
cs3723 1

Lambda Calculus
Variables and Functions



cs3723 2

Lambda Calculus
 Mathematical system for functions

 Computation with functions
 Captures essence of variable binding

 Function parameters and substitution

 Can be extended with types, expressions,
memory stores and side-effects

 Introduced by Church in 1930s
 Notation for function expressions
 Proof system for equality of expressions
 Calculation rules for function application

(invocation)



cs3723 3

Pure Lambda Calculus
 Abstract syntax:  M ::= x | λx.M | M M

  x represents variable names
  λx.M  is equivalent to (lambda (x) M) in Lisp/Scheme
  M M is equivalent to (M M) in Lisp/Scheme
  Each expression is called a lambda term or a lambda

expression

 Concrete syntax: add parentheses to resolve
ambiguity
 (M M) has higher precedence than λx.M;
     i.e. λx.M N => λx. (M N)

  M M is left associative; i.e. x y z => (x y) z

 Compare: concrete syntax in Lisp/Scheme
 M ::= x | (lambda (x) M) | (M M)



cs3723 4

The Applied Lambda Calculus
 Can pure lambda calculi express all computation?

 Yes, it is Turing complete. Other values/operations can
be represented as function abstractions.

 For example, boolean values can be expressed as
   True  = λ t. (λ f. t)

      False = λ t. (λ f. f)

 But we are not going to be extreme.
 The applied lambda calculus
          M ::= e | x | λ x.M | M M

 e  represents all regular arithmetic expressions

 Examples of applied lambda calculus
 Expressions: x+y,  x+2*y+z
 Function abstraction/definition: λ x.(x+y), λz.(x+2*y+z)
 Function application (invocation): (λ x.(x+y)) 3



cs3723 5

Lambda Calculus In Real
Languages
 Lisp

 Many different dialects
 Lisp 1.5, Maclisp, …, Scheme, ...CommonLisp,…
 This class uses Scheme

 Function abstraction (allow multiple parameters)
  λ x. M   => (lambda (x) M)
  λx. λ y. λ z. M => (lambda (x y z) M)

 Function application
 M1 M2   => (M1 M2)
 (M1 M2) M3 => (M1 M2 M3)

 C (each function must have a name)
  λ x. λ y. λ z. M   => int f(int x,int y,int z)  { return M; }
  (M1 M2) M3  => M1(M2, M3)



cs3723 6

Example Lambda Terms
 Nested function abstractions (definitions)

 λ s. λ z. z
 λ s. λ z. s (s z)

    λ s. λ z. s (s (s z)))

 Nested function applications (invocations)
x y z
(λ s. λ z. z) y z

     (λ s. λ z. s (s z)) ((λ s. λ z. z) y z)



cs3723 7

Semantics of Lambda Calculus
 The lambda calculus language

 Pure lambda calculus supports only a single type: function
 Applied lambda calculus supports additional types of values

such as int, char, float etc.
 Evaluation of lambda calculus involves a single operation:

function application (invocation)
 Provide theoretical foundation for reasoning about semantics

of functions in Programming Languages
 Functions are used both as parameters and return values
 Support higher-order functions; functions are first-class

objects.
 Semantic definitions

 How to bind variables to values (substitute parameters with
values)?

 How do we know whether two lambda terms are equal?
(evaluation)



cs3723 8

Evaluating Lambda Calculus
 What happens in evaluation

 (λ y. y + 1) x = x + 1

     (λ f. λ x. f (f x)) g = λ x. g (g x)

(λ f. λ x. f (f x))  (λ y. y+1)

        = λ x. (λ y. y+1) ((λ y. y+1)  x)
    = λ x. (λ y. y+1) (x+1) = λ x. (x+1)+1

 Lambda term evaluation => substitute variables
(parameters) with values
 Each variable is a name (or memory store) that can be

given different values
 When variables are used in expressions, need find the

binding location/declaration and get the value



cs3723 9

Variable Binding
 Bound and Free variables

 Each λ x.M declares a new local variable x
 x is bound (local) in λ x.M
 The binding scope of x is M => the occurrences of x in M refers

to the λ x declaration
 Each variable x in a expression M is free (global) if

 there is no λx in the expression M, or x appears outside all  λx
declarations in M

 The binding scope of x is somewhere outside of M
 Example: λ x. λ y. (z1*x+z2 *y)

 Bound variables: x, y; free variables: z1, z2
 Binding scopes

 λ x => λ y. (z1*x+z2 *y)
 λ y => (z1*x+z2 *y)

 Do variable names matter?
   λ x. (x+y)  = λ z. (z+y)
   Bound (local) variables: no; Free (global) variables: yes
 Example: y is both free and bound in λ x. ((λ y. y+2) x) + y



cs3723 10

Equality of Lambda Terms
  α-axiom

    λx. M = λy. [y/x]M
 [y/x]M: substitutes y for free occurrences of x in M
 y cannot already appear in M
 Example

  λ x. (x + y) = λ z. (z + y)
 But λ x. (x + y) ≠ λ y. (y + y)

  β-axiom
   (λ x. M) N = [N/x] M
 [N/x]M:  substitutes N for free occurrences of x in M
 Free variables in N cannot be bound in M
 Example

 (λ x. λ y. (x + y)) z1  = λ y. (z1+y)
 But (λ x. λ y. (x + y)) y ≠ λ y. (y + y)



cs3723 11

Evaluation of Lambda-terms
  β-reduction

                (λ x. t1) t2    =>  [t2/x]t1

 where [t2/x]t1 involves renaming as needed
 Rename bound variables in t1 if they appear free in t2

  α-conversion: λ x. M => λ y. [y/x]M (y is not free in M)

 Replaces all free occurrences of x in t1 with t2

 Reduction
 Repeatedly apply β-reduction to each subexpression

 Each reducible expression is called a redex
 The order of applying β-reductions does not matter



cs3723 12

Example: Variable Substitution
 (λ f. λ x. f (f x))  (λ y. y+x)

apply twice add x to argument

 Substitute variables “blindly”

λ x. [(λ y. y+x) ((λ y. y+x) x)]   => λ x. x+x+x

 Rename bound variables

(λ f. λ z. f (f z))  (λ y. y+x)

=> λ z. [(λ y. y+x) ((λ y. y+x) z))]

=> λ z. z+x+x

Easy rule: always rename variables to be distinct



cs3723 13

Examples
Reduce Lambda Terms
 (λ x. (x+y)) 3
 (λ f. λ x. f (f x)) (λ y. y+1)
  λ x. (λ y. y x) (λ z. x z)
  (λ x. (λ y. y x) (λ z. x z) ) (λ y. y y)



cs3723 14

Solutions
Reduce Lambda Terms
 (λ x. (x+y)) 3

   => 3 + y
 (λ f. λ x. f (f x)) (λ y. y+1)

   => λ x. (λ y. y+1) ((λ y. y+1)  x)
   => λ x. (λ y. y+1) (x+1)
   => λ x. (x+1)+1

  λ x. (λ y. y x) (λ z. x z)
   => λ x. (λ z. x z) x
   => λ x. x x

  (λ x. (λ y. y x) (λ z. x z) ) (λ y. y y)
   => (λ x. x x) (λ y. y y)
   => (λ y. y y) (λ y. y y)
   => (λ y. y y) (λ y. y y)



cs3723 15

Confluence of Reduction
 Reduction

 Repeatedly apply β-reduction to each subexpression

 Each reducible expression is called a redex

 Normal form
 A lambda expression that cannot be further reduced
 The order of applying β-reductions does not matter

 Confluence
 If a lambda expression can be reduced to a normal form,

the final result is uniquely determined
 Ordering of applying reductions does not matter



cs3723 16

Termination of Reduction
 Can all lambda terms be reduced to normal form?

 No. Some lambda terms do not have a normal form
(i.e., their reduction does not terminate)

 Example non-terminating reductions
 (λ x. x x) (λ x. x x)
=>(λ y. y y) (λ x. x x) =>(λ x. x x) (λ x. x x) …

 Combinators
 Pure lambda terms without free variables

 Fixed-point combinator
 A combinator Y such that given a function f,  Y f => f (Y f)
 Example: Y = λ f. (λ x. f (x x)) (λ x. f (x x))

 Yf = (λ f. (λ x. f (x x)) (λ x. f (x x))) f
   => (λ x. f (x x)) (λ x. f (x x))
   => f ((λ x. f (x x)) (λ x. f (x x)))
   => f (Yf)



cs3723 17

Recursion and Fixed Points
 Recursive functions

 The body of a function invokes the function
 Factorial: f(n) = if n=0 then 1 else n*f(n-1)

 Is it possible to write recursive functions
in Lambda Calculus?
 Yes, using fixed-point combinator

 More advanced topics (not required)


