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Lisp
Functions, recursion and lists
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Interacting with Scheme
(define pi 3.14159)      ; bind pi to 3.14159

(lambda (x) (* x x))    ; anonymous function

(define sq (lambda (x) (* x x)))
(define (sq x) (* x x))  ;  (define sq (lambda (x) (* x x)))

(sq 100)                      ;  100 * 100

(if P E1 E2)                 ;  if P then E1 else E2
(cond (P1 E1) (P2 E2) (else E3)) ; (if P1 E1 (if P2 E2 E3))

(let ((x1 E1) (x2 E2)) E3)  ;  declare local variables x1 and x2

(let* ((x1 E2) (x2 E2)) E3)  ; E2 can use x1 as a local variable
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The Lisp Programming
Language
 Stems from interest in symbolic computation

 Led by John McCarthy in late 1950s
 Designed for math logic in artificial intelligence

 Functional programming paradigm
 A program is a expression

 Expresses flow of data; map input values to output values
 No side effects or modification to variables
 No concept of control-flow or statements

 Functions are first-class objects
 A function can be used everywhere a regular value is used
 Functions can take other functions as parameters and return

other functions as results (higher-order functions)
 Adding side-effect operations

 Different occurrences of expressions have different values
 Strength and weakness

 Simplicity and flexibility
 Build prototype systems incrementally
X  Not many tools or libraries; low in efficiency (mostly interpreted)
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Concepts in Lisp
 Supported value types

 Atomic values: numbers (e.g. 3, 7.7), symbols (e.g. ‘abc),
booleans

 Compound data structures: lists (car, cons, cdr), functions
(lambda)

 Supported operations
 Function definition and function call

 (define fname (lambda (parameters) body))
 (fname arguments)

 Predefined functions: cons, cond, if, car, cdr, eq?, ……
 Nested blocks (local variables): let

 Variable declarations : introduces new variables
 May bind value to identifier, specify type, etc.
 Global vs. local variables:  (define x ‘a) vs. (let ((x a)) (…))
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Lists in Lisp/Scheme
 In Lisp/Scheme, a list may contain arbitrary types of

values
 ‘(a b c)  ‘(+ 2 (* 3 5))   ‘(lambda (a b) (cons a b))
 A dynamically typed list can be used to implement most pointer-

based data structures, including lists and trees.
 Can it be used to implement arbitrary graphs? (can we build

cycles in lists?)

 Lisp/Scheme lists can be used to naturally implement
AST --- a tree data structure used as an internal
representation of programs in compilers/interpreters

         lambda                                +
        /          \                             /    \
    list         cons                       2       *
    /  \          /   \                              / \
 a     b       a     b                            3    5



cs3723 6

Lisp Innovations in language
design
 Functional programming paradigm

 A program is composed of expressions
 Functions are first-class objects

 Support higher-order functions

 Abstract view of memory (the Lisp abstract
machine)

 Program as data (dynamic interpretation of
program)
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Expressions vs Statements
 Expression                                        (x+5)/2

 Syntactic entity that has a value
 Need not change accessible memory

 If it does, has a side effect

 Statement                                load 4094 r1
 Imperative command
 Alters the contents of previously-accessible memory

 Example: inserting to an existing list
 Via pure (side-effect-free) expressions in Lisp/Scheme

(define insert (lambda (x y) (cons x y)))
(insert 4 (insert 3 ‘())

 How do we implement list insertion in C?
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Expressions vs. Statements
 Compare to imperative programming in  C

void insert( int x, Cell* y)  {
     Cell* z = (Cell*)malloc(sizeof(Cell));
     z->val = y->val; z->next = y->next;
     y->val = x; y->next = z;
    }
int main () { Cell* y = (Cell*)malloc(sizeof(Cell));
                   y->val=-1; y->next=0;
                    insert(3, y); insert(4, y); }

 Evaluation order
 Among pure expressions: flow of data

 Can evaluate each expression as soon as values are ready
 Among statements: ordering of side effects (modifications)

 Statement order cannot be changed unless proven otherwise
 Tradeoff: creating new values vs. modifying existing ones?

 Copying vs. sharing of complex data structures
 Modification efficiency vs. parallelization of computation
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Lisp: Adding Side Effects
 Pure Lisp

 Expressions do not modify observable machine states
 Impure Lisp

 Allow modifications to memory. May increase efficiency of
programs (eg. modify an element in a list)

 (set! x y)   Replace the value of x with y
 (rplacea ’(A B) y) or (set-car! ’(A B) y) Replace A with y
 (rplaced ’(A B) y) or (set-cdr! ’(A B) y) Replace B with y

 Sequence operator
 (progn (set! x y) x)  or   (begin (set! x y) x)

 Set the value of x to be y; then returns the value of x

 Compare Lisp with C
 Lisp: no return statement, but needs operator for sequencing
 C: no sequencing operator, but needs a return statement
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Exercises
Programming in Lisp(Scheme)
 Programming steps

 What are the input parameters? What values could each
parameter take?

 Enumerate each combination of input parameters, give
a return value for each case

 Exercise problems
 Define a function Find which takes two parameters, x

and y. It returns x if x appears in y, and returns an
empty list (‘()) otherwise.

 Define a function substitute which takes three
parameters, x, y, and z. It returns a new list which
replaces all occurrences x in y with z.
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Solutions
Programming in Lisp(Scheme)

 Define a function Find which takes two parameters, x and y. It
returns x if x appears in y, and returns an empty list otherwise.

       (define Find (lambda (x y)
           (cond ((cons? y)
                     (if (eq? (Find x (car y)) x) x (Find x (cdr y))))
                   ((eq? x y) x)
                    (else ‘()))))
 Define a function substitute which takes three parameters, x, y,

and z. It returns a new list which replaces all occurrences of x in
y with z.

        (define substitute (lambda (x y z)
          (cond ((cons? y) (cons (substitute x (car y) z)
                                             (substitute x (cdr y) z)))
                    ((eq? x y) z)
                    (else y))))
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Functional Programming
 Functions are first-class objects

 Functions treated as primitive values (What about C/C++)?
 Can build anonymous and higher-order functions

 Higher order functions are functions that either
 Take other functions as arguments or return a function as

result
 First-order function: parameters/result are not functions
 Second-order function: take first-order functions as

parameters or return them as result
 Third-order functions: take as parameters or return second-

order functions
 Example: function composition

 (lambda (f  g x)  (f  (g   x)))
  vs.

 (lambda (f  g)   (lambda (x)  (f  (g   x)))))
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Pass Functions as Parameters
 Apply a function to each element in a list

   (define  maplist  (f  x)
      (cond  ((null? x)   nil)
                 (else  (cons (f (car x))
                                  (maplist f (cdr x))))))

vs.   Cell* maplist(int (*f)(...),  Cell* x)
    {   if (x == NULL) return NULL;
         else {
               Cell* res = (Cell*) malloc (sizeof(Cell));
               res->val=f(x->val);
               res->next=maplist(f,x->next);
               return res;
             }
    }

 Goal: apply different functions to complex data
 Enforce a uniform interface for all the functions
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Return functions as results
 Function composition

    (define compose
            (lambda (f  g)   (lambda (x)  (f  (g   x))))))
vs. int compose(int (*f)(...), int (*g)(...), int x)

    { return f(g(x)); }

 In Scheme
 The function compose takes only two parameters
 The result of compose is another function

 in C
 The function compose takes three parameters
 The result of compose is a concrete value
 Does not allow functions being returned as results, why?

 Goal: allow calling context (parameter values, global
variables) be saved and used in the future
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Programming With Higher-order
Functions
 Apply a function to each element in a list

   (define  maplist  (lambda (f  x)
      (cond  ((null? x)   nil)
                 (else  (cons (f (car x))  (maplist f (cdr x)))))))

 Increment each number in a list by 1
(define increment1 (lambda (x)
           (maplist (lambda (e) (if (number? e) (+ e 1) e)) x)))

 Reduce a list into a single value
   (define reduce (lambda (f0 f1 f2 x)
      (cond ((null? x)  f0)
               (else (f2 (f1 (car x)) (reduce f0 f1 f2 (cdr x)))))))

 Compute the sum of all numbers in a list
(define sum (lambda (x)
           (reduce 0 (lambda (e) (if (number? e) e 0))
                      (lambda (res1 res2) (+ res1 res2)) x)))

 Exercise:
 A mapTree function that treat lists as trees
 A mapTreePostOrder function that traverses a tree in post order



cs3723 16

The Lisp Abstract machine
 Abstract machine

 The runtime system (software simulated machine) based on
which a language is interpreted

 In short, the internal model of the interpreter that implements
the language

 Lisp Abstract machine
 A Lisp expression: the current expression to evaluate
 A continuation: the rest of the computation
 A-list : variable->value mapping
 A set of cons cells (dynamic memory)

 pointed to by pointers in A-list
 Each cons cell is a pair

 (car  cdr) => linked data structures (lists)
 (atm a) => a single atom

 Garbage collection
 Automatic collection of non-accessible cons cells
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Implementing Lisp --- The Memory
Model
 Cons cells
 Atoms and lists represented by cells

 Tag each value to remember its type

Address Decrement

Atom A

Atom B

Atom C

0
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Sharing
 (a)                                   (b)

 Both structures could be printed as  (A.B).(A.B)
 Which are the results of evaluating

  (cons (cons ‘A ‘B) (cons ‘A ‘B)) ?
  ((lambda (x) (cons x x)) (cons ‘A ‘B))

 Equality of compound structures
 What is the result of (eq? ‘a ‘a) ?
 What is the result of (eq? ‘(a b) ‘(a b)) ?

A B A B A B
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Garbage Collection
 Memory management at runtime

 Maintains a list of available memory cells
 Receive and satisfies allocation requests
 When available space is below threshold

 Invoke garbage collector

 Garbage collection
 Detecting memory cells no longer used

 Reclaim memory cells
 Garbage: memory locations that are no longer accessible

 Example  (car (cons ( e1) ( e2 ) ))
 Cells created in evaluation of e2 may be garbage, unless shared

by e1 or other parts of program

 Need to keep track of how many active pointers are
pointing to each store
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Meta-programming
Programs As Data
 Meta programming languages

 Computer programs can write or manipulate other programs (or
themselves) as their data

 If can modify themselves --- reflective programming
 Lisp program can be represented using Lisp atoms and lists

 Can be built/modified at runtime and then evaluated

 An eval function used to evaluate contents of list
 in Scheme, need to choose a more advanced language level
(define atom? (lambda (x) (or (symbol? x) (number? x) (boolean? x))))
(define substitute (lambda (x y z)

 (cond ((null? z) z)
              ((atom? z) (if (eq? z x) y  z))

          (else  (cons (substitute x y (car z)) (substitute x y (cdr z)))))))
(define substitute-and-eval (lambda (x y z) (eval (substitute x y z))))
(substitute-and-eval  ’x  ’3  '(+ x 1))


