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Modularity and Object-
oriented Abstractions
Encapsulation, Dynamic binding,

Subtyping and Inheritance
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Main program

Create account Deposit/Withdraw Print statement

Modularity
 When we program, we try to solve a problem by

 Step1: decompose the problem into smaller sub-
problems

 Step2: try to solve each sub-problem separately
 Each solution is a separate component that includes

 Interface: types and operations visible to the outside
 Specification: intended behavior and property of interface
 Implementation: data structures and functions hidden from

outside

 Example: a banking program
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Basic Concept: Abstraction
 An abstraction separates interface from implementation

 Hide implementation details from outside (the client)
 Function/procedure abstraction

 Client: caller of the function
 Implementation: function body
 Interface and specification: function declaration
 Enforced by scoping rules

 Data abstraction
 Client: Algorithms that use the data structure
 Implementation: representation of data

 Priority queue can be binary search tree or partially-sorted array
 Interface and specification: operations on the data structure
 Enforced by type system

 Modules
 A collection of related data and function abstractions
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Example: A Function Abstraction
 Hide implementation details of a function

 Interface: float sqrt (float x)
 Specification:  if x>1, then sqrt(x)*sqrt(x) ≈ x.
 Implementation details

float sqrt (float x){
   float y = x/2; float step=x/4; int i;
   for (i=0; i<20; i++){
     if ((y*y)<x) y=y+step;
          else y=y-step;
     step = step/2;
  }
   return y;
}
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Example: A Data Abstraction
 Hide details of data structure (ML)

abstype complex = C of real*real with
       fun complex(x,y:real) = C(x,y)
       fun  x_coord(C(x,y)) = x
       fun y_coord(C(x,y)) = y
       fun add(C(x1,y1),C(x2,y2)) = C(x1+x2,y1+y2)
    end
 No outside operations can use C(x,y) to access internals

of a complex value
 Only data are members of abstraction
 Access functions are global functions

 Function names are bound in enclosing block
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Modules: Combination Of Data And
Function Abstractions
 General Support For Information Hiding

 Hide implementation of related data and functions
 Interface: a set of names and their types

 Include both variable and function declarations
 Implementation

 Implementation for every entry in the interface
 Additional declarations that are hidden

 Can define multiple data or function abstractions

 Modules in different languages
 ML: signatures, structures and functors (will skip)
 C++ namespaces
 Object-oriented abstractions

 Java interfaces and classes; C++ classes
 C++ templates (generic abstractions)
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Global Names And Name Spaces
 Global names in C/C++

 A name whose scope is the entire program
 Global types, global data, global functions

 Problems with global names
 They might not need to be always visible and may conflict

with other global names

 Namespace of global names
 Grouping of global types, data, and functions
 Inside namespace: use the local name
 Outside namespace: namespace + local name

 Namespace as an abstraction
 Interface: declarations of member variables/functions
 Implementation: implementations of members
 Separation of concern:  file inclusion
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Example: Global vs. Local names
 Java class:

class vehicle {
   protected: double speed =0, fuel = 0;
   public void start(double x) {speed = x;}
   public void refuel (double x) { fuel = fuel + x; }
};
vehicle a = new vehicle; a.start(5);

ML abstype
abstype vehicle = V of real ref * real  ref with
          fun mk_vehicle() = V(ref 0.0, ref 0.0);
          fun vehicle_start (V(speed,fuel), x) = speed := x;
          fun vehicle_refuel (V(speed,fuel), x) = fuel := !fuel + x
    end;
val a = mk_vehicle(); vehicle_start(a,5.0);
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Summary of Abstractions
 Abstractions

 Information hiding: interface and implementation details
  Function and data abstractions

 Modules: grouping of related data and functions
 Types, variables, constants, functions
 Interface: declarations visible to the outside

 Abstractions in different languages
 ML abstype: data abstraction (hide data representation);

 all access functions are in the global scope.
  C++ namespaces: a group of related data and functions;

 No explicit access control (separation through file inclusion);
 Not a data type (cannot build values of name spaces)

  C++/Java classes: data abstraction + module
  What about Java interfaces?  (no implementation)
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Object Oriented Abstractions
 Programming methodology for building extensible systems

 Organize concepts into objects and classes
 An OO abstraction is a data abstraction and a module

 Is a module: a group of related data structures and functions
 Is a data type: can be instantiated to produce objects/values

 Encapsulation (access control)
 Separate members into interfaces and implementations

 Dynamic binding of methods (function pointers)
 Implementations of functions are looked up at runtime

 Subtype polymorphism (relations between types)
 Can have subtype relations with other OO abstractions

 Inheritance (inherit and modify behavior of base classes)
 Subtype inheritance: inheriting abstraction interface
 Implementation inheritance: inheriting method implementation



11

Encapsulation
 Use access control to support abstractions

 Hide implementation details from outside
  Implementation code: operate on data representation
  Client code: invoke only interface operations

 Access control: only a few functions can access private
data

  Supported by the type system of the language
  Example: ML abstypes, C++/Java classes

 Compare to using blocks to support abstractions
 Hide implementation detail inside each block

 Variables can be accessed only by functions within the
same block

 Return interface functions to the outside
 Difference: implementation
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Encapsulation vs. Function Closure
 Garbage collect activation records

 fun mk_vehicle () =
   let  val speed = ref 0.0;  val fuel = ref 0.0 in
      { start = (fn x=> speed := x),
         refuel = (fn x => fuel := !fuel + x)}
   end;

 Object oriented encapsulation
  class vehicle {

   private double speed =0, fuel = 0;
   public void start(double x) {speed = x;}
   public void refuel (double x) { fuel = fuel + x; }
};
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hidden data

method1msg1

. . .. . .

methodnmsgn

Dynamic Binding of Methods
  In object-oriented programming,

      object->message (arguments)
        Example: x->add(y)

 In conventional programming,
 Operation(operands): e.g. add(x,y)
 Impl of operation is always the same

  e.g., ML abstype functions are treated as global functions

 Implementing Dynamic Binding of methods
 An object may contain both data and functions

 Instance variables, also called member variables
 Functions, also called methods or member functions

  Put all the name-value bindings into a table
 Content of table can be changed, just like the activation

record of a function



14

Static vs. dynamic lookup
 What about operator overloading (ad hoc

polymorphism)?
 int add(int x, int y)  { return x + y; }
 float add(float x, float y) { return x + y; }

 Very important distinction
 Overloading is resolved at compile time
 Dynamic lookup is resolved at run time
 Difference: flexibility vs. efficiency

 Statically bound functions
 C++ non-virtual functions, Java static functions, global

overloading of operators

 Dynamically bound functions
 C++ virtual functions, Java non-static functions
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Static Binding of Methods
 C++ class: non-virtual member functions

 Essentially global functions with an implicit env parameter
class vehicle {
   protected: double speed, fuel;
   public: vehicle() : speed(0),fuel(0) {}
              void start(double x) {speed = x;}
};
vehicle* a = new vehicle; a->start(5);

 Java/C++: Static Methods/Variables
 Essentially global functions/variables in a name space

class vehicle {
   static protected double speed, fuel;
   public static void start(double x) {speed = x;}
};
Vehicle.start(3.0);
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Subtyping And Inheritance
 In C++/Java, classes can declare other classes as

base classes, which means
 The derived class is a subtype of the base class (how

does it relate to the union types in C and ML?)
 The derived class can inherit both interface and

implementation of the base classes
 Goal: separate classes into groups

 Members of the same group share some structural property
 What properties?

Interface: the external view of an object
Implementation: the internal representation of an object

 Subtyping: relation between interfaces
 Inheritance: relation between implementations
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Subtype Polymorphism
 A function can often operate on many types of

values
      void diagonal-move(MovableThing& a, int len)
      {
          for (int step = 0; step < len; ++step)
              a.move(1,1);
      }
 Diagonal-move can be applied to all movable things

 Subtyping: if interface A contains interface B,
then A objects can also be used as B objects
 The interface of an object is its type.
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Subtyping vs. Inheritance
 Subtyping and inheritance often occur simultaneously
 Subtype inheritance

 Categorize data into related types
 Java: implementing interfaces, inheriting a base class
 C++: public inheritance from one or more base classes

 Implementation inheritance
 Sharing of implementation details (not necessarily

interface)
 C++: private and protected inheritance

 Why not just invoke members of other classes?
 When to inherit (is-a vs. has-a relations)?
 Do they support the same interface (subtype relation)?
 Need to change dynamic binding of base methods?
 Need to access protected members of the other class?
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C++/Java Subtyping
 Java/C++ subtype polymorphism

class MovableThing
       { virtual void move(int,int) = 0; }
class MovableThing1 : public MovableThing
   { … void move(int x, int y) { … }… };
class MovableThing2 : public MovableThing
   { … void move(int x, int y) { … }… };

    void diagonal-move (MovableThing& a, int len)
     {
          for (int step = 0; step < len; ++step)
              a.move(1,1);
      }
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ML Subtype Polymorphism
 ML subtype polymorphism

abstype MovableThing =
  MovableThing1 of … | MovableThing2 of …  with
   fun move(MovableThing1(…), int x, int y) = …
              | move(MovableThing2(…), int x, int y) = …
  end;

fun diagonal-move (MovableThing a, len) =
    if  len > 0 then
             (move(a, 1,1); diagonal-move(a, len-1))

 Difference: have to know all the subtypes when
defining MovableThing



21

Designing The Class Hierarchy
 What is the subtype relation?

datatype element=Sym of string
                             | Num of int
                             | List of elements
    and elements = Empty
                            | Multi of element * elements

 How to implement the subtyping relations
via class inheritance?
 Base types: element and elements
 Derived types: Sym, Num, List, Empty, Multi
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Varieties of OO languages
 Class-based languages    (C++, Java, …)

 Behavior of object determined by its class

 Object-based                  (Self)
 Objects defined directly

 Multi-methods                (CLOS)
 Operation depends on all operands

 This course: class-based languages

 History
 Simula: Object concept used in simulation 1960’s
 Smalltalk: Object-oriented design in systems 1970’s
 C++: Adapted Simula ideas to C 1980’s
 Java: embedded programming, internet 1990’s
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Summary
 Abstractions and object-oriented design
 Primary object-oriented language concepts

 dynamic lookup
 encapsulation
 inheritance
 subtyping

 Program organization
 class hierarchy

 Comparison
 Objects as closures?


