
cs3723 1

Review
Concepts in Programming

Languages

cs3723 2

What we have learned
 Skills

 Language syntax (context-free grammar, parse tree, and AST)
 Lambda calculus (apply beta reduction)
 Functional programming (recursion in Scheme and ML)
 Type inference (from Scheme to ML)
 Tail recursion, loops, and continuation passing (methods of

programming)
 Object-oriented programming (from ML datatype/abstype to C++

classes)
 Knowledge (concepts)

 Language semantics (expressing power, interpretation vs. compilation,
higher-order functions, functions as first-class objects)

 Types, type checking and type inference; Polymorphism
 Memory management (blocks, functions, classes and inheritance)
 Continuation and exceptions
 Abstractions, object-oriented abstractions,
 C++ and Java language design and implementations

 Advanced topics
 What if we modify a language by adding …

cs3723 3

Skills
 Language syntax and context-free grammar

 How to define a language using BNF?
 Parse trees and abstract-syntax trees
 Ambiguity of grammars (advanced topics)

 Precedence and associativity; How to rewrite ambiguous production rules

 Lambda calculus
 Understand the syntax and reduce to normal form

 Functional programming in Scheme and ML
 Define recursive functions in Scheme and ML

 Type inference and translation between languages
 What are the types of variables in a Scheme/ML code?
 Translate Scheme code to ML

 Continuation passing, tail recursion, and loops
 What is continuation passing? What is tail recursion? How to

systematically convert program implementations?
 Object-oriented programming

 Translate ML abstype/datatype/higher-order functions to C++ classes

cs3723 4

Programming
 Programming is all about expressing things

 using functions, alternatives, recursion, loops
 Exercise (going all the way)

 Give a CFG for the syntax of regular expressions over {s,n},
where s and n stands for symbol and number respectively. For
example

 “s|n”, “s*”, (sn|ns)* are in the languages
 “s|” and “*n” are not in the language

 Give an example input in the language. Give parse tree and
AST for the input. Rewrite your grammar to be non-ambiguous

 Write a Scheme function that takes an AST of the RE, and
returns how many symbols are inside the AST

 Infer types of variables in you Scheme function. Define a ML
datatype to represent the AST

 Translate your Scheme function to ML; rewrite it to use
continuation passing. Can you translate it to loops?

 Translate your ML datatype and function to C++

cs3723 5

Layout of C++ Class Objects
 Key: supporting dynamic binding of methods,

subtype polymorphism, and class inheritance
 Exercise: draw the memory layout for the

following classes
 class A { private: int x;
 public: void foo() {…}
 virtual int bar(int z) {…} };
 class B : public A
 { private: float y;
 public: void foo(float z) {…}
 virtual int bar(int z) {…} };
 class C : public A
 { public: virtual int foo() {…} };

cs3723 6

Blocks and Memory Management
 Key: understand the algorithm (get pass the syntax barrier)

 Function definitions can be nested inside one another, but a
function block is not entered untilled the function is invoked by a
caller

 Exercise: list the order of events for the following code; then
draw the runtime stack snapshot.

1: let
2: fun mk_x(x) =
3: let fun add1(y) = x + y
4: in
5: let val x = 7 in add1(5) end
6: end
7: fun apply(f,x) = f(x)
8: in
9: apply(mk_x,10)-2
10:end;

cs3723 7

Lambda Calculus
 Higher order functions to the extreme

 Use functions to express everything
 Key: understand function abstractions and

function applications

 Exercise: apply beta reductions
 λ x. (λ y. y x) (λ z. x z)
 (λ x. (λ y. y x) (λ z. x z)) (λ y. y z)
 (λ y. (λ x. λ y. x (x y)) (λ g. g y)) 5

cs3723 8

Concepts:
Languages and Functions
 Why high-level programming languages?

 Productivity, portability, maintenability, machine efficiency
 What can programming languages express?

 Data and algorithms
 Partial recursive functions

 Programming paradigms
 Can you define what they are and give examples?

 Functional, imperative, object-oriented
 What is a high-order function? What does “functions are first-

class objects” mean?
 In what ways can prog. languages be implemented? Give

examples? What is the trade-off? What are the
implementation phases
 Compilation vs. interpretation
 Lexical analysis, Syntax analysis, semantic analysis,

interpretation/code generation+optimziation

cs3723 9

Concepts --- Types
 What is a type? What is it used for?

 Types are classification of values
 Different types of values have different

layout/interpretation
 Type declaration and equivalence

 Name vs. structure type equivalence
 What is a type system

 How to determine types of variables and expressions?
 Compile-time vs. runtime type checking

 Type checking vs. type inference
 Compile-time vs. runtime type checking

 Type safety of languages
 Polymorphism

 Parametric, ad-hoc and subtype polymorphism

cs3723 10

Concepts ---
Scopes and Runtime Control
 What is a block? Can blocks overlap with each other?

 Block: a region of code that has local variables
 What is the scope and lifetime of a variable?
 What are local variables, global variables and function

parameters?
 Local variables: defined inside the current block
 Global variables: defined in an enclosing block
 Functions parameters: input and return parameters

 What is the scoping rule of a language?
 Static scoping vs. dynamic scoping

 What is the memory model of program execution?
 The memory model: runtime stack, heap, code space
 Runtime stack:

 Push an Activation record whenever encountering a new block
 Environment pointer, control link, access link

cs3723 11

Concepts--
Implementing Functions
 How many ways can parameter values be passed?

 Pass by value vs. pass by reference

 What is a function closure? What is it used for?
 The value of a function <code, env>
 Used to setup environment for function calls

 Why is implementing higher-order functions hard?
 When a function returns other functions, the activation

records needs to be saved
 Activation record in the heap OO languages

 What is tail recursion? Why is it equivalent to loops?
 Tail recursion: do not need to return

 What is a continuation? What is continuation passing
 Continuation: the rest of computation after function exit

cs3723 12

Concepts: Exceptions
 Why are exceptions considered dynamic jumps?

 Static jumps: goto, loop, conditionals, …
 Exception:

 Jump out of one or many levels of nested blocks
 Until reaching some program point to continue
 Pass information to the continuation point

 What is required from a language to support expections?
 Type (exception) declaration
 Raise an exception
 Handle an exception

 Are exceptions part of the type system?
 Raising of exceptions not part of type system
 Handling of exceptions need to agree with type system

cs3723 13

Abstractions
 What is abstraction?

 Separate interface from implementation
 Grouping of relevant data and functions

 How many ways can a language support abstractions?
 Function/procedure abstraction

 ML vs. C++/Java functions
 Enforced by scoping rules

 Data abstraction (encapsulation)
 ML abstype, C++/Java classes
 Enforced by type system

 Modules: group of data and function abstractions
 ML signatures and structures, C++ namespaces, C++/Java classes,

Java interfaces

 Parameterization of abstractions (skipped)
 C++ template

cs3723 14

Object-oriented Abstractions
 OO abstractions are types

 Have constructors and can be used to build objects
 Grouping of relevant data and functions
 Access control: private, protected, public, friend, package

 Encapsulation
 Separate interface from implementation details

 Subtype polymorphism
 Values of subtypes can be used to substitute base type values

 Dynamically-bound functions
 Function pointers stored inside class objects
 Virtual function are looked up at runtime

 Implementation inheritance
 Derived classes can redefine virtual functions of base classes

cs3723 15

Object-oriented languages
 C++/Java classes vs. ML datatype + scoping

(nested functions)
 ML can simulate most features of C++/Java except

 Inheritance and extensibility
 Java/C++ encapsulation ML function closure
 Java/C++ namespaces ML structures/signatures
 Java/C++ virtual methodsfunction pointers as values
 Java/C++ subtyping union types and pattern

matching

 Implementation of classes C++ vs. Java
 Layout of class objects and Java interfaces
 Managing class member functions
 Design philosophies of the two languages

