Lambda Calculus

Variables and Functions

Lambda Calculus

\square Mathematical system for functions

- Computation with functions
- Captures essence of variable binding
- Function parameters and substitution
- Can be extended with types, expressions, memory stores and side-effects
- Introduced by Church in 1930s
- Notation for function expressions
- Proof system for equality of expressions
- Calculation rules for function application (invocation)

Pure Lambda Calculus

- Abstract syntax: M ::= x| $\lambda \mathbf{x . M | M} \mathbf{M}$
- x represents variable names
- $\lambda \mathbf{x} . \mathbf{M}$ is equivalent to (lambda (x) M) in Lisp/Scheme
- M M is equivalent to (M M) in Lisp/Scheme
- Each expression is called a lambda term or a lambda expression
- Concrete syntax: add parentheses to resolve ambiguity
- ($\mathbf{M} \mathbf{M}$) has higher precedence than $\lambda \mathbf{x . M}$;
i.e. $\lambda \mathbf{x} . \mathbf{M} \mathbf{N}=>\lambda \mathbf{x}$ ($\mathbf{M} \mathbf{N}$)
- M M is left associative; i.e. x y $z=>(x y) z$
- Compare: concrete syntax in Lisp/Scheme
- M ::= x | (lambda (x) M) | (M M)

The Applied Lambda Calculus

- Can pure lambda calculi express all computation?
- Yes, it is Turing complete. Other values/operations can be represented as function abstractions.
\square For example, boolean values can be expressed as
True $=\lambda \mathrm{t}$. $(\lambda \mathrm{f} . \mathrm{t})$
False $=\lambda t$. $\lambda \mathrm{f} . \mathrm{f})$
- But we are not going to be extreme.
- The applied lambda calculus

$$
M::=e|x| \lambda x . M \mid M M
$$

- e represents all regular arithmetic expressions
- Examples of applied lambda calculus
- Expressions: $x+y, x+2 * y+z$
- Function abstraction/definition: $\lambda x .(x+y), \lambda z .(x+2 * y+z)$
- Function application (invocation): $(\lambda x .(x+y)) 3$

Lambda Calculus In Real

Languages

- Lisp
- Many different dialects
- Lisp 1.5, Maclisp, ..., Scheme, ...CommonLisp,...
\square This class uses Scheme
- Function abstraction (allow multiple parameters)
- $\lambda \times . \mathrm{M}=>$ (lambda (x) M)
- $\lambda x \cdot \lambda y \cdot \lambda z . M=>(l a m b d a(x y z) M)$
- Function application
- M1 M2 => (M1 M2)
- (M1 M2) M3 => (M1 M2 M3)
- C (each function must have a name)
- $\lambda x . \lambda y . \lambda z . M=>$ int f(int x, int y,int $z)$ \{ return M; \}
- (M1 M2) M3 => M1(M2, M3)

Example Lambda Terms

- Nested function abstractions (definitions)
$\lambda \mathrm{s} . \lambda \mathrm{z} . \mathrm{z}$
$\lambda \mathrm{s} . \lambda \mathrm{z}$.s (s z)
$\lambda s . \lambda z . s(s(s z)))$
\square Nested function applications (invocations)
x y z
($\lambda \mathrm{s} . \lambda \mathrm{z} . \mathrm{z}) \mathrm{y} \mathrm{z}$
$(\lambda s . \lambda z . s(s z))((\lambda s . \lambda z . z) y z)$

Semantics of Lambda Calculus

- The lambda calculus language
- Pure lambda calculus supports only a single type: function
- Applied lambda calculus supports additional types of values such as int, char, float etc.
- Evaluation of lambda calculus involves a single operation: function application (invocation)
- Provide theoretical foundation for reasoning about semantics of functions in Programming Languages
\square Functions are used both as parameters and return values
\square Support higher-order functions; functions are first-class objects.
- Semantic definitions
- How to bind variables to values (substitute parameters with values)?
- How do we know whether two lambda terms are equal? (evaluation)

Evaluating Lambda Calculus

- What happens in evaluation

$$
\begin{aligned}
& (\boldsymbol{\lambda} y \cdot y+1) x=x+1 \\
& (\lambda f \cdot \lambda x \cdot f(f x)) g=\lambda x \cdot g(g x) \\
& (\lambda f \cdot \lambda x \cdot f(f x))(\lambda y \cdot y+1) \\
& \quad=\lambda x \cdot(\lambda y \cdot y+1)(\lambda y \cdot y+1) x) \\
& \quad=\lambda x \cdot(\lambda y \cdot y+1)(x+1)=\lambda x \cdot(x+1)+1
\end{aligned}
$$

- Lambda term evaluation $=>$ substitute variables (parameters) with values
- Each variable is a name (or memory store) that can be given different values
- When variables are used in expressions, need find the binding location/declaration and get the value

Variable Binding

- Bound and Free variables
- Each λ x.M declares a new local variable x
$\square \mathrm{x}$ is bound (local) in $\lambda \times . M$
- The binding scope of x is $M=>$ the occurrences of x in M refers to the $\lambda \times$ declaration
- Each variable x in a expression M is free (global) if
- there is no λx in the expression M, or x appears outside all λx declarations in M
- The binding scope of x is somewhere outside of M
- Example: $\lambda \mathrm{x} . \lambda \mathrm{y} \cdot\left(\mathrm{z} 1^{*} \mathrm{x}+\mathrm{z} 2{ }^{*} \mathrm{y}\right)$
- Bound variables: x, y; free variables: $z 1, z 2$
- Binding scopes

$$
\begin{aligned}
& \lambda x=>\lambda y \cdot\left(z 1^{*} x+z 2 * y\right) \\
& \lambda y=>\left(z 1^{*} x+z 2 * y\right)
\end{aligned}
$$

- Do variable names matter?
$\lambda x .(x+y)=\lambda z .(z+y)$
Bound (local) variables: no; Free (global) variables: yes
- Example: y is both free and bound in $\lambda x .((\lambda y . y+2) x)+y$

Equality of Lambda Terms

ㅁ α-axiom
$\lambda x . M=\lambda y \cdot[y / x] M$

- [y/x]M: substitutes y for free occurrences of x in M
- y cannot already appear in M
- Example
- $\boldsymbol{\lambda} \mathrm{x} .(\mathrm{x}+\mathrm{y})=\boldsymbol{\lambda} \mathrm{z} .(\mathrm{z}+\mathrm{y})$
- But $\lambda x .(x+y) \neq \lambda y .(y+y)$

ㅁ β-axiom
($\lambda \mathrm{x} . \mathrm{M}$) $\mathrm{N}=[\mathrm{N} / \mathrm{x}] \mathrm{M}$

- [N/x]M: substitutes N for free occurrences of x in M
- Free variables in N cannot be bound in M
- Example
$\square(\lambda x \cdot \lambda y \cdot(x+y)) z 1=\lambda y .(z 1+y)$
$\square \operatorname{But}(\lambda x . \lambda y .(x+y)) y \neq \lambda y .(y+y)$

Evaluation of Lambda-terms

- β-reduction

$$
(\lambda x . \mathrm{t} 1) \mathrm{t} 2 \quad=>[\mathrm{t} 2 / \mathrm{x}] \mathrm{t} 1
$$

- where $[\mathrm{t} 2 / \mathrm{x}] \mathrm{t} 1$ involves renaming as needed
- Rename bound variables in t1 if they appear free in t2
- α-conversion: $\lambda x . M=>\lambda y .[y / x] M$ (y is not free in M)
- Replaces all free occurrences of x in t1 with t2
- Reduction
- Repeatedly apply β-reduction to each subexpression
- Each reducible expression is called a redex
- The order of applying β-reductions does not matter

Example: Variable Substitution

$-(\lambda f . \lambda x . f(f x))(\lambda y . y+x)$
apply twice add x to argument
\square Substitute variables "blindly"
$\boldsymbol{\lambda} x .[(\boldsymbol{\lambda} y \cdot y+x)((\boldsymbol{\lambda} y \cdot y+x) x)]=>\boldsymbol{\lambda} x \cdot x+x+x$

- Rename bound variables

$$
\begin{aligned}
& (\boldsymbol{\lambda} \cdot \boldsymbol{\lambda} \mathrm{z} \cdot \mathrm{f}(\mathrm{f} z))(\boldsymbol{\lambda} \mathrm{y} \cdot \mathrm{y}+\mathrm{x}) \\
& =>\boldsymbol{\lambda} \mathrm{z} \cdot[(\boldsymbol{\lambda} \mathrm{y} \cdot \mathrm{y}+\mathrm{x})((\boldsymbol{\lambda} \mathrm{y} \cdot \mathrm{y}+\mathrm{x}) \mathrm{z}))] \\
& =>\boldsymbol{\lambda} \mathrm{z} \cdot \mathrm{z+x+x}
\end{aligned}
$$

Easy rule: always rename variables to be distinct

Examples
 Reduce Lambda Terms

$\square(\lambda x .(x+y)) 3$
口（ $\lambda \mathrm{f} . \lambda \mathrm{x} . \mathrm{f}(\mathrm{fx}))(\lambda y . y+1)$
口 $\lambda x .(\lambda y . y x)(\lambda z . x z)$
口 $(\lambda x .(\lambda y . y x)(\lambda z . x z))(\lambda y . y y)$

Solutions
 Reduce Lambda Terms

ㅁ $(\lambda x .(x+y)) 3$

$$
=>3+y
$$

口 ($\lambda \mathrm{f} . \lambda \mathrm{x} . \mathrm{f}(\mathrm{fx}))(\lambda y . y+1)$

$$
\begin{aligned}
& =>\lambda x \cdot(\lambda y \cdot y+1)((\lambda y \cdot y+1) x) \\
& =>\lambda x \cdot(\lambda y \cdot y+1)(x+1) \\
& =>\lambda x \cdot(x+1)+1
\end{aligned}
$$

口 $\lambda \mathrm{x} .(\lambda \mathrm{y} . \mathrm{y} \mathrm{x})(\lambda \mathrm{z} . \mathrm{x} \mathrm{z})$

$$
\begin{aligned}
& =>\lambda x .(\lambda z \cdot x z) x \\
& =>\lambda x \cdot x \mathrm{x}
\end{aligned}
$$

$\square(\lambda x .(\lambda y . y x)(\lambda z . x z))(\lambda y . y y)$

$$
\begin{aligned}
& =>(\lambda x \cdot x x)(\lambda y \cdot y y) \\
& =>(\lambda y \cdot y y)(\lambda y \cdot y y) \\
& =>(\lambda y \cdot y y)(\lambda y \cdot y y)
\end{aligned}
$$

Confluence of Reduction

- Reduction
- Repeatedly apply β-reduction to each subexpression
- Each reducible expression is called a redex
- Normal form
- A lambda expression that cannot be further reduced
- The order of applying β-reductions does not matter
- Confluence
- If a lambda expression can be reduced to a normal form, the final result is uniquely determined
- Ordering of applying reductions does not matter

Termination of Reduction

- Can all lambda terms be reduced to normal form?
- No. Some lambda terms do not have a normal form (i.e., their reduction does not terminate)
- Example non-terminating reductions ($\lambda \mathrm{x} . \mathrm{xx}$) ($\lambda \mathrm{x} . \mathrm{xx}$)

$$
=>(\lambda y \cdot y y)(\lambda x . x x)=>(\lambda x . x x)(\lambda x . x x) \ldots
$$

- Combinators
- Pure lambda terms without free variables
- Fixed-point combinator
- A combinator Y such that given a function $f, Y f=>f(Y f)$
- Example: $Y=\lambda f .(\lambda x . f(x x))(\lambda x . f(x x))$
$\square \mathrm{Yf}=(\lambda \mathrm{f} .(\lambda \mathrm{X} . \mathrm{f}(\mathrm{XX}))(\lambda \mathrm{X} . \mathrm{f}(\mathrm{x} \mathbf{x}))) \mathrm{f}$
$=>(\lambda x . f(X X))(\lambda X . f(X X))$
$=>f((\lambda x . f(x X))(\lambda X . f(X X)))$
$=>\mathbf{f}$ (Yf)

Recursion and Fixed Points

\square Recursive functions

- The body of a function invokes the function
\square Factorial: $f(n)=$ if $n=0$ then 1 else $n * f(n-1)$
- Is it possible to write recursive functions in Lambda Calculus?
- Yes, using fixed-point combinator
- More advanced topics (not required)

