
cs4713 1

Code Generation

Machine code generation

cs4713 2

Machine code generation
Intermediate
Code generator

 machine
Code generator

Code optimizer

 Input: intermediate code + symbol tables
 In our case, three-address code
 All variables have values that machines can directly manipulate
 Assume program is free of errors

 Type checking has taken place, type conversion done

 Output:
 Absolute/relocatable machine code or assembly code
 In our case, use assembly
 Architecture variations: RISC, CISC, stack-based

 Issues:
 Memory management, instruction selection and scheduling,

register allocation and assignment

cs4713 3

Retargetable Back End

 Build retargetable compilers
 Isolate machine dependent info
 Compilers on different machines share a common IR

 Can have common front and mid ends
 Table-based back ends share common algorithms

 Table-based instruction selector
 Create a description of target machine, use back-end generator

Machine
description

Back end
generator

 Tables

Pattern-
Matching
engine

Instruction
selector

cs4713 4

The Example Target Machine
 N general-purpose registers r0,r2,……rN-1
 Three address instructions: op source => destiniation

 op: LD, ST, ADD, SUB, MUL, BR, BLTZ, HALT, …
 source and destination: constant, register, or memory
 Use bit patterns to distinguish different address modes
 All computation operators require both operands to be either

constants or in registers

ST r0 => M Store content of register r0 into memory M
LD *a(r0) => r1 Load content of memory a+content(r0) to r1

ST r1 => *4(r0) Store content of r1 to memory indirectly
addressed by 4+content(r0)

ST *r0 => M Store content indirectly addressed by
content(r0) to M

LD 1 => r0 Load constant integer 1 into register r0

cs4713 5

Simplified Machine Model
Registers

Environment Pointer

Program
Counter

DataCode

Heap

Stack

cs4713 6

Translating from three-address code

 No more support for structured control-flow
 Function calls => explicit memory management and

goto jumps

 Every three-address instruction is translated into
one or more target machine instructions
 The original evaluation order is maintained

 Memory management
 Every variable must have a location to store its value

 Register, stack, heap, static storage
 Memory allocation convention

 Scalar/atomic values and addresses => registers, stacks
 Arrays => heap
 Global variables => static storage

cs4713 7

Assigning storage locations
 Compilers must choose storage locations for all values

 Procedure-local storage
 Local variables not preserved across procedural calls

 Procedure-static storage
 Local variables preserved across procedural calls

 Global storage --- global variables
 Run-time heap --- dynamically allocated storage

 Registers---temporary storage for applying operations to
values
 Unambiguous values can be assigned to registers with no

backup storage

void fee() {
 int a, *b, c;
 a = 0; b = &a; *b = 1;
 c = a + *b;
}

cs4713 8

Function call and return
 At each function call

 Allocate an new AR on stack
 Save return address in new AR
 Set parameter values and

return results
 Go to callee’s code

 Save SP and other regs; set
AL if necessary

 At each function return
 Restore SP and regs
 Go to return address in

callee’s AR
 Pop callee’s AR off stack

 Different langauges may
implement this differently
 Conversion necessary when

linking code in different lang.

Return address
parameters

p1

Control link
Return result

Access link

Local variables
 Register save area

Return address
parameters

p1

Control link
Return result

Access link

Local variables
Register save area

sp

cs4713 9

Translating function calls
 Use a register SP to store addr of activation record on top of stack

 SP,AL and other registers saved/restored by callee
 Use C(Rs) address mode to access parameters and local variables

/* code for s */
Action1
Param 5
Call q, 1
Action2
Halt
……
/* code for q */
Action3
return

LD stackStart =>SP /* initialize stack*/
……
108: ACTION1
128: Add SP,ssize=>SP /*now call sequence*/
136: ST 160 =>*SP /*push return addr*/
144: ST 5 => 2(SP) /* push param1*/
152: BR 300 /* call q */
160: SUB SP, ssize =>SP /*restore SP*/
168: ACTION2
190: HALT
 …… /* code for q*/
300: save SP,AL and other regs
 ACTION3
 restore SP,AL and other regs
400: BR *0(SP) /* return to caller*/

cs4713 10

Translating variable assignment
 Keep track of locations for variables in symbol table

 The current value of a variable may reside in a register, a stack
memory location, a static memory location, or a set of these

 Use symbol table to store locations of variables
 Allocation of variables to registers

 Assume infinite number of pseudo registers
 Relocate pseudo registers afterwards

u in r0
b in r1
c in r2

r0 contains u
r1 contains b
r2 contains c

LD c => r2
ADD r0,r2=>r0

u := t + c

t in r0
b in r1

r0 contains t
r1 contains b

LD a => r0
LD b => r1
SUB r0,r1=>r0

t := a - b

Address descriptorRegister descriptorGenerated codestatements

x:=y op z
LD y’ =>r1
LD z’ => r2
OP r1 r2 =>r3
ST r3 => x’

where x’,y’,z’ are locations of x,y.z

cs4713 11

Translating arrays

LD i(SP) => ri
Mult ri,elsize=>r1
ST rb => a(r1)

LD Mi => ri
Mult Ri,elsize=>r1
ST rb => a(r1)

Mult ri, elsize=>r1
ST rb => a(r1)

a[i] := b

LD i(SP) => ri
Mult ri,elsize=>r1
LD b(r1) =>ra

LD Mi => ri
Mult Ri,elsize=>r1
LD b(r1) =>ra

Mult ri, elsize=>r1
LD b(r1)=>ra

a := b[i]

i in stacki in memory Mii in register riStatement

Translating Array assignments (arrays are allocated in heap)

cs4713 12

Translating conditional statements

If x < y goto z SUB rx, ry =>rt
BLTZ z

X := y + z
if (x < 0) goto L

ADD ry, rz => rx
BLTZ L

Condition determined after ADD or SUB

cs4713 13

Example
foo(int a,int b) {
 int i = 0;
 if (a>-100 && a<100){
 i = 0;
 while (i < 50) {
 a = a + b *2;
 }
 foo(a,b)
 }
}

foo:
if a>-100 goto L1
goto done

L1: if a<100 goto L2
 goto done
L2: i := 0
s0: if i < 50 goto s1

goto s2
s1: t1 := b * 2
 a := a + t1
 goto s0
s2: param a
 param b
 call foo, 2
done: return

Foo:save SP and regs
 LD a(SP)=>ra
 Sub ra, -100=>ra
 BGTZ L1
 BR done
L1: LD a(SP)=>ra
 Sub ra, 100=>ra
 BLTZ L2
 BR done
L2: LD 0 => ri
 ST ri=>i(SP)
S0: LD i(SP)=>ri
 Sub ri, 50=>ri
 BLTZ S1
 BR S2
S1: LD b(SP)=>rb
 Mul rb, 2 => r1
 LD a(SP)=>ra
 Add ra,r1=> ra
 ST ra=>a(SP)
 BR S0
S2: Add SP, Foosz=>SP
 LD done=>*SP
 ST ra=>4(SP)
 ST rb=>6(SP)
 BR Foo
done: Sub SP,Foosz=>SP
 restore SP and regs
 BR *0(SP)

Assumptions:
 size of address: 4 bypes
 size of int: 2 bytes

cs4713 14

Instruction Selection
*

ID(“a”,SP,4) ID(“b”,SP,8)

*

ID(“a”,SP,4) NUM(2)

loadI 4 => r5
loadA0 r5,SP => r6
LoadI 8 => r7
loadA0 r7,SP => r8
Mult r6, r8 => r9

loadI 4 => r5
loadA0 r5,SP, => r6
loadI 2 => r7
Mult r6, r7 => r8

LoadAI SP, 4 => r5
loadAI SP,8 => r6
Mult r5, r6=>r7

LoadAI SP,4 => r5
MultI r5, 2 => r6

Generated code

Desired code

Generated code

Desired code

Based on locations of operands, different instructions may be selected.

cs4713 15

Tree-pattern matching
 Define a collection of operation patterns

 Define a code generation template for each pattern
 Match each AST subtree with an operation pattern

 Select instructions accordingly

*

num2reg1

reg2
<-(reg2, *(reg1, num2))

MultI reg1, num2 => reg2

Operation tree: Prefix notation of operation tree:

Code template:

Example: low-level AST for w x – 2 * y

cs4713 16

Rewrite rules through tree grammar
 Use attributed grammar to define code generation rules

 Summarize structures of AST through context-free grammar
 Each production defines a tree pattern in prefix-notation
 Each production is associated with a cost
 Each grammar symbol (terminal or non-terminal) has an attribute

(location of value)

07: Reg := val1

loadI n1 => rnew18: Reg := Num1

loadI I1 => rnew16: Reg := lab1

storeAI r3 => r2, n115: Assign := <- (+ (num1, Reg2), Reg3)

storeAI r3 => r1, n214: Assign := <- (+ (Reg1, num2), Reg3)

storeA0 r3 => r1, r213: Assign := <- (+ (Reg1, Reg2), Reg3)

move r2 => r112: Assign := <- (Reg1, Reg2)

01: Goal := Assign

Code templatecostproduction

cs4713 17

Example: applying rewrite rules

addI r2, n1 => rnew119: Reg := + (Num1, Reg2)

addI r1, n2 => rnew118: Reg := + (Reg1, Num2)

add r1, r2=> rnew117: Reg := +(Reg1, Reg2)

subI r1, n2 => rnew116: Reg := - (Reg1, Num2)

addI r1, l2 => rnew120: Reg := + (Reg1, Lab2)

Sub r1 r2 => rnew115: Reg := - (Reg1,Reg2)

addI r2, l1 => rnew121: Reg := + (Lab1, Reg2)

loadAI r2, l1 => rnew114: Reg := M(+ (Lab1,Reg2))

loadAI r1, l2 => rnew113: Reg := M(+ (Reg1, Lab2))

loadAI r2, n1 => rnew112: Reg := M(+ (Num1,Reg2))

loadAI r1, n2 => rnew111: Reg := M(+ (Reg1,Num2))

loadA0 r1, r2 => rnew110: Reg := M(+ (Reg1,Reg2))

Load r1 => rnew19: Reg := M(Reg1)

Code templatecostproduction

cs4713 18

Tiling the AST
 Given an AST and a collection of operation trees, tiling the

AST maps each AST subtree to an operation tree
 A tiling is a collection of <ASTnode, op-tree> pairs, each

specifying the implementation for a AST node
 Storage for result of each AST operation must be consistent

across different operation trees

+

Lab(@G) Num(12)

Reg:=Lab1

Reg:=+(Reg1,Num2)

cs4713 19

Find a tiling

Tile(n)
 Label(n) := ∅
 if n is a binary node then
 Tile(left(n))
 Tile(right(n))
 for each rule r that matches n’s operation
 if left(r) ∈ Label(left(n)) and right(r) ∈ Lable(right(n))
 then Add r to Label(n)
 else if n is a unary node then
 Tile(left(n))
 for each rule r that matches n’s operation
 if (left(r) ∈ Label(left(n))
 then Add r to Label(n)
 else /* n is a AST leaf */
 Label(n) := {all rules that match the operation in n}

 Bottom-up walk of the AST, for each node n
 Label(n) contains the set of all applicable tree patterns

cs4713 20

Find the low-cost matches
 Tiling can find all the matches in the pattern set

 Multiple matches exist because grammar is ambiguous
 To find the one with lowest cost, must keep track of the cost in

each matched translation

Example: low-level AST for w x – 2 + y

<-
+

SP 4

+

- M

+

SP 12

M

+
SP 8

2(7,0)

(18,1)
(17,2)

(8,1) (9,2)
(11,1) (8,1)

(15,3)
(16,2)

(9,2)
(11,1)

(17,4)

(7,0) (8,1)

(18,1)
(17,2)

(7,0) (8,1)

(18,1)
(17,2)

(4,5) (2,6) loadAI SP,8=>r1
subI r1, 2=> r2
loadAI SP,12=>r3
Add r2, r3 => r4
storeAI r4=>SP, 4

cs4713 21

Summary of tree matching approach
 Need to select lowest-cost instructions in bottom-up

traversal of AST
 Need to determine lowest-cost match for each storage class

 Automatic tools
 Hand-coding of tree matching
 Encode the tree-matching problem as a finite automata
 Use parsing techniques

 Need to be extended to handle ambiguity

 Use string-matching techniques
 Linearize the tree into a prefix string
 Apply string pattern matching algorithms

cs4713 22

Peephole optimization
 Use a simple scheme to match IR to machine code

 efficiently discover local improvements by examining short
sequences of adjacent operations

StoreAI r1 => SP, 8
loadAI SP,8 => r15

storeAI r1 => SP, 8
r2r r1 => r15

addI r2, 0 => r7
Mult r4, r7 => r10 Mult r4, r2 => r10

 jumpI -> L10
L10: jumpI -> L11

 jumpI -> L11
L10: jumpI -> L11

cs4713 23

Systematic peephole optimization

 Expander
 Rewrites each assembly instruction to a sequence of low-level

IRs that represent all the direct effects of operation
 Simplifier

 Examine and improve LLIR operations in a small sliding
window

 Forward substitution, algebraic simplification, constant evaluation,
eliminating useless effects

 Matcher
 Match simplified LLIR against pattern library for ASM

instructions that best captures the LLIR effects

Expander
ASM->LLIR

Simplifier
LLIR->LLIR

Matcher
LLIR->ASM

IR LLIR LLIR ASM

cs4713 24

Peephole optimization example
mult 2 y => t1
sub x t1 => w

r10 := 2
r11 := @G
r12 := 12
r13 := r11 + r12
r14 := M(r13)
r15 :=r10 * r14
r16 := -16
r17 := SP + r16
r18 := M(r17)
r19 := M(r18)
r20 := r19 – r15
r21 := 4
r22 := SP + r21
M(r22) := r20

expand

r10 := 2
r11 := @G
r14 := M(r11+12)
r15 := r10 * r14
r18 := M(SP + -16)
r19 := M(r18)
r20 := r19 – r15
M(SP+4) := r20

loadI 2 => r10
loadI @G => r11
loadAI r11 12=>r14
Mult r10 r14 => r15
loadAI SP -16=>r18
Load r18 => r19
Sub r19 r15 => r20
storeAI r20 => SP 4

simplify match

r1 := n1
r2 := r3 + r1

r2:=r3+n1

r1:=r2+n1
r3 :=M(r1)

r3:=M(r2+n1)

r1:=r2+n1
M(r1):=r3

M(r2+n1):=r3

Optimizations:

cs4713 25

Efficiency of peephole optimization
 Design issues

 Dead values
 May intervene with valid simplification
 Need to be recognized expansion process

 Control flow operations
 Complicates simplifier

 Clear window vs. special-case handling

 Physical vs. logical windows
 Adjacent operations may be irrelevant
 Sliding window includes ops that define or use common values

 RISC vs. CISC architectures
 RISC architectures makes instruction selection easier

 Additional issues
 Automatic tools to generate large pattern libraries for different

architectures
 Front ends that generate LLIR make compilers more portable

cs4713 26

Register allocation and assignment
 Values in registers are easier and faster to access than memory

 Reserve a few registers for stack pointers, base registers etc
 Efficiently utilize the rest of general-purpose registers

 Register allocation
 At each program point, select a set of values to reside in registers

 Register assignment
 Pick a specific register for each value, subject to hardware constraints
 Register classes: not all registers are equal

 Optimal register allocation/assignment in general are NP-complete
 Register assignment in many cases can be solved in polynomial time

……
 i := 0
s0: if i < 50 goto s1

goto s2
s1: t1 := b * 2
 a := a + t1
 goto s0
S2: …

• Variables that can stay in registers
 i, a, b, t1
• Need to know how variables will be
used after each statement.
• Problem: given a statement I, what
statements may follow I in the future?

cs4713 27

The register allocation problem

 At each point of execution, a program may have arbitrary number
of live variables
 Only a subset may be kept in registers
 If a value cannot be kept in register, it must be stored in memory and

loaded again when next needed spilling of value to register
 Goal: make effective use of registers

 Minimize the number of loads and stores for spilling
 Register-to-register model

 Early translation tries to store all values in registers; select values to
spill to memory

 Memory-to-memory model
 Early translation allocates memory for all user variables; promote

values to register
 Must decide which values do not require memory storage

Register
allocator

Input program Output program

Assumes infinite #
of registers

Uses registers on
machine

cs4713 28

Control-flow graph
 Graph representation of program

 Nodes of graph: basic blocks (straight-line computations)
 Edges of graph: flows of control

 Useful for collecting information about computation
 Detect loops, remove redundant computations, …
 Find live range of each variable v

 All statements where v might be used in the future
 Candidate for register allocation

……
 i := 0
s0: if i < 50 goto s1

goto s2
s1: t1 := b * 2
 a := a + t1
 goto s0
S2: …

S0: if I < 50 goto s1

goto s2
s1: t1 := b * 2
 a := a + t1
 goto s0

S2: ……

i :=0

cs4713 29

Identifying basic blocks
 Input: a sequence of three-address statements
 Output: a list of basic blocks
 Method:

 Determine each statement that starts a new basic block, including
 The first statement of the input sequence
 Any statement that is the target of a goto statement
 Any statement that immediately follows a goto statement

 Each basic block consists of
 A starting statement S0
 All statements following S0 up to but not including the next starting

statement (or the end of input)

……
 i := 0
s0: if i < 50 goto s1
 goto s2
s1: t1 := b * 2
 a := a + t1
 goto s0
S2: …

Starting statements:
 i := 0
 S0,
 goto S2
 S1,
 S2

cs4713 30

Building control-flow graphs
 Identify all the basic blocks

 Create a flow graph node for each basic block
 For each basic block B1

 If B1 ends with a jump to a statement that starts basic block B2,
create an edge from B1 to B2

 If B1 does not end with an unconditional jump, create an edge from
B1 to the basic block that immediately follows B1 in the original
evaluation order

……
 i := 0
s0: if i < 50 goto s1
 goto s2
s1: t1 := b * 2
 a := a + t1
 goto s0
S2: …

S0: if i < 50 goto s1

goto s2
s1: t1 := b * 2
 a := a + t1
 goto s0

S2: ……

i :=0

cs4713 31

Register allocation on flow graphs
 Local (single basic block) register allocation

 At start of basic block
 Assume every value resides in memory
 Load values from memory to registers if necessary

 At end of basic block
 Store all modified values in registers back to memory

 Within each basic block,
 Find live ranges of variables (statements where variables are further used in

basic block)
 Allocate variable live ranges to registers based on use counts

 Global (single procedural) register allocation
 Allocate registers across basic block boundaries
 Compute the live range of each variable

 The duration of code (the collection of basic blocks) that variables are alive
(may be used in the future)

 Use data-flow analysis on control-flow graphs (not covered)
 Allocate registers to live ranges of variables

cs4713 32

Local register allocation
 Allocation model

 Assumes register-to-register memory model
 Input program assumes infinite # of registers

 Assume all registers on target machine are equivalent
 Approaches

 Top-down: count the number of references to each value
 the most heavily used values should reside in registers
 Weakness: dedicate a register to value for entire block

 Bottom-up: spill the value that is needed the latest
 For each variable use, compute the distance of its next use
 process each instruction in evaluation order; when running out of

registers, spill the value whose next use is farthest in the future
 Produces excellent result in many cases
 Not optimal: not all spilling takes the same number of cycles

 Clean vs. dirty spill: has the variable been modified?

 Graph Coloring based allocation

cs4713 33

Computing local live variables
 At each program point, a variable is alive if it may be used in the future

 Only values of live variables need to be kept in registers
 Local live variable analysis (within a basic block)

 A variable is alive if its value is used within the basic block

Algorithm at each basic block:

 Set every variable in symbol table ``not alive”
 Scan statements in reverse order, at every i: x := y op z

 Alive(i) = live variables in symbol table
 Set x to “not alive” in symbol table
 Set y and z to “alive” in symbol table

 a, b
(1) t1 := a * a t1, a, b
(2) t2 := a * b t1, b, t2
(3) t3 := 2 * t2 t1, t3, b
(4) t4 := t1 + t3 t4, b
(5) t5 := b * b t4, t5
(6) t6 := t4 + t5 none

Local live variables

cs4713 34

Live ranges and interference graph

variable live range # of uses
 a (1)-(2) 3
 b (1)-(5) 3
 t1 (2)-(4) 2
 t2 (3) 1
 t3 (4) 1
 t4 (5)-(6) 1
 t5 (6) 1
 t6 none 0

 a, b
(1) t1 := a * a t1, a, b
(2) t2 := a * b t1, b, t2
(3) t3 := 2 * t2 t1, t3, b
(4) t4 := t1 + t3 t4, b
(5) t5 := b * b t4, t5
(6) t6 := t4 + t5 none

Live variables

a

bt1

t2 t3
t4

t5 t6

Interference graph:
• Nodes: live ranges of variables
• Put an edge between (n1,n2) if
 they are overlapping live ranges
 (values are alive simultaneously)

cs4713 35

Interference graph and register
allocation
 Interference graph

 Nodes: live ranges of variables
 An edge between (n1,n2) if they are overlapping live ranges

 Register allocation
 Allocating registers to nodes of interference graph
 If there is an edge between (n1,n2)

 Must allocate n1 and n2 to different registers
 If there is no edge between (n1,n2), they can share a register

 The graph coloring problem
 Assign colors to nodes of a graph, neighboring nodes must have

different colors

a

bt1

t2 t3
t4

t5

t6

a, b, t1 must reside in different registers
b, t1, t3 must reside in different registers
b, t1, t2 must reside in different registers
t2,t3,t4,t5,t6 can share a single register

Need 4 registers to hold all values

cs4713 36

Estimating register spilling cost

 When not sufficient registers are available, compilers must
choose registers to spill into memory
 Choose the variables with the lowest spilling cost

 Address calculation --- where to spill
 Compilers can choose where to spill values

 E.g. Register-save area of local activation record
 Memory load/store

 Negative spill costs
 live ranges that contain a single load /store and no other uses

 Infinite spill costs
 live ranges short enough that spilling never helps
 E.g., a use immediately following a definition

 Global allocation ==> frequency of basic block execution
 Compilers annotate each block with an execution count
 E.g., assume each loop executes 10 times, and each

unpredictable branch is evaluated 50% of times

Cost = (address calculation + memory load/store)*frequency

cs4713 37

Graph-coloring based allocation
 Rank all live ranges

 Live ranges with high spilling costs are ranked higher
 Color constrained live ranges first

 Live ranges with more than k interfering neighbors
 Unconstrained live ranges can always be colored

 At each step, try to color the current live range Ri with top priority
 if neighbors of Ri have not taken all the colors

 assign an available color (register) to Ri
else /*no color is available for Ri*/
 invoke spilling or splitting mechanisms

Assume 5 physical registers: P1-P5
Unconstrained nodes:
 R0,R7,R8,R20
Ordering of nodes for coloring
 R5 P1; R2 P2 ; R4 P3;
 R17 P4; R18 P5 ; R19spill
 R0 P1; R7 P1; R8 P1;
 R20 P1;

R0

R2

R4

R7

R8

R17

R18

R19
R20

R5

cs4713 38

The register allocation problem
 Local register allocation

 Allocate registers with a single basic block
 Load all registers from memory at block entry; store all registers to

memory at block exit
 Global register allocation

 Allocating registers across basic block boundaries
 Apply data-flow analysis on control-flow graph to determine live

ranges of variables
 Build global interference graph and apply graph coloring algorithm

 Register allocation is hard
 Optimal graph coloring is NP complete
 Building global interference graph and applying graph coloring

algorithms are expensive
 Not suitable for just-in-time compilers

 When not enough registers, need to spill values to memory
 Heuristics for register allocation

 Allocate registers to values that are used more times
 Avoid register spilling in loops
 Just in time compilation

 Aggressively allocate registers in a linear scan of program

