
cs3723 1

Types
Classification of Values

cs3723 2

Values and Types
 Basic types: types of atomic values

 int, bool, character, real, symbol

 Compound types: types of compound values
 List, record, array, tuple, struct, ref, pointer
 Built from type constructors

 int arr[100] arr: array(int,100)
 (3, 4, “abc”) : int * int * string
 int *x x : pointer(int)
 int f(int x) { return x + 5} f : intint

 Values of different types
 have different layouts
 have different operations

 Explicit vs. implicit type conversion of values

cs3723 3

Types in Programming
 A type is a collection of computable values that share some

structural property
 Represent concepts from problem domain

 Accounts, banks, employees, students
 Represent different implementation of values

 Integers, strings, floating points, lists, records, tuples …
 Languages use types to

 Support organization of concepts
 Separate types for separate concepts from problem domain

 Identify and prevent errors
 Prevent meaningless computation

3 + true - “Bill”
 Support efficient translation (by compilers)

 Short integers require fewer bits
 Access record component by a known offset
 Use integer units for integer operations

cs3723 4

The Type System
 Each language has a type system that includes

 A collection of basic types and compound types
 For each basic/compound type, rules on

 How to build values of the type
 integers(eg.,1,23); floating point numbers(e.g., 3.5, 0.12)
 Symbols(‘abc); chars (‘a’, ‘b’); strings(“abc”); lists: ‘(abc 3)
 Type constructors for arrays, structs, records, etc.

 How to operate on values of the type
 Evaluation, equality, introduction and elimination operations
 Each operation is defined only on specific types of operands and returns

only a specific type of values

 Introduction of new types (optional)
 Type declaration rules on how to introduce new types

 Error checking
 A type error occurs if an operation is applied to operands outside

its domain

cs3723 5

Type Declaration and
Equivalence
 Type declarations: introduce new types(user-defined types)

 Transparent declaration: introduce a synonym for another type
 typedef struct { int a, b; } mystruct;
 typedef mystruct yourstruct;

 Opaque declaration: introduce a new type
 struct XYZ { int a, b,c; };

 Type equivalence: struct s {int a,b; }=struct t {int a,b; } ?
 Structural equivalence: yes

 s and t are the same basic type or
 s and t are built using the same compound type

constructor with the same components
 Name equivalence: no

 S and t are different names
 Names uniquely define compound type expressions

 In C, name equivalence for records/structs, structural
equivalence for all other types

cs3723 6

Type Error
 When a value is misinterpreted or misused

with unintended semantics, a type error
 May cause hardware error

function call x() where x is not a function
 may cause jump to instruction that does not contain

a legal op code

 May simply return incorrect value
 int_add(3, 4.5)

 not a hardware error
 bit pattern of 4.5 can be interpreted as an integer
 just as much an error as x() above

cs3723 7

Type Safety Of Languages
 A language is type-safe if it never allows any undetected

type error to occur at runtime
 E.g., raise a runtime exception instead of segmentation fault

 Which languages are type-safe? Which are not?
 BCPL family, including C and C++

 Not type-safe: casts, pointer arithmetic, …

 Algol family, Pascal, Ada
 Almost type-safe
 Dangling pointers: pointers to locations that have been de-allocated
 No language with explicit de-allocation of memory is fully type-safe

 Type-safe languages with garbage collection
 Lisp, ML, Smalltalk, Java
 Dynamically typed: Lisp, Smalltalk
 Statically typed: ML, JAVA

cs3723 8

Type Checking
 Type checking: discover and report type errors

 Can be done at compile-time or run-time, or both
 Run-time(dynamic) type checking

 Check type safety before evaluating each operation
 Example: in Lisp/Scheme, before evaluating (car x), check to

make sure x is a non-empty list
 Compile-time(static) type checking

 Each variable/expression must have a single type: it can have
only values of this type

 Type system: rules for statically deciding types of expressions
 Specify the proper usage of each operator
 Reject expressions that cannot be typed according to rules
 Explicit vs. implicit type conversion

 Example: In C/C++/Java, if a function f is declared int f(float
x), the compiler ensures that f is invoked only with float-type
expressions

cs3723 9

Static vs Dynamic Type Checking
 Both prevent type errors
 Run-time checking: check before each operation

 Pros: flexibility and safety
 Variables/expressions could have arbitrary types
 Can detect all type errors (language is type safe)

 Cons: slow down execution, and error detection may be too late
 Compile-time checking

 Pros: efficiency (no runtime overhead) and early error detection
 Cons: flexibility and safety

 Every variable/function can have only a single type: need to define a
different function for each input type

 Cannot detect some type errors, e.g., accessing arrays out-of-bound,
dangling pointers

 Combination of compile and runtime checking
 Example: Java (array bound check at runtime)

cs3723 10

Type Inference
 Static type checking in C/C++/Java

 int f(int x) { return x+1; };
 int g(int y) { return f(y+1)*2;};
 Programmer has to declare the types of all variables
 Compilers evaluate the types of expressions and check

agreement

 Type inference: extension to static type checking
 int f(int x) { return x+1; };
 int g(int y) { return f(y+1)*2;};
 Programmers are not required to declare types for variables
 Compilers figure out agreeable types of all expressions

 Solving constraints based on how expressions are used

cs3723 11

A Simple Example
 What is the type of f in the Scheme code?

(define f (lambda (x) (+ 2 x)))
> f: int → int

 How does it work
 + has two types: int*int->int, real*real->real
 2 : int has only one type
 This implies + : int*int -> int
 Therefore, need x : int
 Therefore f(x:int) = 2+x has type int → int

+ is overloaded because it has two types. Most operators in a
static type system have a single type

cs3723 12

Type Inference Example
 Function Definition

 (define f (lambda (g x) (g (g x))))
 f : (t → t)*t → t

Step 1: Assume a type for each variable:
 g : ‘g
 x : ‘x
 f : ‘f = ‘g * ‘x -> ‘f_ret
Step 2: Consider each operation and derive constraints on type variables:
 operation (g x) requires ‘g = ‘g_input -> ‘g_ret and ‘g_input = ‘x
 (i.e., g is a function which can take x as parameter)
 operation (g (g x)) requires ‘g_ret = ‘g_input
 (i.e., g can take g_ret as parameter)
 and ‘g_ret = ‘f_ret (i.e., g_ret is returned as f_ret)
Step 3: Group all equivalent types ‘g_input = ‘g_ret = ‘x = ‘f_ret
 f : (‘x -> ‘x) * ‘x -> ‘x

cs3723 13

Type Inference Example
 Without knowing anything about variables, can we guess

the type of each variable and expression?

(define Add (lambda (exp num)
 (cond ((null? exp) exp)
 ((cons? exp) (cons (Add (car exp) num) (Add (cdr exp) num)))
 ((number? exp) (+ exp num))
 (else exp)))

Each pre-defined operator requires its operands to have
specific types. E.g., (car x) x must be a list

(car exp)/(cdr exp) exp : list
(+ exp num) exp : number num: number

So exp could be a number or a list
 type error in statically typed languages

cs3723 14

Polymorphism
 A function (operator) is polymorphic if it can operate on

different types of input values
 Dynamic type checking supports arbitrary polymorphic functions.
 Can we support polymorphic functions in compiled languages?

 Parametric polymorphism
 Operate on types parameterized with type variables

 nil : ‘a list cons : ‘a*(‘a list) → ‘a list
 Ad hoc polymorphism (operator overloading)

 Reuse the same operator for different types; use a different
implementation for each type definition

+ : int->int; + : real->real
 Subtype polymorphism: define relations between types

 Unify multiple types with a base type, e.g., C union, ML datatype
 Inheritance in object-oriented programming (Truck is a subclass

of Car)
void IncreaseSpeed(Car* c, int incr) { c->speed()+=incr; }
Truck truck; IncreaseSpeed(&truck, 50);

cs3723 15

Parametric vs. Ad hoc Polymorphism
 Parametric polymorphism (type variables)

(define first (lambda (x) (car x)))
 x: ‘a list (any kind of list); first : ‘a list ‘a
A single implementation (algorithm) is used for all

different types of input
 Ad hoc polymorphism (operator overloading)

(define Add (lambda (x y)
 (if (number? y) (+ x y)
 (cons x y))))
When applied to numbers:
 x: number; y : number; Add: number*number number
When applied to lists

x: ‘a; y : ‘a list; Add: ‘a * ‘a list ‘a list
Different implementations ((+ x y) vs. (cons x y)) are

used for different types
 Dynamically typed languages (e.g., Lisp/Scheme) supports

both parametric and ad hoc polymorphism
 What about C/Java/C++?

cs3723 16

Summary
 Types are important in modern languages

 Program organization and documentation
 Prevent program errors
 Provide important information to compiler

 Static type checking and inference
 Type checking

 Based on types of variables and literal values, determine
types of expressions

 Type inference
 Determine best type for an expression, based on known

information about symbols in the expression

 Polymorphism
 Parametric polymorphism

 Single algorithm (function) can have many types
 Overloading

 Symbol with multiple meanings, resolved at compile time

