
cs3723 1

Review
Concepts in Programming

Languages

cs3723 2

What we have learned
 Skills

 Language syntax (context-free grammar, parse tree, and AST)
 Lambda calculus (apply beta reduction)
 Functional programming (recursion in Scheme and ML)
 Type inference (from Scheme to ML)
 Tail recursion, loops, and continuation passing (methods of

programming)
 Object-oriented programming (from ML datatype/abstype to C++

classes)
 Knowledge (concepts)

 Language semantics (expressing power, interpretation vs. compilation,
higher-order functions, functions as first-class objects)

 Types, type checking and type inference; Polymorphism
 Memory management (blocks, functions, classes and inheritance)
 Continuation and exceptions
 Abstractions, object-oriented abstractions,
 C++ and Java language design and implementations

 Advanced topics
 What if we modify a language by adding …

cs3723 3

Skills
 Language syntax and context-free grammar

 How to define a language using BNF?
 Parse trees and abstract-syntax trees
 Ambiguity of grammars (advanced topics)

 Precedence and associativity; How to rewrite ambiguous production rules

 Lambda calculus
 Understand the syntax and reduce to normal form

 Functional programming in Scheme and ML
 Define recursive functions in Scheme and ML

 Type inference and translation between languages
 What are the types of variables in a Scheme/ML code?
 Translate Scheme code to ML

 Continuation passing, tail recursion, and loops
 What is continuation passing? What is tail recursion? How to

systematically convert program implementations?
 Object-oriented programming

 Translate ML abstype/datatype/higher-order functions to C++ classes

cs3723 4

Programming
 Programming is all about expressing things

 using functions, alternatives, recursion, loops
 Exercise (going all the way)

 Give a CFG for the syntax of regular expressions over {s,n},
where s and n stands for symbol and number respectively. For
example

 “s|n”, “s*”, (sn|ns)* are in the languages
 “s|” and “*n” are not in the language

 Give an example input in the language. Give parse tree and
AST for the input. Rewrite your grammar to be non-ambiguous

 Write a Scheme function that takes an AST of the RE, and
returns how many symbols are inside the AST

 Infer types of variables in you Scheme function. Define a ML
datatype to represent the AST

 Translate your Scheme function to ML; rewrite it to use
continuation passing. Can you translate it to loops?

 Translate your ML datatype and function to C++

cs3723 5

Layout of C++ Class Objects
 Key: supporting dynamic binding of methods,

subtype polymorphism, and class inheritance
 Exercise: draw the memory layout for the

following classes
 class A { private: int x;
 public: void foo() {…}
 virtual int bar(int z) {…} };
 class B : public A
 { private: float y;
 public: void foo(float z) {…}
 virtual int bar(int z) {…} };
 class C : public A
 { public: virtual int foo() {…} };

cs3723 6

Blocks and Memory Management
 Key: understand the algorithm (get pass the syntax barrier)

 Function definitions can be nested inside one another, but a
function block is not entered untilled the function is invoked by a
caller

 Exercise: list the order of events for the following code; then
draw the runtime stack snapshot.

1: let
2: fun mk_x(x) =
3: let fun add1(y) = x + y
4: in
5: let val x = 7 in add1(5) end
6: end
7: fun apply(f,x) = f(x)
8: in
9: apply(mk_x,10)-2
10:end;

cs3723 7

Lambda Calculus
 Higher order functions to the extreme

 Use functions to express everything
 Key: understand function abstractions and

function applications

 Exercise: apply beta reductions
 λ x. (λ y. y x) (λ z. x z)
 (λ x. (λ y. y x) (λ z. x z)) (λ y. y z)
 (λ y. (λ x. λ y. x (x y)) (λ g. g y)) 5

cs3723 8

Concepts:
Languages and Functions
 Why high-level programming languages?

 Productivity, portability, maintenability, machine efficiency
 What can programming languages express?

 Data and algorithms
 Partial recursive functions

 Programming paradigms
 Can you define what they are and give examples?

 Functional, imperative, object-oriented
 What is a high-order function? What does “functions are first-

class objects” mean?
 In what ways can prog. languages be implemented? Give

examples? What is the trade-off? What are the
implementation phases
 Compilation vs. interpretation
 Lexical analysis, Syntax analysis, semantic analysis,

interpretation/code generation+optimziation

cs3723 9

Concepts --- Types
 What is a type? What is it used for?

 Types are classification of values
 Different types of values have different

layout/interpretation
 Type declaration and equivalence

 Name vs. structure type equivalence
 What is a type system

 How to determine types of variables and expressions?
 Compile-time vs. runtime type checking

 Type checking vs. type inference
 Compile-time vs. runtime type checking

 Type safety of languages
 Polymorphism

 Parametric, ad-hoc and subtype polymorphism

cs3723 10

Concepts ---
Scopes and Runtime Control
 What is a block? Can blocks overlap with each other?

 Block: a region of code that has local variables
 What is the scope and lifetime of a variable?
 What are local variables, global variables and function

parameters?
 Local variables: defined inside the current block
 Global variables: defined in an enclosing block
 Functions parameters: input and return parameters

 What is the scoping rule of a language?
 Static scoping vs. dynamic scoping

 What is the memory model of program execution?
 The memory model: runtime stack, heap, code space
 Runtime stack:

 Push an Activation record whenever encountering a new block
 Environment pointer, control link, access link

cs3723 11

Concepts--
Implementing Functions
 How many ways can parameter values be passed?

 Pass by value vs. pass by reference

 What is a function closure? What is it used for?
 The value of a function <code, env>
 Used to setup environment for function calls

 Why is implementing higher-order functions hard?
 When a function returns other functions, the activation

records needs to be saved
 Activation record in the heap  OO languages

 What is tail recursion? Why is it equivalent to loops?
 Tail recursion: do not need to return

 What is a continuation? What is continuation passing
 Continuation: the rest of computation after function exit

cs3723 12

Concepts: Exceptions
 Why are exceptions considered dynamic jumps?

 Static jumps: goto, loop, conditionals, …
 Exception:

 Jump out of one or many levels of nested blocks
 Until reaching some program point to continue
 Pass information to the continuation point

 What is required from a language to support expections?
 Type (exception) declaration
 Raise an exception
 Handle an exception

 Are exceptions part of the type system?
 Raising of exceptions not part of type system
 Handling of exceptions need to agree with type system

cs3723 13

Abstractions
 What is abstraction?

 Separate interface from implementation
 Grouping of relevant data and functions

 How many ways can a language support abstractions?
 Function/procedure abstraction

 ML vs. C++/Java functions
 Enforced by scoping rules

 Data abstraction (encapsulation)
 ML abstype, C++/Java classes
 Enforced by type system

 Modules: group of data and function abstractions
 ML signatures and structures, C++ namespaces, C++/Java classes,

Java interfaces

 Parameterization of abstractions (skipped)
 C++ template

cs3723 14

Object-oriented Abstractions
 OO abstractions are types

 Have constructors and can be used to build objects
 Grouping of relevant data and functions
 Access control: private, protected, public, friend, package

 Encapsulation
 Separate interface from implementation details

 Subtype polymorphism
 Values of subtypes can be used to substitute base type values

 Dynamically-bound functions
 Function pointers stored inside class objects
 Virtual function are looked up at runtime

 Implementation inheritance
 Derived classes can redefine virtual functions of base classes

cs3723 15

Object-oriented languages
 C++/Java classes vs. ML datatype + scoping

(nested functions)
 ML can simulate most features of C++/Java except

 Inheritance and extensibility
 Java/C++ encapsulation  ML function closure
 Java/C++ namespaces ML structures/signatures
 Java/C++ virtual methodsfunction pointers as values
 Java/C++ subtyping  union types and pattern

matching

 Implementation of classes C++ vs. Java
 Layout of class objects and Java interfaces
 Managing class member functions
 Design philosophies of the two languages

