
cs3723 1

Programming
Languages

Qing Yi

Course web site:
www.cs.utsa.edu/~qingyi/cs3723

cs3723 2

A little about myself
 Qing Yi
 Ph.D. Rice University, USA.
 Assistant Professor, Department of Computer Science
 Office: SB 4.01.30
 Office hours: MW, 12-1pm; by appointment
 Phone : 458-5671

 Research Interests
 Programming Language and compiler technology
 Program analysis&optimization for high-performance computing.
 Code generation and verification of software.

cs3723 3

Class Objective
 Programming techniques

 Know how to write programs in different paradigms
 Know how to translate between different languages

 Concepts in programming languages
 Know the concepts of typical programming languages
 Understand how to implement programming languages

(the structures of compilers and interpreters)
 Understand trade-offs in programming language design

 Appreciate diversity of ideas
 Critical thinking

 Be prepared for new problem-solving paradigms

cs3723 4

General Information
 Textbook: Concepts in Programming Languages

 by John Mitchell, Cambridge University Press
 Reference books

 The Little Schemer
 by Daniel P. Friedman and Matthias Felleisen, the MIT Press.

 Elements of ML Programming, 2nd Edition (ML97)
 by Jerey D. Ullman, Prentice-Hall.

 C++ Programming Language
 by Bjarne Stroustrup, Addison Wesley.

 Prerequisites: know how to use a general purpose language
 Grading

 Midterm and final exams: 55%
 Homework and projects: 25% (roughly 2.5% per homework)

 Late submissions are accepted with penalty until solution is given
 Recitations and class participation: 15% (roughly 1% per recitation,

0.5% per class participation)
 Problem solving: 5% (challenging projects posted periodically)
 Extra credit projects: TBA

cs3723 5

Programming Paradigms
 Functional programming

 Lisp, Scheme, ML, Haskell, …
 Express evaluation of expressions and functions
 Emphasize expressiveness and flexibility

 Mostly interpreted and used for project prototyping

 Imperative programming
 Fortran, C, Pascal, Algol,…
 Express side-effects of statements and subroutines
 Emphasize machine efficiency

 Compiler optimizations (Fortran), efficient mapping to machine (C)

 Object-oriented programming
 Simula, C++, Java, smalltalk,…
 Emphasize abstraction and modular program organization

 Logic and concurrent programming
 Will not be covered in this class

cs3723 6

Organization of class materials
 Functions and Foundations

 Functional programming in Lisp/Scheme
 Language syntax: compilers and interpreters
 Language semantics: Lambda calculus

 Programming language concepts and implementation
 Programming in ML
 Types and type inference
 Scopes and memory management
 Structural control, exceptions, and continuations

 Concepts in object-oriented languages
 C++ and Java programming
 Modules and abstractions
 Classes and inheritance
 Subtyping and virtual functions

----------- final exam (comprehensive) ---------

cs3723 7

How to pass (or fail) this class?
1. You must work on and submit all homework assignments
2. You must attend classes/recitations and submit recitation exercises
 They prepare you to be ready for the homework assignments

and exams
3. Go to my office hours (or schedule an appointment with me) if you

received less than 60% from a homework
 It means you didn’t understand --- figure it out before it’s too late.
4. Study before exams

Even if you think you understand everything, you may not
remember them

cs3723 8

Languages in common use
 System software and high-performance computing (e.g.,

weather prediction, realistic games)
 C/C++, Fortran

 Internet and embedded systems
 Java, C#, Ruby, Php, Javascript, xml

 System administration
 Python, Perl, bsh, csh

 Others (non-general purpose languages)
 Postscript (the printer language), latex (text processing), …

 What languages do you know? What paradigms do they
belong?

 Check out which languages are popular
 http://langpop.com/

cs3723 9

The Role of Programming
Languages
 Natural languages

 Interfaces for expressing information
 ideas, knowledge, commands, questions, …
 Facilitate communication between people

 Different natural languages
 English, Chinese, French, German, …

 Programming languages
 Interfaces for expressing data and algorithms

 Instructing machines what to do
 Facilitate communication between computers and

programmers
 Different programming languages

 FORTRAN, Pascal, C, C++, Java, Lisp, Scheme, ML, …

cs3723 10

Levels of Programming Languages

………..0
000001
010111
100101
0………..

…………....
c = a * a;
b = c + b;
…………….

High-level
 (human-level)
programming
languages

Low-level
(machine-level)
programming
languages

Program input

Program output

Two ways to implement a language: compilation vs. interpretation.

Some languages are higher level than others, why?
 (Readability, programmability, maintainability)

cs3723 11

Benefits of high-level languages
 Developer productivity

 Higher level mechanisms for
 Describing relations between data
 Expressing algorithms and computations

 Error checking and reporting capability

 Machine independence
 Portable programs and libraries

 Maintainability of programs
 Readable notations
 High level description of algorithms
 Modular organization of projects

X Machine efficiency
 Extra cost of compilation / interpretation

cs3723 12

Implementing programming languages
Compilation

………..0
000001
010111
100101
0………..

…………....
c = a * a;
b = c + b;
…………….

Source code Target code

Program input

Program output

Compiler

Translation (compile) time Run time

cs3723 13

Implementing programming languages
Interpretation

…………....
c = a * a;
b = c + b;
…………….

Source code

Program input

Program output

Interpreter

Run time

Abstract machine

cs3723 14

Compilers vs. Interpreters
Source
Program

Lexical Analyzer

Syntax Analyzer

Semantic Analyzer

Intermediate Code
Generator

Code Optimizer

Code Generator

Target
Program

Tokens

Parse tree /
Abstract syntax tree

Attributed AST

Results

Program input

compilers

interpreters

cs3723 15

Compilers and Interpreters
Efficiency vs. Flexibility
 Compilers

 Translation time is separate from run time
 Compiled code can run many times
 Heavy weight optimizations are affordable
 Can pre-examine programs for errors
X Static analysis has limited capability
X Cannot change programs on the fly

 Interpreters
 Translation time is included in run time

X Re-interpret every expression at run time
X Cannot afford heavy-weight optimizations
X Discover errors only when they occur at run time
 Have full knowledge of program behavior
 Can dynamically change program behavior

cs3723 16

The Power of Programming
languages
 A function f is computable if for every input x

 P(x) halts; and
 If f(x) is defined, P(x) outputs f(x)

 Some functions are not computable
 The halting problem

 Given a program P that requires exactly one string input
and given a string x, determine whether P halts on input x

 Terminology: partial recursive functions
 Recursive functions that may be partially defined (undefined

for some input values)
 Error termination: division by zero (3/0 has no value)
 Non-termination: f(x) = if x=0 then 1 else f(x-2)

 All programming languages are Turing complete
 All express the class of partial recursive functions

 Programming language implementation
 Can report error due to undefined basic operations
 Cannot report error if program will not terminate

cs3723 17

Which problems can you solve
to perfection via programming?
 Automatic translation from English to

French
 A semantic query interface for the web
 Automatic translation from C++ to Java
 A grade query interface for a university

student database

cs3723 18

The choice of Programming
languages

 Most successful languages are designed for a specific type
of applications
 What does your application need?

 Symbolic evaluation, systems programming, numerical
computation, …

 Programming efficiency vs. machine efficiency

 What languages would you choose
 To build an embedded OS for MP3 players? A driver for your

sound card? A database management system? A robot
controller? A web server? ……

The language toolset

cs3723 19

Some history---
Languages that led the way
 Fortran --- the first high-level programming language

 Led by John Backus around 1954-1956
 Designed for numerical computations
 Introduced variables, arrays, and subroutines

 Lisp
 Led by John McCarthy in late 1950s
 Designed for symbolic computation in artificial intelligence
 Introduced higher-order functions and garbage collection
 Descendents include Scheme, ML, Haskell, …

 Algol
 Led by a committee of designers of Fortran and Lisp in late 1950s
 Introduced type system and data structure
 Descendents include Pascal, Modula, C, C++ …

 Simula
 Led by Kristen Nygaard and Ole-Johan Dahl arround 1961-1967
 Designed for simulation
 Introduced data-abstraction and object-oriented design
 Descendents include C++, Java, smalltalk …

cs3723 20

A New Language By You?
 Research in languages and compilers

 Two focuses: programming productivity and machine
efficiency

 How to express high-level programming concepts (e.g.,
data structures and algorithms) and translate them into
efficient machine implementations?

 How to extract the most performance from machines?
 Examples

 How to express parallel programming effectively and
efficiently?

 How to automatically verify correctness of your programs?
 How to automate design and implementation?
 ……

 Thinking about graduate programs?
 You can consider UTSA and other universities

