Lambda Calculus

Variables and Functions

Lambda Calculus

Mathematical system for functions

- Computation with functions
- Captures essence of variable binding
 Function parameters and substitution
- Can be extended with types, expressions, memory stores and side-effects
- Introduced by Church in 1930s
 - Notation for function expressions
 - Proof system for equality of expressions
 - Calculation rules for function application (invocation)

Pure Lambda Calculus

Abstract syntax: M ::= x | λx.M | M M

- x represents variable names
- $\lambda x.M$ is equivalent to (lambda (x) M) in Lisp/Scheme
- **M M** is equivalent to (M M) in Lisp/Scheme
- Each expression is called a lambda term or a lambda expression
- Concrete syntax: add parentheses to resolve ambiguity

(M M) has higher precedence than λx.M;

i.e. $\lambda x.M N => \lambda x. (M N)$

- M M is left associative; i.e. x y z => (x y) z
- Compare: concrete syntax in Lisp/Scheme

M ::= x | (lambda (x) M) | (M M)

The Applied Lambda Calculus

Can pure lambda calculi express all computation?

- Yes, it is Turing complete. Other values/operations can be represented as function abstractions.
 - For example, boolean values can be expressed as

True = λ t. (λ f. t) False = λ t. (λ f. f)

- But we are not going to be extreme.
- The applied lambda calculus

 $M ::= e \mid x \mid \lambda x.M \mid M M$

- e represents all regular arithmetic expressions
- Examples of applied lambda calculus
 - Expressions: x+y, x+2*y+z
 - Function abstraction/definition: $\lambda x.(x+y)$, $\lambda z.(x+2*y+z)$
 - Function application (invocation): (λ x.(x+y)) 3

Lambda Calculus In Real Languages

Lisp

- Many different dialects
 - Lisp 1.5, Maclisp, ..., Scheme, ...CommonLisp,...
 - This class uses Scheme
- Function abstraction (allow multiple parameters)
 - $\Box \ \lambda \ x. \ M => (lambda \ (x) \ M)$
 - □ λx . λy . λz . M => (lambda (x y z) M)
- Function application
 - □ M1 M2 => (M1 M2)
 - □ (M1 M2) M3 => (M1 M2 M3)
- C (each function must have a name)
 - $\lambda x. \lambda y. \lambda z. M => int f(int x, int y, int z) \{ return M; \}$
 - (M1 M2) M3 => M1(M2, M3)

Example Lambda Terms

■ Nested function abstractions (definitions) λ s. λ z. z λ s. λ z. s (s z) λ s. λ z. s (s (s z)))

Nested function applications (invocations)

x y z (λ s. λ z. z) y z (λ s. λ z. s (s z)) ((λ s. λ z. z) y z)

Semantics of Lambda Calculus

The lambda calculus language

- Pure lambda calculus supports only a single type: function
 Applied lambda calculus supports additional types of values such as int, char, float etc.
- Evaluation of lambda calculus involves a single operation: function application (invocation)
- Provide theoretical foundation for reasoning about semantics of functions in Programming Languages
 - Functions are used both as parameters and return values
 - Support higher-order functions; functions are first-class objects.
- Semantic definitions
 - How to bind variables to values (substitute parameters with values)?
 - How do we know whether two lambda terms are equal? (evaluation)

Evaluating Lambda Calculus

What happens in evaluation

 $(\lambda y. y + 1) x = x + 1$

 $(\lambda f. \lambda x. f (f x)) g = \lambda x. g (g x)$

 $(\lambda f. \lambda x. f(f x)) (\lambda y. y+1)$

$$= \lambda \times (\lambda y, y+1) ((\lambda y, y+1) \times)$$

= $\lambda \times (\lambda y, y+1) (x+1) = \lambda \times (x+1)+1$

- Lambda term evaluation => substitute variables (parameters) with values
 - Each variable is a name (or memory store) that can be given different values
 - When variables are used in expressions, need find the binding location/declaration and get the value

Variable Binding

- Bound and Free variables
 - Each $\lambda \times M$ declares a new local variable x
 - **•** x is bound (local) in $\lambda \times M$
 - The binding scope of x is M => the occurrences of x in M refers to the λ x declaration
 - Each variable x in a expression M is free (global) if
 - there is no λx in the expression M, or x appears outside all λx declarations in M
 - The binding scope of x is somewhere outside of M

D Example: λX . λy . (z1*x+z2*y)

- Bound variables: x, y; free variables: z1, z2
- Binding scopes

 $\lambda x => \lambda y. (z1*x+z2*y)$

 $\lambda y => (z1*x+z2*y)$

Do variable names matter?

 $\lambda x. (x+y) = \lambda z. (z+y)$

- Bound (local) variables: no; Free (global) variables: yes
- Example: y is both free and bound in λx . ((λy . y+2) x) + y

Equality of Lambda Terms

- \square α -axiom
 - $\lambda x. M = \lambda y. [y/x]M$
 - [y/x]M: substitutes y for free occurrences of x in M
 - y cannot already appear in M
 - Example
 - $\Box \ \lambda x. \ (x + y) = \lambda z. \ (z + y)$
 - □ But λ x. (x + y) ≠ λ y. (y + y)
- \square β -axiom

 $(\lambda x. M) N = [N/x] M$

- [N/x]M: substitutes N for free occurrences of x in M
- Free variables in N cannot be bound in M
- Example
 - $\Box (\lambda x. \lambda y. (x + y)) z1 = \lambda y. (z1+y)$
 - □ But $(\lambda x. \lambda y. (x + y)) y \neq \lambda y. (y + y)$

Evaluation of Lambda-terms

\square β -reduction

 $(\lambda x. t1) t2 => [t2/x]t1$

- where [t2/x]t1 involves renaming as needed
- Rename bound variables in t1 if they appear free in t2
 α-conversion: λ x. M => λ y. [y/x]M (y is not free in M)
- Replaces all free occurrences of x in t1 with t2

Reduction

- Repeatedly apply β -reduction to each subexpression
- Each reducible expression is called a redex
- The order of applying β -reductions does not matter

Example: Variable Substitution

• $(\lambda f. \lambda x. f(f x)) (\lambda y. y+x)$

apply twice add x to argument

Substitute variables "blindly" $\lambda x. [(\lambda y. y+x) ((\lambda y. y+x) x)] => \lambda x. x+x+x$ Rename bound variables $(\lambda f. \lambda z. f (f z)) (\lambda y. y+x)$ $=> \lambda z. [(\lambda y. y+x) ((\lambda y. y+x) z))]$ $=> \lambda z. z+x+x$

Easy rule: always rename variables to be distinct

Examples Reduce Lambda Terms

Solutions Reduce Lambda Terms

□
$$(\lambda x. (x+y)) 3$$

=> 3 + y
□ $(\lambda f. \lambda x. f (f x)) (\lambda y. y+1)$
=> $\lambda x. (\lambda y. y+1) ((\lambda y. y+1) x)$
=> $\lambda x. (\lambda y. y+1) (x+1)$
=> $\lambda x. (\lambda y. y x) (\lambda z. x z)$
=> $\lambda x. (\lambda y. y x) (\lambda z. x z)$
=> $\lambda x. (\lambda z. x z) x$
=> $\lambda x. x x$
□ $(\lambda x. (\lambda y. y x) (\lambda z. x z)) (\lambda y. y y)$
=> $(\lambda x. x) (\lambda y. y y)$
=> $(\lambda y. y y) (\lambda y. y y)$
=> $(\lambda y. y y) (\lambda y. y y)$

Confluence of Reduction

Reduction

- Repeatedly apply β -reduction to each subexpression
- Each reducible expression is called a redex
- Normal form
 - A lambda expression that cannot be further reduced
 - The order of applying β -reductions does not matter

Confluence

- If a lambda expression can be reduced to a normal form, the final result is uniquely determined
- Ordering of applying reductions does not matter

Termination of Reduction

Can all lambda terms be reduced to normal form?

- No. Some lambda terms do not have a normal form (i.e., their reduction does not terminate)
- Example non-terminating reductions
 (λ x. x x) (λ x. x x)
 - $=>(\lambda y. y y) (\lambda x. x x) =>(\lambda x. x x) (\lambda x. x x) ...$
- Combinators
 - Pure lambda terms without free variables
- Fixed-point combinator
 - A combinator Y such that given a function f, Y f => f (Y f)
 - Example: Y = λ f. (λ x. f (x x)) (λ x. f (x x))
 Yf = (λ f. (λ x. f (x x)) (λ x. f (x x))) f
 - $=> (\lambda x. f (x x)) (\lambda x. f (x x))$ $=> f ((\lambda x. f (x x)) (\lambda x. f (x x)))$ $=> f ((\lambda x. f (x x)) (\lambda x. f (x x)))$ => f (Yf)

Recursion and Fixed Points

Recursive functions

- The body of a function invokes the function
 Factorial: f(n) = if n=0 then 1 else n*f(n-1)
- Is it possible to write recursive functions in Lambda Calculus?
 - Yes, using fixed-point combinator
- More advanced topics (not required)