
1

Modularity and Object-
oriented Abstractions
Encapsulation, Dynamic binding,

Subtyping and Inheritance

2

Main program

Create account Deposit/Withdraw Print statement

Modularity
 When we program, we try to solve a problem by

 Step1: decompose the problem into smaller sub-
problems

 Step2: try to solve each sub-problem separately
 Each solution is a separate component that includes

 Interface: types and operations visible to the outside
 Specification: intended behavior and property of interface
 Implementation: data structures and functions hidden from

outside

 Example: a banking program

3

Basic Concept: Abstraction
 An abstraction separates interface from implementation

 Hide implementation details from outside (the client)
 Function/procedure abstraction

 Client: caller of the function
 Implementation: function body
 Interface and specification: function declaration
 Enforced by scoping rules

 Data abstraction
 Client: Algorithms that use the data structure
 Implementation: representation of data

 Priority queue can be binary search tree or partially-sorted array
 Interface and specification: operations on the data structure
 Enforced by type system

 Modules
 A collection of related data and function abstractions

4

Example: A Function Abstraction
 Hide implementation details of a function

 Interface: float sqrt (float x)
 Specification: if x>1, then sqrt(x)*sqrt(x) ≈ x.
 Implementation details

float sqrt (float x){
 float y = x/2; float step=x/4; int i;
 for (i=0; i<20; i++){
 if ((y*y)<x) y=y+step;
 else y=y-step;
 step = step/2;
 }
 return y;
}

5

Example: A Data Abstraction
 Hide details of data structure (ML)

abstype complex = C of real*real with
 fun complex(x,y:real) = C(x,y)
 fun x_coord(C(x,y)) = x
 fun y_coord(C(x,y)) = y
 fun add(C(x1,y1),C(x2,y2)) = C(x1+x2,y1+y2)
 end
 No outside operations can use C(x,y) to access internals

of a complex value
 Only data are members of abstraction
 Access functions are global functions

 Function names are bound in enclosing block

6

Modules: Combination Of Data And
Function Abstractions
 General Support For Information Hiding

 Hide implementation of related data and functions
 Interface: a set of names and their types

 Include both variable and function declarations
 Implementation

 Implementation for every entry in the interface
 Additional declarations that are hidden

 Can define multiple data or function abstractions

 Modules in different languages
 ML: signatures, structures and functors (will skip)
 C++ namespaces
 Object-oriented abstractions

 Java interfaces and classes; C++ classes
 C++ templates (generic abstractions)

7

Global Names And Name Spaces
 Global names in C/C++

 A name whose scope is the entire program
 Global types, global data, global functions

 Problems with global names
 They might not need to be always visible and may conflict

with other global names

 Namespace of global names
 Grouping of global types, data, and functions
 Inside namespace: use the local name
 Outside namespace: namespace + local name

 Namespace as an abstraction
 Interface: declarations of member variables/functions
 Implementation: implementations of members
 Separation of concern: file inclusion

8

Example: Global vs. Local names
 Java class:

class vehicle {
 protected: double speed =0, fuel = 0;
 public void start(double x) {speed = x;}
 public void refuel (double x) { fuel = fuel + x; }
};
vehicle a = new vehicle; a.start(5);

ML abstype
abstype vehicle = V of real ref * real ref with
 fun mk_vehicle() = V(ref 0.0, ref 0.0);
 fun vehicle_start (V(speed,fuel), x) = speed := x;
 fun vehicle_refuel (V(speed,fuel), x) = fuel := !fuel + x
 end;
val a = mk_vehicle(); vehicle_start(a,5.0);

9

Summary of Abstractions
 Abstractions

 Information hiding: interface and implementation details
 Function and data abstractions

 Modules: grouping of related data and functions
 Types, variables, constants, functions
 Interface: declarations visible to the outside

 Abstractions in different languages
 ML abstype: data abstraction (hide data representation);

 all access functions are in the global scope.
 C++ namespaces: a group of related data and functions;

 No explicit access control (separation through file inclusion);
 Not a data type (cannot build values of name spaces)

 C++/Java classes: data abstraction + module
 What about Java interfaces? (no implementation)

10

Object Oriented Abstractions
 Programming methodology for building extensible systems

 Organize concepts into objects and classes
 An OO abstraction is a data abstraction and a module

 Is a module: a group of related data structures and functions
 Is a data type: can be instantiated to produce objects/values

 Encapsulation (access control)
 Separate members into interfaces and implementations

 Dynamic binding of methods (function pointers)
 Implementations of functions are looked up at runtime

 Subtype polymorphism (relations between types)
 Can have subtype relations with other OO abstractions

 Inheritance (inherit and modify behavior of base classes)
 Subtype inheritance: inheriting abstraction interface
 Implementation inheritance: inheriting method implementation

11

Encapsulation
 Use access control to support abstractions

 Hide implementation details from outside
 Implementation code: operate on data representation
 Client code: invoke only interface operations

 Access control: only a few functions can access private
data

 Supported by the type system of the language
 Example: ML abstypes, C++/Java classes

 Compare to using blocks to support abstractions
 Hide implementation detail inside each block

 Variables can be accessed only by functions within the
same block

 Return interface functions to the outside
 Difference: implementation

12

Encapsulation vs. Function Closure
 Garbage collect activation records

 fun mk_vehicle () =
 let val speed = ref 0.0; val fuel = ref 0.0 in
 { start = (fn x=> speed := x),
 refuel = (fn x => fuel := !fuel + x)}
 end;

 Object oriented encapsulation
 class vehicle {

 private double speed =0, fuel = 0;
 public void start(double x) {speed = x;}
 public void refuel (double x) { fuel = fuel + x; }
};

13

hidden data

method1msg1

.

methodnmsgn

Dynamic Binding of Methods
 In object-oriented programming,

 object->message (arguments)
 Example: x->add(y)

 In conventional programming,
 Operation(operands): e.g. add(x,y)
 Impl of operation is always the same

 e.g., ML abstype functions are treated as global functions

 Implementing Dynamic Binding of methods
 An object may contain both data and functions

 Instance variables, also called member variables
 Functions, also called methods or member functions

 Put all the name-value bindings into a table
 Content of table can be changed, just like the activation

record of a function

14

Static vs. dynamic lookup
 What about operator overloading (ad hoc

polymorphism)?
 int add(int x, int y) { return x + y; }
 float add(float x, float y) { return x + y; }

 Very important distinction
 Overloading is resolved at compile time
 Dynamic lookup is resolved at run time
 Difference: flexibility vs. efficiency

 Statically bound functions
 C++ non-virtual functions, Java static functions, global

overloading of operators

 Dynamically bound functions
 C++ virtual functions, Java non-static functions

15

Static Binding of Methods
 C++ class: non-virtual member functions

 Essentially global functions with an implicit env parameter
class vehicle {
 protected: double speed, fuel;
 public: vehicle() : speed(0),fuel(0) {}
 void start(double x) {speed = x;}
};
vehicle* a = new vehicle; a->start(5);

 Java/C++: Static Methods/Variables
 Essentially global functions/variables in a name space

class vehicle {
 static protected double speed, fuel;
 public static void start(double x) {speed = x;}
};
Vehicle.start(3.0);

16

Subtyping And Inheritance
 In C++/Java, classes can declare other classes as

base classes, which means
 The derived class is a subtype of the base class (how

does it relate to the union types in C and ML?)
 The derived class can inherit both interface and

implementation of the base classes
 Goal: separate classes into groups

 Members of the same group share some structural property
 What properties?

Interface: the external view of an object
Implementation: the internal representation of an object

 Subtyping: relation between interfaces
 Inheritance: relation between implementations

17

Subtype Polymorphism
 A function can often operate on many types of

values
 void diagonal-move(MovableThing& a, int len)
 {
 for (int step = 0; step < len; ++step)
 a.move(1,1);
 }
 Diagonal-move can be applied to all movable things

 Subtyping: if interface A contains interface B,
then A objects can also be used as B objects
 The interface of an object is its type.

18

Subtyping vs. Inheritance
 Subtyping and inheritance often occur simultaneously
 Subtype inheritance

 Categorize data into related types
 Java: implementing interfaces, inheriting a base class
 C++: public inheritance from one or more base classes

 Implementation inheritance
 Sharing of implementation details (not necessarily

interface)
 C++: private and protected inheritance

 Why not just invoke members of other classes?
 When to inherit (is-a vs. has-a relations)?
 Do they support the same interface (subtype relation)?
 Need to change dynamic binding of base methods?
 Need to access protected members of the other class?

19

C++/Java Subtyping
 Java/C++ subtype polymorphism

class MovableThing
 { virtual void move(int,int) = 0; }
class MovableThing1 : public MovableThing
 { … void move(int x, int y) { … }… };
class MovableThing2 : public MovableThing
 { … void move(int x, int y) { … }… };

 void diagonal-move (MovableThing& a, int len)
 {
 for (int step = 0; step < len; ++step)
 a.move(1,1);
 }

20

ML Subtype Polymorphism
 ML subtype polymorphism

abstype MovableThing =
 MovableThing1 of … | MovableThing2 of … with
 fun move(MovableThing1(…), int x, int y) = …
 | move(MovableThing2(…), int x, int y) = …
 end;

fun diagonal-move (MovableThing a, len) =
 if len > 0 then
 (move(a, 1,1); diagonal-move(a, len-1))

 Difference: have to know all the subtypes when
defining MovableThing

21

Designing The Class Hierarchy
 What is the subtype relation?

datatype element=Sym of string
 | Num of int
 | List of elements
 and elements = Empty
 | Multi of element * elements

 How to implement the subtyping relations
via class inheritance?
 Base types: element and elements
 Derived types: Sym, Num, List, Empty, Multi

22

Varieties of OO languages
 Class-based languages (C++, Java, …)

 Behavior of object determined by its class

 Object-based (Self)
 Objects defined directly

 Multi-methods (CLOS)
 Operation depends on all operands

 This course: class-based languages

 History
 Simula: Object concept used in simulation 1960’s
 Smalltalk: Object-oriented design in systems 1970’s
 C++: Adapted Simula ideas to C 1980’s
 Java: embedded programming, internet 1990’s

23

Summary
 Abstractions and object-oriented design
 Primary object-oriented language concepts

 dynamic lookup
 encapsulation
 inheritance
 subtyping

 Program organization
 class hierarchy

 Comparison
 Objects as closures?

