
1

Efficiency, Security
and Portability

A comparative study of C++
and Java

2

Layout Of Class Objects
 OO abstractions are compound data types, so they

need to be stored in memory
 Needs to extend layout of C structs with

 Table to support dynamic lookup of methods
 Collect all virtual methods into a single table
 Offset of each method known at compile time

 Common layout for base and derived classes
 Members of base class is a subset of derived class members
 Derived class layout contains a view of the base class layout
 Dynamically change object views to support subtyping

 Problem: need to dynamically extend views of both
methods and data members

 Solution: separately store the method table and
data members; store base class members first

3

Object Layout and Single Inheritance
class A { int x; public: virtual int f() { return x;} };

Object a of type A

vptr

x 3

class A vtable:

Code for A::f

Object b of type B

vptr

x 3

class B vtable:

Code for B::f

5y
Code for B::f2

class B : public A { int y; public: virtual int f() { return y; }
 virtual void f2() { … } };

b used as an object of A

f

f

f2

4

Looking Up Methods

3

5

blue

Point object

ColorPoint object

x

vptr

x

vptr

c

Point vtable

ColorPoint vtable

Code for move

Code for move

Code for darken

Data at same offset Function pointers at same offset

Point p = new Pt(3);
p->move(2); // (*(p->vptr[0]))(p,2)

5

Dynamic Lookup Of Methods In C++
 C++ compiler knows all the base classes

 Offset of data and function pointer are same in
subclass and base class

 Offset of data and function pointer known at
compile time

 Code p->move(x) compiles to equivalent of
(*(p->vptr[move_offset]))(p,x)

6

Shape ReferenceCounted

RefCounted
Rectangle

Rectangle

Multiple Inheritance

 Inherit independent functionality from independent classes
 Members from different base classes are lined up one after another

 Views of all base classes followed by members of derived class
 Type casting may result in change of object start address
 Each virtual method impl must remember starting address of its class

 C++: support multiple inheritance
 Java: single inheritance only, but can support multiple interfaces

 Interfaces do not have data members

7

Java Virtual Machine
A.java Java compiler A.class

B.class

Loader

Java Virtual Machine

Verifier

Linker

interpreter

network

Compiler and virtual machine
Compiler produces bytecode

8

Java Class Loader & Verifier
 Runtime system loads classes as needed

 When class is referenced, loader searches for file of
compiled bytecode instructions

 Default loading mechanism can be replaced
 Can extend the default ClassLoader class
 Can obtain bytecode from alternate source
 Bytecode may not come from standard compiler

 Evil hacker may write dangerous bytecode

 Verifier checks correctness of bytecode
 Every instruction must have a valid operation code
 Every branch instruction must branch to the start of some

other instruction, not middle of instruction
 Every method must have a structurally correct signature
 Every instruction obeys the Java type discipline

9

JVM Dynamic Linking
 Java programs are compiled into bytecode

 Each class has a table containing all dynamic methods
 Every bytecode file has a constant pool containing

information for all symbolic names
 Dynamic linking: add compiled class or interface

 Create and initialize static fields
 Checks symbolic names and replaces with direct references as

they are used in instructions
 Instruction includes index into constant pool
 Constant pool stores symbolic names
 Store once, instead of each instruction, to save space

 First execution of instruction
 Use symbolic name to find field or method in constant pool
 Rewrite bytecode to remember method location

 Second execution
 Use modified “quick” instruction to simplify search

10

Java Object Layout and
Interface

interface I { int f1(); }
interface J { int f2(); }
class A { public int g1() {…} }
class B implements I extends A { int x; int g1() {…} int f1() {…} }
class C implements J implements I extends A { int y; int f2() {…} int f1() {…} }

Object b of B

vptr

class B vtable:

Code for B.g1

y

x

vptr

class C vtable

Code for C.f1

Code for B.f1
g1

f1

Object c of C

When b and c are used as objects of I, f1 occupies different vtable entries
When b and c are used as objects of A, g1 always occupies the same vtable entry

f2

Code for A.g1
g1

f1

Code for C.f2

11

Method Lookup in Java
 Dynamic method invocation

 Look at constant pool for specification of methods
 Find the real class of the object operand

 must implement the interface or inherit from the base class
 Find the class method table

 Which maps methods to their offsets in vtable
 Find the location of method in class’s method table

 Find the method with the given name and signature
 Dynamic linking => may not be the same at compilation

 Rewrite bytecode to remember method location
 If object has class type, location is same for all objects
 If object has interface type, location is unknown

 Cache both the location and class table, check before proceed

 Call the method with new activation record, etc.

12

Java Type Safety And Security
 Run-time type checking

 All casts are checked to make sure type safe
 All array references are checked for out-of-bound access
 References are tested for null-pointers

 Type safety
 Automatic garbage collection
 No pointer arithmetic
 If program accesses memory, that memory is allocated to the

program and declared with correct type

 Security Manager: keep track of privileges of classes
 Separate class loaders for different web sites
 Different name spaces for classes from different loaders
 Throws securityException if security is violated

13

Design objectives
 C++: focus on efficiency

 Add OO features to C without compromising efficiency
 C Philosophy: give programmers every control
 Backward compatible with C

 Design principle: if you do not use a feature, you
should not pay for it

 Java: Portability, Simplicity, and safety
 Programs transmitted over the internet

 Flexibility: dynamic linking, concurrent execution
 Independent of native machines

 Internet users must be protected from program errors
and malicious programming

 Bytecode interpreted instead of compiled
 Type safety through runtime verification

14

Comparing Java with C++
 Interpreted + Portability + Safety - Efficiency

 Compiled to byte code: a binary form with type information
 Dynamically linked + Portability + Flexibility - Efficiency
 Pure object-oriented + Simplicity - Efficiency

 Almost everything is an object, does not allow global functions
 Objects accessed by ptr: + Simplicity - Efficiency

 No problems with direct manipulation of objects
 Type safe + Safety +Simplicity - Efficiency

 Arrays are bounds checked; no pointer arithmetics; no
unchecked type casts

 Garbage collected
 Built-in concurrency support + Portability

 Used for concurrent garbage collection
 Part of network support: download data while executing

15

Encapsulation
 Access control

 Private: internal data representation
 Protected: representations shared by derived classes
 Public: interface to the outside

 C++ friend classes and functions
 If A is a friend of class B, A can access all members of B

 Non-symmetric: A is a friend of B ≠ B is a friend of A
 Example: everything in B is private, but A is B’s friend so B is part

of A’s internal representation
 Circumvent access control based on OO inheritance

 A class must know all of its friends

 Java packages
 Another level of encapsulation
 Members without access modifier have package visibility
 Separate local classes from remote classes from the internet

 A class does not need to know who will be in the same package
15

16

Method Binding
 Static methods

 OO global functions in a name space
 Supported by both C++ and Java

 Dynamic methods
 Methods that are dynamically looked up at runtime
 C++: virtual functions
 Java: all non-static member functions

 C++ non-virtual methods
 Can be treated as global functions with an extra parameter
 Implementation more efficient than dynamic methods

 Java final methods
 Cannot be redefined in derived classes
 Implementation can be optimized

 Dynamic vs. non-dynamic methods
 Flexibility vs. efficiency

17

Polymorphism
 Ad-hoc polymorphism: resolved at compile-time

 Supported by both C++ and Java
 C++: allow overloading both operators and functions
 Java: disallow overloading of operators

 Subtype polymorphism
 Multiple inheritance: supported in C++, not Java
 C++: allow static casting from basetype to subtype
 Java: runtime check required from basetype to subtype

 Parametric polymorphism
 C++ templates: type-checked at link-time
 Java generics: based on dynamic casting

 Inheritance of implementation only
 Supported in C++, not Java

18

C++ and Java Design Decisions
 Encapsulation: data and function abstractions

 C++: private, public, protected, friend
 Java: private, public, protected, package

 Dynamic binding of functions
 C++: virtual, non-virtual and static functions
 Java: final, non-final and static functions

 polymorphism
 C++: operator overload, subtype inheritance, templates
 Java: operator overload, interface and public inheritance, generics

 Inheritance and mutation
 C++: public and protected/private inheritance. Multiple inheritance
 Java: public inheritance only. Multiple inheritance for interface only

 Memory Management
 C++: objects on stack or in heap; free memory with destructors
 Java: objects in heap only. Garbage collection

19

History Of C++ And Java
 C++

 Designed by Bjarne Stroustrup at Bell Labs for research on
simulation

 Object-oriented extension of C based primarily on Simula
 Popularity increased in late 1980’s and early 1990’s
 Features were added incrementally

 Classes, templates, exceptions, multiple inheritance, ...

 Java
 Designed by James Gosling et. al at Sun, 1990–95 for “set-

top box”, small networked device with television display
 Graphics
 Communication between local program and remote site
 Developers don’t have to deal with crashes, etc.

 Internet application
 Simple language for programs transmitted over network

