
cs3723 1

Types
Classification of Values

cs3723 2

Values and Types
 Basic types: types of atomic values

 int, bool, character, real, symbol

 Compound types: types of compound values
 List, record, array, tuple, struct, ref, pointer
 Built from type constructors

 int arr[100]  arr: array(int,100)
 (3, 4, “abc”) : int * int * string
 int *x  x : pointer(int)
 int f(int x) { return x + 5}  f : intint

 Values of different types
 have different layouts
 have different operations

 Explicit vs. implicit type conversion of values

cs3723 3

Types in Programming
 A type is a collection of computable values that share some

structural property
 Represent concepts from problem domain

 Accounts, banks, employees, students
 Represent different implementation of values

 Integers, strings, floating points, lists, records, tuples …
 Languages use types to

 Support organization of concepts
 Separate types for separate concepts from problem domain

 Identify and prevent errors
 Prevent meaningless computation

3 + true - “Bill”
 Support efficient translation (by compilers)

 Short integers require fewer bits
 Access record component by a known offset
 Use integer units for integer operations

cs3723 4

The Type System
 Each language has a type system that includes

 A collection of basic types and compound types
 For each basic/compound type, rules on

 How to build values of the type
 integers(eg.,1,23); floating point numbers(e.g., 3.5, 0.12)
 Symbols(‘abc); chars (‘a’, ‘b’); strings(“abc”); lists: ‘(abc 3)
 Type constructors for arrays, structs, records, etc.

 How to operate on values of the type
 Evaluation, equality, introduction and elimination operations
 Each operation is defined only on specific types of operands and returns

only a specific type of values

 Introduction of new types (optional)
 Type declaration rules on how to introduce new types

 Error checking
 A type error occurs if an operation is applied to operands outside

its domain

cs3723 5

Type Declaration and
Equivalence
 Type declarations: introduce new types(user-defined types)

 Transparent declaration: introduce a synonym for another type
 typedef struct { int a, b; } mystruct;
 typedef mystruct yourstruct;

 Opaque declaration: introduce a new type
 struct XYZ { int a, b,c; };

 Type equivalence: struct s {int a,b; }=struct t {int a,b; } ?
 Structural equivalence: yes

 s and t are the same basic type or
 s and t are built using the same compound type

constructor with the same components
 Name equivalence: no

 S and t are different names
 Names uniquely define compound type expressions

 In C, name equivalence for records/structs, structural
equivalence for all other types

cs3723 6

Type Error
 When a value is misinterpreted or misused

with unintended semantics, a type error
 May cause hardware error

function call x() where x is not a function
 may cause jump to instruction that does not contain

a legal op code

 May simply return incorrect value
 int_add(3, 4.5)

 not a hardware error
 bit pattern of 4.5 can be interpreted as an integer
 just as much an error as x() above

cs3723 7

Type Safety Of Languages
 A language is type-safe if it never allows any undetected

type error to occur at runtime
 E.g., raise a runtime exception instead of segmentation fault

 Which languages are type-safe? Which are not?
 BCPL family, including C and C++

 Not type-safe: casts, pointer arithmetic, …

 Algol family, Pascal, Ada
 Almost type-safe
 Dangling pointers: pointers to locations that have been de-allocated
 No language with explicit de-allocation of memory is fully type-safe

 Type-safe languages with garbage collection
 Lisp, ML, Smalltalk, Java
 Dynamically typed: Lisp, Smalltalk
 Statically typed: ML, JAVA

cs3723 8

Type Checking
 Type checking: discover and report type errors

 Can be done at compile-time or run-time, or both
 Run-time(dynamic) type checking

 Check type safety before evaluating each operation
 Example: in Lisp/Scheme, before evaluating (car x), check to

make sure x is a non-empty list
 Compile-time(static) type checking

 Each variable/expression must have a single type: it can have
only values of this type

 Type system: rules for statically deciding types of expressions
 Specify the proper usage of each operator
 Reject expressions that cannot be typed according to rules
 Explicit vs. implicit type conversion

 Example: In C/C++/Java, if a function f is declared int f(float
x), the compiler ensures that f is invoked only with float-type
expressions

cs3723 9

Static vs Dynamic Type Checking
 Both prevent type errors
 Run-time checking: check before each operation

 Pros: flexibility and safety
 Variables/expressions could have arbitrary types
 Can detect all type errors (language is type safe)

 Cons: slow down execution, and error detection may be too late
 Compile-time checking

 Pros: efficiency (no runtime overhead) and early error detection
 Cons: flexibility and safety

 Every variable/function can have only a single type: need to define a
different function for each input type

 Cannot detect some type errors, e.g., accessing arrays out-of-bound,
dangling pointers

 Combination of compile and runtime checking
 Example: Java (array bound check at runtime)

cs3723 10

Type Inference
 Static type checking in C/C++/Java

 int f(int x) { return x+1; };
 int g(int y) { return f(y+1)*2;};
 Programmer has to declare the types of all variables
 Compilers evaluate the types of expressions and check

agreement

 Type inference: extension to static type checking
 int f(int x) { return x+1; };
 int g(int y) { return f(y+1)*2;};
 Programmers are not required to declare types for variables
 Compilers figure out agreeable types of all expressions

 Solving constraints based on how expressions are used

cs3723 11

A Simple Example
 What is the type of f in the Scheme code?

(define f (lambda (x) (+ 2 x)))
> f: int → int

 How does it work
 + has two types: int*int->int, real*real->real
 2 : int has only one type
 This implies + : int*int -> int
 Therefore, need x : int
 Therefore f(x:int) = 2+x has type int → int

+ is overloaded because it has two types. Most operators in a
static type system have a single type

cs3723 12

Type Inference Example
 Function Definition

 (define f (lambda (g x) (g (g x))))
 f : (t → t)*t → t

Step 1: Assume a type for each variable:
 g : ‘g
 x : ‘x
 f : ‘f = ‘g * ‘x -> ‘f_ret
Step 2: Consider each operation and derive constraints on type variables:
 operation (g x) requires ‘g = ‘g_input -> ‘g_ret and ‘g_input = ‘x
 (i.e., g is a function which can take x as parameter)
 operation (g (g x)) requires ‘g_ret = ‘g_input
 (i.e., g can take g_ret as parameter)
 and ‘g_ret = ‘f_ret (i.e., g_ret is returned as f_ret)
Step 3: Group all equivalent types ‘g_input = ‘g_ret = ‘x = ‘f_ret
 f : (‘x -> ‘x) * ‘x -> ‘x

cs3723 13

Type Inference Example
 Without knowing anything about variables, can we guess

the type of each variable and expression?

(define Add (lambda (exp num)
 (cond ((null? exp) exp)
 ((cons? exp) (cons (Add (car exp) num) (Add (cdr exp) num)))
 ((number? exp) (+ exp num))
 (else exp)))

Each pre-defined operator requires its operands to have
specific types. E.g., (car x)  x must be a list

(car exp)/(cdr exp)  exp : list
(+ exp num)  exp : number num: number

So exp could be a number or a list
  type error in statically typed languages

cs3723 14

Polymorphism
 A function (operator) is polymorphic if it can operate on

different types of input values
 Dynamic type checking supports arbitrary polymorphic functions.
 Can we support polymorphic functions in compiled languages?

 Parametric polymorphism
 Operate on types parameterized with type variables

 nil : ‘a list cons : ‘a*(‘a list) → ‘a list
 Ad hoc polymorphism (operator overloading)

 Reuse the same operator for different types; use a different
implementation for each type definition

+ : int->int; + : real->real
 Subtype polymorphism: define relations between types

 Unify multiple types with a base type, e.g., C union, ML datatype
 Inheritance in object-oriented programming (Truck is a subclass

of Car)
void IncreaseSpeed(Car* c, int incr) { c->speed()+=incr; }
Truck truck; IncreaseSpeed(&truck, 50);

cs3723 15

Parametric vs. Ad hoc Polymorphism
 Parametric polymorphism (type variables)

(define first (lambda (x) (car x)))
 x: ‘a list (any kind of list); first : ‘a list  ‘a
A single implementation (algorithm) is used for all

different types of input
 Ad hoc polymorphism (operator overloading)

(define Add (lambda (x y)
 (if (number? y) (+ x y)
 (cons x y))))
When applied to numbers:
 x: number; y : number; Add: number*number number
When applied to lists

x: ‘a; y : ‘a list; Add: ‘a * ‘a list  ‘a list
Different implementations ((+ x y) vs. (cons x y)) are

used for different types
 Dynamically typed languages (e.g., Lisp/Scheme) supports

both parametric and ad hoc polymorphism
 What about C/Java/C++?

cs3723 16

Summary
 Types are important in modern languages

 Program organization and documentation
 Prevent program errors
 Provide important information to compiler

 Static type checking and inference
 Type checking

 Based on types of variables and literal values, determine
types of expressions

 Type inference
 Determine best type for an expression, based on known

information about symbols in the expression

 Polymorphism
 Parametric polymorphism

 Single algorithm (function) can have many types
 Overloading

 Symbol with multiple meanings, resolved at compile time

