_2, s_3\}$$
$$s_3 = \{s_1, s_2, s_3\}$$
$$s_4 = \{s_4, s_5, s_6\}$$
$$s_5 = \{s_4, s_5, s_6\}$$
$$s_6 = \{s_4, s_5, s_6\}.$$

Thus, in the complete co-occurrence lists the co-occurrence of $(s_3, s_4)_c$ is missed. In fact, the above approach is based on simple co-occurrence of individual suffixes only and not on actual suffix characteristics. This is illustrated in example 6.5

Example 6.5. Suppose the set of input words is
\{ a_{s1}, a_{s2}, a_{s3}, a_{s4}, a_{s5},
 b_{s4}, b_{s5}, b_{s6},
 c_{s5}, c_{s6}, c_{s7}, c_{s8} \}.

Then, the complete co-occurrence lists are
\begin{align*}
 s_2 & : \{ s_1, s_2, s_3, s_4, s_5 \} \\
 s_3 & : \{ s_1, s_2, s_3, s_4, s_5 \} \\
 s_4 & : \{ s_1, s_2, s_3, s_4, s_5 \} \\
 s_5 & : \{ s_1, s_2, s_3, s_4, s_5 \} \\
 s_6 & : \{ s_5, s_6, s_7 \} \\
 s_7 & : \{ s_5, s_6, s_7, s_8 \}.
\end{align*}

Here, though no binary co-occurrence is missed, the ternary co-occurrence of \((s_4, s_5, s_6) \) is missed. The subtle reason for this lapse is that each complete co-occurrence set is being computed corresponding to an individual suffix. Though it might be ensured that it is the largest possible complete co-occurrence set for the given suffix, the fact remains that in ensuring the complete co-occurrence property, some of the elements of the simple co-occurrence may get dropped. Let us call the suffix for which a co-occurrence is computed as the \textit{kernel} of the co-occurrence. Because a co-occurrence list is computed for each suffix as a kernel, so each suffix occurs in at least one complete co-occurrence list. However, since some suffixes occurring in a simple co-occurrence list are dropped while computing the complete co-occurrence list, the corresponding co-occurrence information may be lost in the collection of complete co-occurrence lists. To account for such co-occurrences, we may compute complete co-occurrence sets of kernels that are themselves sets of more than one suffix, that is, kernels of size greater than one. The possible number of such kernels is large. However, we need to consider only each of the distinct suffix characteristics of size at least 2, obtained for the input words as a kernel. Moreover, we need not compute the complete co-occurrence set for a kernel that is a subset of an already computed complete co-occurrence set. In practice we may take up larger suffix characteristics earlier.

(Include an algorithm for characteristic wise complete co-occurrence set computation in the appendix.)

In the following section we present a general approach to compute \textit{all} all the maximal complete co-occurrence sets from the available co-occurrence evidence.

6.8 Computing all maximal complete co-occurrence sets

Let the suffixes under consideration be arranged in an order so that we can uniquely refer to each by its position in the order, \(e.g., \) the \(i^{th} \) suffix. Suppose the set of suffixes is

\[S = \{ s_1, s_1, ..., s_n \} \]

so that the \(i^{th} \) suffix is \(s_i \). Let us define a \textit{k-maximal complete co-occurrence set} (k-mcc set), \(S^k \), as a maximal subset of \(S \) such that all suffixes in the range
[s_1, s_k] present in it co-occur with all the suffixes in it. In particular, S^0 = S. Our target is to obtain all the S^n sets. The main idea of our method is to start with S^0 and proceed successively through S^1, S^2, ..., S^n sets. While S^0 is unique (it is S), there can be multiple S^i for each i = 1...n. That is, in general, S^k is not unique. We maintain a list L of k-mcc sets. (In practice, each element in the list is stored as the pair (S^k, k), since the value of k is not obvious in the set S^k.) Initially L contains S^0 which is equal to S. One by one we take out a k-mcc set from L with k = i, and produce k-mcc sets with k = (i + 1). If (i + 1) is equal to n, the k-mcc sets obtained are maximal complete co-occurrence sets and are produced as output; else they are included in L.

Now, let us see how we obtain the (i+1)-mcc sets from S^i. If S^i does not contain the suffix s_{i+1}, S^i itself is the corresponding (i+1)-mcc set. Otherwise, to obtain (i+1)-mcc sets from S^i, we compute Q_j, the set of suffixes in S^i that do not co-occur with s_{i+1}

\[Q_j = S^i \cap (S - C^*(s_{i+1})) \]

[Recall that C^*(\sigma) is the simple co-occurrence set of suffix \sigma.]

If Q_j is empty, S^i is itself the required (i+1)-mcc set. Else, we produce two subsets of S^i, A and B, one that excludes the suffixes that do not co-occur with s_{i+1}, and another that excludes s_{i+1}. That is,

\[A = S^i - Q_j, \]
\[B = S^i - \{s_{i+1}\}. \]

(6.1)

(6.2)

Clearly, all suffixes upto i + 1 present in sets A and B co-occur with the rest of the suffixes present in them, respectively. Now, set A is a k-mcc set with k = (i + 1), if it is maximal upto i + 1. That is, for no j \leq (i + 1), suffix s_j co-occurs with all suffixes in A, but s_j is not in A. In other words, set A is a k-mcc set if for all j \leq (i + 1), s_j is not in A only if A contains some suffix that do not co-occur with s_j. That is, A is a k-mcc set only if

\[\forall j \leq (i + 1), \ s_j \notin A \Rightarrow (A \cap (S - C^*(s_j))) \neq \phi. \]

(6.3)

By similar arguments, B is a k-mcc set only if

\[\forall j \leq (i + 1), \ s_j \notin B \Rightarrow (B \cap (S - C^*(s_j))) \neq \phi. \]

(6.4)

We refer to the above procedure as procedure all_mcc. To show that the procedure all_mcc produces all the maximal complete co-occurrence sets of S, we need to show that-

1. k-mcc sets with k = n are maximal complete co-occurrence sets,

2. the procedure correctly produces (k+1)-mcc sets from a k-mcc set.

3. the procedure produces all possible distinct k-mcc sets with k = n.
The first point above is satisfied since the definition of k-mcc sets (see page 104) implies that for $k = n$, a k-mcc set is a maximal complete co-occurrence set described in section 6.7. Similarly, the second point is satisfied from the arguments associated with the steps of the procedure. To establish the third point, we show that if X is a maximal complete co-occurrence set, procedure \textit{all}_mcc will produce it. For this we trace the steps that the procedure will go through leading to X. Initially, we have S^0 containing all the suffixes, from which we can have one S^1 with s_1 and another without s_1. To trace the formation of X, we choose first or the second S^1 depending on whether X contains s_1 or not. If X does not contain s_1, S^1 also does not, and S^1 contains all the other suffixes. Else, if X contains s_1, it cannot have any suffix that does not co-occur with s_1, and S^1 too does not contain any such suffix, but S^1 contains all other suffixes. Thus $S^1 \supseteq X$. If S^1 contains s_2, in the next step there are two possibilities for S^2:– with s_2 or without s_2. If S^1 does not contain s_2, X will also not have s_2, and we select S^2 without s_2. Otherwise, we select S^2 according to whether X contains s_2. As usual, if S^2 has s_2, it will not have any suffix that does not co-occur with s_2, and X also cannot have any suffix that does not co-occur with s_2. In general, at any stage i, $S^i \supseteq X$ so that in the subsequent step we can have S^{i+1} according to whether X contains s_{i+1} or not. Proceeding in this way we get the sequence of S^i’s so that finally S^n is same as X. The two choices of S^{i+1} at any stage correspond to the sets A and B in equations 6.1 and 6.2. If at any stage one of A and B cannot be retained according to conditions 6.3 or 6.4, it means at least one more suffix s_j, $j \leq i$, that co-occurs with all the other suffixes in that A or B, can be included in it. To trace the formation of X if it is required to select such an A or B, it should be possible to include s_j in X too, since $X \subseteq S^i$. However, since X is a maximal complete co-occurrence set, that would be a contradiction. Hence, it will not be necessary to select a A or B for which the conditions 6.3 or 6.4 respectively, is not satisfied.

Complexity of procedure \textit{all}_mcc

As mentioned in section 6.7 finding the largest complete co-occurrence subset of the simple co-occurrence set is equivalent to the well known \textit{clique problem} ([10]) which is an NP-complete. With a little modification procedure \textit{all}_mcc can be used to find the largest complete co-occurrence subset of a given simple co-occurrence set, without affecting its complexity. Hence procedure \textit{all}_mcc too is NP-complete. The required modification in procedure \textit{all}_mcc is to start with the given simple co-occurrence set instead of the complete suffix set S, and let L refer to the NULL set (of size 0). Whenever an S^n set is produced, if it is larger than L, L is made to refer to it. Finally, set L is the required set.

Procedure \textit{all}_mcc is equivalent to a binary-tree building procedure where nodes at depth i correspond to k-mcc sets with $k = i$. The root corresponds to the 0-mcc set, and the leaf nodes at depth n correspond to the k-mcc sets with $k = n$, i.e., the maximal complete co-occurrence sets. First the simple co-occurrence sets for each of the n suffixes is computed by considering
characteristic sets of \(m \) base words. This requires effort of order \(O(m \times n^2) \). Then starting from the root, the tree is built in a top-down fashion, *visiting* each node. The maximum possible number of nodes in the tree is \(2^n + 1 \). At each node, using the already computed simple co-occurrence sets,

- computation of \(Q \) is of order \(O(n) \)
- computation of \(A \) by equation 6.1 is of order \(O(n) \)
- computation of \(B \) by equation 6.2 is of order \(O(n) \)
- computation of condition 6.3 is of order \(O(n^2) \)
- computation of condition 6.4 is of order \(O(n^2) \)

Hence, the total computation at each node is

\[
3 \times O(n) + 2 \times O(n^2).
\]

The asymptotic estimation of the above is \(O(n^2) \). For the entire procedure \(\text{all}_m\text{c} \) the computation required is the sum of the computation of the simple co-occurrence sets and then the computation of the tree. This is equal to

\[
O(m \times n^2) + O(2^n \times n^2).
\]

Assuming that the \(2^n \) is larger than \(m \), the asymptotic complexity of procedure \(\text{all}_m\text{c} \) is \(O(2^n \times n^2) \).

Though the above estimated complexity of procedure \(\text{all}_m\text{c} \) is very high, in practice the computation required is much less. First, in the computation of the simple co-occurrence sets the effort required corresponding to a suffix characteristic \(i \) with \(p_i \) suffixes is actually of the order \(O(p_i^2) \) and not \(O(n^2) \). Hence, the computation of the simple co-occurrence sets is of the order \(\sum_{i=1}^{m} p_i^2 \).

Again, in the process of computing the \(k\text{-mcc} \) sets, that is equivalent to the construction of a binary tree, a complete binary tree is not computed. Branches of the tree are pruned in several conditions. While computing \(S^{i+1} \) from \(S^i \), if \(s_{i+1} \) is not present in \(S^i \), or when \(Q \) is empty, only one \(S^{i+1} \) is obtained, *i.e.*, only one child is created for the node corresponding to \(S^i \). Again, if conditions 6.3 or 6.4 is not satisfied, the node corresponding to \(A \) or \(B \) respectively, is dropped. The occurrence of these conditions depends on the overall co-occurrence pattern of the suffixes in a complex way.

Despite being a computationally expensive, procedure \(\text{all}_m\text{c} \) can be useful since it is required only in the training phase of classification, which can be called an “off-line” exercise. In dealing with test input, it need not be performed.

Experimental results

We have carried out experiments for finding out the maximal complete co-occurrence sets over the input described in page 90. Since the input is a morphological lexicon built with an unsupervised method, it contains invalid suffixes as well as invalid decompositions too. The number of maximal complete co-occurrence sets obtained is 2167, when the minimum co-occurrence support value used is 1. Few of these sets, for instance, are

107
With minimum co-occurrence support value 2, the number of maximal complete co-occurrence sets is 351. When minimum co-occurrence support value is greater than 1, then it is likely that some suffix characteristics are not covered by any MCC sets. These are characteristics that contain weak co-occurring suffix-pairs.

To get an idea of the computational effort spent in procedure _all_mcc_ we observe the following statistics of the tree construction when minimum co-occurrence support value is 1:

(a) No. of suffixes considered : 122
(b) No. of MCC sets identified : 2167
(c) No. of non-MCC nodes visited in tree : 38854
(d) No. of times suffix _s<i+1> is absent in _S<i> : 190291
(e) No. of times suffix _s<i+1> co-occurs with all of _S<i> : 49495
(f) No. of times set A is dropped : 7863
(g) No. of times set B is dropped : 26658
(h) No. of times both sets A&B are dropped : 5400

Total nodes in the tree is the sum of the non-MCC nodes and the nodes corresponding to the MCC-set, _i.e._, 2167 + 38854 = 41021. This is quite an acceptable figure for 122 suffixes, considering that the procedure _all_mcc_ is an NP-complete procedure. Statements (d) and (e) gives the number of times _S<i> is taken as _S<i+1> as the only child of a node. (f) and (g) too, indicates number of times only one child is obtained for a node. Statement (h) indicates number of times when a _k-mcc_ set is totally abandoned since it cannot lead to any MCC set. The count in statement (d) is significant because, in our implementation, when suffix _s<i+1> is absent in _S<i>, we simply reuse the node corresponding to _S<i> for _S<i+1> instead of creating a new node. This saves the creation of many new nodes in the process.

The number of MCC sets obtained is very high, particularly when the minimum co-occurrence support value is 1. This number is even higher than the number of distinct suffix characteristics, 1987, mentioned in section 6.3.1. Obviously, there are more MCC sets than is required for the input characteristics. In section 6.8.1 we discuss an approach for selecting essential MCC sets.

6.8.1 Essential maximal complete co-occurrence sets

Each MCC set has a unique composition of suffixes, which we consider as the distinctive set of suffixes of a category of words. No MCC set is a subset
of another MCC set. MCC sets are formed by consolidating co-occurrence evidence from suffix characteristics of several base words, in such a way that each suffix characteristic is covered by at least one MCC set. It is possible that no single characteristic exactly matches a particular MCC set. If a base word has occurred with adequate number of suffixes, its suffix characteristic is exclusively covered by only one MCC set, and it can be classified into an unique word class. Otherwise, its suffix-characteristic is a subset of multiple MCC sets.

Procedure all_mcc in section 6.8, identifies more MCC sets than is required to cover all the input suffix characteristics. Many of these probably represents only theoretical word classes. We are interested in selecting the minimum number of MCC sets that can cover all the input characteristics. For this we carry out the following steps:

1. Retain the MCC sets that exclusively cover some suffix characteristics. We refer to these MCC sets as M1 MCC sets. For minimum co-occurrence support 2, the no of M1 MCC sets is 87.

2. We refer to the suffix characteristics that are not covered by M1 MCC sets as S2 characteristics. For the S2 characteristics we find MCC sets that cover them. We refer to these as M2 MCC sets. Since S2 sets are not exclusively covered by any MCC set, hence there shall be more than one MCC sets that cover each S2 set. So, for identifying M2 MCC sets there can be the following possibilities-

 (a) Identify all MCC sets that cover an S2 characteristic set. The advantage of this criteria is that for the S2 sets all possibilities without violating the input co-occurrence evidence are open. The drawback is that the number of MCC sets selected is large and there is much redundancy. In our experiment with minimum co-occurrence support value 2, the number of M2 MCC sets identified like this is 219.

 (b) For an S2 characteristic set that is not covered by any of the already identified M2 set, select the largest MCC set that covers it. The idea is that a large MCC set is likely to cover other S2 sets too, so that the total no of M2 sets identified is less. In our experiment with minimum co-occurrence support value 2, the number of M2 MTC sets identified like this is 82.

 (c) Let us refer to the S2 characteristics that are not subsets of other S2 characteristics, as S3 sets. For each non-M1 MCC set find the number of S3 sets that it covers. Then iteratively select as M2 the MCC set that covers the largest number of remaining S3 sets, till all the S3 sets are covered. This is a greedy approach to select the minimum number of M2 sets. It restricts the classification possibilities for the S2 sets, but selects the minimum number of MCC sets, by retaining only the essential MCC sets. In our experiment with minimum co-occurrence support value 2, the number of M2 MCC sets identified is 35.
In another experiment of identifying the essential MCC sets, we take as input the suffixation evidence in the lexicon obtained from corpus A of over 1,16,000 words (see page 61). We consider suffixes with occurrence frequency greater than or equal to 7. With minimum co-occurrence support 2, the results obtained can be summarised as:

<table>
<thead>
<tr>
<th>Total MCC sets obtained</th>
<th>208</th>
</tr>
</thead>
<tbody>
<tr>
<td>Essential MCC sets:</td>
<td></td>
</tr>
<tr>
<td>M1 sets</td>
<td>83</td>
</tr>
<tr>
<td>M2 sets by approach 2a</td>
<td>102</td>
</tr>
<tr>
<td>M2 sets by approach 2b</td>
<td>35</td>
</tr>
<tr>
<td>M2 sets by approach 2c</td>
<td>16</td>
</tr>
</tbody>
</table>

6.9 Minimal signatures of word categories

Once the underlying words categories in a language are identified in terms of the set of suffixes that can be applied to words of that category, it is possible to classify words into these categories by considering the suffixes that are seen with that word. However, since the sets of suffixes corresponding to different word categories may be overlapping, and each base word in a given input generally occur with only a subset of all the possible suffixes for its category, the classification may be in-exact. Let us refer to a set of suffixes that can be uniquely associated with a word category as a signature of the category. A word can be exclusively classified into a category if it has occurred with the signature of the category.

The complete set of suffixes that can occur with words of a given category, is a signature of the category. Apart from that there can be subsets of suffixes that are signatures of the word categories. For example, in the pivot suffix model of word classification (section 6.6), each pivot suffix and co-pivot suffix is a signature of the word category it represents. Suppose, C_1, C_2, \ldots, C_n are the complete sets of suffixes associated with n different categories of words respectively. A set of suffixes S_i is a signature of the class i if $S_i \subseteq C_i$ and $S_i \not\subseteq C_j$, $j \neq i$. In general, there may not be any single-suffix signature of a word category. Instead, it is possible to identify minimal sets of suffixes that are signatures. We refer to these as minimal signatures of word categories. A signature S_i of category i is minimal if no proper subset of S_i is a signature of category i. There may be more than one minimal signatures for each word category. Finding all the minimal signatures of word category is a computationally expensive exercise. In section C.4 we describe a general procedure for finding all the minimal signatures of word categories.

It must be pointed out that since the number of minimal signatures can be more than the number of word categories, they do not enhance the effectiveness or efficiency of word classification. Suppose the number of word categories is N and the number of minimal signatures is R, so that $N \leq R$. To determine if a word can be exclusively put in one of the categories, we have to see if its suffix characteristics is a subset of exactly one of the N sets of suffixes corresponding to the N categories. The effort required for this is of order $O(N)$. Alternatively,
if we consider the minimal signatures for the purpose, then we have to see if any of the \(R \) minimal signatures is a subset of the suffix characteristic of the word. The effort required will be of the order \(O(R^2) \).

6.10 Shortcomings of suffix based word classification

Unsupervised methods for identifying word categories from suffixation evidence depends heavily on suffix characteristics of individual words and co-occurrences of suffixes. Hence, base words that are inherently ambiguous about their category make the classification task difficult. For example, the word \(khel_A \) (খেল) is ambiguous since it can be used as a noun to mean a “game” and as a verb to mean “play”. In an input text, \(khel_A \) may occur with suffixes for nouns as well as suffixes for verbs. If that happens in the training corpus, it will appear that \(khn_A \) which is a suffix for nouns, co-occurs with \(ichil_A \) which is a suffix for verbs. That is, the suffix characteristic of \(khel_A \) may imply suffix co-occurrences that are actually exceptions which should not be generalised. Again, there are certain suffixes in Assamese, particularly the determiners, whose applicability depends on some very subtle criteria. This leads to formation of too many word categories. Such fine categories of words reflects the morphological behaviour well, but it may make a subsequent exercise such as syntax modelling, difficult. We feel that it may be useful to group some such word categories according to their syntactic behaviour. Thus there will be some kind of heirarchical classification of words.

Another shortcoming of the whole idea of word classification based on suffix evidence is that there can be some categories of words that do not take any suffixes. For example, in Assamese, the words \(Aru_A, bA_A, ki / ntu_A \), (আক, বা, কিস্তু, meaning and, or, but), etc., generally do not take any suffix. Suffix based methods may at most identify all such words as belonging to a single category. In a highly inflectional language like Assamese, where most of the root words may undergo suffixation, this is not a very serious problem. (All the above three words really belong to a single category - conjunctions.) However, one should be careful in such decisions because a word may appear without suffix only in the corpus being considered. A simple criteria can be - if the word has occurred a large number of times in the corpus, but always occurred without suffix, probably it never takes any suffix.

6.11 Summary

We have represented the problem of affix-based word classification in terms of sets and discussed some possible approaches for unsupervised identification of linguistic categories of words in a language using information of association of suffixes with different words in a corpus. Then we have described how, the

\(^2\text{For successful cases the effort required will be on an average of order } O(R/2)\).
words can be subsequently classified into the identified categories using the same input morphological evidence.
Chapter 7

Conclusions and Future Work

Morphological analysis is a very significant step of NLP for highly inflectional languages such as Assamese. Morphology and syntax are two complementary parts of the structural aspects of natural language expression. And it is according to the structure of an expression that the overall primary meaning of the expression is composed from the implicit meanings of the individual elements of the expression. Because of the structural nature of morphology, simple computational methods can serve as the initial steps for acquisition of morphology of a language and morphological analysis. More efforts beyond the simple methods are required to tackle different language specific and script specific issues.

We have been largely successful in computational acquisition of the morphology of Assamese. We believe ours is the first such achievement, and hence pioneering. Our work is particularly significant because morphology is the dominant structural phenomenon in Assamese. The remaining structural analysis of Assamese texts can greatly benefit from the morphological analysis. One of the products of our work is a morphological lexicon for Assamese which can be used in different end-user applications.

We have identified and tackled several issues inherent in using a raw text corpus for acquisition of morphology of a language. We have also dealt with language specific and script specific issues in the process.

In the subsequent task of applying the acquired morphological knowledge for analysis of input texts, we have developed methods that give fairly acceptable results. Our method is more effective than other proposed methods that we have studied (e.g., [12, 15]). This accomplishment can be considered an important milestone of NLP for Assamese. The morphological analysis provided by our method can be directly used for further processing of Assamese texts, such as syntax and semantic processing.

The morphological structures of words provide clues regarding the categories of the words. However, care is required in drawing inferences from evidence provided by a corpus. We have defined novel set-theoretic approaches for classification of words based on their morphological behaviour, taking into account the complicacies that arise in these tasks. We have also presented sound
theoretical explanations of the procedures involved. These give good results wherein words are put in more fine grained categories compared to usual word classes. Such classification can be of great use in subsequent syntax analysis of the texts.

We would like to remark that, since morphology evolves according to the spoken form of a language, for its unsupervised acquisition from a written corpus, it will be helpful if the script clearly and unambiguously reflects the phonological structure of the expressions. This depends on the orthography of the languages. We find that Assamese orthography is stronger than English. In English the pronunciations of words often cannot be accurately figured from their spellings alone. In Assamese it is not so. On the other hand, the Assamese script has lot of redundancy as far has its spoken form is concerned. Unsupervised acquisition of morphology would be easier if such redundancy can be removed. A more pronunciation specific encoding may be useful in this regard. On that count Hindi, which uses the Devanagri script is better off. But Hindi is not as morphologically rich as is Assamese.

7.1 Future Work

Though significant, morphological analysis is only part of the larger problem of NLP. The work can be followed by the remaining NLP tasks. Also, there is scope for improvement in the tasks that we have accomplished. Varying degrees of supervision can be introduced to get more accurate results.

One immediate follow-up work can be implementation of a spelling-checker for the language we have considered, i.e., Assamese. For a highly inflectional language a spelling-checker can be effective only if it has substantial morphological analysis capabilities. Also, the lexicon that we have produced is a useful resource for such purposes.

In word classification, there is scope for more realistic word categories which are more suitable for subsequent tasks such as syntax analysis. Stronger measures to tackle the effect of noise and sparseness of evidence may be sought. One possibility is to consider suffix sequences information for classification, since compared to individual suffixes, suffix-sequences are generally less ambiguous and less noise-prone. It will also be interesting to try the pivot-suffix based method as well as the MCC based method on better quality suffixation evidence prepared by supervised methods.

In a task like NLP that is usually carried out in stages, results or insights gained in one stage can be useful in resolving issues of an earlier phase. In context of our work, we feel that the figured category attribute of a word can be used to improve the quality of decompositions related to that word, by ruling out candidate decompositions that are not valid for that category. Similarly, feedback from syntax analysis stage can provide hints for word decomposition as well as word classification. Experiments in this line can be taken up as an immediate extension of our work.

As mentioned in the previous section, writing systems that reflects the
phonology of words more realistically can improve unsupervised acquisition of morphology. Experiments with more phonetically driven encoding schemes can be carried out. Also, since different encoding schemes are in use for Assamese texts in computers, suitable transliteration software can be developed to interoperate between these schemes. It will enhance the benefits obtained from work such as ours, making them more effective.
Appendix A

The Assamese Alphabet

The basic Assamese alphabet is traditionally presented in a tabular format as shown in Table A.1.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>অ</td>
<td>আ</td>
<td>ই</td>
<td>ঈ</td>
</tr>
<tr>
<td>2</td>
<td>ঊ</td>
<td>ঋ</td>
<td>ঌ</td>
<td>঍</td>
</tr>
<tr>
<td>3</td>
<td>এ</td>
<td>ঐ</td>
<td>ঐ</td>
<td>ঐ</td>
</tr>
<tr>
<td>4</td>
<td>ও</td>
<td>ঔ</td>
<td>ঔ</td>
<td>ঔ</td>
</tr>
<tr>
<td>5</td>
<td>খ</td>
<td>গ</td>
<td>ঘ</td>
<td>ঙ</td>
</tr>
<tr>
<td>6</td>
<td>ছ</td>
<td>জ</td>
<td>ঝ</td>
<td>ঞ</td>
</tr>
<tr>
<td>7</td>
<td>ঠ</td>
<td>ড</td>
<td>ঢ</td>
<td>ণ</td>
</tr>
<tr>
<td>8</td>
<td>থ</td>
<td>দ</td>
<td>ধ</td>
<td>ন</td>
</tr>
<tr>
<td>9</td>
<td>ফ</td>
<td>ব</td>
<td>ভ</td>
<td>ম</td>
</tr>
<tr>
<td>10</td>
<td>র</td>
<td>ল</td>
<td>র</td>
<td>ল</td>
</tr>
<tr>
<td>11</td>
<td>ফ</td>
<td>ড</td>
<td>ঢ</td>
<td>য</td>
</tr>
<tr>
<td>12</td>
<td>ঙ</td>
<td>ঙ</td>
<td>ঙ</td>
<td>ঙ</td>
</tr>
</tbody>
</table>

Table A.1: The basic Assamese alphabet

Rows 1-3 of the alphabet in Table A.1 are the vowels, and the rows 4-11 are consonants. The four symbols in row 12 are partial consonants. They can occur only associated with other letters. Thus their effect is not evident from their names (see pronunciation chart below). In addition, there are three more consonant operators - ra-kAr (㄰, e.g., প্রক্ল, read as prabal), ref (㄰, e.g., কর্ম, read as karma) and ja-kAr (㄰, e.g., ব্যায়, read as byay), which can be associated with the consonants in rows 4-11. Their effect is to modify the pronunciation of the associated consonant. The Roman transcription used in this document for these operators are r, r and J, respectively.

Each of the vowels except the first vowel ‘a’ (অ), has a corresponding operator symbol as shown in Table A.2. In writing a word these operators may be associated with the consonants in rows 4-11. Without a vowel operator, the pronunciation of a consonant is either supported by the default (inherent) vowel ‘a’ (অ), or by the preceding vowel (possibly associated with a consonant). When
A vowel operator is associated with a consonant the consonant is pronounced followed by that vowel.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>क अ कः कृ</td>
<td>क अ कः कृ</td>
<td>क अ कः कृ</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>उ अ उः उृ</td>
<td>उ अ उः उृ</td>
<td>उ अ उः उृ</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ए ए एः एृ</td>
<td>ए ए एः एृ</td>
<td>ए ए एः एृ</td>
<td></td>
</tr>
</tbody>
</table>

(The consonant क is used as an example)

Table A.2: The vowel operators

The approximate pronunciation of the letters are given below:

<table>
<thead>
<tr>
<th>Sl.No.</th>
<th>Assamese letter</th>
<th>Roman transcription used in this document</th>
<th>read-as (approx.)</th>
<th>example</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>अ</td>
<td>a</td>
<td>o</td>
<td>the a in tall</td>
</tr>
<tr>
<td>2.</td>
<td>आ</td>
<td>A</td>
<td>aa</td>
<td>the a in part</td>
</tr>
<tr>
<td>3.</td>
<td>ই</td>
<td>i</td>
<td>hraswa-e</td>
<td>the i in bit</td>
</tr>
<tr>
<td>4.</td>
<td>इ</td>
<td>I</td>
<td>dirgha-e</td>
<td>the ee in feet</td>
</tr>
<tr>
<td>5.</td>
<td>ও</td>
<td>u</td>
<td>hraswa-o</td>
<td>the u in pull</td>
</tr>
<tr>
<td>6.</td>
<td>উ (Rh)</td>
<td>U</td>
<td>dirgha-o</td>
<td>the oo in school</td>
</tr>
<tr>
<td>7.</td>
<td>খ</td>
<td>Rh</td>
<td>ri</td>
<td>the ri in Krishna</td>
</tr>
<tr>
<td>8.</td>
<td>এ</td>
<td>e</td>
<td>a</td>
<td>the a in pack</td>
</tr>
<tr>
<td>9.</td>
<td>ঐ</td>
<td>E</td>
<td>oi</td>
<td>the ai in Jain</td>
</tr>
<tr>
<td>10.</td>
<td>঒</td>
<td>o</td>
<td>o</td>
<td>the oa in coat</td>
</tr>
<tr>
<td>11.</td>
<td>খ (O)</td>
<td>O</td>
<td>ou</td>
<td>the ow in rowed</td>
</tr>
<tr>
<td>12.</td>
<td>ख</td>
<td>k</td>
<td>ka</td>
<td>the ca in call</td>
</tr>
<tr>
<td>13.</td>
<td>ख</td>
<td>kh</td>
<td>kha</td>
<td>the kha in Jharkhand</td>
</tr>
<tr>
<td>14.</td>
<td>ग</td>
<td>g</td>
<td>ga</td>
<td>the ga in gall</td>
</tr>
<tr>
<td>15.</td>
<td>घ</td>
<td>gh</td>
<td>gha</td>
<td>the gh in ghost</td>
</tr>
<tr>
<td>16.</td>
<td>ओ</td>
<td>nG</td>
<td>unga</td>
<td>the ng in hanger</td>
</tr>
<tr>
<td>17.</td>
<td>च</td>
<td>c</td>
<td>pratham-sa</td>
<td>the s in gas</td>
</tr>
<tr>
<td>18.</td>
<td>छ</td>
<td>C</td>
<td>dwitiya-sa</td>
<td>(similar to pratham – sa)</td>
</tr>
<tr>
<td>19.</td>
<td>झ</td>
<td>z</td>
<td>bargiya-za</td>
<td>the z in Amazon</td>
</tr>
<tr>
<td>20.</td>
<td>ञ</td>
<td>jh</td>
<td>jha</td>
<td>the Jh in Jharkhand</td>
</tr>
<tr>
<td>21.</td>
<td>ङ</td>
<td>nY</td>
<td>nya</td>
<td>the ian in fiance</td>
</tr>
<tr>
<td>22.</td>
<td>ठ</td>
<td>T</td>
<td>mrdhanya-ta</td>
<td>the to in top</td>
</tr>
<tr>
<td>23.</td>
<td>ठ</td>
<td>Th</td>
<td>mrdhanya-tha</td>
<td>the th in thousand</td>
</tr>
<tr>
<td>24.</td>
<td>ड</td>
<td>D</td>
<td>mrdhanya-da</td>
<td>the do in doctor</td>
</tr>
<tr>
<td>25.</td>
<td>ढ</td>
<td>Dh</td>
<td>mrdhanya-dha</td>
<td>the Dh in Dhaka</td>
</tr>
<tr>
<td>26.</td>
<td>ण</td>
<td>N</td>
<td>mrdhanya-na</td>
<td>the n in Ganesh</td>
</tr>
<tr>
<td>27.</td>
<td>त</td>
<td>t</td>
<td>dantya-ta</td>
<td>(similar to mrdhanya-ta)</td>
</tr>
<tr>
<td>28.</td>
<td>थ</td>
<td>th</td>
<td>dantya-tha</td>
<td>(similar to mrdhanya-tha)</td>
</tr>
</tbody>
</table>
29. ्द
30. ्ध dh
31. ्न n
32. ्प p
33. ्फ ph
34. ्ब b
35. ्भ bh
36. ्म m
37. ्य j
38. ्ब r
39. ्ल l
40. ्व w
41. ्श sh
42. ्ष S
43. ्स s
44. ्ह H
45. ्क X
46. ्ड R
47. ्ढ rh
48. ्ण y
49. ्त t
50. ्ब #
51. ्ं :
52. ्ँ *
53. ्म r
54. ़् r
55. ़् J

A.1 The Numerals

0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9

1 the inherent vowel ‘a’ is to be added.
Appendix B

Suffixed forms of Assamese nouns and verbs

List A:
1. l’rA (ল’sা) 2. l’rATo (ল’sাt়া)
3. l’rAzn (ল’sাজন) 4. l’rAk (ল’sাক)
5. l’rAbor (ল’sাবর) 6. l’rAbiAk (ল’sাবিক) 7. l’rAkhn (ল’sাখন) 8. l’rAmkhA (ল’sামখা) 9. l’rAskl (ল’sাসকল) 10. l’rAsmUH (ল’sাসমুহ)
11. l’rAgAIl (ল’sাগাইল) 12. l’rAzAk (ল’sাজাক)
13. l’rAkeiTA (ল’sাকেইতাই) 14. l’rAkeizn (ল’sাকেইজন)
15. l’rAH*’t (ল’sাহি)

List B:
1. l’rAi (ল’sাই) 2. l’rAmkhAi (ল’sামখাই)
3. l’rAkeiTai (ল’sাকেইতাই)

List C:
1. l’rATowe (ল’sাটওয়া) 2. l’rAze (ল’sাজে)
3. l’rAkne (ল’sাকন) 4. l’rAbo (ল’sাবো)
5. l’rAbiAke (ল’sাবিঅকে) 6. l’rAkhi (ল’sাখিয়া)
7. l’rAske (ল’sাসকে) 8. l’rAsmUHe (ল’sাসমুহে)
9. l’rAzAke (ল’sাজাকে) 10. l’rAgAle (ল’sাগালে)
11. l’rAkeizne (ল’sাকেইজনে) 12. l’rAH*’te (ল’sাহি

To each form in List A, the following (composite) suffixes can be appended:

- k (ক) - kno (কনো) - kei (কেই) - kHe (কেহ)
- klE (ক্লে) - klEOno (ক্লেনো) - klEHe (ক্লেহে) - keiHe (কেইহে)
- keino (কেইনো) - kto (ক্টো) - keito (কেইটো) - r (র)
- rno (রনো) - rei (রেই) - rHe (রেহ) - reiHe (রেইহে)
- rto (রতো) - rtono (রতোনো) - reito (রেইতো) - rtoHe (রেতোহে)
- lE (লে) - lEOno (লেনো) - lEHe (লেহে) - lEto (লেতো)

To each form in List B, the following (composite) suffixes can be appended:

- yei (যেই) - yeicon (যেইচান) - yeino (যেইনো) - yeiHe (যেইহে)
- yeito (যেইতো)
To each form in List C, the following (composite) suffixes can be appended:

- *i* (-ি)
- *icon* (কোন)
- *ino* (নো)
- *iHe* (হে)
- *ito* (ইতো)

To each form in Lists A, B and C, the following (composite) suffixes can be appended:

- *no* (-নো)
- *He* (হে)
- *con* (কোন)

Total:

\[A + B + C + (A \times 24) + (B \times 5) + (C \times 5) + ((A + B + C) \times 3) \]

i.e., 15 + 3 + 12 + 360 + 15 + 60 + 90 = 555 forms

(Some other possible forms are omitted).

Table B.1: Suffixed forms of the noun *l’rA* (meaning boy)
List A:
1. bH (বহ) 2. bHo* (বহো*)
3. bHicho (বহিছো) 4. bHilo (বহিলো)
5. bHichilo (বহিছিলো) 6. bHim (বহিম)
7. bHA (বহা) 8. bHichA (বহিছো)
9. bHiA (বহিলো) 10. bHichiA (বহিছিলো)
11. bHiB (বহী) 12. bHk (বহক)
13. bHiche (বহিছে) 14. bHile (বহিলে)
15. bHichile (বহিছিলে) 16. bHib (বহি)
17. bHe (বহ) 18. bHi (বহিল)
19. bHAo* (বহাছো) 20. bHAIcho (বহাছিলো)
21. bHAlo (বহালো) 22. bHAIchilo (বহাছিলো)
23. bHAm (বহাম) 24. bHowA (বহোরা)
25. bHAIchA (বহাছো) 26. bHAIlo (বহালো)
27. bHAIchilo (বহাছিলো) 28. bHAbA (বহাবাদ)
29. bHAI (বহাই) 30. bHAIche (বহাছে)
31. bHAIle (বহালে) 32. bHAIchile (বহাছিলে)
33. bHAb (বহাব) 34. bHuwAo* (বহূরাছো)
35. bHuwAicho (বহূরাছিলো) 36. bHuwAlo (বহূরালো)
37. bHuwAichilo (বহূরাছিলো) 38. bHuwAm (বহূরাম)
39. bHuwA (বহূরা) 40. bHuwAichA (বহূরাছো)
41. bHuwAlo (বহূরালো) 42. bHuwAichilo (বহূরাছিলো)
43. bHuwAbA (বহূরাবাদ) 44. bHuwA (বহূরা)
45. bHuwAi (বহূরাই) 46. bHuwAiche (বহূরাছে)
47. bHuwAle (বহূরালে) 48. bHuwAb (বহূরাব)

List B:
1. bHcon (বহচন) 2. bHo*con (বহোঁচন)
3. bHAcon (বহচন) 4. bHkcon (বহকচন)

List C:
1. bHiblE (বহিলে) 2. bHiblEHe (বহিলেহে)
3. bHiblEto (বহিলেতো) 4. bHiblEo (বহিলেও)
5. bHiblEno (বহিলেনো) 6. bHiblEono (বহিলেনো)
7. bHiblEne (বহিলেনে) 8. bHo*te (বহোঁতে)
9. bHA (বহাত) 10. bHo*teo (বহোঁতেতো)
11. bHAt (বহাত) 12. bHo*teHe (বহোঁতেহে)
13. bHAtHe (বহাতহে) 14. bHo*teoto (বহোঁতেতেতো)
15. bHo*teje (বহোঁতেজে) 16. bHAtje (বহাতজে)
17. bHo*teoje (বহোঁতেজেতো) 18. bHAtjoe (বহাতজেতো)
19. bHo*teno (বহোঁতেনো) 20. bHAtno (বহাতনো)
21. bHo*teono (বহোঁতেনোতো) 22. bHAtono (বহাতনোতো)
23. bHimcon (বহিমচন) 24. bHibAc (বহিবচন)
25. bHibcon (বহিবচন) 26. bHo*con (বহোঁচন)
27. bHAcon (বহাচন) 28. bHkcon (বহকচন)

To each form in List A, the following (composite) suffixes can be appended:
To each form in List B, the following suffixes can be appended:

- gE (גַּנְו)
- He (ה')
- Hi (הָי')
- ne (טָנ)
- $Hicon$ (הִיקְנ)
- $gEHe$ (גָּהֲנָה)
- to (טו)
- je (גַּג)

Total: $A + B + C + (A \times 9) + (B \times 2)$
i.e., $48 + 4 + 28 + 432 + 8 = 520$ forms
(Some other possible forms are omitted).

Table B.2: Suffixed forms of the verb bH (meaning sit)
Appendix C

Implementation Outlines

C.1 Initial decompositions

A simple way to identify decompositions for words in a list with other words in
that list as bases, is to first sort the words alphabetically. This would ensure
that if a word can be decomposed then the corresponding bases would occur
in the preceding neighbourhood in the sorted list. More specifically, the process
can be stated as-

Algorithm 1:

1. Let input text be T

2. Form a sorted list, L, of distinct words in T.

3. For each word w_i in L, identify another word $w_j, j < i$ in L such that w_i
can be obtained by appending some (non-null) suffix s to w_j. This gives
the decomposition

$$w_i = w_j + s_s.$$

If no w_j can be identified for a w_i, w_i is “undeecomposed”.

C.2 Unifying decompositions

Suppose we have the set of initial decompositions, D. Each decomposition is
of the form

$$w = b + x_s,$$

where w_s is the word being decomposed, b_s is the base, and x_s is a suffix.
For some words there can be more than one decompositions in D each with a
differed base-suffix pair. To obtain a single decomposition for such words by
combining the multiple decompositions, the following steps can be performed:
Algorithm 2:
1. Sort the decompositions in D on the word field so that multiple decompositions of the same word occur together.
2. Scan the decompositions to identify words that have multiple decompositions.
3. If for a word, w_s, there is a single decomposition, output that decomposition.
4. Else, suppose there are n decompositions of a word, w_s.
5. For each of the n decompositions of w_s, initialise a “cursor” that points to the first letter of the base.
6. Iteratively till the end of the decompositions is reached, if one or more of the cursors are over a partition point (a ‘+’ mark) in the respective decompositions, output a partition point, and advance only those cursors. Else, output the letter under the cursor and advance all the cursors by one letter.

C.3 Finding suffix-sequences

Suppose we have the set of initial decompositions, D. Each decomposition is of the form

$$[w = b + x]_s,$$

where w_s is the word being decomposed, b_s is the base, and x_s is a suffix. From D suffix-sequences can be identified using the following steps-

Algorithm 3:
1. Unify the decompositions in D to obtain a list of decompositions L, that is sorted on the word field.
2. Initialise list of output decompositions, M as EMPTY.
3. From beginning of L, for each decomposition do step 4.
4. Suppose from L we read the decomposition

$$[w = b + x_1]_s.$$

If there is a decomposition of the word b_1 in M as

$$[b = b_1 + x_2]_s,$$

put in M the decomposition

$$[w = b_1 + x_2 + x_1]_s.$$

Both x_{1s} and x_{2s} are single suffixes or themselves suffix sequences.
5. At the end M has decompositions involving suffix sequences.
C.4 Compute minimal signatures of suffixes of word categories

Suppose S is the set of suffixes $\{s_1, s_2, \ldots, s_n\}$, and C_1, C_2, \ldots, C_m are the sets of the suffixes associated with distinct word categories, obtained from the given suffixation evidence. We assume that $C_i \not\subseteq C_j$ for distinct values of i and j between 1 and m. That is, each C_i is a signature. However, it may be possible to drop some elements from C_i such that the reduced set is still a signature. Our objective is to find for each C_i, minimal sets of suffixes that are its signatures.

To find the minimal signatures of one of the suffix sets C_i a general approach is to partition C_i into two – partition A and partition B. Initially partition A is empty and $B = C_i$. Through a recursive procedure, we move selected suffixes from B to A till A is a signature. Until A becomes a signature, A is a subset of more than one distinct C_j. We say that a suffix in B is significant if upon including it in A, A becomes the subset of fewer distinct C_j. The outline of the recursive procedure is given below as procedure $\text{min}_\text{sign}(A, B)$:

Algorithm 4:

procedure $\text{min}_\text{sign}(A, B)$

1. begin
2. while A is not a signature
3. remove a suffix s from B
4. if s is not significant
5. proceed to next iteration
6. else
7. if ($A \cup B$) is a signature // B does not have s now
8. $\text{min}_\text{sign}(A, B)$;
9. endif
10. include s in A
11. proceed to next iteration
12. endif
13. endwhile
14. if A is not superset of already declared minimal signature
15. declare A as a minimal signature;
16. endif
17. end

Procedure $\text{min}_\text{sign}(A, B)$ is equivalent to a binary-tree building process in top-down fashion. A distinct pair (A, B) is associated to each node. At the root, A is empty and $B = C_i$. By the while-loop we traverse down from the root through the left-children to a leaf. In step 8, we create a new sub-tree through recursion, with its root as the right-child of the current node. In step 11, we proceed to the other child of the current node, to repeat the exercise. If there are p suffixes in C_i, the number of nodes in the tree can be up to $2^{p+1} - 1$. In practice, for our given problem, the the number is far less.
To decide whether a set \(X \) is a signature we need to determine if \(X \) is a subset of exactly one of the sets \(C_1, C_2, ..., C_m \). If \(X \) has \(p \) number of suffixes, the computation required for this is of the order \(O(p \times m) \). Similarly, to decide whether suffix \(s \) is significant, we have to count the number of sets \(C_1, C_2, ..., C_m \) of which \(A \) is a subset, and repeat the same after including \(s \) in \(A \) (for testing this for another suffix and same \(A \), we have to compute only the second count and reuse the first count). The computation required for this is of the order of \(O(p \times m) \). When the suffix sets associated with the word categories are the maximal complete co-occurrence (MCC) sets \(C_1^c, C_2^c, ..., C_m^c \), these computations can be improved by using the certain properties of MCC sets. Suppose \(C_1^s, C_2^s, ..., C_n^s \) are the simple co-occurrence sets of the suffixes \(s_1, s_2, ..., s_n \), respectively. Then the relevant properties of MCC sets are:

1. The intersection of the simple co-occurrence sets of the suffixes in an MCC set \(C_i^c \) is the set \(C_i^c \) itself. That is,

\[
C_i^c = \bigcap_{s_j \in C_i^c} C^s(s_j).
\]

[Recall that \(C^s(\sigma) \) is the simple co-occurrence set of suffix \(\sigma \).]

2. If a set of suffixes \(S_i \) is a signature of a word category corresponding to \(C_i^c \), then the intersection of the simple co-occurrence sets of the suffixes in \(S_i \) is the set \(C_i^c \) itself. That is,

\[
C_i^c = \bigcap_{s_j \in S_i} C^s(s_j).
\]

3. If a subset \(S_i \) of \(C_i^c \) is not a signature of the word category corresponding to \(C_i^c \), then the intersection of the simple co-occurrence sets of the suffixes in \(S_i \) is a superset of \(C_i^c \). That is,

\[
C_i^c \subset \bigcap_{s_j \in S_i} C^s(s_j).
\]

In actual implementation, for set \(A \) we maintain a set \(A^I \), which is the intersection of the simple co-occurrence set of the suffixes in it. In particular, when \(A \) is empty initially, we initialise \(A^I \) as \(S \). Every time a suffix \(s \) from \(B \) is included in \(A \), \(A^I \) is updated to its intersection with the simple co-occurrence set of \(s \). This requires a computation of order \(O(n) \). To test whether \(A \) is a signature (the condition in the while statement), we test whether \(A^I = C_i^c \). This too, requires a computation of order \(O(n) \). To test whether suffix \(s \) from \(B \) is significant, we test if \(A^I \cap C^s(s) \) is different from \(A^I \). This requires computation of order \(O(n) \).
Appendix D

Additional experimental observations

D.1 Base frequency in suffix selection

In section 4.8.3 it is discussed that bases that occur frequently are more likely to be valid, and hence the morphological extensions in decompositions involving more frequent bases are more likely to be valid. In table D.1 we summarize the effect of base frequency on the selection of morphological extensions. The results are contrary to our expectations. In table D.2 we put an additional restriction, namely, the bases should have at least two phonemes in it. Though there is a marginal improvement in the results, there is no significant effect of base frequency.
Total number of distinct words: 20140
Actual number of suffixes present: 225

<table>
<thead>
<tr>
<th>Base frequency threshold</th>
<th>B</th>
<th>C</th>
<th>Q</th>
<th>S</th>
<th>Precision (%)</th>
<th>Recall (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>10833</td>
<td>2231</td>
<td>655</td>
<td>223</td>
<td>1.60</td>
<td>99.11</td>
</tr>
<tr>
<td>3</td>
<td>10779</td>
<td>2204</td>
<td>652</td>
<td>220</td>
<td>1.59</td>
<td>97.78</td>
</tr>
<tr>
<td>4</td>
<td>10722</td>
<td>2151</td>
<td>645</td>
<td>217</td>
<td>1.58</td>
<td>96.44</td>
</tr>
<tr>
<td>5</td>
<td>10647</td>
<td>2095</td>
<td>633</td>
<td>216</td>
<td>1.59</td>
<td>96.00</td>
</tr>
<tr>
<td>6</td>
<td>10567</td>
<td>2033</td>
<td>621</td>
<td>213</td>
<td>1.59</td>
<td>94.67</td>
</tr>
<tr>
<td>7</td>
<td>10493</td>
<td>1964</td>
<td>610</td>
<td>212</td>
<td>1.60</td>
<td>94.22</td>
</tr>
<tr>
<td>8</td>
<td>10432</td>
<td>1912</td>
<td>590</td>
<td>211</td>
<td>1.61</td>
<td>93.78</td>
</tr>
<tr>
<td>9</td>
<td>10366</td>
<td>1876</td>
<td>582</td>
<td>210</td>
<td>1.61</td>
<td>93.33</td>
</tr>
<tr>
<td>10</td>
<td>10314</td>
<td>1815</td>
<td>569</td>
<td>207</td>
<td>1.60</td>
<td>92.90</td>
</tr>
<tr>
<td>11</td>
<td>10206</td>
<td>1760</td>
<td>551</td>
<td>204</td>
<td>1.60</td>
<td>90.67</td>
</tr>
<tr>
<td>12</td>
<td>10164</td>
<td>1705</td>
<td>534</td>
<td>201</td>
<td>1.59</td>
<td>89.33</td>
</tr>
<tr>
<td>13</td>
<td>10076</td>
<td>1656</td>
<td>519</td>
<td>197</td>
<td>1.58</td>
<td>87.56</td>
</tr>
<tr>
<td>14</td>
<td>10000</td>
<td>1602</td>
<td>505</td>
<td>195</td>
<td>1.59</td>
<td>86.67</td>
</tr>
<tr>
<td>15</td>
<td>9915</td>
<td>1556</td>
<td>486</td>
<td>192</td>
<td>1.58</td>
<td>85.33</td>
</tr>
<tr>
<td>16</td>
<td>9878</td>
<td>1493</td>
<td>474</td>
<td>186</td>
<td>1.55</td>
<td>82.67</td>
</tr>
<tr>
<td>17</td>
<td>9834</td>
<td>1440</td>
<td>464</td>
<td>184</td>
<td>1.54</td>
<td>81.78</td>
</tr>
<tr>
<td>18</td>
<td>9756</td>
<td>1401</td>
<td>445</td>
<td>184</td>
<td>1.56</td>
<td>81.78</td>
</tr>
<tr>
<td>19</td>
<td>9664</td>
<td>1364</td>
<td>443</td>
<td>181</td>
<td>1.55</td>
<td>80.44</td>
</tr>
<tr>
<td>20</td>
<td>9606</td>
<td>1340</td>
<td>436</td>
<td>179</td>
<td>1.55</td>
<td>79.56</td>
</tr>
<tr>
<td>21</td>
<td>9521</td>
<td>1300</td>
<td>425</td>
<td>174</td>
<td>1.52</td>
<td>77.33</td>
</tr>
<tr>
<td>22</td>
<td>9477</td>
<td>1295</td>
<td>423</td>
<td>174</td>
<td>1.53</td>
<td>77.33</td>
</tr>
<tr>
<td>23</td>
<td>9393</td>
<td>1274</td>
<td>417</td>
<td>172</td>
<td>1.53</td>
<td>76.44</td>
</tr>
<tr>
<td>24</td>
<td>9340</td>
<td>1230</td>
<td>412</td>
<td>172</td>
<td>1.54</td>
<td>76.44</td>
</tr>
<tr>
<td>25</td>
<td>9305</td>
<td>1199</td>
<td>407</td>
<td>171</td>
<td>1.54</td>
<td>76.00</td>
</tr>
<tr>
<td>26</td>
<td>9223</td>
<td>1180</td>
<td>398</td>
<td>169</td>
<td>1.54</td>
<td>75.11</td>
</tr>
<tr>
<td>27</td>
<td>9195</td>
<td>1160</td>
<td>391</td>
<td>169</td>
<td>1.55</td>
<td>75.11</td>
</tr>
<tr>
<td>28</td>
<td>9134</td>
<td>1105</td>
<td>380</td>
<td>166</td>
<td>1.54</td>
<td>73.78</td>
</tr>
<tr>
<td>29</td>
<td>9091</td>
<td>1089</td>
<td>368</td>
<td>165</td>
<td>1.54</td>
<td>73.33</td>
</tr>
<tr>
<td>30</td>
<td>8999</td>
<td>1083</td>
<td>362</td>
<td>164</td>
<td>1.55</td>
<td>72.89</td>
</tr>
<tr>
<td>31</td>
<td>8972</td>
<td>1071</td>
<td>358</td>
<td>163</td>
<td>1.54</td>
<td>72.44</td>
</tr>
<tr>
<td>32</td>
<td>8950</td>
<td>1052</td>
<td>348</td>
<td>160</td>
<td>1.52</td>
<td>71.11</td>
</tr>
<tr>
<td>33</td>
<td>8875</td>
<td>1021</td>
<td>327</td>
<td>156</td>
<td>1.50</td>
<td>69.33</td>
</tr>
<tr>
<td>34</td>
<td>8853</td>
<td>1021</td>
<td>326</td>
<td>156</td>
<td>1.51</td>
<td>69.33</td>
</tr>
<tr>
<td>35</td>
<td>8848</td>
<td>995</td>
<td>321</td>
<td>153</td>
<td>1.48</td>
<td>68.00</td>
</tr>
<tr>
<td>36</td>
<td>8812</td>
<td>977</td>
<td>318</td>
<td>150</td>
<td>1.46</td>
<td>66.67</td>
</tr>
<tr>
<td>37</td>
<td>8690</td>
<td>975</td>
<td>311</td>
<td>148</td>
<td>1.46</td>
<td>65.78</td>
</tr>
<tr>
<td>38</td>
<td>8688</td>
<td>971</td>
<td>304</td>
<td>147</td>
<td>1.45</td>
<td>65.33</td>
</tr>
<tr>
<td>39</td>
<td>8657</td>
<td>948</td>
<td>297</td>
<td>145</td>
<td>1.44</td>
<td>64.44</td>
</tr>
<tr>
<td>40</td>
<td>8573</td>
<td>922</td>
<td>291</td>
<td>144</td>
<td>1.45</td>
<td>64.00</td>
</tr>
</tbody>
</table>

S: Suffix; Q: Suffix-sequence; C: Compound parts; B: Invalid morphological extension

Table D.1: Effect of base frequency (without base length restriction) in selecting valid suffixes
Total number of distinct words : 20140
Actual number of suffixes present: 225

<table>
<thead>
<tr>
<th>Base frequency threshold</th>
<th>B</th>
<th>C</th>
<th>Q</th>
<th>S</th>
<th>Precision (%)</th>
<th>Recall (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3312</td>
<td>2013</td>
<td>619</td>
<td>215</td>
<td>3.49</td>
<td>95.56</td>
</tr>
<tr>
<td>3</td>
<td>3248</td>
<td>1982</td>
<td>616</td>
<td>212</td>
<td>3.50</td>
<td>94.22</td>
</tr>
<tr>
<td>4</td>
<td>3183</td>
<td>1927</td>
<td>609</td>
<td>208</td>
<td>3.51</td>
<td>92.44</td>
</tr>
<tr>
<td>5</td>
<td>3088</td>
<td>1872</td>
<td>597</td>
<td>206</td>
<td>3.57</td>
<td>91.56</td>
</tr>
<tr>
<td>6</td>
<td>2997</td>
<td>1807</td>
<td>581</td>
<td>201</td>
<td>3.60</td>
<td>89.33</td>
</tr>
<tr>
<td>7</td>
<td>2911</td>
<td>1733</td>
<td>569</td>
<td>198</td>
<td>3.66</td>
<td>88.00</td>
</tr>
<tr>
<td>8</td>
<td>2843</td>
<td>1678</td>
<td>548</td>
<td>195</td>
<td>3.70</td>
<td>86.67</td>
</tr>
<tr>
<td>9</td>
<td>2767</td>
<td>1639</td>
<td>540</td>
<td>194</td>
<td>3.77</td>
<td>86.22</td>
</tr>
<tr>
<td>10</td>
<td>2707</td>
<td>1573</td>
<td>526</td>
<td>190</td>
<td>3.80</td>
<td>84.44</td>
</tr>
<tr>
<td>11</td>
<td>2597</td>
<td>1516</td>
<td>505</td>
<td>186</td>
<td>3.87</td>
<td>82.67</td>
</tr>
<tr>
<td>12</td>
<td>2552</td>
<td>1460</td>
<td>488</td>
<td>182</td>
<td>3.89</td>
<td>80.89</td>
</tr>
<tr>
<td>13</td>
<td>2461</td>
<td>1409</td>
<td>473</td>
<td>176</td>
<td>3.89</td>
<td>78.22</td>
</tr>
<tr>
<td>14</td>
<td>2381</td>
<td>1350</td>
<td>457</td>
<td>174</td>
<td>3.99</td>
<td>77.33</td>
</tr>
<tr>
<td>15</td>
<td>2295</td>
<td>1304</td>
<td>436</td>
<td>170</td>
<td>4.04</td>
<td>75.56</td>
</tr>
<tr>
<td>16</td>
<td>2261</td>
<td>1239</td>
<td>422</td>
<td>162</td>
<td>3.97</td>
<td>72.00</td>
</tr>
<tr>
<td>17</td>
<td>2204</td>
<td>1184</td>
<td>411</td>
<td>157</td>
<td>3.97</td>
<td>69.78</td>
</tr>
<tr>
<td>18</td>
<td>2134</td>
<td>1142</td>
<td>391</td>
<td>155</td>
<td>4.06</td>
<td>68.89</td>
</tr>
<tr>
<td>19</td>
<td>2036</td>
<td>1101</td>
<td>387</td>
<td>152</td>
<td>4.13</td>
<td>67.56</td>
</tr>
<tr>
<td>20</td>
<td>2001</td>
<td>1077</td>
<td>379</td>
<td>150</td>
<td>4.16</td>
<td>66.67</td>
</tr>
<tr>
<td>21</td>
<td>1913</td>
<td>1034</td>
<td>367</td>
<td>144</td>
<td>4.16</td>
<td>64.00</td>
</tr>
<tr>
<td>22</td>
<td>1857</td>
<td>1029</td>
<td>365</td>
<td>142</td>
<td>4.19</td>
<td>63.11</td>
</tr>
<tr>
<td>23</td>
<td>1787</td>
<td>1005</td>
<td>358</td>
<td>140</td>
<td>4.26</td>
<td>62.22</td>
</tr>
<tr>
<td>24</td>
<td>1726</td>
<td>957</td>
<td>353</td>
<td>140</td>
<td>4.41</td>
<td>62.22</td>
</tr>
<tr>
<td>25</td>
<td>1685</td>
<td>925</td>
<td>348</td>
<td>139</td>
<td>4.49</td>
<td>61.78</td>
</tr>
<tr>
<td>26</td>
<td>1613</td>
<td>904</td>
<td>338</td>
<td>137</td>
<td>4.58</td>
<td>60.89</td>
</tr>
<tr>
<td>27</td>
<td>1585</td>
<td>880</td>
<td>327</td>
<td>136</td>
<td>4.64</td>
<td>60.44</td>
</tr>
<tr>
<td>28</td>
<td>1539</td>
<td>824</td>
<td>315</td>
<td>133</td>
<td>4.73</td>
<td>59.11</td>
</tr>
<tr>
<td>29</td>
<td>1488</td>
<td>808</td>
<td>302</td>
<td>132</td>
<td>4.84</td>
<td>58.67</td>
</tr>
<tr>
<td>30</td>
<td>1425</td>
<td>803</td>
<td>296</td>
<td>130</td>
<td>4.90</td>
<td>57.78</td>
</tr>
<tr>
<td>31</td>
<td>1398</td>
<td>791</td>
<td>291</td>
<td>129</td>
<td>4.94</td>
<td>57.33</td>
</tr>
<tr>
<td>32</td>
<td>1370</td>
<td>774</td>
<td>282</td>
<td>125</td>
<td>4.90</td>
<td>55.56</td>
</tr>
<tr>
<td>33</td>
<td>1312</td>
<td>743</td>
<td>260</td>
<td>120</td>
<td>4.93</td>
<td>53.33</td>
</tr>
<tr>
<td>34</td>
<td>1289</td>
<td>743</td>
<td>258</td>
<td>120</td>
<td>4.98</td>
<td>53.33</td>
</tr>
<tr>
<td>35</td>
<td>1284</td>
<td>717</td>
<td>246</td>
<td>114</td>
<td>4.83</td>
<td>50.67</td>
</tr>
<tr>
<td>36</td>
<td>1244</td>
<td>697</td>
<td>242</td>
<td>111</td>
<td>4.84</td>
<td>49.33</td>
</tr>
<tr>
<td>37</td>
<td>1170</td>
<td>695</td>
<td>236</td>
<td>110</td>
<td>4.98</td>
<td>48.89</td>
</tr>
<tr>
<td>38</td>
<td>1168</td>
<td>691</td>
<td>229</td>
<td>109</td>
<td>4.96</td>
<td>48.44</td>
</tr>
<tr>
<td>39</td>
<td>1134</td>
<td>666</td>
<td>221</td>
<td>107</td>
<td>5.03</td>
<td>47.56</td>
</tr>
<tr>
<td>40</td>
<td>1077</td>
<td>640</td>
<td>215</td>
<td>103</td>
<td>5.06</td>
<td>45.78</td>
</tr>
<tr>
<td>41</td>
<td>1054</td>
<td>638</td>
<td>209</td>
<td>98</td>
<td>4.90</td>
<td>43.56</td>
</tr>
<tr>
<td>42</td>
<td>1033</td>
<td>616</td>
<td>204</td>
<td>95</td>
<td>4.88</td>
<td>42.22</td>
</tr>
<tr>
<td>43</td>
<td>977</td>
<td>611</td>
<td>204</td>
<td>95</td>
<td>5.03</td>
<td>42.22</td>
</tr>
<tr>
<td>44</td>
<td>938</td>
<td>611</td>
<td>203</td>
<td>95</td>
<td>5.14</td>
<td>42.22</td>
</tr>
<tr>
<td>45</td>
<td>882</td>
<td>605</td>
<td>200</td>
<td>94</td>
<td>5.28</td>
<td>41.78</td>
</tr>
<tr>
<td>46</td>
<td>880</td>
<td>582</td>
<td>176</td>
<td>92</td>
<td>5.32</td>
<td>40.89</td>
</tr>
<tr>
<td>47</td>
<td>865</td>
<td>577</td>
<td>175</td>
<td>92</td>
<td>5.38</td>
<td>40.89</td>
</tr>
<tr>
<td>48</td>
<td>865</td>
<td>569</td>
<td>164</td>
<td>90</td>
<td>5.33</td>
<td>40.00</td>
</tr>
<tr>
<td>49</td>
<td>732</td>
<td>542</td>
<td>161</td>
<td>87</td>
<td>5.72</td>
<td>38.67</td>
</tr>
<tr>
<td>50</td>
<td>732</td>
<td>542</td>
<td>161</td>
<td>87</td>
<td>5.72</td>
<td>38.67</td>
</tr>
<tr>
<td>51</td>
<td>732</td>
<td>542</td>
<td>161</td>
<td>87</td>
<td>5.72</td>
<td>38.67</td>
</tr>
</tbody>
</table>

S: Suffix; Q: Suffix-sequence; C: Compound parts; B: Invalid morphological extension

Table D.2: Effect of base frequency (bases with two or more phonemes) in selecting valid suffixes
Bibliography

Index

*, 28