
cs3723 1

Scope, Functions, and
Storage Management

 Implementing Functions and
Blocks

cs3723 2

Simplified Machine Model
(Compare To List Abstract Machine)
Registers

Environment Pointer
(current scope)

Program Counter
(current instruction)

DataCode

Heap----
dynamically
allocated
data

Stack----
map
variables
to their
values

cs3723 3

Data Storage Management
 Runtime stack: mapping variables to their values

 When introducing new variables: push new stores to stack
 When variables are out of scope: pop outdated storages

 Environment pointer: current stack position
 Used to keep track of storages of all active variables

 Heap: dynamically allocated data of varying lifetime
 Variables that last throughout the program
 Data pointed to by variables on the runtime stack
 Target of garbage collection

 The code space: the whole program to evaluate
 Program counter: current/next instruction to evaluate

 keep track of instructions being evaluated
 Registers: temporary storages for variables

cs3723 4

Blocks in C/C++

 Blocks: regions of code that introduces new variables
 Enter block: allocate space for variables
 Exits block: some or all space may be deallocated

 Blocks are nested but not partially overlapped
 Jumping out of a block

Make sure variables are freed before exiting
 What about jumping into the middle of a block?

Variables in the block have not yet been allocated

inner
block

outer
block

{
 int x = 2;
 {
 int y = 3;
 x = y+2;
 }
}

cs3723 5

Blocks in Functional languages
 ML:

let fun g(y) = y + 3
in
 let
 fun h(z) = g(g(z))
 in h(3)
 end
end;

 Lisp:
 ((lambda (g)
 ((lambda (h) (h 3)) (lambda (z) (g (g z))))
 (lambda (y) (+ y 3)))

cs3723 6

Summary of Blocks
 Blocks in common languages

 C { … }
 Algol begin … end
 ML let … in … end

 Two forms of blocks
 In-line blocks
 Blocks associated with functions or procedures

 Topic: block-based memory management

cs3723 7

Managing Data Storage In a Block
 Local variables

 Declared inside the current block
 Enter block: allocate space
 Exit block: de-allocate space

 Global variables
 Declared in a previously entered block

 Already allocated before entering current Block
 Remain allocated after exiting current block

 Function parameters
 Input parameters

 Allocated and initialized before entering function body
 De-allocated after exiting function body

 Return values
 Address remembered before entering function body
 Value set after exiting function body

 Scoping rules: where to find memory allocated for variables?
 Need to find the block that introduced the variable

cs3723 8

Parameter passing
 Each function have a number of formal parameters

 At invocation, they are matched against actual parameters

 Pass-by name
 Rename each occurrence of formal parameter with its actual parameter

--- delay of evaluation
 Used in Lambda calculus and side-effect free languages

 Pass-by-value
 Replace formal parameter with value of its actual parameter
 Callee cannot change values of actual parameters

 Pass-by-reference
 Replace formal parameter with address of its actual parameter
 Callee can change values of actual parameters
 Different formal parameters may have the same location

cs3723 9

Example: What is the final result?

int f (int x)
 {
 x := x+1; return x;
 };
main() {
 int y = 0;
 print f(y)+y;
}

fun f (x : int ref) =
 (x := !x+1; !x);
val y = ref 0 : int ref;
f(y) + !y;

fun f (z : int) =
 let val x = ref z in
 x := !x+1; !x
 end;
val y = ref 0 : int ref;
f(!y) + !y;

pseudo-code Standard ML

pas
s-b
y-re
f

pass-by-value

cs3723 10

Scoping rules
Finding non-local (global) variables

 Global and local variables

 Static scope
 Find global declarations in the closest enclosing blocks in

program text
 Dynamic scope

 Find global variables in the most recent activation record

{ int x=0;

 fun g(z) = x+z;

 fun h(z) = let x = 1 in

 g(z) end;

 h(3)

};

x 0

x 1
z 3

z 3

outer block

h(3)

g(12)

Which x?

cs3723 11

Managing Blocks
 Activation record: memory storage for each block

 Contains values for local variables in the block

 Managing Activation Records
 Allocated on a runtime stack: First-In-Last-Out
 Before evaluating each block, push its activation record

onto runtime stack; after exit the block, pop its
activation record off stack

 Compilers generate instructions for pushing & popping
of activation records (pre-compute their sizes)

 Finding locations of local variables
 Compiler calculate the offset of each variable
 Dynamically find activation record of introducing block
 Location = activation record pointer + offset

cs3723 12

Activation Record For Inline Blocks
 Control link

 Point to activation record of
previous (calling) block

 Depend on runtime behavior
 Support push/pop of ARs

 Access link
 Point to activation record of

immediate enclosing block
 Depend on static form of program

 Push record on stack
 Set new control link to env ptr
 Set env ptr to new record

 Pop record off stack
 Follow current control link to reset

environment pointer

Control link

Environment Pointer

Local variables

……

Access link

cs3723 13

Activation Records For Functions

Return address
 Where to continue execution

after return
 Pointer to the next instruction

following the function call

Return-result address
 Where to put return result
 Pointer to caller’s activation

record

Parameters
 Values for formal parameters
 Initialized with the actual

parameters

Control link

Parameters

Local variables

Environment Pointer

Return-result addr

Access link

Return address

cs3723 14

?

Function Abstraction As Values
let val x=1;
 fun g(z) = x+z;
 fun h(z) =
 let x = 2 in
 g(z) end
in h(3)
end;

 What are values for g,h?
 How to determine their

access links?
 Inlined blocks
 Access link = control link
 Function blocks
 Enclosing block of the

function definition

x 1

x 2
z 3

z 3

g
h

access link
control link

return address
return result adr

access link
control link

return address
return result adr

Code
for g

Code
for h

access link
control link

tmp ?

tmp

Outer

h(3)

g(z)

1
2
3
4
5
6
7

 line6

 line5

cs3723 15

Closures
 A function value is a closure: (env, code)

 code: a pointer to the function body
 env: activation record of the enclosing block

 Use closure to maintain a pointer to the static
environment of a function body
 When called, set access link from closure

 When a function is called,
 Retrieve the closure of the function
 Push a new activation record onto runtime stack
 Set return address, return value addr, parameters and local

variables
 Set access link to equal to the env pointer in closure
 Start the next instruction from code pointer in closure

cs3723 16

Control link

Return-result addr
3

fact(3)

Example: Function Calls

fact(2)

fact(n) = if n<= 1 then 1
 else n * fact(n-1)

Control link

fact(n-1)
n

Return-result addr
k

fact(k)

Environment pointer

fact(1)

Access link
Return address

Access link
Return addr

n
Fact(n-1)

Control link

Return-result addr
2

Access link
Return addr

n
Fact(n-1)

Control link

Return-result addr
1

Access link
Return addr

n
Fact(n-1)

cs3723 17

Return Function as Result
 Language feature: functions that return new functions

 E.g. fun compose(f,g) = (fn x => g(f x));
 Each function value is a closure = (env, code), where code

may contain references to variables in env
 Code is not “created” dynamically (static compilation)

 Use a closure to save the runtime environment of function
 Environment: pointer to enclosing activation records
 But the enclosing activation record may have been popped off

the runtime stack
 Returning functions as results is not allowed in C

 Just like returning pointers to local variables

 Need to extend the standard “stack” implementation
 Put activation records on heap
 Invoke garbage collector as needed
 Not as crazy as is sounds

cs3723 18

Tail Call And Tail Recursion
 A function call from g to f is a tail call

 if g returns the result of calling f with no further
computation

 Example
 fun g(x) = if x>0 then f(x) else f(x)*2

 Optimization
 Can pop activation record on a tail call
 Especially useful for a tail recursive call (f to f)

 Callee’s activation record has exactly same form
 Callee can reuse activation record of the caller
 A sequence of tail recursive calls can be translated into a

loop

tail call not a tail call

cs3723 19

Example: what is the result?

fun f(x,y) = if x>y
 then x
 else f(2*x, y);
f(1,3) + 7;

control
return val
x 1
y 3

control
return val
x 1
y 3

control
return val
x 2
y 3

control
return val
x 4
y 3

f(1,3)

fun f(x,y) =
let val z = ref x in
while not (!z >y) do
 z := 2 * !z;
!z
end;

f(1,3) + 7;

Expressed in loop:

cs3723 20

Tail recursion elimination

fun f(x,y) = if x>y
 then x
 else f(2*x, y);
f(1,3);

control
return val
x 1
y 3

f(4,3)

Optimization: pop followed by push
=> reuse activation record in place

Conclusion: tail recursive function
calls are equivalent to iterative loops

control
return val
x 2
y 3

f(1,3)

control
return val
x 4
y 3

f(2,3)

cs3723 21

Tail recursion and iteration
 Tail recursive function

fun last(x::nil) = x
 | last(x::y) = last(y);

 Iteration
fun last(input) =
 let val y= ref input
 in while not(tl(!y)=nil)
 do
 y := tl(!y)
 end;
 hd(!y)
 end

 Step1: what parameters change
when making recursive calls?
 create a reference for each

changed parameter.
 NOTE: no need to create

reference for the return result
 Tail recursion only returns

at the base case
 Step2: what is the base case of

recursion?
 This is the stop condition for the

while loop.
 Step3: what to do before

making tail call?
 loop body: prepare for the next

tail call
 Step4: return base case value.

cs3723 22

Summary
Block-structured languages use runtime stack to
maintain activation records of blocks

 Activation records contain parameters, local variables, …
 Also pointers to enclosing scope

Several different parameter passing mechanisms
Tail calls may be optimized
Function parameters/results require closures

 Env pointer of closure used when function is called
 Runtime stack management may fail if functions are

returned as result
 Closures is not needed if functions are not in nested blocks

 Example: C

