
cs3723 1

Lambda Calculus
Variables and Functions

cs3723 2

Lambda Calculus
 Mathematical system for functions

 Computation with functions
 Captures essence of variable binding

 Function parameters and substitution

 Can be extended with types, expressions,
memory stores and side-effects

 Introduced by Church in 1930s
 Notation for function expressions
 Proof system for equality of expressions
 Calculation rules for function application

(invocation)

cs3723 3

Pure Lambda Calculus
 Abstract syntax: M ::= x | λx.M | M M

 x represents variable names
 λx.M is equivalent to (lambda (x) M) in Lisp/Scheme
 M M is equivalent to (M M) in Lisp/Scheme
 Each expression is called a lambda term or a lambda

expression

 Concrete syntax: add parentheses to resolve
ambiguity
 (M M) has higher precedence than λx.M;
 i.e. λx.M N => λx. (M N)

 M M is left associative; i.e. x y z => (x y) z

 Compare: concrete syntax in Lisp/Scheme
 M ::= x | (lambda (x) M) | (M M)

cs3723 4

The Applied Lambda Calculus
 Can pure lambda calculi express all computation?

 Yes, it is Turing complete. Other values/operations can
be represented as function abstractions.

 For example, boolean values can be expressed as
 True = λ t. (λ f. t)

 False = λ t. (λ f. f)

 But we are not going to be extreme.
 The applied lambda calculus
 M ::= e | x | λ x.M | M M

 e represents all regular arithmetic expressions

 Examples of applied lambda calculus
 Expressions: x+y, x+2*y+z
 Function abstraction/definition: λ x.(x+y), λz.(x+2*y+z)
 Function application (invocation): (λ x.(x+y)) 3

cs3723 5

Lambda Calculus In Real
Languages
 Lisp

 Many different dialects
 Lisp 1.5, Maclisp, …, Scheme, ...CommonLisp,…
 This class uses Scheme

 Function abstraction (allow multiple parameters)
 λ x. M => (lambda (x) M)
 λx. λ y. λ z. M => (lambda (x y z) M)

 Function application
 M1 M2 => (M1 M2)
 (M1 M2) M3 => (M1 M2 M3)

 C (each function must have a name)
 λ x. λ y. λ z. M => int f(int x,int y,int z) { return M; }
 (M1 M2) M3 => M1(M2, M3)

cs3723 6

Example Lambda Terms
 Nested function abstractions (definitions)

 λ s. λ z. z
 λ s. λ z. s (s z)

 λ s. λ z. s (s (s z)))

 Nested function applications (invocations)
x y z
(λ s. λ z. z) y z

 (λ s. λ z. s (s z)) ((λ s. λ z. z) y z)

cs3723 7

Semantics of Lambda Calculus
 The lambda calculus language

 Pure lambda calculus supports only a single type: function
 Applied lambda calculus supports additional types of values

such as int, char, float etc.
 Evaluation of lambda calculus involves a single operation:

function application (invocation)
 Provide theoretical foundation for reasoning about semantics

of functions in Programming Languages
 Functions are used both as parameters and return values
 Support higher-order functions; functions are first-class

objects.
 Semantic definitions

 How to bind variables to values (substitute parameters with
values)?

 How do we know whether two lambda terms are equal?
(evaluation)

cs3723 8

Evaluating Lambda Calculus
 What happens in evaluation

 (λ y. y + 1) x = x + 1

 (λ f. λ x. f (f x)) g = λ x. g (g x)

(λ f. λ x. f (f x)) (λ y. y+1)

 = λ x. (λ y. y+1) ((λ y. y+1) x)
 = λ x. (λ y. y+1) (x+1) = λ x. (x+1)+1

 Lambda term evaluation => substitute variables
(parameters) with values
 Each variable is a name (or memory store) that can be

given different values
 When variables are used in expressions, need find the

binding location/declaration and get the value

cs3723 9

Variable Binding
 Bound and Free variables

 Each λ x.M declares a new local variable x
 x is bound (local) in λ x.M
 The binding scope of x is M => the occurrences of x in M refers

to the λ x declaration
 Each variable x in a expression M is free (global) if

 there is no λx in the expression M, or x appears outside all λx
declarations in M

 The binding scope of x is somewhere outside of M
 Example: λ x. λ y. (z1*x+z2 *y)

 Bound variables: x, y; free variables: z1, z2
 Binding scopes

 λ x => λ y. (z1*x+z2 *y)
 λ y => (z1*x+z2 *y)

 Do variable names matter?
 λ x. (x+y) = λ z. (z+y)
 Bound (local) variables: no; Free (global) variables: yes
 Example: y is both free and bound in λ x. ((λ y. y+2) x) + y

cs3723 10

Equality of Lambda Terms
 α-axiom

 λx. M = λy. [y/x]M
 [y/x]M: substitutes y for free occurrences of x in M
 y cannot already appear in M
 Example

 λ x. (x + y) = λ z. (z + y)
 But λ x. (x + y) ≠ λ y. (y + y)

 β-axiom
 (λ x. M) N = [N/x] M
 [N/x]M: substitutes N for free occurrences of x in M
 Free variables in N cannot be bound in M
 Example

 (λ x. λ y. (x + y)) z1 = λ y. (z1+y)
 But (λ x. λ y. (x + y)) y ≠ λ y. (y + y)

cs3723 11

Evaluation of Lambda-terms
 β-reduction

 (λ x. t1) t2 => [t2/x]t1

 where [t2/x]t1 involves renaming as needed
 Rename bound variables in t1 if they appear free in t2

 α-conversion: λ x. M => λ y. [y/x]M (y is not free in M)

 Replaces all free occurrences of x in t1 with t2

 Reduction
 Repeatedly apply β-reduction to each subexpression

 Each reducible expression is called a redex
 The order of applying β-reductions does not matter

cs3723 12

Example: Variable Substitution
 (λ f. λ x. f (f x)) (λ y. y+x)

apply twice add x to argument

 Substitute variables “blindly”

λ x. [(λ y. y+x) ((λ y. y+x) x)] => λ x. x+x+x

 Rename bound variables

(λ f. λ z. f (f z)) (λ y. y+x)

=> λ z. [(λ y. y+x) ((λ y. y+x) z))]

=> λ z. z+x+x

Easy rule: always rename variables to be distinct

cs3723 13

Examples
Reduce Lambda Terms
 (λ x. (x+y)) 3
 (λ f. λ x. f (f x)) (λ y. y+1)
 λ x. (λ y. y x) (λ z. x z)
 (λ x. (λ y. y x) (λ z. x z)) (λ y. y y)

cs3723 14

Solutions
Reduce Lambda Terms
 (λ x. (x+y)) 3

 => 3 + y
 (λ f. λ x. f (f x)) (λ y. y+1)

 => λ x. (λ y. y+1) ((λ y. y+1) x)
 => λ x. (λ y. y+1) (x+1)
 => λ x. (x+1)+1

 λ x. (λ y. y x) (λ z. x z)
 => λ x. (λ z. x z) x
 => λ x. x x

 (λ x. (λ y. y x) (λ z. x z)) (λ y. y y)
 => (λ x. x x) (λ y. y y)
 => (λ y. y y) (λ y. y y)
 => (λ y. y y) (λ y. y y)

cs3723 15

Confluence of Reduction
 Reduction

 Repeatedly apply β-reduction to each subexpression

 Each reducible expression is called a redex

 Normal form
 A lambda expression that cannot be further reduced
 The order of applying β-reductions does not matter

 Confluence
 If a lambda expression can be reduced to a normal form,

the final result is uniquely determined
 Ordering of applying reductions does not matter

cs3723 16

Termination of Reduction
 Can all lambda terms be reduced to normal form?

 No. Some lambda terms do not have a normal form
(i.e., their reduction does not terminate)

 Example non-terminating reductions
 (λ x. x x) (λ x. x x)
=>(λ y. y y) (λ x. x x) =>(λ x. x x) (λ x. x x) …

 Combinators
 Pure lambda terms without free variables

 Fixed-point combinator
 A combinator Y such that given a function f, Y f => f (Y f)
 Example: Y = λ f. (λ x. f (x x)) (λ x. f (x x))

 Yf = (λ f. (λ x. f (x x)) (λ x. f (x x))) f
 => (λ x. f (x x)) (λ x. f (x x))
 => f ((λ x. f (x x)) (λ x. f (x x)))
 => f (Yf)

cs3723 17

Recursion and Fixed Points
 Recursive functions

 The body of a function invokes the function
 Factorial: f(n) = if n=0 then 1 else n*f(n-1)

 Is it possible to write recursive functions
in Lambda Calculus?
 Yes, using fixed-point combinator

 More advanced topics (not required)

