Efficiency, Security
and Portability

A comparative study of C++
and Java

o OO abstractions are compound data types, so they
need to be stored in memory

o Needs to extend layout of C structs with

Table to support dynamic lookup of methods
Collect all virtual methods into a single table
Offset of each method known at compile time

Common layout for base and derived classes
Members of base class is a subset of derived class members
Derived class layout contains a view of the base class layout
Dynamically change object views to support subtyping

o Problem: need to dynamically extend views of both
methods and data members

o Solution: separately store the method table and
data members; store base class members first

Object Layout and Single Inheritance

class A { int x; public: virtual int f() { return x;} 3};
Obiject a of type A class A vtable:

vptr - - Code for A::f
X

class B : public A {inty; public: virtual int f() { return y; }
virtual void f2() { ...} };

Looking Up Methods

Point object Point vtable Code for move

X

ColorPoint object ColorPoint vtable Code for move
X
C Code for darken

Data at same offset Function pointers at same offset

Point p = new Pt(3);
p->move(2); I (*(p->vptr[0]))(p,2)

Dynamic Lookup Of Methods In C++

o C++ compiler knows all the base classes

= Offset of data and function pointer are same in
subclass and base class

= Offset of data and function pointer known at
compile time

= Code p->move(x) compiles to equivalent of
(*(p->vptrfmove_offset]))(p,x)

Multiple Inheritance

o Inherit independent functionality from independent classes

o Members from different base classes are lined up one after another
= Views of all base classes followed by members of derived class
= Type casting may result in change of object start address
= Each virtual method impl must remember starting address of its class
o C++: support multiple inheritance
o Java: single inheritance only, but can support multiple interfaces
= Interfaces do not have data members

Java Virtual Machine

Ajava _— ,Javacompiler _— ,Aclass

//
//
—

//
//
—

B.class _-

oCompiler and virtual machine
mCompiler produces bytecode

o Runtime system loads classes as needed

When class is referenced, loader searches for file of
compiled bytecode instructions
o Default loading mechanism can be replaced
Can extend the default ClassLoader class
Can obtain bytecode from alternate source

Bytecode may not come from standard compiler
Evil hacker may write dangerous bytecode

o Verifier checks correctness of bytecode
Every instruction must have a valid operation code

Every branch instruction must branch to the start of some
other instruction, not middle of instruction

Every method must have a structurally correct signature
Every instruction obeys the Java type discipline

0 Java programs are compiled into bytecode
Each class has a table containing all dynamic methods
Every bytecode file has a constant pool containing
information for all symbolic names

o Dynamic linking: add compiled class or interface
Create and initialize static fields

Checks symbolic names and replaces with direct references as
they are used in instructions
Instruction includes index into constant pool
Constant pool stores symbolic names
Store once, instead of each instruction, to save space
First execution of instruction
Use symbolic name to find field or method in constant pool
Rewrite bytecode to remember method location
Second execution
Use modified “quick” instruction to simplify search

Java Object Layout and
Interface

Object b of B class B vtable:
Code for B.g1
- . Code for B.f1
Object ¢ of C class C vtable Code for Ag1
Code for C.f2
Code for C.f1

When b and c are used as objects of |, f1 occupies different vtable entries
When b and c are used as objects of A, g1 always occupies the same vtable entgx

o Dynamic method invocation
Look at constant pool for specification of methods
Find the real class of the object operand
must implement the interface or inherit from the base class
Find the class method table
Which maps methods to their offsets in vtable
Find the location of method in class’s method table
Find the method with the given name and signature
Dynamic linking => may not be the same at compilation
Rewrite bytecode to remember method location

If object has class type, location is same for all objects

If object has interface type, location is unknown
= Cache both the location and class table, check before proceed

o Call the method with new activation record, etc.

11

Java Type Safety And Security

0 Run-time type checking
= All casts are checked to make sure type safe
= All array references are checked for out-of-bound access
= References are tested for null-pointers

o Type safety
= Automatic garbage collection
= No pointer arithmetic

= If program accesses memory, that memory is allocated to the
program and declared with correct type

o Security Manager: keep track of privileges of classes
= Separate class loaders for different web sites
= Different name spaces for classes from different loaders
= Throws securityException if security is violated

12

o C++: focus on efficiency

Add OO features to C without compromising efficiency
C Philosophy: give programmers every control
Backward compatible with C

Design principle: if you do not use a feature, you
should not pay for it

O Java: Portability, Simplicity, and safety

Programs transmitted over the internet
Flexibility: dynamic linking, concurrent execution
Independent of native machines

Internet users must be protected from program errors
and malicious programming

Bytecode interpreted instead of compiled

Type safety through runtime verification

13

O

Interpreted + Portability + Safety - Efficiency

Compiled to byte code: a binary form with type information
Dynamically linked + Portability + Flexibility - Efficiency
Pure object-oriented + Simplicity - Efficiency

Almost everything is an object, does not allow global functions
Objects accessed by ptr: + Simplicity - Efficiency

No problems with direct manipulation of objects
Type safe + Safety +Simplicity - Efficiency

Arrays are bounds checked; no pointer arithmetics; no
unchecked type casts

Garbage collected
Built-in concurrency support + Portability
Used for concurrent garbage collection
Part of network support: download data while executing

14

o Access control
Private: internal data representation
Protected: representations shared by derived classes
Public: interface to the outside

0o C++ friend classes and functions

If A is a friend of class B, A can access all members of B
Non-symmetric: A is a friend of B # B is a friend of A

Example: everything in B is private, but A is B’s friend so B is part
of A’s internal representation

Circumvent access control based on OO inheritance
A class must know all of its friends

o Java packages
Another level of encapsulation
Members without access modifier have package visibility

Separate local classes from remote classes from the internet
A class does not need to know who will be in the same package

15

Method Binding

O

O

O

O

Static methods

= OO global functions in a name space

= Supported by both C++ and Java

Dynamic methods

= Methods that are dynamically looked up at runtime

= C++: virtual functions

= Java: all non-static member functions

C++ non-virtual methods

= Can be treated as global functions with an extra parameter
= Implementation more efficient than dynamic methods
Java final methods

= Cannot be redefined in derived classes

= Implementation can be optimized

Dynamic vs. non-dynamic methods

= Flexibility vs. efficiency

16

O

O

O

Ad-hoc polymorphism: resolved at compile-time

Supported by both C++ and Java
C++: allow overloading both operators and functions
Java: disallow overloading of operators

Subtype polymorphism
Multiple inheritance: supported in C++4, not Java

C++: allow static casting from basetype to subtype
Java: runtime check required from basetype to subtype

Parametric polymorphism
C++ templates: type-checked at link-time
Java generics: based on dynamic casting
Inheritance of implementation only
Supported in C++, not Java

17

Encapsulation: data and function abstractions
C++: private, public, protected, friend
Java: private, public, protected, package
Dynamic binding of functions
C++: virtual, non-virtual and static functions
Java: final, non-final and static functions
polymorphism
C++: operator overload, subtype inheritance, templates
Java: operator overload, interface and public inheritance, generics
Inheritance and mutation
C++: public and protected/private inheritance. Multiple inheritance
Java: public inheritance only. Multiple inheritance for interface only
Memory Management
C++: objects on stack or in heap; free memory with destructors
Java: objects in heap only. Garbage collection

18

o C++

Designed by Bjarne Stroustrup at Bell Labs for research on
simulation

Object-oriented extension of C based primarily on Simula
Popularity increased in late 1980’s and early 1990’'s
Features were added incrementally

Classes, templates, exceptions, multiple inheritance, ...

O Java

Designed by James Gosling et. al at Sun, 1990-95 for “set-

top box”, small networked device with television display
Graphics
Communication between local program and remote site
Developers don’t have to deal with crashes, etc.

Internet application

Simple language for programs transmitted over network

19

