
1

Modularity and Object-
oriented Abstractions
Encapsulation, Dynamic binding,

Subtyping and Inheritance

2

Main program

Create account Deposit/Withdraw Print statement

Modularity
 When we program, we try to solve a problem by

 Step1: decompose the problem into smaller sub-
problems

 Step2: try to solve each sub-problem separately
 Each solution is a separate component that includes

 Interface: types and operations visible to the outside
 Specification: intended behavior and property of interface
 Implementation: data structures and functions hidden from

outside

 Example: a banking program

3

Basic Concept: Abstraction
 An abstraction separates interface from implementation

 Hide implementation details from outside (the client)
 Function/procedure abstraction

 Client: caller of the function
 Implementation: function body
 Interface and specification: function declaration
 Enforced by scoping rules

 Data abstraction
 Client: Algorithms that use the data structure
 Implementation: representation of data

 Priority queue can be binary search tree or partially-sorted array
 Interface and specification: operations on the data structure
 Enforced by type system

 Modules
 A collection of related data and function abstractions

4

Example: A Function Abstraction
 Hide implementation details of a function

 Interface: float sqrt (float x)
 Specification: if x>1, then sqrt(x)*sqrt(x) ≈ x.
 Implementation details

float sqrt (float x){
 float y = x/2; float step=x/4; int i;
 for (i=0; i<20; i++){
 if ((y*y)<x) y=y+step;
 else y=y-step;
 step = step/2;
 }
 return y;
}

5

Example: A Data Abstraction
 Hide details of data structure (ML)

abstype complex = C of real*real with
 fun complex(x,y:real) = C(x,y)
 fun x_coord(C(x,y)) = x
 fun y_coord(C(x,y)) = y
 fun add(C(x1,y1),C(x2,y2)) = C(x1+x2,y1+y2)
 end
 No outside operations can use C(x,y) to access internals

of a complex value
 Only data are members of abstraction
 Access functions are global functions

 Function names are bound in enclosing block

6

Modules: Combination Of Data And
Function Abstractions
 General Support For Information Hiding

 Hide implementation of related data and functions
 Interface: a set of names and their types

 Include both variable and function declarations
 Implementation

 Implementation for every entry in the interface
 Additional declarations that are hidden

 Can define multiple data or function abstractions

 Modules in different languages
 ML: signatures, structures and functors (will skip)
 C++ namespaces
 Object-oriented abstractions

 Java interfaces and classes; C++ classes
 C++ templates (generic abstractions)

7

Global Names And Name Spaces
 Global names in C/C++

 A name whose scope is the entire program
 Global types, global data, global functions

 Problems with global names
 They might not need to be always visible and may conflict

with other global names

 Namespace of global names
 Grouping of global types, data, and functions
 Inside namespace: use the local name
 Outside namespace: namespace + local name

 Namespace as an abstraction
 Interface: declarations of member variables/functions
 Implementation: implementations of members
 Separation of concern: file inclusion

8

Example: Global vs. Local names
 Java class:

class vehicle {
 protected: double speed =0, fuel = 0;
 public void start(double x) {speed = x;}
 public void refuel (double x) { fuel = fuel + x; }
};
vehicle a = new vehicle; a.start(5);

ML abstype
abstype vehicle = V of real ref * real ref with
 fun mk_vehicle() = V(ref 0.0, ref 0.0);
 fun vehicle_start (V(speed,fuel), x) = speed := x;
 fun vehicle_refuel (V(speed,fuel), x) = fuel := !fuel + x
 end;
val a = mk_vehicle(); vehicle_start(a,5.0);

9

Summary of Abstractions
 Abstractions

 Information hiding: interface and implementation details
 Function and data abstractions

 Modules: grouping of related data and functions
 Types, variables, constants, functions
 Interface: declarations visible to the outside

 Abstractions in different languages
 ML abstype: data abstraction (hide data representation);

 all access functions are in the global scope.
 C++ namespaces: a group of related data and functions;

 No explicit access control (separation through file inclusion);
 Not a data type (cannot build values of name spaces)

 C++/Java classes: data abstraction + module
 What about Java interfaces? (no implementation)

10

Object Oriented Abstractions
 Programming methodology for building extensible systems

 Organize concepts into objects and classes
 An OO abstraction is a data abstraction and a module

 Is a module: a group of related data structures and functions
 Is a data type: can be instantiated to produce objects/values

 Encapsulation (access control)
 Separate members into interfaces and implementations

 Dynamic binding of methods (function pointers)
 Implementations of functions are looked up at runtime

 Subtype polymorphism (relations between types)
 Can have subtype relations with other OO abstractions

 Inheritance (inherit and modify behavior of base classes)
 Subtype inheritance: inheriting abstraction interface
 Implementation inheritance: inheriting method implementation

11

Encapsulation
 Use access control to support abstractions

 Hide implementation details from outside
 Implementation code: operate on data representation
 Client code: invoke only interface operations

 Access control: only a few functions can access private
data

 Supported by the type system of the language
 Example: ML abstypes, C++/Java classes

 Compare to using blocks to support abstractions
 Hide implementation detail inside each block

 Variables can be accessed only by functions within the
same block

 Return interface functions to the outside
 Difference: implementation

12

Encapsulation vs. Function Closure
 Garbage collect activation records

 fun mk_vehicle () =
 let val speed = ref 0.0; val fuel = ref 0.0 in
 { start = (fn x=> speed := x),
 refuel = (fn x => fuel := !fuel + x)}
 end;

 Object oriented encapsulation
 class vehicle {

 private double speed =0, fuel = 0;
 public void start(double x) {speed = x;}
 public void refuel (double x) { fuel = fuel + x; }
};

13

hidden data

method1msg1

.

methodnmsgn

Dynamic Binding of Methods
 In object-oriented programming,

 object->message (arguments)
 Example: x->add(y)

 In conventional programming,
 Operation(operands): e.g. add(x,y)
 Impl of operation is always the same

 e.g., ML abstype functions are treated as global functions

 Implementing Dynamic Binding of methods
 An object may contain both data and functions

 Instance variables, also called member variables
 Functions, also called methods or member functions

 Put all the name-value bindings into a table
 Content of table can be changed, just like the activation

record of a function

14

Static vs. dynamic lookup
 What about operator overloading (ad hoc

polymorphism)?
 int add(int x, int y) { return x + y; }
 float add(float x, float y) { return x + y; }

 Very important distinction
 Overloading is resolved at compile time
 Dynamic lookup is resolved at run time
 Difference: flexibility vs. efficiency

 Statically bound functions
 C++ non-virtual functions, Java static functions, global

overloading of operators

 Dynamically bound functions
 C++ virtual functions, Java non-static functions

15

Static Binding of Methods
 C++ class: non-virtual member functions

 Essentially global functions with an implicit env parameter
class vehicle {
 protected: double speed, fuel;
 public: vehicle() : speed(0),fuel(0) {}
 void start(double x) {speed = x;}
};
vehicle* a = new vehicle; a->start(5);

 Java/C++: Static Methods/Variables
 Essentially global functions/variables in a name space

class vehicle {
 static protected double speed, fuel;
 public static void start(double x) {speed = x;}
};
Vehicle.start(3.0);

16

Subtyping And Inheritance
 In C++/Java, classes can declare other classes as

base classes, which means
 The derived class is a subtype of the base class (how

does it relate to the union types in C and ML?)
 The derived class can inherit both interface and

implementation of the base classes
 Goal: separate classes into groups

 Members of the same group share some structural property
 What properties?

Interface: the external view of an object
Implementation: the internal representation of an object

 Subtyping: relation between interfaces
 Inheritance: relation between implementations

17

Subtype Polymorphism
 A function can often operate on many types of

values
 void diagonal-move(MovableThing& a, int len)
 {
 for (int step = 0; step < len; ++step)
 a.move(1,1);
 }
 Diagonal-move can be applied to all movable things

 Subtyping: if interface A contains interface B,
then A objects can also be used as B objects
 The interface of an object is its type.

18

Subtyping vs. Inheritance
 Subtyping and inheritance often occur simultaneously
 Subtype inheritance

 Categorize data into related types
 Java: implementing interfaces, inheriting a base class
 C++: public inheritance from one or more base classes

 Implementation inheritance
 Sharing of implementation details (not necessarily

interface)
 C++: private and protected inheritance

 Why not just invoke members of other classes?
 When to inherit (is-a vs. has-a relations)?
 Do they support the same interface (subtype relation)?
 Need to change dynamic binding of base methods?
 Need to access protected members of the other class?

19

C++/Java Subtyping
 Java/C++ subtype polymorphism

class MovableThing
 { virtual void move(int,int) = 0; }
class MovableThing1 : public MovableThing
 { … void move(int x, int y) { … }… };
class MovableThing2 : public MovableThing
 { … void move(int x, int y) { … }… };

 void diagonal-move (MovableThing& a, int len)
 {
 for (int step = 0; step < len; ++step)
 a.move(1,1);
 }

20

ML Subtype Polymorphism
 ML subtype polymorphism

abstype MovableThing =
 MovableThing1 of … | MovableThing2 of … with
 fun move(MovableThing1(…), int x, int y) = …
 | move(MovableThing2(…), int x, int y) = …
 end;

fun diagonal-move (MovableThing a, len) =
 if len > 0 then
 (move(a, 1,1); diagonal-move(a, len-1))

 Difference: have to know all the subtypes when
defining MovableThing

21

Designing The Class Hierarchy
 What is the subtype relation?

datatype element=Sym of string
 | Num of int
 | List of elements
 and elements = Empty
 | Multi of element * elements

 How to implement the subtyping relations
via class inheritance?
 Base types: element and elements
 Derived types: Sym, Num, List, Empty, Multi

22

Varieties of OO languages
 Class-based languages (C++, Java, …)

 Behavior of object determined by its class

 Object-based (Self)
 Objects defined directly

 Multi-methods (CLOS)
 Operation depends on all operands

 This course: class-based languages

 History
 Simula: Object concept used in simulation 1960’s
 Smalltalk: Object-oriented design in systems 1970’s
 C++: Adapted Simula ideas to C 1980’s
 Java: embedded programming, internet 1990’s

23

Summary
 Abstractions and object-oriented design
 Primary object-oriented language concepts

 dynamic lookup
 encapsulation
 inheritance
 subtyping

 Program organization
 class hierarchy

 Comparison
 Objects as closures?

