Review

Concepts in Programming
Languages

cs3723

o Skills
Language syntax (context-free grammar, parse tree, and AST)
Lambda calculus (apply beta reduction)
Functional programming (recursion in Scheme and ML)
Type inference (from Scheme to ML)
Tail recursion, loops, and continuation passing (methods of
programming)
Object-oriented programming (from ML datatype/abstype to C++
classes)

o Knowledge (concepts)

Language semantics (expressing power, interpretation vs. compilation,
higher-order functions, functions as first-class objects)

Types, type checking and type inference; Polymorphism

Memory management (blocks, functions, classes and inheritance)
Continuation and exceptions

Abstractions, object-oriented abstractions,

C++ and Java language design and implementations

o Advanced topics
What if we modify a language by adding ...

cs3723 2

Language syntax and context-free grammar
How to define a language using BNF?
Parse trees and abstract-syntax trees

Ambiguity of grammars (advanced topics)
Precedence and associativity; How to rewrite ambiguous production rules

Lambda calculus
Understand the syntax and reduce to normal form
Functional programming in Scheme and ML
Define recursive functions in Scheme and ML
Type inference and translation between languages
What are the types of variables in a Scheme/ML code?
Translate Scheme code to ML
Continuation passing, tail recursion, and loops

What is continuation passing? What is tail recursion? How to
systematically convert program implementations?

Object-oriented programming
Translate ML abstype/datatype/higher-order functions to C++ classes

cs3723 3

o Programming is all about expressing things
using functions, alternatives, recursion, loops

o Exercise (going all the way)

Give a CFG for the syntax of regular expressions over {s,n},
where s and n stands for symbol and number respectively. For
example

“s|n”, “s*”, (sn|ns)* are in the languages

“s|” and “*n” are not in the language

Give an example input in the language. Give parse tree and
AST for the input. Rewrite your grammar to be non-ambiguous

Write a Scheme function that takes an AST of the RE, and
returns how many symbols are inside the AST

Infer types of variables in you Scheme function. Define a ML
datatype to represent the AST

Translate your Scheme function to ML; rewrite it to use
continuation passing. Can you translate it to loops?

Translate your ML datatype and function to C++
cs3723 4

Layout of C++ Class Objects

o Key: supporting dynamic binding of methods,
subtype polymorphism, and class inheritance

0 Exercise: draw the memory layout for the
following classes
= class A { private: int x;
public: void foo() {...}
virtual int bar(int z) {...} };
= class B : public A
{ private: float y;
public: void foo(float z) {...}
virtual int bar(int z) {...} };
= class C : public A
{ public: virtual int foo() {...} };

cs3723

Blocks and Memory Management

o Key: understand the algorithm (get pass the syntax barrier)

= Function definitions can be nested inside one another, but a
function block is not entered untilled the function is invoked by a
caller

o Exercise: list the order of events for the following code; then

draw the runtime stack snapshot.
1: let

2: fun mk_x(x) =

3: let fun add1(y) = x +vy

4. in

5: let val x = 7 in add1(5) end
6: end

7

8:in

: fun apply(f,x) = f(x)

9: apply(mk_x,10)-2
10:end;

cs3723 6

Lambda Calculus

o Higher order functions to the extreme
= Use functions to express everything

= Key: understand function abstractions and
function applications

0 Exercise: apply beta reductions
= AX.(AY.YyX) (MZ. X2)
m (AX. (Y. yx)(nz.xz)) (MY, Yy 2)
= Ay. (AX.Ay.x(XY))(Ag.9Y))5

cs3723

Why high-level programming languages?

Productivity, portability, maintenability, machine efficiency
What can programming languages express?

Data and algorithms

Partial recursive functions
Programming paradigms

Can you define what they are and give examples?
Functional, imperative, object-oriented

What is a high-order function? What does “functions are first-

class objects” mean?
In what ways can prog. languages be implemented? Give
examples? What is the trade-off? What are the
implementation phases

Compilation vs. interpretation

Lexical analysis, Syntax analysis, semantic analysis,

interpretation/code generation+optimziation
cs3723

o What is a type? What is it used for?

Types are classification of values

Different types of values have different
layout/interpretation

o Type declaration and equivalence
Name vs. structure type equivalence

o What is a type system

How to determine types of variables and expressions?
Compile-time vs. runtime type checking

Type checking vs. type inference
Compile-time vs. runtime type checking

Type safety of languages

o Polymorphism
Parametric, ad-hoc and subtype polymorphism

cs3723

O O

What is a block? Can blocks overlap with each other?
Block: a region of code that has local variables

What is the scope and lifetime of a variable?

What are local variables, global variables and function
parameters?
Local variables: defined inside the current block
Global variables: defined in an enclosing block
Functions parameters: input and return parameters
What is the scoping rule of a language?
Static scoping vs. dynamic scoping
What is the memory model of program execution?
The memory model: runtime stack, heap, code space

Runtime stack:
Push an Activation record whenever encountering a new block
Environment pointer, control link, access link

cs3723 10

How many ways can parameter values be passed?
Pass by value vs. pass by reference

What is a function closure? What is it used for?
The value of a function <code, env>
Used to setup environment for function calls

Why is implementing higher-order functions hard?

When a function returns other functions, the activation
records needs to be saved

Activation record in the heap = OO languages

What is tail recursion? Why is it equivalent to loops?
Tail recursion: do not need to return

What is a continuation? What is continuation passing
Continuation: the rest of computation after function exit

cs3723

11

o Why are exceptions considered dynamic jumps?
Static jumps: goto, loop, conditionals, ...
Exception:
Jump out of one or many levels of nested blocks
Until reaching some program point to continue
Pass information to the continuation point
o What is required from a language to support expections?
Type (exception) declaration
Raise an exception
Handle an exception
o Are exceptions part of the type system?
Raising of exceptions not part of type system
Handling of exceptions need to agree with type system

cs3723

12

Abstractions

o What is abstraction?
= Separate interface from implementation
= Grouping of relevant data and functions

o How many ways can a language support abstractions?

= Function/procedure abstraction
ML vs. C++/Java functions
Enforced by scoping rules
= Data abstraction (encapsulation)
ML abstype, C++/Java classes
Enforced by type system
= Modules: group of data and function abstractions

ML signatures and structures, C++ namespaces, C++/Java classes,
Java interfaces

o Parameterization of abstractions (skipped)
= C++ template

cs3723 13

o OO abstractions are types
Have constructors and can be used to build objects
Grouping of relevant data and functions
Access control: private, protected, public, friend, package

o Encapsulation
Separate interface from implementation details
o Subtype polymorphism
Values of subtypes can be used to substitute base type values

o Dynamically-bound functions

Function pointers stored inside class objects
Virtual function are looked up at runtime

o Implementation inheritance
Derived classes can redefine virtual functions of base classes

cs3723 14

o C++/Java classes vs. ML datatype + scoping
(nested functions)

ML can simulate most features of C++/Java except
Inheritance and extensibility

Java/C++ encapsulation <> ML function closure
Java/C++ namespaces €<->ML structures/signatures
Java/C++ virtual methods<—>function pointers as values
Java/C++ subtyping €<—-> union types and pattern
matching

o Implementation of classes C++ vs. Java
Layout of class objects and Java interfaces
Managing class member functions
Design philosophies of the two languages

cs3723 15

