
1

Efficiency, Security
and Portability

A comparative study of C++
and Java

2

Layout Of Class Objects
 OO abstractions are compound data types, so they

need to be stored in memory
 Needs to extend layout of C structs with

 Table to support dynamic lookup of methods
 Collect all virtual methods into a single table
 Offset of each method known at compile time

 Common layout for base and derived classes
 Members of base class is a subset of derived class members
 Derived class layout contains a view of the base class layout
 Dynamically change object views to support subtyping

 Problem: need to dynamically extend views of both
methods and data members

 Solution: separately store the method table and
data members; store base class members first

3

Object Layout and Single Inheritance
class A { int x; public: virtual int f() { return x;} };

Object a of type A

vptr

x 3

class A vtable:

Code for A::f

Object b of type B

vptr

x 3

class B vtable:

Code for B::f

5y
Code for B::f2

class B : public A { int y; public: virtual int f() { return y; }
 virtual void f2() { … } };

b used as an object of A

f

f

f2

4

Looking Up Methods

3

5

blue

Point object

ColorPoint object

x

vptr

x

vptr

c

Point vtable

ColorPoint vtable

Code for move

Code for move

Code for darken

Data at same offset Function pointers at same offset

Point p = new Pt(3);
p->move(2); // (*(p->vptr[0]))(p,2)

5

Dynamic Lookup Of Methods In C++
 C++ compiler knows all the base classes

 Offset of data and function pointer are same in
subclass and base class

 Offset of data and function pointer known at
compile time

 Code p->move(x) compiles to equivalent of
(*(p->vptr[move_offset]))(p,x)

6

Shape ReferenceCounted

RefCounted
Rectangle

Rectangle

Multiple Inheritance

 Inherit independent functionality from independent classes
 Members from different base classes are lined up one after another

 Views of all base classes followed by members of derived class
 Type casting may result in change of object start address
 Each virtual method impl must remember starting address of its class

 C++: support multiple inheritance
 Java: single inheritance only, but can support multiple interfaces

 Interfaces do not have data members

7

Java Virtual Machine
A.java Java compiler A.class

B.class

Loader

Java Virtual Machine

Verifier

Linker

interpreter

network

Compiler and virtual machine
Compiler produces bytecode

8

Java Class Loader & Verifier
 Runtime system loads classes as needed

 When class is referenced, loader searches for file of
compiled bytecode instructions

 Default loading mechanism can be replaced
 Can extend the default ClassLoader class
 Can obtain bytecode from alternate source
 Bytecode may not come from standard compiler

 Evil hacker may write dangerous bytecode

 Verifier checks correctness of bytecode
 Every instruction must have a valid operation code
 Every branch instruction must branch to the start of some

other instruction, not middle of instruction
 Every method must have a structurally correct signature
 Every instruction obeys the Java type discipline

9

JVM Dynamic Linking
 Java programs are compiled into bytecode

 Each class has a table containing all dynamic methods
 Every bytecode file has a constant pool containing

information for all symbolic names
 Dynamic linking: add compiled class or interface

 Create and initialize static fields
 Checks symbolic names and replaces with direct references as

they are used in instructions
 Instruction includes index into constant pool
 Constant pool stores symbolic names
 Store once, instead of each instruction, to save space

 First execution of instruction
 Use symbolic name to find field or method in constant pool
 Rewrite bytecode to remember method location

 Second execution
 Use modified “quick” instruction to simplify search

10

Java Object Layout and
Interface

interface I { int f1(); }
interface J { int f2(); }
class A { public int g1() {…} }
class B implements I extends A { int x; int g1() {…} int f1() {…} }
class C implements J implements I extends A { int y; int f2() {…} int f1() {…} }

Object b of B

vptr

class B vtable:

Code for B.g1

y

x

vptr

class C vtable

Code for C.f1

Code for B.f1
g1

f1

Object c of C

When b and c are used as objects of I, f1 occupies different vtable entries
When b and c are used as objects of A, g1 always occupies the same vtable entry

f2

Code for A.g1
g1

f1

Code for C.f2

11

Method Lookup in Java
 Dynamic method invocation

 Look at constant pool for specification of methods
 Find the real class of the object operand

 must implement the interface or inherit from the base class
 Find the class method table

 Which maps methods to their offsets in vtable
 Find the location of method in class’s method table

 Find the method with the given name and signature
 Dynamic linking => may not be the same at compilation

 Rewrite bytecode to remember method location
 If object has class type, location is same for all objects
 If object has interface type, location is unknown

 Cache both the location and class table, check before proceed

 Call the method with new activation record, etc.

12

Java Type Safety And Security
 Run-time type checking

 All casts are checked to make sure type safe
 All array references are checked for out-of-bound access
 References are tested for null-pointers

 Type safety
 Automatic garbage collection
 No pointer arithmetic
 If program accesses memory, that memory is allocated to the

program and declared with correct type

 Security Manager: keep track of privileges of classes
 Separate class loaders for different web sites
 Different name spaces for classes from different loaders
 Throws securityException if security is violated

13

Design objectives
 C++: focus on efficiency

 Add OO features to C without compromising efficiency
 C Philosophy: give programmers every control
 Backward compatible with C

 Design principle: if you do not use a feature, you
should not pay for it

 Java: Portability, Simplicity, and safety
 Programs transmitted over the internet

 Flexibility: dynamic linking, concurrent execution
 Independent of native machines

 Internet users must be protected from program errors
and malicious programming

 Bytecode interpreted instead of compiled
 Type safety through runtime verification

14

Comparing Java with C++
 Interpreted + Portability + Safety - Efficiency

 Compiled to byte code: a binary form with type information
 Dynamically linked + Portability + Flexibility - Efficiency
 Pure object-oriented + Simplicity - Efficiency

 Almost everything is an object, does not allow global functions
 Objects accessed by ptr: + Simplicity - Efficiency

 No problems with direct manipulation of objects
 Type safe + Safety +Simplicity - Efficiency

 Arrays are bounds checked; no pointer arithmetics; no
unchecked type casts

 Garbage collected
 Built-in concurrency support + Portability

 Used for concurrent garbage collection
 Part of network support: download data while executing

15

Encapsulation
 Access control

 Private: internal data representation
 Protected: representations shared by derived classes
 Public: interface to the outside

 C++ friend classes and functions
 If A is a friend of class B, A can access all members of B

 Non-symmetric: A is a friend of B ≠ B is a friend of A
 Example: everything in B is private, but A is B’s friend so B is part

of A’s internal representation
 Circumvent access control based on OO inheritance

 A class must know all of its friends

 Java packages
 Another level of encapsulation
 Members without access modifier have package visibility
 Separate local classes from remote classes from the internet

 A class does not need to know who will be in the same package
15

16

Method Binding
 Static methods

 OO global functions in a name space
 Supported by both C++ and Java

 Dynamic methods
 Methods that are dynamically looked up at runtime
 C++: virtual functions
 Java: all non-static member functions

 C++ non-virtual methods
 Can be treated as global functions with an extra parameter
 Implementation more efficient than dynamic methods

 Java final methods
 Cannot be redefined in derived classes
 Implementation can be optimized

 Dynamic vs. non-dynamic methods
 Flexibility vs. efficiency

17

Polymorphism
 Ad-hoc polymorphism: resolved at compile-time

 Supported by both C++ and Java
 C++: allow overloading both operators and functions
 Java: disallow overloading of operators

 Subtype polymorphism
 Multiple inheritance: supported in C++, not Java
 C++: allow static casting from basetype to subtype
 Java: runtime check required from basetype to subtype

 Parametric polymorphism
 C++ templates: type-checked at link-time
 Java generics: based on dynamic casting

 Inheritance of implementation only
 Supported in C++, not Java

18

C++ and Java Design Decisions
 Encapsulation: data and function abstractions

 C++: private, public, protected, friend
 Java: private, public, protected, package

 Dynamic binding of functions
 C++: virtual, non-virtual and static functions
 Java: final, non-final and static functions

 polymorphism
 C++: operator overload, subtype inheritance, templates
 Java: operator overload, interface and public inheritance, generics

 Inheritance and mutation
 C++: public and protected/private inheritance. Multiple inheritance
 Java: public inheritance only. Multiple inheritance for interface only

 Memory Management
 C++: objects on stack or in heap; free memory with destructors
 Java: objects in heap only. Garbage collection

19

History Of C++ And Java
 C++

 Designed by Bjarne Stroustrup at Bell Labs for research on
simulation

 Object-oriented extension of C based primarily on Simula
 Popularity increased in late 1980’s and early 1990’s
 Features were added incrementally

 Classes, templates, exceptions, multiple inheritance, ...

 Java
 Designed by James Gosling et. al at Sun, 1990–95 for “set-

top box”, small networked device with television display
 Graphics
 Communication between local program and remote site
 Developers don’t have to deal with crashes, etc.

 Internet application
 Simple language for programs transmitted over network

