Lambda Calculus

Variables and Functions
Lambda Calculus

- Mathematical system for functions
 - Computation with functions
 - Captures essence of variable binding
 - Function parameters and substitution
 - Can be extended with types, expressions, memory stores and side-effects

- Introduced by Church in 1930s
 - Notation for function expressions
 - Proof system for equality of expressions
 - Calculation rules for function application (invocation)
Pure Lambda Calculus

- **Abstract syntax:** \(M ::= x \mid \lambda x. M \mid M \ M \)
 - \(x \) represents variable names
 - \(\lambda x. M \) is equivalent to \((\text{lambda} \ (x) \ M)\) in Lisp/Scheme
 - \(M \ M \) is equivalent to \((M \ M)\) in Lisp/Scheme
 - Each expression is called a lambda term or a lambda expression

- **Concrete syntax:** add parentheses to resolve ambiguity
 - \((M \ M)\) has higher precedence than \(\lambda x. M\);
 i.e. \(\lambda x. M \ N =\rightarrow \lambda x. (M \ N) \)
 - \(M \ M \) is left associative; i.e. \(x \ y \ z =\rightarrow (x \ y) \ z \)

- **Compare:** concrete syntax in Lisp/Scheme
 - \(M ::= x \mid (\text{lambda} \ (x) \ M) \mid (M \ M) \)
The Applied Lambda Calculus

- Can pure lambda calculi express all computation?
 - Yes, it is Turing complete. Other values/operations can be represented as function abstractions.
 - For example, boolean values can be expressed as
 \[\text{True} = \lambda t. (\lambda f. t) \]
 \[\text{False} = \lambda t. (\lambda f. f) \]
 - But we are not going to be extreme.

- The applied lambda calculus
 \[M ::= e \mid x \mid \lambda x.M \mid M M \]
 - \(e \) represents all regular arithmetic expressions

- Examples of applied lambda calculus
 - Expressions: \(x+y, \ x+2*y+z \)
 - Function abstraction/definition: \(\lambda x.(x+y), \ \lambda z.(x+2*y+z) \)
 - Function application (invocation): \((\lambda x.(x+y)) \ 3 \)
Lambda Calculus In Real Languages

- **Lisp**
 - Many different dialects
 - Lisp 1.5, Maclisp, ..., Scheme, ...CommonLisp,...
 - This class uses Scheme
 - Function abstraction (allow multiple parameters)
 - \[\lambda \; x. \; M \Rightarrow (\text{lambda} \; (x) \; M) \]
 - \[\lambda \; x. \; \lambda \; y. \; \lambda \; z. \; M \Rightarrow (\text{lambda} \; (x \; y \; z) \; M) \]
 - Function application
 - \[M_1 \; M_2 \Rightarrow (M_1 \; M_2) \]
 - \[(M_1 \; M_2) \; M_3 \Rightarrow (M_1 \; M_2 \; M_3) \]

- **C** (each function must have a name)
 - \[\lambda \; x. \; \lambda \; y. \; \lambda \; z. \; M \Rightarrow \text{int} \; f(int \; x, int \; y, int \; z) \; \{ \; \text{return} \; M; \; \} \]
 - \[(M_1 \; M_2) \; M_3 \Rightarrow M_1(M_2, M_3) \]
Example Lambda Terms

- Nested function abstractions (definitions)
 \[\lambda s. \lambda z. z \]
 \[\lambda s. \lambda z. s (s z) \]
 \[\lambda s. \lambda z. s (s (s z))) \]

- Nested function applications (invocations)
 \[x \ y \ z \]
 \[(\lambda s. \lambda z. z) \ y \ z \]
 \[((\lambda s. \lambda z. s (s z)) \ ((\lambda s. \lambda z. z) \ y \ z)) \]
The lambda calculus language
- Pure lambda calculus supports only a single type: function
 - Applied lambda calculus supports additional types of values such as int, char, float etc.
- Evaluation of lambda calculus involves a single operation: function application (invocation)
- Provide theoretical foundation for reasoning about semantics of functions in Programming Languages
 - Functions are used both as parameters and return values
 - Support higher-order functions; functions are first-class objects.

Semantic definitions
- How to bind variables to values (substitute parameters with values)?
- How do we know whether two lambda terms are equal? (evaluation)
Evaluating Lambda Calculus

What happens in evaluation

\[(\lambda \ y. \ y + 1) \ x = x + 1\]
\[(\lambda \ f. \ \lambda \ x. \ f \ (f \ x)) \ g = \lambda \ x. \ g \ (g \ x)\]
\[(\lambda \ f. \ \lambda \ x. \ f \ (f \ x)) \ (\lambda \ y. \ y+1) \]
\[= \lambda \ x. \ (\lambda \ y. \ y+1) \ ((\lambda \ y. \ y+1) \ x) \]
\[= \lambda \ x. \ (\lambda \ y. \ y+1) \ (x+1) = \lambda \ x. \ (x+1)+1\]

Lambda term evaluation => substitute variables (parameters) with values

- Each variable is a name (or memory store) that can be given different values
- When variables are used in expressions, need find the binding location/declaration and get the value
Variable Binding

- **Bound and Free variables**
 - Each $\lambda \ x. M$ declares a new local variable x
 - x is bound (local) in $\lambda \ x. M$
 - The binding scope of x is M => the occurrences of x in M refers to the $\lambda \ x$ declaration
 - Each variable x in an expression M is free (global) if
 - there is no λx in the expression M, or x appears outside all λx declarations in M
 - The binding scope of x is somewhere outside of M

- **Example**: $\lambda \ x. \lambda \ y. (z1*x+z2 *y)$
 - Bound variables: x, y; free variables: $z1$, $z2$
 - Binding scopes
 - $\lambda \ x$ => $\lambda \ y. (z1*x+z2 *y)$
 - $\lambda \ y$ => $(z1*x+z2 *y)$

- **Do variable names matter?**
 - $\lambda \ x. (x+y) = \lambda \ z. (z+y)$
 - Bound (local) variables: no; Free (global) variables: yes
 - Example: y is both free and bound in $\lambda \ x. ((\lambda \ y. y+2) \ x) + y$
Equality of Lambda Terms

- **α-axiom**
 \[\lambda x. M = \lambda y. [y/x]M \]
 - \([y/x]M\): substitutes \(y\) for free occurrences of \(x\) in \(M\)
 - \(y\) cannot already appear in \(M\)
 - Example
 - \(\lambda x. (x + y) = \lambda z. (z + y)\)
 - But \(\lambda x. (x + y) \neq \lambda y. (y + y)\)

- **β-axiom**
 \[(\lambda x. M) N = [N/x] M\]
 - \([N/x]M\): substitutes \(N\) for free occurrences of \(x\) in \(M\)
 - Free variables in \(N\) cannot be bound in \(M\)
 - Example
 - \((\lambda x. \lambda y. (x + y)) z1 = \lambda y. (z1+y)\)
 - But \((\lambda x. \lambda y. (x + y)) y \neq \lambda y. (y + y)\)
Evaluation of Lambda-terms

- **β-reduction**
 \[(\lambda x. \, t1) \, t2 \Rightarrow [t2/x]t1\]
 - where \([t2/x]t1\) involves renaming as needed
 - Rename bound variables in \(t1\) if they appear free in \(t2\)
 - \(\alpha\)-conversion: \(\lambda x. \, M \Rightarrow \lambda y. \, [y/x]M\) (\(y\) is not free in \(M\))
 - Replaces all free occurrences of \(x\) in \(t1\) with \(t2\)

- **Reduction**
 - Repeatedly apply β-reduction to each subexpression
 - Each reducible expression is called a redex
 - The order of applying β-reductions does not matter
Example: Variable Substitution

- $(\lambda f. \lambda x. f (f x)) (\lambda y. y+x)$
 - apply twice
 - add x to argument

- Substitute variables “blindly”
 - $\lambda x. [(\lambda y. y+x) ((\lambda y. y+x) x)] \Rightarrow \lambda x. x+x+x$

- Rename bound variables
 - $(\lambda f. \lambda z. f (f z)) (\lambda y. y+x)$
 - $\Rightarrow \lambda z. [(\lambda y. y+x) ((\lambda y. y+x) z)]$
 - $\Rightarrow \lambda z. z+x+x$

Easy rule: always rename variables to be distinct
Examples
Reduce Lambda Terms

- \((\lambda\ x\ .\ (x+y))\ 3\)
- \((\lambda\ f\ .\ \lambda\ x\ .\ f\ (f\ x))\ (\lambda\ y\ .\ y+1)\)
- \(\lambda\ x\ .\ (\lambda\ y\ .\ y\ x)\ (\lambda\ z\ .\ x\ z)\)
- \((\lambda\ x\ .\ (\lambda\ y\ .\ y\ x)\ (\lambda\ z\ .\ x\ z))\) (\(\lambda\ y\ .\ y\ y\))
Solutions
Reduce Lambda Terms

- $(\lambda \ x. \ (x+y)) \ 3$
 $\Rightarrow \ 3 + y$

- $(\lambda \ f. \ \lambda \ x. \ f \ (f \ x)) \ (\lambda \ y. \ y+1)$
 $\Rightarrow \ \lambda \ x. \ (\lambda \ y. \ y+1) \ ((\lambda \ y. \ y+1) \ x)$
 $\Rightarrow \ \lambda \ x. \ (\lambda \ y. \ y+1) \ (x+1)$
 $\Rightarrow \ \lambda \ x. \ (x+1)+1$

- $\lambda \ x. \ (\lambda \ y. \ y \ x) \ (\lambda \ z. \ x \ z)$
 $\Rightarrow \ \lambda \ x. \ (\lambda \ z. \ x \ z) \ x$
 $\Rightarrow \ \lambda \ x. \ x \ x$

- $(\lambda \ x. \ (\lambda \ y. \ y \ x) \ (\lambda \ z. \ x \ z)) \ (\lambda \ y. \ y \ y)$
 $\Rightarrow \ (\lambda \ x. \ x \ x) \ (\lambda \ y. \ y \ y)$
 $\Rightarrow \ (\lambda \ y. \ y \ y) \ (\lambda \ y. \ y \ y)$
 $\Rightarrow \ (\lambda \ y. \ y \ y) \ (\lambda \ y. \ y \ y)$
Confluence of Reduction

- **Reduction**
 - Repeatedly apply β-reduction to each subexpression
 - Each reducible expression is called a redex

- **Normal form**
 - A lambda expression that cannot be further reduced
 - The order of applying β-reductions does not matter

- **Confluence**
 - If a lambda expression can be reduced to a normal form, the final result is uniquely determined
 - Ordering of applying reductions does not matter
Termination of Reduction

- Can all lambda terms be reduced to normal form?
 - No. Some lambda terms do not have a normal form (i.e., their reduction does not terminate)
 - Example non-terminating reductions
 \((\lambda x. x x) (\lambda x. x x)\)
 \(\Rightarrow (\lambda y. y y) (\lambda x. x x)\)
 \(\Rightarrow (\lambda x. x x) (\lambda x. x x)\) ...

- Combinators
 - Pure lambda terms without free variables

- Fixed-point combinator
 - A combinator \(Y\) such that given a function \(f\), \(Yf \Rightarrow f (Yf)\)
 - Example: \(Y = \lambda f. (\lambda x. f (x x)) (\lambda x. f (x x))\)
 - \(Yf = (\lambda f. (\lambda x. f (x x)) (\lambda x. f (x x))) f\)
 \(\Rightarrow (\lambda x. f (x x)) (\lambda x. f (x x))\)
 \(\Rightarrow f ((\lambda x. f (x x)) (\lambda x. f (x x)))\)
 \(\Rightarrow f (Yf)\)
Recursion and Fixed Points

- Recursive functions
 - The body of a function invokes the function
 - Factorial: \(f(n) = \text{if } n=0 \text{ then } 1 \text{ else } n \times f(n-1) \)

- Is it possible to write recursive functions in Lambda Calculus?
 - Yes, using fixed-point combinator

- More advanced topics (not required)