
cs3723 1

Continuation and
Exceptions

Control Flow In Sequential Languages

cs3723 2

Imperative Programming
Control Flow of Programs
 Structured control flow

 Sequence of statements
 { a:= b; b := c; }

 Conditional
 if (a < b) then c else d;
 switch(a){…}

 Loops
 for (…) {…};
 while (…) {…};

 Jumping out of a block
 break, continue, return,…

 Non-structured control flow
 Goto, conditional jump
 Used to implement structured control flow in assembly

cs3723 3

Controlling Jumps
 Structured jumps

if … then … else … end
while … do … end
for … { … }
case …

 Group code in logical blocks
 Avoid uncontrolled jumps, e.g., into the middle of a block

 Focus of this chapter: quickly jumping into and out of a
program in an organized fashion
 Jumping right into the mid of a block ---- continuation passing

 The scenario: my task was interrupted, now I want to resume from
where I stopped

 Jumping out from the mid of a block? ---- exception handling
 The scenario: something unexpected happened; need to jump out

until some caller knows what to do with the errors.

cs3723 4

Continuations
 Capture the continuation at some point to be used later

 A function (closure) that takes a single parameter, the
result of the past evaluation, and returns the result of
the entire program.

 Save the entire runtime environment as a closure
 Code pointer: where to start evaluating the instructions
 Environment pointer: the entire relevant memory stores

 To jump into the mid of a program, make a function call to the
continuation

 Useful in
 Implementing functional programming languages
 Operating system scheduling, Web site design

 The scenario: my task was interrupted, now I want to resume from
where I stopped

cs3723 5

Continuation of Expressions
 Continuation: impose sequential ordering in sub-expressions

 The continuation of an expression is “the remaining work to be done
after evaluating the expression”

 Continuation of e is a function applied to the result of e

 Enforce evaluation order in functional languages
 Evaluate current expression
 Save the result into a variable
 Evaluate the rest of the computation

2*x + 3*y + 1/x + 2/y
let val r2x = 2 * x in
 let val r3y = 3 * y in
 let val sum1=r2x + r3y in
 let val r1x = 1 / x in
 let val sum2 = sum1 + r1x in
 let val r2y = 2 / y in
 sum2 + r2y
 end
…….end

let r2x = 2*x in … end
is equivalent to
(fn r2x=> …) (2 * x)

Continuation of 2*x

cs3723 6

Continuation and Tail Calls
 A function call from g to f is a tail call

 if g returns the result of calling f with no further
computation

 Example (red: tail call; blue: non-tail call)
fun f(x) = if x > 0 then x else f(x+1)*2

 fun f(x,y) = if x>y then x else f(2*x,y);
 Tail calls do not need to return to caller

 Can we convert all functions to tail recursion?
 If a program needs to be re-enterable, function calls

shouldn’t return to caller
 Solution: continuation passing

 Pass continuation as parameter to callee
 Callee does not need to return to caller

cs3723 7

Continuation Passing
 Standard function

fun fact(n) = if n=0 then 1 else
n*fact(n-1)

 Continuation form
fun fact(n, K) =
 if n=0 then K(1)
 else fact(n-1,fn x=>K(n*x));

fact(n, fn x=>x) computes n!

 Example computation
fact(3,fn x=>x)=

fact(2,fn y=>((fn x=>x)(3*y))) =

fact(1, fn x=>((fn y=>3*y)(2*x)))
= fn x=>((fn y=>3*y)(2*x)) 1
= 6

 For each function definition F
 Extend the definition with a

continuation parameter K
 At each function call inside F

 Convert the rest of
computation into a new
continuation function

 Convert f into a tail call,
which takes the new
continuation function as
an extra argument.

 At each normal return
 Return the result of

invoking continuation K
with the original
returned value

cs3723 8

General uses of continuations
 Explicit control

 Normal termination -- call continuation
 Abnormal termination -- do something else

 Compilation techniques
 Call to continuation is functional form of “go to”

 Jump to the middle of a block by saving the environment in the function
closure and restore the environment before jump

 Web applications, Web Services, MOM and SOA services
 Handle long running workflows

 Workflow may take 1 year to complete
 Progress of subtasks is asynchronous

 Sequential programming is simpler than asynchronous

 Continuations provide
 An easy way to suspend workflow execution at a wait state
 Thread of control can be resumed when the next message/event

occurs, maybe some long time ahead

cs3723 9

Exception: Structured Exit
 When something unusual happens, we want a program to

 Jump out of one or many levels of nested blocks
 Until reaching some program point to continue
 Pass information to the continuation point
 May need to free heap space, other resources

 An exception is a dynamic jump
 Don’t know where to resume execution until runtime

 Jump out of current block
 Look for a matching exception handler in most recently entered

blocks

 General dynamic scoping rule
 Multiple functions could handle the same exception
 Jump to most recently established handler on run-time stack
 Callers know how to handler error, defining block doesn’t

cs3723 10

Dynamic Scoping of Handler
exception X of int;
let fun f(y) = (raise X(y); 1);
 fun g() = f(1)
 handle X(y) => y+1
in g() handle X(y) => y
end;

handler X
access link

formal y 1
access link

g()

f(1)

fun f
access link

 fun g

Dynamic scoping:
find first X handler
by going up the
dynamic call chain

handler X
fn X(y)=>y

fn X(y)=>y+1

cs3723 11

When Should We Use Exceptions?
 Separation of concern: handle unusual situations

 Examples: division by zero, null pointers, unexpected
inputs

 When exceptions are handled, error recovery
 Otherwise, evaluation aborts on error conditions

 Flexible control flow
 Return immediately to where the error can be handled
 Jump out multiple blocks at a time

 What languages have exception support?
 C++, Java, ML, Ada, …

cs3723 12

Defining Exceptions
 Exception declaration

 Type of data that can be passed in exception
 ML: exception <name> of <type>
 C++/Java: any data type

 Raising an exception
 Abort the rest of current block and jump out

 ML: raise <name> <arguments>;
 C++: throw <value>;

 Handling an exception
 Continue normal execution after exception

 ML: <exp1> handle <pattern>=><exp2>; ...
 C++: try { …} catch (<type> var) {…} …

cs3723 13

Exceptions vs. Type System
 Are exceptions part of the type system?

 Raising expressions: not part of the type system
 Expression e has type t if normal termination of e

produces value of type t

 Raising exception is not normal termination
 Example: 1 + raise X is not valid

 Handling exceptions (=> 〈value〉)
 Converts exception to normal termination
 Need type agreement

 1 + ((raise X) handle X => e) Type of e must be int
 1 + (e1 handle X => e2) Type of e1, e2 must be int

cs3723 14

How Are Exceptions Handled?
 ML

exception X of int;
let fun f(y) = (raise X(y); 1); fun g() = f(1) handle X(y) => y+1
in g() handle X(y) => y
end;

 What are the events that have occurred?
 Enter the let expression
 Make function call g()
 Make function call f(1)
 Function call f(1) raises exception X(1)
 Exception X(1) is handled in function call g()
 Function call g() returns with value 2
 The let expression exits

cs3723 15

Exception vs. Continuation
 Continuation

 Explicitly represent the rest of computation
 Do not need to return to the caller

 Can use exception to avoid returning to the caller

 Raising exception
 Jumping out of multiple blocks at a time
 Different continuation for normal and exceptional

situations
 Continuation of exception

 rest of computation after exception is handled

 Raising exceptions may have complications
 Resource management: opened files, garbage collection
 Use continuation passing to implement exception

 Pass multiple continuations: one to handle normal
condition, the others to handle exceptions

