
cs3723 1

Lisp
Functions, recursion and lists

cs3723 2

Interacting with Scheme
(define pi 3.14159) ; bind pi to 3.14159

(lambda (x) (* x x)) ; anonymous function

(define sq (lambda (x) (* x x)))
(define (sq x) (* x x)) ; (define sq (lambda (x) (* x x)))

(sq 100) ; 100 * 100

(if P E1 E2) ; if P then E1 else E2
(cond (P1 E1) (P2 E2) (else E3)) ; (if P1 E1 (if P2 E2 E3))

(let ((x1 E1) (x2 E2)) E3) ; declare local variables x1 and x2

(let* ((x1 E2) (x2 E2)) E3) ; E2 can use x1 as a local variable

cs3723 3

The Lisp Programming
Language
 Stems from interest in symbolic computation

 Led by John McCarthy in late 1950s
 Designed for math logic in artificial intelligence

 Functional programming paradigm
 A program is a expression

 Expresses flow of data; map input values to output values
 No side effects or modification to variables
 No concept of control-flow or statements

 Functions are first-class objects
 A function can be used everywhere a regular value is used
 Functions can take other functions as parameters and return

other functions as results (higher-order functions)
 Adding side-effect operations

 Different occurrences of expressions have different values
 Strength and weakness

 Simplicity and flexibility
 Build prototype systems incrementally
X Not many tools or libraries; low in efficiency (mostly interpreted)

cs3723 4

Concepts in Lisp
 Supported value types

 Atomic values: numbers (e.g. 3, 7.7), symbols (e.g. ‘abc),
booleans

 Compound data structures: lists (car, cons, cdr), functions
(lambda)

 Supported operations
 Function definition and function call

 (define fname (lambda (parameters) body))
 (fname arguments)

 Predefined functions: cons, cond, if, car, cdr, eq?, ……
 Nested blocks (local variables): let

 Variable declarations : introduces new variables
 May bind value to identifier, specify type, etc.
 Global vs. local variables: (define x ‘a) vs. (let ((x a)) (…))

cs3723 5

Lists in Lisp/Scheme
 In Lisp/Scheme, a list may contain arbitrary types of

values
 ‘(a b c) ‘(+ 2 (* 3 5)) ‘(lambda (a b) (cons a b))
 A dynamically typed list can be used to implement most pointer-

based data structures, including lists and trees.
 Can it be used to implement arbitrary graphs? (can we build

cycles in lists?)

 Lisp/Scheme lists can be used to naturally implement
AST --- a tree data structure used as an internal
representation of programs in compilers/interpreters

 lambda +
 / \ / \
 list cons 2 *
 / \ / \ / \
 a b a b 3 5

cs3723 6

Lisp Innovations in language
design
 Functional programming paradigm

 A program is composed of expressions
 Functions are first-class objects

 Support higher-order functions

 Abstract view of memory (the Lisp abstract
machine)

 Program as data (dynamic interpretation of
program)

cs3723 7

Expressions vs Statements
 Expression (x+5)/2

 Syntactic entity that has a value
 Need not change accessible memory

 If it does, has a side effect

 Statement load 4094 r1
 Imperative command
 Alters the contents of previously-accessible memory

 Example: inserting to an existing list
 Via pure (side-effect-free) expressions in Lisp/Scheme

(define insert (lambda (x y) (cons x y)))
(insert 4 (insert 3 ‘())

 How do we implement list insertion in C?

cs3723 8

Expressions vs. Statements
 Compare to imperative programming in C

void insert(int x, Cell* y) {
 Cell* z = (Cell*)malloc(sizeof(Cell));
 z->val = y->val; z->next = y->next;
 y->val = x; y->next = z;
 }
int main () { Cell* y = (Cell*)malloc(sizeof(Cell));
 y->val=-1; y->next=0;
 insert(3, y); insert(4, y); }

 Evaluation order
 Among pure expressions: flow of data

 Can evaluate each expression as soon as values are ready
 Among statements: ordering of side effects (modifications)

 Statement order cannot be changed unless proven otherwise
 Tradeoff: creating new values vs. modifying existing ones?

 Copying vs. sharing of complex data structures
 Modification efficiency vs. parallelization of computation

cs3723 9

Lisp: Adding Side Effects
 Pure Lisp

 Expressions do not modify observable machine states
 Impure Lisp

 Allow modifications to memory. May increase efficiency of
programs (eg. modify an element in a list)

 (set! x y) Replace the value of x with y
 (rplacea ’(A B) y) or (set-car! ’(A B) y) Replace A with y
 (rplaced ’(A B) y) or (set-cdr! ’(A B) y) Replace B with y

 Sequence operator
 (progn (set! x y) x) or (begin (set! x y) x)

 Set the value of x to be y; then returns the value of x

 Compare Lisp with C
 Lisp: no return statement, but needs operator for sequencing
 C: no sequencing operator, but needs a return statement

cs3723 10

Exercises
Programming in Lisp(Scheme)
 Programming steps

 What are the input parameters? What values could each
parameter take?

 Enumerate each combination of input parameters, give
a return value for each case

 Exercise problems
 Define a function Find which takes two parameters, x

and y. It returns x if x appears in y, and returns an
empty list (‘()) otherwise.

 Define a function substitute which takes three
parameters, x, y, and z. It returns a new list which
replaces all occurrences x in y with z.

cs3723 11

Solutions
Programming in Lisp(Scheme)

 Define a function Find which takes two parameters, x and y. It
returns x if x appears in y, and returns an empty list otherwise.

 (define Find (lambda (x y)
 (cond ((cons? y)
 (if (eq? (Find x (car y)) x) x (Find x (cdr y))))
 ((eq? x y) x)
 (else ‘()))))
 Define a function substitute which takes three parameters, x, y,

and z. It returns a new list which replaces all occurrences of x in
y with z.

 (define substitute (lambda (x y z)
 (cond ((cons? y) (cons (substitute x (car y) z)
 (substitute x (cdr y) z)))
 ((eq? x y) z)
 (else y))))

cs3723 12

Functional Programming
 Functions are first-class objects

 Functions treated as primitive values (What about C/C++)?
 Can build anonymous and higher-order functions

 Higher order functions are functions that either
 Take other functions as arguments or return a function as

result
 First-order function: parameters/result are not functions
 Second-order function: take first-order functions as

parameters or return them as result
 Third-order functions: take as parameters or return second-

order functions
 Example: function composition

 (lambda (f g x) (f (g x)))
 vs.

 (lambda (f g) (lambda (x) (f (g x)))))

cs3723 13

Pass Functions as Parameters
 Apply a function to each element in a list

 (define maplist (f x)
 (cond ((null? x) nil)
 (else (cons (f (car x))
 (maplist f (cdr x))))))

vs. Cell* maplist(int (*f)(...), Cell* x)
 { if (x == NULL) return NULL;
 else {
 Cell* res = (Cell*) malloc (sizeof(Cell));
 res->val=f(x->val);
 res->next=maplist(f,x->next);
 return res;
 }
 }

 Goal: apply different functions to complex data
 Enforce a uniform interface for all the functions

cs3723 14

Return functions as results
 Function composition

 (define compose
 (lambda (f g) (lambda (x) (f (g x))))))
vs. int compose(int (*f)(...), int (*g)(...), int x)

 { return f(g(x)); }

 In Scheme
 The function compose takes only two parameters
 The result of compose is another function

 in C
 The function compose takes three parameters
 The result of compose is a concrete value
 Does not allow functions being returned as results, why?

 Goal: allow calling context (parameter values, global
variables) be saved and used in the future

cs3723 15

Programming With Higher-order
Functions
 Apply a function to each element in a list

 (define maplist (lambda (f x)
 (cond ((null? x) nil)
 (else (cons (f (car x)) (maplist f (cdr x)))))))

 Increment each number in a list by 1
(define increment1 (lambda (x)
 (maplist (lambda (e) (if (number? e) (+ e 1) e)) x)))

 Reduce a list into a single value
 (define reduce (lambda (f0 f1 f2 x)
 (cond ((null? x) f0)
 (else (f2 (f1 (car x)) (reduce f0 f1 f2 (cdr x)))))))

 Compute the sum of all numbers in a list
(define sum (lambda (x)
 (reduce 0 (lambda (e) (if (number? e) e 0))
 (lambda (res1 res2) (+ res1 res2)) x)))

 Exercise:
 A mapTree function that treat lists as trees
 A mapTreePostOrder function that traverses a tree in post order

cs3723 16

The Lisp Abstract machine
 Abstract machine

 The runtime system (software simulated machine) based on
which a language is interpreted

 In short, the internal model of the interpreter that implements
the language

 Lisp Abstract machine
 A Lisp expression: the current expression to evaluate
 A continuation: the rest of the computation
 A-list : variable->value mapping
 A set of cons cells (dynamic memory)

 pointed to by pointers in A-list
 Each cons cell is a pair

 (car cdr) => linked data structures (lists)
 (atm a) => a single atom

 Garbage collection
 Automatic collection of non-accessible cons cells

cs3723 17

Implementing Lisp --- The Memory
Model
 Cons cells
 Atoms and lists represented by cells

 Tag each value to remember its type

Address Decrement

Atom A

Atom B

Atom C

0

cs3723 18

Sharing
 (a) (b)

 Both structures could be printed as (A.B).(A.B)
 Which are the results of evaluating

 (cons (cons ‘A ‘B) (cons ‘A ‘B)) ?
 ((lambda (x) (cons x x)) (cons ‘A ‘B))

 Equality of compound structures
 What is the result of (eq? ‘a ‘a) ?
 What is the result of (eq? ‘(a b) ‘(a b)) ?

A B A B A B

cs3723 19

Garbage Collection
 Memory management at runtime

 Maintains a list of available memory cells
 Receive and satisfies allocation requests
 When available space is below threshold

 Invoke garbage collector

 Garbage collection
 Detecting memory cells no longer used

 Reclaim memory cells
 Garbage: memory locations that are no longer accessible

 Example (car (cons (e1) (e2)))
 Cells created in evaluation of e2 may be garbage, unless shared

by e1 or other parts of program

 Need to keep track of how many active pointers are
pointing to each store

cs3723 20

Meta-programming
Programs As Data
 Meta programming languages

 Computer programs can write or manipulate other programs (or
themselves) as their data

 If can modify themselves --- reflective programming
 Lisp program can be represented using Lisp atoms and lists

 Can be built/modified at runtime and then evaluated

 An eval function used to evaluate contents of list
 in Scheme, need to choose a more advanced language level
(define atom? (lambda (x) (or (symbol? x) (number? x) (boolean? x))))
(define substitute (lambda (x y z)

 (cond ((null? z) z)
 ((atom? z) (if (eq? z x) y z))

 (else (cons (substitute x y (car z)) (substitute x y (cdr z)))))))
(define substitute-and-eval (lambda (x y z) (eval (substitute x y z))))
(substitute-and-eval ’x ’3 '(+ x 1))

