
cs3723 1

Fundamantals

Syntax of Programming Languages

cs3723 2

Syntax and Semantics

 Syntax
 The symbols and rules to write legal programs

 Semantics
 The meaning of legal programs

 Programming language implementation
 Syntax −> semantics (computer actions)

 Example: date specification
 Syntax

 date ::= dd/dd/dddd d = 0|1|2|3|4|5|6|7|8|9
 Semantics

 01/02/2005 => Jan 02, 2005 (or Feb 01,2005) ?

cs3723 3

Describing Language Syntax

 Lexical grammar
 Spelling of words (tokens/terminals)

 Numbers, strings, names, keywords(if, while, for, else)…
 Formal description: regular expressions

 Describe the composition of words
 [a-zA-Z_][a-zA-Z0-9_]*, [0-9]+, “while”

 Context-free grammar
 Formal description: BNF (Backus-Naur Form)
 Rules to compose programs from tokens

 forStmt: “for” “(“ exp “;” exp “;” exp“)” stmt
 Support variables and recursion, but cannot express context

sensitive information
 recursion does not have parameters/memories

 Why formal description?
 Avoid miscommunication
 Automated generation of parsers (syntax analyzers)

cs3723 4

BNF: Expressing Context-Free
Grammars
 Each BNF includes

 A set of terminals: the words/tokens of the language
 A set of non-terminals: variables that could be replaced with

different sequences of terminals
 A set of productions

 Rules identifying the structure of each non-terminal
 Each production has format A ::= B where

 A is a single non-terminal
 B is a sequence of terminals and non-terminals

 A start non-terminal: the top-level syntax of the language
 Example: BNF for expressions
 e ::= n | e+e | e−e | e * e | e / e

 n ::= d | nd
 d ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
 Non-terminals: e, n, d; start non-terminal: e
 Terminals: 0,1,2,3,4,5,6,7,8,9

cs3723 5

Derivations and Parse Trees
 Derivation: deriving an input string from the start non-terminal

 Top-down replacement of non-terminals following production rules
 One or more derivations for each valid program

 Derivations for 5 + 15 * 20
 e=>e*e=>e+e*e=>n+e*e=>d+e*e=>5+e*e=>5+n*e=>5+nd*e=

>5+dd*e=>5+1d*e=>5+15*e=>…=>5+15*20
 E=>e+e=>…=>5+e=>5+e*e=>…=>5+15*e=>…=>5+15*20

e

e e

e e
n

d

5

*

+

n

d

1

n d

5

n

d

2

n d

0

e

e e

en

d

5

+

*

n

d

1

n d

5

n

d

2

n d

0

e

Parse trees: graphical (tree) representation of derivations

cs3723 6

Parsing And Parse Trees
 Parsing (checking syntactical correctness)

 Given an input program, does it have correct syntax?
 Answer: can a parse tree be constructed for the program?
 Top-down and bottom-up parsers

 A parse tree represents a syntactically correct program
 To regenerate a program, read terminals from left to right
 Interior nodes represent the structure of the input program

 A parse tree of each program satisfies
 Each leaf node represent a terminal
 Each non-leaf node represent a non-terminal
 The children of each non-leaf node A, from left to right, form

the right-side of a production rule for A (with A at left-side)
 The root of the parse tree is the starting non-terminal

cs3723 7

Concrete Vs. Abstract Syntax
 Concrete syntax: the syntax that programmers write

 Example: different notations of expressions
 Prefix + 5 * 15 20
 Infix 5 + 15 * 20
 Postfix 5 15 20 * +

 Abstract syntax: the internal structure of the input
program recognized by compilers/interpreters
 Identifies only the meaningful components

 What is the operation and which are the operands ?

e

e

e

e

5
*

+

15
20

e

Parse Tree for
5+15*20

+

20

5

15

*

Abstract Syntax Tree for 5 + 15 * 20

cs3723 8

Abstract Syntax Trees
 Condensed form of parse tree: internal

representation of programs by compilers/interpreters
 Operators and keywords do not appear as leaves

 They define the meaning of the interior (parent) node

 Chains of single productions may be collapsed

If-then-else

B S1 S2

S

IF B THEN S1 ELSE S2

E

E + T

5T

3

+

3 5

cs3723 9

Exercises
Building Parse Trees and AST
 Grammar for expressions

 e ::= n | e+e | e−e | e * e | e / e | (e)
 What are the terminals and non-terminals?
 Write parse trees and ASTs for 1-1*1 and 1*(2-3+1)

 Grammar: e ::= 0 | 1 | 0e | 1e
 What language does the grammar describe?
 Write parse trees and ASTs for 011100

 Steps for building parse trees
 Write down the start non-terminal
 Pick a non-terminal in the tree, pick a production, replace the non-

terminal by expanding the subtree
 Which production to pick? --- the one that describes the structure

of the current input for the given non-terminal

 Parse tree => AST
 Replace each production with an operator
 Remove useless tokens (those that don’t have values)
 Collapse chains of single productions

cs3723 10

Ambiguous Grammars
 A grammar is syntactically ambiguous if

 some program has multiple parse trees
 Multiple choices of production rules during derivation
 Result in multiple ASTs

 Consequence of multiple parse trees
 Parse trees/ASTs are used to interpret programs

 Multiple ways to interpret a program

e

e e

e e

5

*

+

15

20

e

e e

e
5

+

* e

15 20

cs3723 11

Rewrite ambiguous Grammars
 Solution1: introduce precedence and associativity rules to

dictate the choices of applying production rules
 Original grammar: e ::= n | e+e | e−e | e * e | e / e
 Precedence and associativity

 * / >> + - all operators are left associative
 Derivation for n+n*n

 e=>e+e=>n+e=>n+e*e=>n+n*e=>n+n*n

 Solution2: rewrite production rules by introducing additional
non-terminals
 Alternative grammar E ::= E + T | E – T | T
 T ::= T * F | T / F | F
 F ::= n
 Derivation for n + n * n

 E=>E+T=>T+T=>F+T=>n+T=>n+T*F=>n+F*F=>n+n*F=>n+n*n
 How to modify the grammar if

 + and - has high precedence than * and /
 All operators are right associative

cs3723 12

Writing CFGs
 Give a CFG to describe the set of strings over {(,),[,]} which form

balanced parentheses/brackets. For example
 “()”, “()()”, “(()())”, and “([]()[])” are in the language
 “)(“, “(()”, and “([” are not in the language

 If your grammar ambiguous? If yes, prove it by giving two different
parse trees for a single input. Rewrite it to be non-ambiguous

Here we are practicing programming using BNF
 Fundamental concepts: variables (non-terminals) and

recursion
 Define a clear meaning (in English) for each non-terminal
 Use recursion to implement the meaning

 Need to know how to describe a sequence of items and how to ensure an item
appears some number of times

 Ambiguity: introduce a new non-terminal for each precedence
 Recursive on the left if left-associative
 Recursive on the right if right-associative

cs3723 13

Additional exercises
 Give a context-free grammar for a small graph

description language
 Terminals: digits(`0',`1',...,`9'),`(', `)', `;' and `->'
 Each node of the graph is represented by an integer

number,
 Each edge is represented by a pair of nodes connected

with `->'
 eg., 3->4 is an edge from node `3' to node `4'

 Each graph description is a sequence of edges
 Eg. (1->2; 2->5; 5->1)

 Write a parse tree and an abstract syntax tree
for (1->2; 2->5; 5->1)

cs3723 14

Additional Exercises
(practice on your own)
 Give a CFG to describe the set of symmetric strings over

{a,b}
 Give a CFG to describe the set of strings over {a,b} that

have the same numbers of a’s and b’s?
 Give a CFG for the syntax of regular expressions over {0,1}

. For example
 “0|1”, “0*”, (01|10)* are in the languages
 “0|” and “*0” are not in the language

 Can you give a CFG to describe the set of strings that have
the format xx, where x is an arbitrary string over {a,b}

