Modularity and Object-
oriented Abstractions

Encapsulation, Dynamic binding,
Subtyping and Inheritance



o When we program, we try to solve a problem by

Stepl: decompose the problem into smaller sub-
problems

Step2: try to solve each sub-problem separately

Each solution is a separate component that includes
Interface: types and operations visible to the outside
Specification: intended behavior and property of interface

Implementation: data structures and functions hidden from
outside

0 Example: a banking program

Main program

N

Create account Deposit/Withdraw Print statement

2



O

O

O

O

An abstraction separates interface from implementation
Hide implementation details from outside (the client)
Function/procedure abstraction
Client: caller of the function
Implementation: function body
Interface and specification: function declaration
Enforced by scoping rules
Data abstraction
Client: Algorithms that use the data structure

Implementation: representation of data
Priority queue can be binary search tree or partially-sorted array

Interface and specification: operations on the data structure
Enforced by type system

Modules
A collection of related data and function abstractions

3



Example: A Function Abstraction

0 Hide implementation details of a function
= Interface: float sqrt (float x)
= Specification: if x>1, then sqrt(x)*sqgrt(x) = x.
= Implementation details
float sqgrt (float x){
float y = x/2; float step=x/4; int i;
for (i=0; i<20; i++){
if ((y*y)<x) y=y+step;
else y=y-step;
step = step/2;
b

return y;

¥



FExample: A Data Abstraction

0 Hide details of data structure (ML)
abstype complex = C of real*real with
fun complex(x,y:real) = C(x,y)
fun x_coord(C(x,y)) = X
fun y_coord(C(x,y)) = vy
fun add(C(x1,y1),C(x2,y2)) = C(x1+x2,y1+y2)
end
= No outside operations can use C(x,y) to access internals
of a complex value
= Only data are members of abstraction

= Access functions are global functions
Function names are bound in enclosing block

5



o General Support For Information Hiding

Hide implementation of related data and functions

Interface: a set of names and their types
Include both variable and function declarations

Implementation
= Implementation for every entry in the interface
= Additional declarations that are hidden

Can define multiple data or function abstractions

o Modules in different languages
ML: signatures, structures and functors (will skip)
C++ namespaces

Object-oriented abstractions
Java interfaces and classes; C++ classes

C++ templates (generic abstractions)




o Global names in C/C++

A name whose scope is the entire program
Global types, global data, global functions
Problems with global names

They might not need to be always visible and may conflict
with other global names

o Namespace of global names
Grouping of global types, data, and functions
Inside namespace: use the local name
Outside namespace: namespace + local name

o Namespace as an abstraction
Interface: declarations of member variables/functions
Implementation: implementations of members

Separation of concern: file inclusion
7



o Java class:

class vehicle {

protected: double speed =0, fuel = 0;

public void start(double x) {speed = x;}

public void refuel (double x) { fuel = fuel + x; }
i
vehicle a = new vehicle; a.start(5);

0 ML abstype

abstype vehicle = V of real ref * real ref with
fun mk_vehicle() = V(ref 0.0, ref 0.0);
fun vehicle_start (V(speed,fuel), x) = speed := x;
fun vehicle_refuel (V(speed,fuel), x) = fuel := Ifuel + x
end;
val a = mk_vehicle(); vehicle_start(a,5.0);
8




o Abstractions

Information hiding: interface and implementation details
Function and data abstractions

o Modules: grouping of related data and functions
Types, variables, constants, functions
Interface: declarations visible to the outside

o Abstractions in different languages
ML abstype: data abstraction (hide data representation);
all access functions are in the global scope.
C++ namespaces: a group of related data and functions;
No explicit access control (separation through file inclusion);
Not a data type (cannot build values of name spaces)
C++/Java classes: data abstraction + module

What about Java interfaces? (no implementation)
9



Programming methodology for building extensible systems
Organize concepts into objects and classes
An OO abstraction is a data abstraction and a module
Is a module: a group of related data structures and functions
Is a data type: can be instantiated to produce objects/values
Encapsulation (access control)
Separate members into interfaces and implementations
Dynamic binding of methods (function pointers)
Implementations of functions are looked up at runtime
Subtype polymorphism (relations between types)
Can have subtype relations with other OO abstractions
Inheritance (inherit and modify behavior of base classes)
Subtype inheritance: inheriting abstraction interface
Implementation inheritance: inheriting method implementation

10



o Use access control to support abstractions

Hide implementation details from outside
Implementation code: operate on data representation
Client code: invoke only interface operations

Access control: only a few functions can access private
data

Supported by the type system of the language
Example: ML abstypes, C++/Java classes

o Compare to using blocks to support abstractions

Hide implementation detail inside each block

Variables can be accessed only by functions within the
same block

Return interface functions to the outside
Difference: implementation

11



Encapsulation vs. Function Closure

o Garbage collect activation records
fun mk_vehicle () =
let val speed = ref 0.0; val fuel = ref 0.0 in
{ start = (fn x=> speed := X),
refuel = (fn x => fuel := Ifuel + x)}
end;

0 Object oriented encapsulation

class vehicle {
private double speed =0, fuel = 0;
public void start(double x) {speed = x;}
public void refuel (double x) { fuel = fuel + x; }

b

12



o In object-oriented programming, hidden data

object->message (arguments)

Example: x->add(y) msg!

method1

o In conventional programming,

Operation(operands): e.g. add(x,y) msgn

methodn

Impl of operation is always the same

e.g., ML abstype functions are treated as global functions

o Implementing Dynamic Binding of methods

An object may contain both data and functions
Instance variables, also called member variables

Functions, also called methods or member functions

Put all the name-value bindings into a table

Content of table can be changed, just like the activation

record of a function

13




o What about operator overloading (ad hoc
polymorphism)?

int add(int x, inty) { return x +vy; }
float add(float x, floaty) { return x + y; }

o Very important distinction
Overloading is resolved at compile time
Dynamic lookup is resolved at run time
Difference: flexibility vs. efficiency

o Statically bound functions

C++ non-virtual functions, Java static functions, global
overloading of operators

o Dynamically bound functions
C++ virtual functions, Java non-static functions

14



Static Binding of Methods

O C++ class: non-virtual member functions

m Essentially global functions with an implicit env parameter
class vehicle {
protected: double speed, fuel;
public: vehicle() : speed(0),fuel(0) {}
void start(double x) {speed = x;}
yi

vehicle* a = new vehicle; a->start(5);
o Java/C++: Static Methods/Variables
= Essentially global functions/variables in a name space
class vehicle {
static protected double speed, fuel;
public static void start(double x) {speed = x;}
i
Vehicle.start(3.0);

15



o In C++/Java, classes can declare other classes as
base classes, which means

m The derived class is a subtype of the base class (how
does it relate to the union types in C and ML?)

= The derived class can inherit both interface and
implementation of the base classes

0 Goal: separate classes into groups
m Members of the same group share some structural property
= What properties?
olnterface: the external view of an object
olmplementation: the internal representation of an object

O Subtyping: relation between interfaces
o Inheritance: relation between implementations

16




o A function can often operate on many types of
values
void diagonal-move(MovableThing& a, int len)

{
for (int step = 0; step < len; ++step)
a.move(1,1);

»

Diagonal-move can be applied to all movable things

o Subtyping: if interface A contains interface B,
then A objects can also be used as B objects
The interface of an object is its type.

17



O Subtyping and inheritance often occur simultaneously

0 Subtype inheritance
m Categorize data into related types
Java: implementing interfaces, inheriting a base class
C++: public inheritance from one or more base classes

0 Implementation inheritance

m Sharing of implementation details (not necessarily
interface)

C++: private and protected inheritance

o Why not just invoke members of other classes?
When to inherit (is-a vs. has-a relations)?
Do they support the same interface (subtype relation)?
Need to change dynamic binding of base methods?
Need to access protected members of the other class?

18



C++/Java Subtyping

o Java/C++ subtype polymorphism
class MovableThing
{ virtual void move(int,int) = 0; }
class MovableThingl : public MovableThing
{ ... void move(int x, inty) { ... }... };
class MovableThing2 : public MovableThing
{ ... void move(int x, inty) { ... }... };

void diagonal-move (MovableThing& a, int len)

{
for (int step = 0; step < len; ++step)
a.move(1,1);

19



ML Subtype Polymorphism

o ML subtype polymorphism
abstype MovableThing =
MovableThingl of ... | MovableThing2 of ... with
fun move(MovableThingl(...), int x, inty) = ...
| move(MovableThing2(...), int x, inty) = ...
end;

fun diagonal-move (MovableThing a, len) =
if len > 0 then
(move(a, 1,1); diagonal-move(a, len-1))

o Difference: have to know all the subtypes when
defining MovableThing

20



o What is the subtype relation?
datatype element=Sym of string
| Num of int
| List of elements
and elements = Empty
| Multi of element * elements

o How to implement the subtyping relations
via class inheritance?
0 Base types: element and elements
o Derived types: Sym, Num, List, Empty, Multi

21




O

O

O

Class-based languages (C++, Java, ...)

Behavior of object determined by its class

Object-based (Self)

Objects defined directly

Multi-methods (CLOS)

Operation depends on all operands

This course: class-based languages
History

Simula: Object concept used in simulation 1960’s
Smalltalk: Object-oriented design in systems 1970’s
C++: Adapted Simula ideas to C 1980’s

Java: embedded programming, internet 1990’s

22




0 Abstractions and object-oriented design

o Primary object-oriented language concepts
dynamic lookup
encapsulation
inheritance
subtyping

0 Program organization
class hierarchy

0 Comparison
Objects as closures?

23




